Lecture 9 - Learning with Uncertainty (I)

Jesse Hoey
School of Computer Science
University of Waterloo

March 15, 2019

Readings: Poole & Mackworth (2nd Ed.) Chapt. 10.1, 10.4
Bayesian Learning

Basic premise:
- have a number of hypotheses or models
- don’t know which one is “correct”
- Bayesians assume all are correct to a certain degree
- Have a distribution over the models
- Compute expected prediction given this average

Suppose X is input features, and Y is target feature, $d = \{x_1, y_1, x_2, y_2, \ldots, x_N, y_N\}$ is evidence (data), x is a new input, and we want to know corresponding output y. We sum over all models, $m \in M$

\[
P(Y|x, d) = \sum_{m \in M} P(Y, m|x, d)
\]

\[
= \sum_{m \in M} P(Y|m, x, d)P(m|x, d)
\]

\[
= \sum_{m \in M} P(Y|m, x)P(m|d)
\]
Have a bag of Candy with 2 flavors (Lime, Cherry)

Sold in bags with different ratios

- 100% cherry
- 75% cherry + 25% lime
- 50% cherry + 50% lime
- 25% cherry + 75% lime
- 100% lime

With a random sample - what ratio is in the bag?
Hypotheses H (or models M): probabilistic theory about the world

- h_1: 100% cherry
- h_2: 75% cherry + 25% lime
- h_3: 50% cherry + 50% lime
- h_4: 25% cherry + 75% lime
- h_5: 100% lime

Data D: evidence about the world

- d_1: 1st candy is lime
- d_2: 2nd candy is lime
- d_3: 3rd candy is lime
- ...

We may have some prior distribution over the hypotheses:
Prior $P(H) = [0.1, 0.2, 0.4, 0.2, 0.1]$
Bayesian Learning

- Prior: $P(H)$
- Likelihood: $P(d|H)$
- Evidence: $d = \{d_1, d_2, \ldots, d_n\}$

Bayesian learning: update the posterior (Bayes’ theorem)

$$P(H|d) \propto P(d|H)P(H)$$
Bayesian Prediction

- want to predict X: (e.g. next candy)

$$P(X|d) = \sum_i P(X|d, h_i)P(h_i|d)$$

$$= \sum_i P(X|h_i)P(h_i|d)$$

- Predictions are weighted averages of the predictions of the individual hypotheses

- Hypotheses serve as ”intermediaries” between raw data and prediction
Posteriors given data generated from h_5
Bayesian Prediction

Bayes' prediction from data generated from h_5
Bayesian Learning

Bayesian learning properties:

- **Optimal**: given prior, no other prediction is correct more often than the Bayesian one
- **No overfitting**: prior/likelihood both penalise complex hypotheses

Price to pay:

- Bayesian learning may be intractable when hypothesis space is large
- sum over hypotheses space may be intractable

Solution: approximate Bayesian learning
Maximum a posteriori

- Idea: make prediction based on **most probable hypothesis**: h_{MAP}
- $h_{MAP} = \arg\max_{h_i} P(h_i|d)$
- $P(X|d) \approx P(X|h_{MAP})$
- Contrast with Bayesian learning where **all hypotheses** are used
Posterior

Posterior distribution of data generated from h_5
MAP properties

- MAP prediction less accurate than Bayesian one since it relies only on one hypothesis
- MAP and Bayesian predictions converge as data increases
- **no overfitting** (as in Bayesian learning)
- Finding h_{MAP} may be intractable:
 \[
 h_{MAP} = \arg\max_h P(h|d) \\
 = \arg\max_h P(h)P(d|h) \\
 = \arg\max_h P(h) \prod_i P(d_i|h)
 \]

 product induces a non-linear optimisation
- can take the log to linearise
 \[
 h_{MAP} = \arg\max_h \left[\log P(h) + \sum_i \log P(d_i|h) \right]
 \]
Maximum Likelihood (ML)

- Idea: Simplify MAP by assuming uniform prior (i.e. $P(h_i) = P(h_j) \forall i, j$)

 $$h_{MAP} = \arg\max_h P(h)P(d|h)$$

 $$h_{ML} = \arg\max_h P(d|h)$$

- Make prediction based on h_{ML} only

 $$P(X|d) \approx P(X|h_{ML})$$
ML Properties

- ML prediction **less accurate** than Bayesian or MAP predictions since it ignores prior and relies on one hypothesis.
- but ML, MAP and Bayesian converge as the amount of data increases.
- more susceptible to **overfitting**: no prior.
- h_{ML} is often easier to find than h_{MAP}

$$h_{ML} = \arg\max_h \sum_i \log P(d_i|h)$$
Binomial Distribution

- Generalise the hypothesis space to a continuous quantity
- \(P(\text{Flavour} = \text{cherry}) = \theta \) (like a “coin weight”)
- \(P(\text{Flavour} = \text{lime}) = (1 - \theta) \)
- \(P(k \text{ lime, } n \text{ cherry}) = \theta^n(1 - \theta)^k \) (one order)
- \(P(k \text{ lime, } n \text{ cherry}) = \binom{n + k}{k} \theta^n(1 - \theta)^k \) (any order)
The Beta distribution $B(\theta, a, b) = \theta^{a-1}(1 - \theta)^{b-1}$
Bayesian classifiers

- Idea: if you knew the classification you could predict the values of features.

\[P(Class|X_1 \ldots X_n) \propto P(X_1, \ldots, X_n|Class)P(Class) \]

- **Naïve Bayesian classifier:** \(X_i \) are independent of each other given the class.

 Requires: \(P(Class) \) and \(P(X_i|Class) \) for each \(X_i \).

\[P(Class|X_1 \ldots X_n) \propto \left[\prod_i P(X_i|Class) \right] P(Class) \]
Naïve Bayes classifier

- Predict class C based on attributes A_i
- Parameters:

 $$\theta = P(C = \text{true})$$
 $$\theta_{i1} = P(A_i = \text{true}|C = \text{true})$$
 $$\theta_{i0} = P(A_i = \text{true}|C = \text{false})$$

- Assumption: A_is are independent given C.
Naïve Bayes classifier

<table>
<thead>
<tr>
<th>Action</th>
<th>Author</th>
<th>Thread</th>
<th>Length</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1</td>
<td>skips</td>
<td>known</td>
<td>new</td>
<td>long</td>
</tr>
<tr>
<td>e2</td>
<td>reads</td>
<td>unknown</td>
<td>new</td>
<td>short</td>
</tr>
<tr>
<td>e3</td>
<td>skips</td>
<td>unknown</td>
<td>old</td>
<td>long</td>
</tr>
</tbody>
</table>
| ... | ... | ... | ... | ... | ...

ML sets
- θ to relative frequency of reads, skips
- θ_{i1} to relative frequency of A_i given reads, skips

$$\theta_{i1} = \frac{\text{number of articles that are read and have } A_i = \text{true}}{\text{number of articles that are read}}$$

$$\theta_{i0} = \frac{\text{number of articles that are skipped and have } A_i = \text{true}}{\text{number of articles that are skipped}}$$
Bayesian Network Parameter Learning (ML)

For fully observed data

- Parameters $\theta_{V, \text{pa}(V) = v^i}$
- CPTs $\theta_{V, \text{pa}(V) = v} = P(V | \text{Pa}(V) = v)$
- Data d:

 $d_1 = < V_1 = v_{1,1}, V_2 = v_{2,1}, \ldots, V_n = v_{n,1} >$

 $d_2 = < V_1 = v_{1,2}, V_2 = v_{2,2}, \ldots, V_n = v_{n,2} >$

 \ldots

- Maximum likelihood: Set $\theta_{V, \text{pa}(V) = v}$ to the relative frequency of values of V given the the values v of the parents of V
Occam’s Razor

e.g. from MacKay
www.inference.phy.cam.ac.uk/mackay/itila/book.html
Occam’s Razor

e.g. from MacKay

www.inference.phy.cam.ac.uk/mackay/itila/book.html
Occam’s Razor
Bayesian learning: update the posterior (Bayes’ theorem)

\[P(H|d) = kP(d|H)P(H) \]

So

\[-\log P(H|d) = -\log P(d|H) - \log P(H) \]

- first term: number of bits to encode the data given the model
- second term: number of bits to encode the model

MDL principle is to choose the model that minimizes the number of bits it takes to describe both the model and the data given the model.

MDL is equivalent to Bayesian model selection

- second term: part of Occam factor
Next:

- Learning under Uncertainty II (Poole & Mackworth (2nd Ed.) chapter 10.2, 10.3, 10.5)