Bayesian Learning
Lecture 9a yesian Learnin

Jesse Hoey @ have a number of hypotheses or models

School of Computer Science o don't know which one is correct
University of Waterloo

Basic premise:

e Bayesians assume all are correct to a certain degree
e Have a distribution over the models

June 27, 2022 o Compute expected prediction given this average

Readings: Poole & Mackworth (2nd Ed.) Chapt. 10.1, 10.4

Bayesian Learning Candy Example

Suppose X is input features, and Y is target feature,

d = {x1,y1,%, ¥2,-..,xn, yn} is evidence (data), x is a new input, . .
and we want to know corresponding output y. @ Have a bag of Candy with 2 flavors (Lime, Cherry)
We sum over all models, m € M @ Sold in bags with different ratios
> 100% cherry
P(Y|x,d) = Z P(Y,m|x,d) » 75% cherry+25% lime
meM » 50% cherry + 50% lime
> 25% cherry + 75% lime
= P(YIm,x,d)P(mlx,d) > 100% lime
meM

@ With a random sample - what ratio is in the bag?

> P(YIm, x)P(m|d)

ot @ see bayesian-learning.pdf



Statistical Learning Bayesian Learning

o Hypotheses H (or models M) : probabilistic theory about the
world
> hy: 100% cherry

> hy: 75% cherry+25% lime o Prior: P(H)

> h3: 50% cherry + 50% lime o Likelihood : P(d|H)

> hy: 25% cherry + 75% lime o Evidence: d= [dh, db i)
d={d,d,....dy

> hs: 100% lime

@ Data D : evidence about the world
» dp: 1% candy is lime
> dy: 27 candy is lime P(H|d) oc P(d|H)P(H)
> ds: 3 candy is lime
> .

Bayesian learning: update the posterior (Bayes' theorem)

We may have some prior distribution over the hypotheses:
Prior P(H) =[0.1,0.2,0.4,0.2,0.1]

Bayesian Prediction Posterior

Posteriors given data generated from h

E—y) —
o want to predict X : (e.g. next candy) o8 +:::2::1 o
or —o— vt
P(X|d) = 3~ P(X|d. hy)P(hild) ——k
.

=" P(X|h)P(hld)

o Predictions are weighted averages of the predictions of the
individual hypotheses

@ Hypotheses serve as intermediaries between raw data and
prediction
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Bayesian Prediction Bayesian Learning

Bayes' prediction from data generated from h 5

1

095 Bayesian learning properties:
ﬁ 09 o Optimal : given prior, no other prediction is correct more
g often than the Bayesian one

085
ﬁ @ No overfitting : prior/likelihood both penalise complex
D os
I~ hypotheses
g 075 Price to pay:
o o7 @ Bayesian learning may be intractable when hypothesis space
'g 065 is large
g, 06 @ sum over hypotheses space may be intractable

oss Solution: approximate Bayesian learning
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number of samples

Maximum a posteriori Posterior

Posteriors given data generated from h
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@ Idea: make prediction based on most probable hypothesis : o Pl

hmap 06
© hyap = argmaxy, P(hj|d)
o P(X|d) ~ P(X|huap)
@ Constrast with Bayesian learning where all hypotheses are
used

number of samples



MAP properties Maximum Likelihood (ML)

@ MAP prediction less accurate than full Bayesian since it
relies only on one hypothesis

o MAP and Bayesian predictions converge as data increases
o no overfitting (as in Bayesian learning) o Idea: Simplify MAP by assuming uniform prior
@ Finding hpap may be intractable: (i.e. P(hi) = P(hj)Vi,j)

hmap = argmax,P(h|d) hmap = argmax,P(h)P(d|h)
= argmaxy,P(h)P(d|h)

= argmax,P(h) H P(d;|h)
i @ Make prediction based on hyy only

hme = argmaxyP(d|h)

P(X|d) ~ P(X|hw)
product induces a non-linear optimisation

can take the log to linearise

hmap = argmaxy, |:IogP(h) + Z /ogP(d,\h)]

ML Properties Binomial Distribution

@ ML prediction less accurate than Bayesian or MAP
predictions since it ignores prior and relies on one hypothesis o Generalise the hypothesis space to a continuous quantity
@ but ML, MAP and Bayesian converge as the amount of data o P(Flavour = cherry) = 0 (like a “coin weight")
increases o P(Flavour = lime) = (1 — 0)
°

P(
@ more susceptible to overfitting : no prior P(k lime, n cherry) = 6”(1 — G)“ (one order)
P(

@ hyy is often easier to find than hyap

k lime, n cherry) = ( "t k ) 6"(1 — @)k (any order)
hp = argmaxy Z logP(dj|h)

@ see bayesian-learning.pdf for worked examples

@ see bayesian-learning.pdf for worked examples



Priors on Binomials Bayesian classifiers

sstributi _ ga-1(1 _ g)b-1
The [BSISIAIEERINON] 5(6, 2, b) = 6°7(1 - 6) o Idea: if you knew the classification you could predict the

values of features.

Beta distibution

T T P(Class| X1 ... Xp) o< P(X1,...,Xn|Class)P(Class)

o Naive Bayesian classifier: X; are independent of each other
given the class.
Requires: P(Class) and P(X;|Class) for each X;.

003 [

0025 |-

P(theta)

P(Class|Xy ... Xp)

H P(X,|C/ass)} P(Class)

0.005 |-

Naive Bayes classifier Naive Bayes classifier

@ Predict class C based on attributes A;
@ Parameters:

0 = P(C = true)

01 = P(A; = true|C = true)
010 = P(A; = true|C = false) Action  Author Thread Length Where
el skips known new long home
e2 reads unknown new short work
@ Assumption: Ajs are independent given C. e3  skips unknown old long work
ML sets

@ 0 to relative frequency of reads, skips

e 01 to relative frequency of A; given reads, skips

number of articles that are read and have A; = true
number of articles that are read

number of articles that are skipped and have A; = true

O =

Bio =

number of articles that are skipped



Laplace correction

o If a feature never occurs in the training set , but does in the

test set,

@ ML may assign zero probability to a high likelihood class.
@ add 1 to the numerator, and add d (arity of variable) to the

denominator

@ assign:

9f1=(

number of articles that are read and have A; = true) + 1

number of articles that are read+2

Bio =

(number of articles that are skipped and have A; = true) +1

number of articles that are skipped+2

@ like a pseudocount

@ see naivebayesml.pdf

Occam'’s Razor

Bayesian Network Parameter Learning (

For fully observed data
o Parameters 6y p,(v)—yi
o CPTs Oy pa(v)=v = P(V|Pa(V) = v)

o Data d:
d=<Vi=wvi1,Va=v1,....Vp=vp1>
h=<Vo=vipg,Va=va2,....Vp=vp2 >

@ Maximum likelihood: Set 0Oy pa(v)=v to the relative frequency
of values of V given the the values v of the parents of V

Occam'’s Razor

e.g. from MacKay
www.inference.phy.cam.ac.uk/mackay/itila/book.html

or2?

Figure 28.2. How many boxes are
behind the tree?

e.g. from MacKay
www.inference.phy.cam.ac.uk/mackay/itila/book.html



Occam'’s Razor Overfitting

@ Simplicity is encouraged in the likelihood function: Test set errors caused by:
@ Hy is more complex (lower bias) than Hy, @ bias : the error due to the algorithm finding an imperfect
model.

@ so can explain more datasets D,

. L . . > representation bias : model is too simple
@ but each with lower probability (higher variance) E P

» search bias : not enough search

variance : the error due to lack of data.

°
Evidence @ noise : the error due to the data depending on features not
modeled or because the process generating the data is
POIH) inherently stochastic.
@ bias-variance trade-off :
P(OIH) > Complicated model, not enough data (low bias, high variance)
\ » Simple model, lots of data (high bias, low variance)
C D @ see handout biasvariance.pdf

Minimum Description Length Next:

Bayesian learning: update the posterior (Bayes' theorem)

P(H|d) = kP(d|H)P(H)

—logP(H|d) = —log P(d|H) — logP(H) @ Supervised Learning under Uncertainty (Poole & Mackworth
(2nd Ed.) chapter 7.3.2,7.5-7.6)

o first term : number of bits to encode the data given the model

@ second term : number of bits to encode the model

e MDL principle is to choose the model that minimizes the
number of bits it takes to describe both the model and the
data given the model.

@ MDL is equivalent to Bayesian model selection



