Bayesian Learning

Lecture 9a - Bayesian Learning

Jesse Hoey School of Computer Science University of Waterloo

June 27, 2022

Readings: Poole & Mackworth (2nd Ed.) Chapt. 10.1, 10.4

Basic premise:

- have a number of hypotheses or models
- don't know which one is correct
- Bayesians assume all are correct to a certain degree
- Have a distribution over the models
- Compute expected prediction given this average

Bayesian Learning

Suppose X is input features, and Y is target feature, $d = \{x_1, y_1, x_2, y_2, \dots, x_N, y_M\}$ is evidence (data), x is a new input, and we want to know corresponding output y. We sum over all models. $m \in M$

$$\begin{split} P(Y|x,d) &= \sum_{m \in M} P(Y,m|x,d) \\ &= \sum_{m \in M} P(Y|m,x,d) P(m|x,d) \\ &= \sum_{m \in M} P(Y|m,x) P(m|d) \end{split}$$

Candy Example

- Have a bag of Candy with 2 flavors (Lime, Cherry)
- Sold in bags with different ratios
 - ▶ 100% cherry
 - 75% cherry+25% lime
 50% cherry + 50% lime
 - ≥ 25% cherry + 75% lime
 - ► 100% lime
- With a random sample what ratio is in the bag?
- see bayesian-learning.pdf

<□> 3/26 <□> 4/26

Prior: P(H)

• Likelihood : P(d|H)

• Evidence: $d = \{d_1, d_2, ..., d_n\}$

 $P(H|d) \propto P(d|H)P(H)$

Bayesian learning: update the posterior (Bayes' theorem)

- Hypotheses H (or models M): probabilistic theory about the world h₁: 100% cherry

 - ▶ h₂: 75% cherry+25% lime ▶ h₃: 50% cherry + 50% lime
 - b₄: 25% cherry + 75% lime
- ► h_s: 100% lime
- Data D: evidence about the world
 - ▶ d₁: 1st candy is lime
 - ▶ d₂: 2nd candy is lime ▶ d₃: 3rd candy is lime

We may have some prior distribution over the hypotheses: Prior P(H) = [0.1, 0.2, 0.4, 0.2, 0.1]

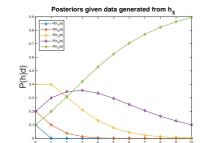
Posterior

Bayesian Prediction

• want to predict X : (e.g. next candy)

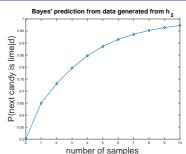
$$P(X|d) = \sum_{i} P(X|d, h_i)P(h_i|d)$$
$$= \sum_{i} P(X|h_i)P(h_i|d)$$

- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as intermediaries between raw data and prediction



number of samples

Bayesian Prediction



Bayesian Learning

Bayesian learning properties:

Optimal: given prior, no other prediction is correct more

- often than the Bayesian one
- No overfitting: prior/likelihood both penalise complex hypotheses

Price to pay:

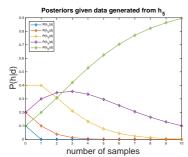
- Bayesian learning may be intractable when hypothesis space is large
- sum over hypotheses space may be intractable

Solution: approximate Bayesian learning

Maximum a posteriori

- Idea: make prediction based on most probable hypothesis:
- $h_{MAP} = argmax_{h_i}P(h_i|d)$
- $P(X|d) \approx P(X|h_{MAP})$
- Constrast with Bayesian learning where all hypotheses are used

Posterior



MAP properties

- MAP prediction less accurate than full Bayesian since it relies only on one hypothesis
- MAP and Bayesian predictions converge as data increases
- no overfitting (as in Bayesian learning)
- Finding h_{MAP} may be intractable:

$$\begin{split} h_{MAP} &= argmax_h P(h|d) \\ &= argmax_h P(h) P(d|h) \\ &= argmax_h P(h) \prod_i P(d_i|h) \end{split}$$

product induces a non-linear optimisation

can take the log to linearise

$$h_{MAP} = argmax_h \left[logP(h) + \sum_i logP(d_i|h)
ight]$$

Maximum Likelihood (ML)

• Idea: Simplify MAP by assuming uniform prior (i.e.
$$P(h_i) = P(h_i) \forall i, j$$
)

$$h_{MAP} = argmax_h P(h)P(d|h)$$

$$h_{ML} = argmax_h P(d|h)$$

Make prediction based on h_{MI} only

$$P(X|d) \approx P(X|h_{ML})$$

ML Properties

- ML prediction less accurate than Bayesian or MAP predictions since it ignores prior and relies on one hypothesis
- but ML, MAP and Bayesian converge as the amount of data increases
- more susceptible to overfitting: no prior
- h_{MI} is often easier to find than h_{MAP}

$$h_{ML} = argmax_h \sum_{i} logP(d_i|h)$$

· see bayesian-learning.pdf for worked examples

Binomial Distribution

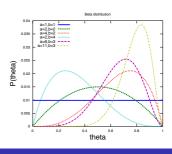
- Generalise the hypothesis space to a continuous quantity
- $P(Flavour = cherry) = \theta$ (like a "coin weight")
- $P(Flavour = lime) = (1 \theta)$
- P(k lime, n cherry) = θⁿ(1 θ)^k (one order)
- $P(k \text{ lime}, n \text{ cherry}) = \binom{n+k}{k} \theta^n (1-\theta)^k \text{ (any order)}$
- · see bayesian-learning.pdf for worked examples

< □ > 16 / 26

Priors on Binomials

The Beta distribution $B(\theta, a, b) = \theta^{a-1}(1-\theta)^{b-1}$

on
$$B(\theta, a, b) = \theta^{a-1}(1-\theta)^{b-1}$$



Bayesian classifiers

. Idea: if you knew the classification you could predict the values of features.

$$P(Class|X_1...X_n) \propto P(X_1,...,X_n|Class)P(Class)$$

 Naïve Bayesian classifier: Xi are independent of each other given the class. Requires: P(Class) and $P(X_i|Class)$ for each X_i .

$$P(Class|X_1...X_n) \propto \left[\prod_i P(X_i|Class)\right] P(Class)$$

UberAction

Naïve Bayes classifier

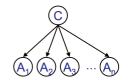
- Predict class C based on attributes A:
- Parameters:

$$\theta = P(C = true)$$

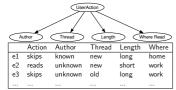
$$\theta_{i1} = P(A_i = true | C = true)$$

$$\theta_{i0} = P(A_i = true | C = false)$$

Assumption: Ais are independent given C.



Naïve Baves classifier



ML sets

- θ to relative frequency of reads, skips
- θ_{i1} to relative frequency of A_i given reads, skips

 $\underline{\hbox{number of articles that are read}} \ \ \hbox{and have} \ \ A_i = \mathit{true}$

number of articles that are read number of articles that are skipped and have $A_i = true$

number of articles that are skipped

Laplace correction

Bayesian Network Parameter Learning (ML)

- If a feature never occurs in the training set, but does in the test set.
- test set,

 ML may assign zero probability to a high likelihood class.
- add 1 to the numerator, and add d (arity of variable) to the denominator
- assign:

$$\theta_{i1} = \frac{\text{(number of articles that are read and have } A_i = true) + 1}{\text{number of articles that are read} + 2}$$

$$\theta_{i0} = \frac{(\text{number of articles that are skipped and have } A_i = \textit{true}) + 1}{\text{number of articles that are skipped} + 2}$$

- like a pseudocount
- see naivebayesml.pdf

For fully observed data

- Parameters $\theta_{V,pa(V)=v^i}$
- CPTs θ_{V,pa(V)=v} = P(V|Pa(V) = v)
- Data d:

$$d_1 = \langle V_1 = v_{1,1}, V_2 = v_{2,1}, \dots, V_n = v_{n,1} \rangle$$

$$d_2 = \langle V_2 = v_{1,2}, V_2 = v_{2,2}, \dots, V_n = v_{n,2} \rangle$$

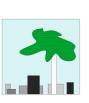
. . .

• Maximum likelihood: Set $\theta_{V,pa(V)=v}$ to the relative frequency of values of V given the the values v of the parents of V

Occam's Razor

Occam's Razor

e.g. from MacKay www.inference.phy.cam.ac.uk/mackay/itila/book.html



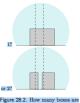
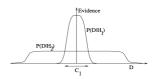


Figure 28.2. How many boxes are behind the tree?

e.g. from MacKay
www.inference.phy.cam.ac.uk/mackay/itila/book.html

- Simplicity is encouraged in the likelihood function:
- H₂ is more complex (lower bias) than H₁.
- so can explain more datasets D,
- but each with lower probability (higher variance)



- Test set errors caused by:
 - bias: the error due to the algorithm finding an imperfect model.
 - representation bias: model is too simple
 - search bias: not enough search
 - variance: the error due to lack of data.
 - noise: the error due to the data depending on features not modeled or because the process generating the data is inherently stochastic.
 - bias-variance trade-off:
 - ► Complicated model, not enough data (low bias, high variance)
 - Simple model, lots of data (high bias, low variance)
 - \bullet see handout biasvariance.pdf

Minimum Description Length

Bayesian learning: update the posterior (Bayes' theorem)

$$P(H|d) = kP(d|H)P(H)$$

So

$$-logP(H|d) = -log P(d|H) - logP(H)$$

- first term: number of bits to encode the data given the model
- second term : number of bits to encode the model
- MDL principle is to choose the model that minimizes the number of bits it takes to describe both the model and the data given the model.
- MDL is equivalent to Bayesian model selection

Next:

 Supervised Learning under Uncertainty (Poole & Mackworth (2nd Ed.) chapter 7.3.2.7.5-7.6)