# Probability and Time

# Lecture 8 - Reasoning under Uncertainty (Part II)

Jesse Hoey School of Computer Science University of Waterloo

A node repeats over time

- explicit encoding of time
- chain has length = amount of time you want to model
- event-driven times or clock-driven times 2
- e.g. Markov chain

TIME: 1

4

3



June 21, 2022

Readings: Poole & Mackworth (2nd ed.)Chapt. 8.5 - 8.9

| < □ > 1/32                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • • • •                                                             |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Markov assumption                                                              | Hidden Markov Models (HMMs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |
|                                                                                | TIME: 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 4                                                                 |
| TIME: 1 2 3 4<br>$(s_1) \rightarrow (s_2) \rightarrow (s_3) \rightarrow (s_4)$ | $(s_1) \rightarrow (s_2) \rightarrow (s_2) \rightarrow (s_1) \rightarrow (s_2) \rightarrow (s_2$ | $(s_3) \rightarrow (s_4)$<br>$(v_3) \qquad (v_4)$                   |
| $P(S_{t+1} S_1,\ldots,S_t)=P(S_{t+1} S_t)$                                     | Add: observations $O_t$ (always observed<br>and<br>observation function $P(O_t S_t)$<br>Given a sequency of observations $O_1$ ,<br>filtering:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d, so the node is square)<br>, <i>O</i> <sub>t</sub> , can estimate |
| This distribution gives the dynamics of the Markov chain                       | $P(S_t O_1, \dots, O_t)$ or smoothing, for $k < t$ $P(S_t O_t, \dots, O_t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |

# Speech Recognition

#### Most well known application of HMMs

- observations : audio features ٠
- states : phonemes ٠
- dynamics : models e.g. co-articulation ۰
- HMMs : words
- · Can build hierarchical models (e.g. sentences)



# Belief Monitoring in HMMs



$$\begin{split} & _{i_{i}} = P(S_{i}|o_{0} \dots, o_{i}) \\ & \propto P(S_{i}, o_{0}, \dots, o_{i}) \\ & = P(o_{i}|S_{i}) \sum_{S_{i-1}} P(S_{i}, S_{i-1}, o_{0}, \dots, o_{i-1}) \\ & = P(o_{i}|S_{i}) \sum_{S_{i-1}} P(S_{i}|S_{i-1}) P(S_{i-1}, o_{0}, \dots, o_{i-1}) \\ & \propto P(o_{i}|S_{i}) \sum_{S_{i-1}} P(S_{i}|S_{i-1}) \alpha_{i-1} \end{split}$$

Street and Street Belief Monitoring in HMMs



$$\begin{split} \hat{g}_{i+1} &= P(o_{i+1} \dots, o_T | S_i) \\ &= \sum_{S_{i+1}} P(S_{i+1}, o_{i+1}, \dots, o_T | S_i) \\ &= \sum_{S_{i+1}} P(o_{i+1} | S_{i+1}, o_{i+2}, \dots, o_T, S_i) P(S_{i+1}, o_{i+2}, \dots, o_T | S_i) \\ &= \sum_{S_{i+1}} P(o_{i+1} | S_{i+1}) P(o_{i+2}, \dots, o_T | S_{i+1}, S_i) P(S_{i+1} | S_i) \\ &= \sum_{S_{i+1}} P(o_{i+1} | S_{i+1}) P(S_{i+1} | S_i) \hat{g}_{i+2} \end{split}$$

A CONTRACTOR OF STREET, SANDA

# Belief Monitoring in HMMs



$$\alpha_i\beta_{i+1} = P(o_{i+1}\ldots,o_T|S_i)P(S_i|o_0\ldots,o_i) \propto P(S_i|O)$$

# Dynamic Bayesian Networks (DBNs)

### Example: localization

- in general, any Bayesian network can repeat over time: DBN
- Many examples can be solved with variable elimination.
- may become too complex with enough variables
- event-driven times or clock-driven times ۵



- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented HMM :



### Example localization domain

## Example Sensor Model





- Doors at positions: 2, 4, 7, 11.
- Noisy Sensors
- Stochastic Dynamics
- Bobot starts at an unknown location and must determine where it is, known as the kidnapped robot problem.
- see handout robotloc.pdf

- P(Observe Door | At Door) = 0.8
- P(Observe Door | Not At Door) = 0.1

- P(Loc<sub>t+1</sub> = I|Action<sub>t</sub> = goRight ∧ Loc<sub>t</sub> = I) = 0.1
- $P(Loc_{t+1} = l + 1 | Action_t = goRight \land Loc_t = l) = 0.8$
- $P(Loc_{t+1} = l + 2 | Action_t = goRight \land Loc_t = l) = 0.074$
- P(Loc<sub>t+1</sub> = l'|Action<sub>t</sub> = goRight \land Loc<sub>t</sub> = l) = 0.002 for any other location l'.
  - All location arithmetic is modulo 16.
  - The action goLeft works the same but to the left.



observe door, go right, observe no door, go right, observe door where is the robot?

$$P(Loc_2 = 4 | O_0 = d, A_0 = r, O_1 = \neg d, A_1 = r, O_2 = d) = 0.42$$

12/32

## Combining sensor information

- Example: we can combine information from a light sensor and the door sensor Sensor Fusion
- Key Point: Bayesian probability ensures that evidence is integrated proportionally to its precision.
- Sensors are precision weighted



Loc<sub>t</sub> robot location at time t  $D_t$  door sensor value at time t  $L_t$  light sensor value at time t

### Probability Distribution and Monte Carlo



John von Neumann 1903 - 1957



ENIAC 1949



Stanlislaw Ulam 1909-1984



Monte Carlo 1949

- Idea: probabilities ↔ samples
- · Get probabilities from samples:



 If we could sample from a variable's (posterior) probability, we could estimate its (posterior) probability. For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution :  $f(x) = P(X \le x)$ .
- Select a value y uniformly in the range [0, 1].
- Select the x such that f(x) = y.



# Hoeffding Bound

p is true probability,  $\boldsymbol{s}$  is sample average,  $\boldsymbol{n}$  is number of samples

- $P(|s-p| > \epsilon) \le 2e^{-2n\epsilon^2}$
- if we want an error greater than  $\epsilon$  in less than a fraction  $\delta$  of the cases, solve for *n*:

$$2e^{-2n\epsilon^2} < \delta$$
  
 $-ln\frac{\delta}{\tau}$ 

$$n > \frac{-in_{\overline{2}}}{2\epsilon^2}$$

#### we have

| $\epsilon \; \mathrm{error}$ | cases with error $> \epsilon$ | samples needed |
|------------------------------|-------------------------------|----------------|
| 0.1                          | 1/20                          | 184            |
| 0.01                         | 1/20                          | 18,445         |
| 0.1                          | 1/100                         | 265            |

# Forward sampling in a belief network

- Sample the variables one at a time ;
- sample parents of X before you sample X.
- Given values for the parents of *X*, sample from the probability of *X* given its parents.
- for samples s<sub>i</sub>, i = 1 ... N:

$$P(X = x_i) \propto \sum_{s_i} \delta(x_i) = N_{X = x_i}$$

where

$$\delta(x_i) = \begin{cases} 1 & \text{if } X = x_i \text{ in } s_i \\ 0 & \text{otherwise} \end{cases}$$

### Sampling for a belief network: inference

| Sample                | Malfnction | Cancer | TestB | TestA | Report | Database |
|-----------------------|------------|--------|-------|-------|--------|----------|
| <i>s</i> <sub>1</sub> | false      | false  | true  | true  | false  | false    |
| <i>s</i> <sub>2</sub> | false      | true   | true  | true  | true   | true     |
| <b>s</b> 3            | false      | true   | true  | true  | true   | true     |
| <i>s</i> <sub>4</sub> | false      | false  | false | true  | false  | false    |
| <b>S</b> 5            | true       | true   | true  | true  | false  | false    |
| <i>S</i> <sub>6</sub> | false      | true   | false | true  | false  | false    |
| <b>S</b> 7            | false      | false  | false | true  | false  | true     |
|                       |            |        |       |       |        |          |
| S1000                 | false      | false  | false | true  | false  | false    |

To get  $P(H = h_i | E = e_i)$  simply

- count the number of samples that have  $H = h_i$  and  $E = e_i$ ,  $N(h_i, e_i)$
- divide by the number of samples that have  $E = e_i$ ,  $N(e_i)$

• 
$$P(H = h_i | E = e_i) = \frac{P(H = h_i \land E = e_i)}{P(E = e_i)} = \frac{N(h_i, e_i)}{N(e_i)}$$

• P(C = True Database = True) based on first 7 samples?

# **Rejection Sampling**

- To estimate a posterior probability given evidence  $Y_1 = v_1 \land \ldots \land Y_i = v_i$ :
- If, for any *i*, a sample assigns Y<sub>i</sub> to any value other than v<sub>i</sub> reject that sample.
- The non-rejected samples are distributed according to the posterior probability.
- in the Hoeffding bound, n is the number of non-rejected samples





#### Example Network

$$\frac{P(A = true)}{0.4} \qquad (A) \longrightarrow (E)$$

 $\begin{array}{c|c} A & P(E = true) \\ \hline true & 0.1 \\ false & 0.3 \end{array}$ 

If we draw N samples  $s_{i=1...N}$  by

- sampling A: a<sub>i=1...N</sub>
- sampling from E given A: e<sub>i=1...N</sub>

#### then

- $\approx N_t = 0.4N$  of them will have A = true, and of these  $\approx 10\%$  will have E = true
- $\approx N_f = 0.6N$  of them will have A = false, and of these  $\approx 30\%$  will have E = true

| Example Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Importance weights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} \underline{P(A = true)} \\ \hline 0.4 \end{array}  \overbrace{A} \longrightarrow \overbrace{E}  \begin{array}{c} \underline{A}  P(E = true) \\ \hline true  0.1 \\ \underline{false}  0.3 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{aligned} & \underbrace{A  E}_{A  e}  N_{AE} \\ \hline & \underbrace{F_{AE}}_{True  false  N_{f} = 0.4 \times 0.9 \times N}_{True  true  N_{f} = 0.6 \times 0.1 \times N}_{false  false  false  N_{ff} = 0.6 \times 0.7 \times N}_{false  true  N_{ff} = 0.6 \times 0.3 \times N}_{We want to compute} \\ & P(a e) = P(A = true E = true) \propto \sum_{\delta_{i}} \delta(a_{i} = true) \delta(e_{i} = true) \\ & P(a e) = \frac{P(a \wedge e)}{P(e)} \approx \frac{N_{ff}}{N_{ff} + N_{ff}}_{ff} \\ & = \frac{0.1 \times 0.4 \times N}{0.1 \times 0.4 \times N + 0.3 \times 0.6 \times N} \end{aligned} = 0.182 \end{aligned}$ | <ul> <li>we can do better since we can weight the samples</li> <li>weights = prob. that the evidence is observed</li> <li>N<sub>t</sub> samples with A = true have weight of w<sub>t</sub> = 0.1<br/>this is P(E = true)A = true)</li> <li>N<sub>t</sub> samples with A = false have weight of w<sub>t</sub> = 0.3<br/>this is P(E = true)A = talse)</li> <li>can do better because we don't need to generate the 90%<br/>of samples (when A = true) that don't agree with the<br/>evidence - we simply assign all samples a weight of 0.1</li> <li>thus, we are mixing exact inference (the 0.1) with<br/>sampling.</li> </ul> |
| Importance weights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Importance weights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\frac{P(A = true)}{0.4} \qquad (A) \longrightarrow (E) \qquad \frac{A  P(E = true)}{true  0.1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $  \frac{P(A = true)}{0.4}  (A) \longrightarrow (E)  \frac{A  P(E = true)}{true  0.1} \\ \underline{Ialse  0.3} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • Compute sum of all weights of the samples with $A = true$<br>$W_t = \sum_i w_t \delta(a_i = true) = N_t \times 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>In fact, the As don't need to even be sampled from P(A)</li> <li>Can be sampled from some q(A), say q(A = true) = 0.5</li> <li>and each sample will have a new weight P(a)/q(a)</li> <li>q(A) is a present distribution</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                     |
| a Compute sum of all weights of the complex with $A = false$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbf{\varphi} q(\mathbf{A})$ is a proposal distribution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

• Compute sum of all weights of the samples with A = false

$$W_f = \sum_i w_f \delta(a_i = false) = N_f \times 0.3$$

finally, compute

$$\mathsf{P}(a|e) = \frac{W_t}{W_t + W_f} = \frac{0.1 \times 0.4 \times N}{0.1 \times 0.4 \times N + 0.3 \times 0.6 \times N}$$

• helps when it is hard to sample from P(A), but we can evaluate  $P^*(A) \propto P(A)$  given a sample (see slide 24)

### Importance weights



- rejection sampling uses q = P
- rejection sampling uses all variables including observed ones, and all weights on samples are set to 1.0
- $N'_t = q(a)N$  samples with A = true have weight of  $0.1 \times \frac{P^*(a)}{q(a)} = 0.1 \times \frac{\alpha 0.4}{0.5}$
- N'<sub>f</sub> = q(ā)N samples with A = false have weight of 0.3 × P<sup>+</sup>(ā)/q(ā) = 0.3 × a0.6/0.5

#### Importance weights

total weight of all samples with A = true

$$\begin{split} & W_t' = \sum_i w_i \delta(a_i = true) = N_t' \times 0.1 \times \frac{\alpha 0.4}{0.5} \\ &= 0.5N \times 0.1 \times \frac{\alpha 0.4}{0.5} = 0.1 \times \alpha \times 0.4 \times N \end{split}$$

total weight of all samples with A = false

$$\begin{split} & \mathsf{W}_{\mathsf{f}}' = \sum_{i} \mathsf{w}_{i} \delta(\mathsf{a}_{i} = \mathsf{true}) = \mathsf{N}_{\mathsf{f}}' \times 0.3 \times \frac{\alpha 0.6}{0.5} \\ &= 0.5\mathsf{N} \times 0.3 \times \frac{\alpha 0.6}{0.5} = 0.3 \times \alpha \times 0.6 \times \mathsf{N} \end{split}$$

□ ▶ 23/3;

### Importance weights

$$\frac{P(A = true)}{0.4} \qquad (A) \longrightarrow (E) \qquad \frac{A \quad P(E = true)}{true \quad 0.1}$$

$$false \quad 0.3$$

finally, compute

$$P(a|e) = \frac{W'_t}{W'_t + W'_f} = \frac{0.1 \times \alpha \times 0.4 \times N}{0.1 \times \alpha \times 0.4 \times N + 0.3 \times \alpha \times 0.6 \times N}$$

When drawing samples gets hard

- Why is it hard to sample from *P*(*A*)?
- because you need to know  $P^*(A) \propto P(A)$  for all values of A (to normalize properly)
- in high dimensional spaces, there can be a lot
- consider the task of measuring the average (or maximum) depth of this lake - how do you draw samples? You cannot miss the canyons!



Figure 29.3. A slice through a lake

that includes some canyons.

- $P(A) = \frac{P^*(A)}{\sum_A P^*(A)}$
- $\sum_{A}$  is potentially intractable
- consider if A is continuous or discrete-valued over 500 dimensions.
- causes problems for exact inference as well

### **Example Proposal Distributions**

- Sometimes we may want to choose a proposal distribution that is different than the actual probability distribution
- We may want to skew the proposal because we may have some additional knowlege about the data, for example
- or, we can generate proposals from the data itself using some procedural knowledge that is not directly encoded in the BN
- Can be important in multiple/many dimensions,

#### Recall variable elimination: To compute

 $P(Z, Y_1 = v_1, ..., Y_j = v_j)$ , we sum out the other variables,  $Z_1, ..., Z_k = \{X_1, ..., X_n\} - \{Z\} - \{Y_1, ..., Y_j\}.$ 

$$P(Z, Y_1 = v_1, \dots, Y_j = v_j)$$
  
=  $\sum_{Z_k} \cdots \sum_{Z_i} \prod_{i=1}^n P(X_i | parents(X_i))_{Y_1 = v_1, \dots, Y_j = v_j}$ 

Now, we sample  $Z_{l+1}, \ldots, Z_k$  and sum  $Z_1, \ldots, Z_l$ ,

$$= \sum_{\mathbf{y}_{i} \in \{z_{i+1,i}, \dots, z_{k,i}\}} \left[ \sum_{Z_1, \dots, Z_l} \prod_{i=1}^l P(Z_i | parents(Z_i))_{Y_1 = v_1, \dots, Y_l = v_l} \right] \frac{P(Z_{i+1,i}, \dots, Z_{k,i})}{q(Z_{i+1,i}, \dots, Z_{k,i})}$$

□ ≥ 26/32

### Importance Sampling example



- Compute P(B|D = true, A = false) by sampling C and M.
  - use q(C = true) = P(C = true) = 0.32 and q(M = true) = P(M = true) = 0.08
  - use q(C = true) = 0.5
  - and q(M = true) = P(M = true) = 0.08
  - use q(C = true) = q(M = true) = 0.5

$$P(B|D = \textit{true}, A = \textit{false}) \propto \sum_{s_i = \{c_i, m_i\}} P(B, D = \textit{true}, A = \textit{false}|c_i, m_i)$$

see sampling-inference.pdf

# Stochastic Sampling for HMMs (and other DBNS)



### Sequential Monte Carlo or Particle Filter

- sequential stochastic sampling
- keep track of P(St) at the current time t
- represent  $P(S_t)$  with a set of samples
- update as new observations o<sub>t+1</sub> arrive
  - 1. predict  $P(S_{t+1}) \propto P(S_{t+1}|S_t)$
  - compute weights as P(o<sub>t+1</sub>|S<sub>t+1</sub>)
  - 3. resample according to weights

# Particle Filtering

### Particle Filtering





# Particle Filtering

# Particle Filtering



# Particle Filtering

### Particle Filtering





 Supervised Learning under Uncertainty (Poole & Mackworth (2nd ed.)10.1,10.4)