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Markov assumption

TIME: 1 2 3 4

P(St+11S1,-.-, St) = P(Si41|S1)

This distribution gives the dynamics of the Markov chain

Hidden Markov Models (HMMs)

Probability and Time

@ A node repeats over time
@ explicit encoding of time
@ chain has length = amount of time you want to model
@ event-driven times or clock-driven times
@ e.g. Markov chain
TIME: 1

TIME: 1
S1 /sz\ ? Sa

Add: observations O; (always observed, so the node is square)
and
observation function P(O;|S;)

Given a sequency of observations Oy, ..., O;, can estimate
filtering :
P(5{0y,...,0r)

or smoothing , for k < t
P(Sk|Ox, ..., Or)



Speech Recognition Belief Monitoring in HMMs

TIME: 1 2 3 4

@ Most well known application of HMMs
@ observations : audio features e
@ states : phonemes
@ dynamics : models e.g. co-articulation
@ HMMs : words n
@ Can build hierarchical models (e.g. sentences) filtering:
the sun was
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smoothing: filtering and smoothing together :
Biv1 = P(0js1--.,07]S) @jfiy1 = P(0jy1...,07|S))P(Silog . .., 0;) x P(S;|0)
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Dynamic Bayesian Networks (DBNs) Example: localization

@ in general, any Bayesian network can repeat over time:
N @ Suppose a robot wants to determine its location based on

its actions and its sensor readings: Localization

@ Many examples can be solved with variable elimination ,
@ This can be represented by the augmented HMM :

@ may become too complex with enough variables

@ event-driven times or clock-driven times
il @ @ @ @
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Example localization domain Example Sensor Model

@ Circular corridor, with 16 locations:

i § NN NEE NEER

1 2 3 4 5 6 7 8 9 10 11 1213
@ P(Observe Door | At Door) =

@ Doors at positions: 2, 4, 7, 11. @ P(Observe Door | Not At Door) = 0.1
@ Noisy Sensors
@ Stochastic Dynamics

@ Robot starts at an unknown location and must determine
where it is, known as the kidnapped robot problem.

@ see handout robotloc.pdf



Example Dynamics Model Example sequence

EN § BN NEN NEEN

P(Loct1 = I + 1|Action; = goRight A Loc; = 1) = 0.8 O 1 2 3 4 5 6 71 8 9 10 1 12 13 14 15
P(Loci.1 = | + 2|Action; = goRight A Loc; = I) = 0.074
P(Loc;.1 = I'|Action; = goRight A Loc; = I) = 0.002 for
any other location /'.

> All location arithmetic is modulo 16.

» The action goLeft works the same but to the left.

observe door, go right, observe no door, go right, observe door
where is the robot?

P(Loc, = 4|0y = d, Ag = 1,0y = ~d. A = r, Oz = d) = 0.42

Combining sensor information Probability Distribution and Monte Carlo

@ Example: we can combine information from a light sensor
and the door sensor Sensor Fusion

@ Key Point: Bayesian probability ensures that evidence is
integrated proportionally to its precision.

@ Sensors are precision weighted )4
@ @ @ @ T
CO=CD=CD=CH—~CD ‘
& & &P @ @

Loc; robot location at time t

D; door sensor value at time t
L; light sensor value at time t

ENIAC Monte Carlo
1949 1949



Stochastic Simulation Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional)

@ |dea: probabilities «» samples real domain: .
o Get probabiliies from samples: o Totally order the values of the domain of X.
@ Generate the cumulative probability distribution :
X | count X T probabilty f(x) = P(X < x).
X m X1 m/m @ Select a value y uniformly in the range [0, 1].
: : “ : : @ Select the x such that f(x) = y.
Xk Nk
total | m Xe|  ne/m ! '
P00
@ If we could sample from a variable’s (posterior)
1X)

probability, we could estimate its (posterior) probability.

Vs v i v % % v

Hoeffding Bound Forward sampling in a belief network

pis true probability, s is sample average, n is number of . ;
samples @ Sample the variables one at a time ;
@ P(ls—p|>¢) < 2720 @ sample parents of X before you sample X.
o if we want an error greater than e in less than a fraction ¢ of @ Given values for the parents of X, sample from the
the cases, solve for n: probability of X given its parents .
pe-2? _ g o for samples s;,i=1...N:
i P(X = x) x> 8(x;) = Nx—y,
n>—-2 s
262
@ we have where
c error \ cases with error > ¢ \ samples needed i X
0.1 1/20 184 5(x) :{ 1 if Xh: X in s;
0.01 1/20 18,445 0 otherwise
0.1 1/100 265




Sampling for a belief network: inference Forward Sampling

Sample Malfnction Cancer TestB TestA Report Database

B false false true  true false false Inference via sampling
Sz false true true  true  true true 09 : : :
S3 false true true true true true
Sq false false false  true false false
S5 true true true true false false 'g\
Ss false true false true false false 8
S7 false false false  true false true %
k=)
S1000 false false false  true false false 3
e
. @
To get P(H = hj|E = e;) simply %
@ count the number of samples that have H = h; and E = ¢, e i
N(h;, e)
@ divide by the number of samples that have E = e;, N(e)) oss s proms prom .
o P(H=h|E=g)= % - %2 number of samples

@ P(C = True|Database = True) based on first 7 samples?

jection Sampling Example Network

A P(E = true)

P(A ;4true) . . e o1

false 0.3

@ To estimate a posterior probability given evidence

If we draw N samples s;— by
Yi=viA .. AYj=y: p i=1...N OY

@ sampling A: aji_1._ N
@ sampling from E given A: ei—1_n
then
@ ~ N; = 0.4N of them will have A = true, and of these
~ 10% will have E = true
@ ~ Ny = 0.6N of them will have A = false, and of these
~ 30% will have E = true

@ If, for any i, a sample assigns Y; to any value other than v;
reject that sample .

@ The non-rejected samples are distributed according to the
posterior probability.

@ in the Hoeffding bound, n is the number of
non-rejected samples



Example Network Importance weights

A P(E = true) PA— A P(E = true)
P(A = true) _ _P(A= true) H true 01
0.4 frue 01 ° e false 0.3
EE— false 0.3 _
so we have @ we can do better since we can weight the samples
A E Nae @ weights = prob. that the evidence is observed
trve false Ny = 0409 x N o N; samples with A = true have weight of w; = 0.1
true true - Ny =0.4x0.1xN this is P(E = true|A = true)
false false Ny =06x0.7xN o D )
false true N;=06x03xN @ N; samples with A = false have weight of wy = 0.3
We want to compute this is P(E = true|A = false)
P(ale) = P(A = true|E = true) o« 3, 6(a; = true)s(e; = true) @ can do better because we don't need to generate the 90%

of samples (when A = true) that don’t agree with the
evidence - we simply assign all samples a weight of 0.1

P(ane) Ny L . .
~ @ thus, we are mixing exact inference (the 0.1) with

P(e) " N+ Ny -

sampling .

_ 0.1x04xN _ o182 pling
01x04xN+03x06xN

Importance weights Importance weights

P(ale) =

B A P(E = true) B A P(E = true)
P(A = true) 2 =T P(A = true) AL L
—e TR H true 01 —m TR H true 0.
04 ®—0© false 03 04 ®—© false 03
@ Compute sum of all weights of the samples with A = true @ In fact, the As don't need to even be sampled from P(A)
led fi A A= =0.
Wi = Z Wi — true) — Ny x 0.1 @ Canbe sampled from some g(A) , say q( true) = 0.5
7 @ and each sample will have a new weight P(a)/q(a)
@ Compute sum of all weights of the samples with A = false o qA)isa pr.or.:osal distribution.
@ helps when it is hard to sample from P(A), but we can
W, = Z w;d(a; = false) = Ny x 0.3 evaluate P*(A) « P(A) given a sample (see slide 24)
i

@ finally, compute

W; 0.1x04xN

Plale) = G W, = 01 %04 x N+03x06x N




Importance wei

PA=

A P(E = true)

PlA=tue) True 01

0.4

false 03

@ rejection sampling uses g = P

@ rejection sampling uses all variables including observed
ones, and all weights on samples are set to 1.0

@ N; = qg(a)N samples with A = true have weight of

P*(a
0.1 x 6]

=0.1x

a0.4
0.5

@ N; = qg(a)N samples with A = false have weight of

0.3 x

Importance wei

P*(@
@

a(@)

=03 x

PA=
04

true)

@ finally, compute

P(ale) =

0.6
0.5

A P(E = true)
1
®O—O =

01 xax04xN

Wt —
Wi+ W,

01xax04xN+03xax06xN

A P(E = true)
true 0.1
false 03

@ total weight of all samples with A = true

a0.4

W, = Z wid(a; = true) = Ny x 0.1 x <=
=0.5N x 0.1 xﬁzoj xax04xN

05
@ total weight of all samples with A = false

0.6

wj = Z: w;b(a; = true) = Nj x 0.3 x 05
:0.5Nx0.3x%:0.3xux0.6xN

When drawing samples gets hard

@ Why is it hard to sample from P(A)?

@ because you need to know P*(A) « P(A) for all values of
A (to normalize properly)

@ in high dimensional spaces , there can be a lot

@ consider the task of measuring the average (or maximum)
depth of this lake - how do you draw samples? You cannot
miss the canyons!

“ o P = Tty

@ ), is potentially
intractable

@ consider if Ais continuous
or discrete-valued over 500
dimensions.

@ causes problems
for exact inference as well

Figure 29.3. A slice through a lake
that includes some canyons.



Example Proposal Distributions Stochastic sampling for Bayesian Networks

Recall variable elimination: To compute
X o Z,Y1=w,..., Yj=V;), we sum out the other variables,
@ Sometimes we may want to choose a proposal distribution Zy,o Ze=AXr, o Xny = {2 = {1, Yi}
that is different than the actual probability distribution

P(Z,Yi=w,....Y;=v)
@ We may want to skew the proposal - because we may

have some additional knowlege about the data, for =3 S TI PXilparents(X)) v, = v,...v, =,
example Z z =t

@ or, we can generate proposals from the data itself using Now, we sample Z.1,...,Z and sum Zi, ..., Z,
some procedural knowledge that is not directly encoded in
the BN

@ Can be important in multiple/many dimensions, - [Z ﬁp(z |parents(Z))y, v
= ; 9) TR
2 |2

si={z121, 2y i=1

Importance Sampling example Stochastic Sampling for HMMs (and other DBNS)

TIME: 1 2 3 4
Compute P(B|D = true, A = false) by sampling C and M. n

@ use q(C = true) = P(C = true) = 0.32

Sy S

and g(M = true) = P(M = true) = 0.08 Sequential Monte Carlo or Particle Filter
@ use q(C = true) = 0.5 @ sequential stochastic sampling
and q(M = true) = P(M = true) = 0.08 @ keep track of P(S;) at the current time t

@ use q(C = true) = q(M = true) = 0.5 @ represent P(S;) with a set of samples

@ update as new observations o1 arrive
P(B|D = true, A = false) Z P(B, D = true, A = false|c;, m;) 1. predict P(Sts1) o< P(Si41|Sr)
s—{onm} 2. compute weights as P(0r+1|Si1)

. 3. resample according to weights
see sampling-inference.pdf



Particle Filtering

P(X)

X

Particle Filtering

samplei: {x }

P(X)

step 1: hypothesis (prediction)

.. ’......;..;. .

sample i: {x', w }

Particle Filtering

P(X)

step 0: prior belief

‘..--.‘....-..x

sample i: (x‘, w}

Particle Filtering

P(X)

step 2: stochastic spreading

‘ £ ;x

sample i: {x,w}




Particle Filtering Particle Filtering

step 3: evidence POy step 4: resample

P(X)

1 X
. .@: 0@ *‘ 000 o avemposs © @ usemmmes 00 o

sample i: {x', w} samplei: {x,w }

Bayesian Sequential Updates Resampling
predict
e iy N
N R [2] — g e avoids
§ degeneracies in
A ° ° ° the samples
0o @ @0 @ all importance
weights — 0 except
spread one
i \3— @ performance of the
0 algorithm depends
%_ on the
2 o Qmee @ 0@ ] resampling method
g
ja—



Next:

@ Supervised Learning under Uncertainty (Poole &
Mackworth (2nd ed.)10.1,10.4)



