
1/ 32

Lecture 8 - Reasoning under Uncertainty
(Part II)

Jesse Hoey
School of Computer Science

University of Waterloo

June 21, 2022

Readings: Poole & Mackworth (2nd ed.)Chapt. 8.5 - 8.9

2/ 32

Probability and Time

A node repeats over time

explicit encoding of time
chain has length = amount of time you want to model
event-driven times or clock-driven times

e.g. Markov chain

3/ 32

Markov assumption

P(St+1|S1, . . . ,St) = P(St+1|St)

This distribution gives the dynamics of the Markov chain

4/ 32

Hidden Markov Models (HMMs)

Add: observations Ot (always observed, so the node is square)
and
observation function P(Ot |St)
Given a sequency of observations O1, . . . ,Ot , can estimate
filtering :

P(St |O1, . . . ,Ot)

or smoothing , for k < t

P(Sk |O1, . . . ,Ot)

5/ 32

Speech Recognition

Most well known application of HMMs
observations : audio features
states : phonemes
dynamics : models e.g. co-articulation

HMMs : words
Can build hierarchical models (e.g. sentences)

6/ 32

Belief Monitoring in HMMs

filtering:

αi = P(Si |o0 . . . ,oi)

∝ P(Si ,o0, . . . ,oi)

= P(oi |Si)
∑
Si−1

P(Si ,Si−1,o0, . . . ,oi−1)

= P(oi |Si)
∑
si−1

P(Si |Si−1)P(Si−1,o0, . . . ,oi−1)

∝ P(oi |Si)
∑
si−1

P(Si |Si−1)αi−1

6/ 32

Belief Monitoring in HMMs

smoothing:

βi+1 = P(oi+1 . . . ,oT |Si)

=
∑
Si+1

P(Si+1,oi+1, . . . ,oT |Si)

=
∑
Si+1

P(oi+1|Si+1,oi+2, . . . ,oT ,Si)P(Si+1,oi+2, . . . ,oT |Si)

=
∑
Si+1

P(oi+1|Si+1)P(oi+2, . . . ,oT |Si+1,Si)P(Si+1|Si)

=
∑
Si+1

P(oi+1|Si+1)P(Si+1|Si)βi+2
6/ 32

Belief Monitoring in HMMs

filtering and smoothing together :

αiβi+1 = P(oi+1 . . . ,oT |Si)P(Si |o0 . . . ,oi) ∝ P(Si |O)

7/ 32

Dynamic Bayesian Networks (DBNs)

in general, any Bayesian network can repeat over time:
DBN

Many examples can be solved with variable elimination ,
may become too complex with enough variables
event-driven times or clock-driven times

8/ 32

Example: localization

Suppose a robot wants to determine its location based on
its actions and its sensor readings: Localization

This can be represented by the augmented HMM :

Loc0 Loc1 Loc2 Loc3 Loc4

Obs0 Obs1 Obs2 Obs3 Obs4

Act0 Act1 Act2 Act3

9/ 32

Example localization domain

Circular corridor, with 16 locations:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Doors at positions: 2, 4, 7, 11.
Noisy Sensors
Stochastic Dynamics
Robot starts at an unknown location and must determine
where it is, known as the kidnapped robot problem.
see handout robotloc.pdf

10/ 32

Example Sensor Model

P(Observe Door | At Door) = 0.8
P(Observe Door | Not At Door) = 0.1

11/ 32

Example Dynamics Model

P(Loct+1 = l |Actiont = goRight ∧ Loct = l) = 0.1
P(Loct+1 = l + 1|Actiont = goRight ∧ Loct = l) = 0.8
P(Loct+1 = l + 2|Actiont = goRight ∧ Loct = l) = 0.074
P(Loct+1 = l ′|Actiont = goRight ∧ Loct = l) = 0.002 for
any other location l ′.
I All location arithmetic is modulo 16.
I The action goLeft works the same but to the left.

12/ 32

Example sequence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

observe door, go right, observe no door, go right, observe door
where is the robot?

P(Loc2 = 4|O0 = d ,A0 = r ,O1 = ¬d ,A1 = r ,O2 = d) = 0.42

13/ 32

Combining sensor information

Example: we can combine information from a light sensor

and the door sensor Sensor Fusion

Key Point: Bayesian probability ensures that evidence is

integrated proportionally to its precision.

Sensors are precision weighted

Loc0 Loc1 Loc2 Loc3 Loc4

D0 D1 D2 D3 D4

Act0 Act1 Act2 Act3

L0 L1 L2 L3 L4

Loct robot location at time t
Dt door sensor value at time t
Lt light sensor value at time t

14/ 32

Probability Distribution and Monte Carlo

John von Neumann Stanlislaw Ulam
1903 - 1957 1909-1984

ENIAC Monte Carlo
1949 1949

15/ 32

Stochastic Simulation

Idea: probabilities↔ samples
Get probabilities from samples:

X count
x1 n1
...

...
xk nk

total m

↔

X probability
x1 n1/m
...

...
xk nk/m

If we could sample from a variable’s (posterior)

probability, we could estimate its (posterior) probability.

16/ 32

Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional)
real domain:

Totally order the values of the domain of X .

Generate the cumulative probability distribution :
f (x) = P(X ≤ x).

Select a value y uniformly in the range [0,1].
Select the x such that f (x) = y .

0

1

v1 v2 v3 v4 v1 v2 v3 v4

P(X)

f(X)

0

1

17/ 32

Hoeffding Bound

p is true probability, s is sample average, n is number of
samples

P(|s − p| > ε) ≤ 2e−2nε2

if we want an error greater than ε in less than a fraction δ of
the cases, solve for n:

2e−2nε2 < δ

n >
−ln δ2
2ε2

we have
ε error cases with error > ε samples needed
0.1 1/20 184
0.01 1/20 18,445
0.1 1/100 265

18/ 32

Forward sampling in a belief network

Sample the variables one at a time ;

sample parents of X before you sample X .
Given values for the parents of X , sample from the
probability of X given its parents .
for samples si , i = 1 . . .N:

P(X = xi) ∝
∑

si

δ(xi) = NX=xi

where

δ(xi) =

{
1 if X = xi in si
0 otherwise

19/ 32

Sampling for a belief network: inference
Sample Malfnction Cancer TestB TestA Report Database
s1 false false true true false false
s2 false true true true true true
s3 false true true true true true
s4 false false false true false false
s5 true true true true false false
s6 false true false true false false
s7 false false false true false true

...
s1000 false false false true false false

To get P(H = hi |E = ei) simply
count the number of samples that have H = hi and E = ei ,
N(hi ,ei)

divide by the number of samples that have E = ei , N(ei)

P(H = hi |E = ei) =
P(H=hi∧E=ei)

P(E=ei)
= N(hi ,ei)

N(ei)

P(C = True|Database = True) based on first 7 samples?
20/ 32

Forward Sampling

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 500 1000 1500 2000

P(
ca

nc
er

|d
at

ab
as

e)

number of samples

Inference via sampling

21/ 32

Rejection Sampling

To estimate a posterior probability given evidence
Y1 = v1 ∧ . . . ∧ Yj = vj :
If, for any i , a sample assigns Yi to any value other than vi
reject that sample .

The non-rejected samples are distributed according to the
posterior probability.
in the Hoeffding bound, n is the number of
non-rejected samples

22/ 32

Example Network

A E
P(A = true)

0.4

A P(E = true)
true 0.1
false 0.3

If we draw N samples si=1...N by
sampling A: ai=1...N

sampling from E given A: ei=1...N

then
≈ Nt = 0.4N of them will have A = true, and of these
≈ 10% will have E = true
≈ Nf = 0.6N of them will have A = false, and of these
≈ 30% will have E = true

22/ 32

Example Network

A E
P(A = true)

0.4

A P(E = true)
true 0.1
false 0.3

so we have
A E NAE
true false Ntf = 0.4× 0.9× N
true true Ntt = 0.4× 0.1× N
false false Nff = 0.6× 0.7× N
false true Nft = 0.6× 0.3× N

We want to compute
P(a|e) = P(A = true|E = true) ∝

∑
si
δ(ai = true)δ(ei = true)

P(a|e) = P(a ∧ e)
P(e)

≈ Ntt

Ntt + Nft

=
0.1× 0.4× N

0.1× 0.4× N + 0.3× 0.6× N
= 0.182

23/ 32

Importance weights

A E
P(A = true)

0.4

A P(E = true)
true 0.1
false 0.3

we can do better since we can weight the samples

weights = prob. that the evidence is observed
Nt samples with A = true have weight of wt = 0.1
this is P(E = true|A = true)
Nf samples with A = false have weight of wf = 0.3
this is P(E = true|A = false)
can do better because we don’t need to generate the 90%
of samples (when A = true) that don’t agree with the
evidence - we simply assign all samples a weight of 0.1
thus, we are mixing exact inference (the 0.1) with

sampling .

23/ 32

Importance weights

A E
P(A = true)

0.4

A P(E = true)
true 0.1
false 0.3

Compute sum of all weights of the samples with A = true

Wt =
∑

i

wtδ(ai = true) = Nt × 0.1

Compute sum of all weights of the samples with A = false

Wf =
∑

i

wf δ(ai = false) = Nf × 0.3

finally, compute

P(a|e) = Wt

Wt + Wf
=

0.1× 0.4× N
0.1× 0.4× N + 0.3× 0.6× N

23/ 32

Importance weights

A E
P(A = true)

0.4

A P(E = true)
true 0.1
false 0.3

In fact, the As don’t need to even be sampled from P(A)

Can be sampled from some q(A) , say q(A = true) = 0.5

and each sample will have a new weight P(a)/q(a)

q(A) is a proposal distribution.
helps when it is hard to sample from P(A), but we can
evaluate P∗(A) ∝ P(A) given a sample (see slide 24)

23/ 32

Importance weights

A E
P(A = true)

0.4

A P(E = true)
true 0.1
false 0.3

rejection sampling uses q = P
rejection sampling uses all variables including observed
ones, and all weights on samples are set to 1.0
N ′t = q(a)N samples with A = true have weight of
0.1× P∗(a)

q(a) = 0.1× α0.4
0.5

N ′f = q(a)N samples with A = false have weight of
0.3× P∗(a)

q(a) = 0.3× α0.6
0.5

23/ 32

Importance weights

A E
P(A = true)

0.4

A P(E = true)
true 0.1
false 0.3

total weight of all samples with A = true

W ′
t =

∑
i

wiδ(ai = true) = N ′t × 0.1× α0.4
0.5

= 0.5N × 0.1× α0.4
0.5

= 0.1× α× 0.4× N

total weight of all samples with A = false

W ′
f =

∑
i

wiδ(ai = true) = N ′f × 0.3× α0.6
0.5

= 0.5N × 0.3× α0.6
0.5

= 0.3× α× 0.6× N

23/ 32

Importance weights

A E
P(A = true)

0.4

A P(E = true)
true 0.1
false 0.3

finally, compute

P(a|e) = W ′
t

W ′
t + W ′

f
=

0.1× α× 0.4× N
0.1× α× 0.4× N + 0.3× α× 0.6× N

24/ 32

When drawing samples gets hard

Why is it hard to sample from P(A)?

because you need to know P∗(A) ∝ P(A) for all values of
A (to normalize properly)
in high dimensional spaces , there can be a lot
consider the task of measuring the average (or maximum)
depth of this lake - how do you draw samples? You cannot
miss the canyons!

P(A) = P∗(A)∑
A P∗(A)∑

A is potentially

intractable
consider if A is continuous
or discrete-valued over 500
dimensions.
causes problems
for exact inference as well

25/ 32

Example Proposal Distributions

Sometimes we may want to choose a proposal distribution
that is different than the actual probability distribution

We may want to skew the proposal - because we may
have some additional knowlege about the data, for
example
or, we can generate proposals from the data itself using
some procedural knowledge that is not directly encoded in
the BN
Can be important in multiple/many dimensions,

26/ 32

Stochastic sampling for Bayesian Networks

Recall variable elimination: To compute
P(Z ,Y1 = v1, . . . ,Yj = vj), we sum out the other variables,
Z1, . . . ,Zk = {X1, . . . ,Xn} − {Z} − {Y1, . . . ,Yj}.

P(Z ,Y1 = v1, . . . ,Yj = vj)

=
∑
Zk

· · ·
∑
Z1

n∏
i=1

P(Xi |parents(Xi))Y1 = v1,...,Yj = vj

Now, we sample Zl+1, . . . ,Zk and sum Z1, . . . ,Zl ,

=
∑

si={zl+1,i ,...,zk,i}

 ∑
Z1...Zl

l∏
i=1

P(Zi |parents(Zi))Y1 = v1,...,Yj = vj

 P(Zl+1,i , . . . ,Zk,i)

q(zl+1,i , . . . , zk,i)

27/ 32

Importance Sampling example

M
Malfunction

C
Cancer

A
Test A

B
Test B

RReport

D Database

P(M = true) = 0.08

P(C = true) = 0.32

P(A = true|C) =

C P(A = true|C)

t 0.80
f 0.15P(B = true|M,C) =

M C P(B = true|M,C)

t t 0.61
t f 0.52
f t 0.78
f f 0.044

P(R = true|B) =

B P(R = true|B)

t 0.98
f 0.01

P(D = true|R) =

R P(D = true|R)

t 0.96
f 0.001

Compute P(B|D = true,A = false) by sampling C and M.
use q(C = true) = P(C = true) = 0.32
and q(M = true) = P(M = true) = 0.08
use q(C = true) = 0.5
and q(M = true) = P(M = true) = 0.08
use q(C = true) = q(M = true) = 0.5

P(B|D = true,A = false) ∝
∑

si={ci ,mi}

P(B,D = true,A = false|ci ,mi)

see sampling-inference.pdf 28/ 32

Stochastic Sampling for HMMs (and other DBNS)

Sequential Monte Carlo or Particle Filter
sequential stochastic sampling
keep track of P(St) at the current time t
represent P(St) with a set of samples
update as new observations ot+1 arrive

1. predict P(St+1) ∝ P(St+1|St)
2. compute weights as P(ot+1|St+1)
3. resample according to weights

29/ 32

Particle Filtering

i
sample i: {x }

X

P(X)

29/ 32

Particle Filtering

step 0: prior belief

X

i i

P(X)

sample i: {x , w }

29/ 32

Particle Filtering

step 1: hypothesis (prediction)

X

i i

P(X)

sample i: {x , w }

29/ 32

Particle Filtering

step 2: stochastic spreading

X

i i

P(X)

sample i: {x , w }

29/ 32

Particle Filtering

evidence

step 3: evidence

X

i i

P(X)

sample i: {x , w }

29/ 32

Particle Filtering

step 4: resample

ii
sample i: {x , w }

X

P(X)

30/ 32

Bayesian Sequential Updates

P(X)

X

1

4

2

3

P(X)

X

P(X)

X

P(X)

X

evidence

evidence

predict

spread

31/ 32

Resampling

re
sa

m
p

li
n

g
ev

id
en

ce avoids
degeneracies in
the samples
all importance
weights→ 0 except
one
performance of the
algorithm depends
on the
resampling method

32/ 32

Next:

Supervised Learning under Uncertainty (Poole &
Mackworth (2nd ed.)10.1,10.4)

