Uncertainty

Lecture 8 - Reasoning under Uncertainty

(Part I)

Why is uncertainty important?
@ Agents (and humans) don’t know everything ,

Jesse Hoey @ but need to make decisions anyways!
School of Computer Science o Decisi deinthe ab  inf ti
University of Waterloo ecisions are made in the absence of information ,
@ orin the presence of noisy information (sensor readings)
The best an agent can do:
June 2, 2022

know how uncertain it is, and act accordingly

Readings: Poole & Mackworth (2nd ed.)Chapt. 8 up to 8.4

Bayesian

Bayesian probability
all else being equal (Prior)
before any flips

0.04

Frequentist view: 008

probability of heads = # of heads / # of flips €002

probability of heads this time = probability of heads (history) 0

Uncertainty is ontological : pertaining to the world 0.01

Bayesian view: o

probability of heads this time = agent's belief about flip o O 05 08 08 s
belief of agent A : based on previous experience of agent A

Uncertainty is epistemological : pertaining to knowledge



Probability: Bayesian Probability: Bayesian

Bayesian probability Bayesian probability
all else being equal (Prior) all else being equal (Prior)
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Probability: Bayesian Probability: Bayesian

Should you wear your seatbelt ? Should you wear your seatbelt ?

estimate P(injury) given you do/don’t wear it estimate P(injury) given you do/don’t wear it

Frequentist: Bayesian:
test day result P(fatality)
- Sunday (prior to start) - ? J UK governmont:
1 Monday = 00 =] e,
2 Tuesday hend 0.0
3 Tuesday Koo 0.33333
4 Thursday = 0.25
5 oo

Friday 0.2

Probability Measure Axioms of Probability
if X'is a random variable (feature, attribute), Axioms are things we have to assume about probability:
it can take on values x, where x € Domain(X) (or Dom(X)) 0 P(X)>0
Assume x is discrete o
) - ° Y, PX=x)=10
P(x) is the probability that X = x @ P(avb) = P(a)+ P(b) if aand b are contradictory - can't
joint probability. P(x,y) is the both be true at the same time e.g.
probability that X = x and Y = y at the same time P(win v lose) = P(win) + P(lose) = 1.0
Some notes:

Joint probability distribution: . X .
i[2[ s 4] s[ 6] 78] @ probability between 0-1 is purely convention

! @ P(a) =0 means you think ais definitely false

|| Where is the robot? @ P(a) =1 means you think a is definitely true

features: X,Y @ 0 < P(a) < 1 means you have belief about the truth of a.
It does not mean that ais true to some degree, just that
you are ignorant of its truth value.

@ Probability = measure of ignorance




Independence Independence

@ describe a system with n features: 2" — 1 probabilities @ describe a system with n features: 2" — 1 probabilities
@ Use independence to reduce number of probabilities @ Use independence to reduce number of probabilities
@ e.g. radially symmetric dartboard, P(hit a sector) @ e.g. radially symmetric dartboard, P(hit a sector)

@ P(sector) = P(r.d)wherer=1,....4andf =1,....8. @ assume radial independence : P(r,0) = P(r)P(6)

@ 32 sectors in total - need to give 31 numbers @ only need 7+3=10 numbers

Independence Conditional Probability

@ describe a system with n features: 2" — 1 probabilities

@ Use independence to reduce number of probabilities if X'and Y are random variables, then

@ e.g. radially symmetric dartboard, P(hit a sector) P(x|y) is the probability that X = x given that Y = y.
@ assume radial independence : P(r,0) = P(r)P(6) eg.
@ only need 7+3=10 numbers P(flies|is_bird) is different than P(flies)

P(flies|is_a_penguin, is_bird) is different again

incorporate independence:
P(flies|is_bird, has_feathers) = P(flies|is_bird)

Product rule (Chain rule):

P(flies, is_bird) = P(flies|is_bird)P(is_bird)
P(flies, is_bird) = P(is_bird|flies)P(flies)
leads to : Bayes' rule

P(is_bird|flies) — PUfies fs:z;%)s})’(fsmrdl




Sum Rule
We know (an Axiom):
> P(X =x)=1.0 and therefore that »_ P(X = x|Y) =1.0
X X
This means that (Sum Rule)
S P(X=xY)=P(Y)
proof:
STPX =x,Y) =3 P(X=x|Y)P(Y)
=P(Y)> P(X=x|Y)
X
=P(Y)

We call P(Y) the marginal distribution over Y

Expected Values Value of Independence

expected value of a function on X, V(X):
E(V) = Xxepomx) PXKIV(X)
where P(x) is the probability that X = x.

This is useful in decision making ,
where V(X) is the utility of situation X.

Bayesian decision making is then

E(V(decision)) = 3" ucome P(outcome|decision) V(outcome)

Conditional Probability
@ X and Y are independent iff
P(X) = P(X]Y)
P(Y) = P(Y|X)
P(X,Y)=P(X)P(Y)
so learning Y doesn't influence beliefs about X
@ X and Y are conditionally independent given Z iff
P(X|Z) = P(X|Y.2Z)
P(Y|Z)=P(Y|X.2)
P(X,Y|Z) = P(X|Z)P(Y|2)
so learning Y doesn't influence beliefs about X

if you already know Z ...does not mean X and Y are
independent

@ complete independence reduces both representation and
inference from O(2") to O(n)

@ Unfortunately, complete mutual independence is rare

@ Fortunately, most domains do exhibit a fair amount of
conditional independence

@ Bayesian Networks or Belief Networks (BNs) encode
this information




Correlation and Causality

lief Networks

Bayesian network or belief network
o Directed Acyclic graph
@ Encodes independencies in a graphical format
@ Edges give P(Xj|parents(X;))

Cancer diagnosis example:
@ Two tests Aand B

@ Test A is quick and cheap, but imprecise

Teoma>
T @ Test A results are read directly

@ Test B uses a machine that sometimes

Caene > (Testh > malfunctions, but is more precise
@ Test B results are not read directly,
Towon > @ aReport is written
(by @ human who makes mistakes)
Coatabase > @ the Report is entered into a database
(by another human who makes
mistakes)

yesian networks - example

If Jesse’s alarm doesn’t go off (A), Jesse proba-
bly won't get coffee (C); if Jesse doesn't get coffee,
he’s likely grumpy (G). If he is grumpy then it's pos-
sible that the lecture won't go smoothly L. If the
lecture does not go smoothly then the students will
likely be sad S.

O—0—CE0—L—O

A=Jesse’s alarm doesn't go off
C=Jesse doesn't get coffee
G=Jesse is grumpy

L=lecture doesn’t go smoothly
S=students are sad

all variables binary (true/false)

Directed links in Bayes’ net

~ causal

However, not always the case:
chocolate — Nobel or

Nobel — chocolate?

In a Bayes net, it doesn’t matter!
But, some structures will be
easier to specify

In this example, its probably
chocolate + “Switzerland — ness” — Nobel

| Independence
@O———v

@ If you learned any of A, C, G, or L, would your assessment
of P(S) change?
> |f any of these are seen to be true, you would increase
P(s)and decrease P(3).
»> So Sis notindependent of A, C, G, L.
@ If you knew the value of L, would learning the value of A,
C, or Ginfluence P(S)?
> Influence that these factors have on S is mediated by their
influence on L.
» Students aren't sad because Jesse was grumpy, they are
sad because of the lecture.
> Therefore, Sis conditionally independent of A, C, and G
(given L)




Conditional Independence Conditional Independence

Chain rule ( product rule ):

@ We say: Sis independent of A, C, and G, given L
@ (thisis conditional independence )

P(S.L,G,C,A) =
© Similarly, we can say P(SIL, G, C, A)P(L|G, C,A)P(G|C, A)P(C|A)P(A)
» Sis independent of Aand C, given G Independence:
> Gis independent of A, given C '
>
@ This means that: P(S.L,G,C, A) = P(S|L)P(L|G)P(G|C)P(C|A)P(A)
»>

P(S|L,G.C.A) = P(S|L) So we can specify the full joint probability
L|G, C, A) = P(L|G)

> P( ) ) . ——
> P(GIC.A) ~ P(GIC) using the five local conditional probabilities :
»> P(C|A) and P(A) don’t “simplify”

P(S|L), P(L|G), P(G|C), P(C|A), P(A)

Bayesian Networks Another example quantification

A Bayesian Network (Belief Network, Probabilistic Network) or
BN over variables { X1, Xz, ..., Xy} consists of:

@ a DAG whose nodes are the variables

@ asetof Conditional Probability tables (CPTs) giving
P(Xj|Parents(X;)) for each X;

example probability tables for the Coffee Bayes Net: "

Cancer diagnosis:

Malunction

Cancer

o e oo T

P - o) T




Semantics of a Bayes’ Net Constructing belief networks

To represent a domain in a belief network, you need to

The structure of the BN means that : consider: . )
every X; is conditionally independent of all @ What are the relevant variables ?
its nondescendants given its parents: » What will you observe? - this is the evidence

» What would you like to find out? - this is the query
» What other features make the model simpler? - these are

the other variables
PUXi|S, Parents(X;)) = P(Xi|Parents(X)) @ What values should these variables take?

@ What is the relationship between them? This should be
expressed in terms of local influence .

@ How does the value of each variable
depend on its parents ? This is expressed in terms of the
conditional probabilities .

for any subset S C NonDescendants(X;)

The BN defines a factorization of the joint probability
distribution. The joint distribution is formed by multiplying the
conditional probability tables together.

Bayesian Networks - Independence assumptions Three Basic Bayesian Networks

Qatunction>  (_Cancer >

@ TestB depends on Cancer and

> Malfunction @
Crms> > @ TestA depends only on Cancer

@ Report depends only on Test B
Cropor >

CXB @ Database depends only on Report

What are the independencies? Report

-4



Three Basic Bayesian Networks

Three Basic Bayesian Networks

Database and Test B Test B and Test A are
independent if Report independent if Cancer
is observed is observed

Three Basic Bayesian Networks

Three Basic Bayesian Networks

NO,YOU CANT GO, LHATE W2 EVERY SNGE. PERSON T KNOw, | [ .., UH...Ar.
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http://imgs.xkcd.com/comics/bridge.png

Malfunction and Cancer are
independent if Test B
is not observed




Three Basic Bayesian Networks...

attonction>  _Cancer >

Report

|

Blocked Paths

Testing Independence

Markov Blanket

@ Given a BN, how do we determine if two variables X,Y are
independent ( given evidence E )?
@ D-separation : A set of variables £ d-separates X and Y

if it blocks every undirected path in the BN between X and
Y

@ But what does block mean?

@ ®oaim(O @O0

If Z in evidence, the path between X and Y blocked

@ @20+ @—=O0x®

If Z in evidence, the path between X and Y blocked

AV NN

IfZis not in evi andno of Zis in

then the path between X and Y is blocked

The Markov Blanket of a node (variable) V is:
@ the parents, children, and the (other) parents of children
o the minimal set of nodes that d-separates V from all other
variables
The joint distribution over the Markov Blanket allows for the
computation of the distribution P(V).




D-Separations: Example Updating belief: Bayes’ Rule

@ TravelSubway and
Thermometer (given no

evidence)? Agent has a prior belief ina hypothesis , h, P(h),
@ TravelSubway and
Thermometer (given Flu Agent observes some evidence e
or Fever)? that has a likelihood given the hypothesis: P(e|h).
@ TravelSubway and Malaria
(given Fever)? The agent’s posterior belief about h after observing e, P(hle),
o TravelSubway and Exotic
Trip (given Jaundice)? is given by Bayes’ Rule:
@ TravelSubway and Exotic
. Trip (given Jaundice and P(e|h)P(h) P(e|h)P(h)
€ — ‘ Thermometer)? P(hle) = Ple)  S.,P(elmP(R)
S~ @ TravelSubway and Exotic

Trip (given Malaria and
Thermometer)?

Why is Bayes’ theorem interesting? Probabilistic Inference

@ Often you have causal knowledge : Maltunction Cancer
P(symptom | disease)

P(light is off | status of switches and switch positions)
P(alarm | fire)

T P
A - rue) T 50
P o

T

P(image looks like £ | a tree is in front of a car)
@ and want to do evidential reasoning :
P(disease | symptom) Q
AL Database

P(status of switches | light is off and switch positions) ©om
P(fire | alarm).

P(a tree is in front of a car | image looks like -:) Beforeivodectanviittonation

@ P(Cancer) = 0.32
@ P(Malfunction) = 0.08



Probabilistic Inference Probabilistic Inference

Matunction

Gancer

Maltunction

Gancer

T ey
[P(® - true.c) 082 a

Report

H P~ o) =T

Suppose the doctor reads a positive Test B in the Database

evidence gives Database=true (not directly Test B= true) Suppose JESHANGIRORIING] as well
we want P(Cancer = true|Database = true A TestA = true)
we want to know P(Cancer = true|Database = true)
@ P(Cancer = true|Database = true A TestA = true) = 0.95
@ P(Cancer = true|Database = true) = 0.80 o P(M = true|Database — true A TostA — t _0.08
@ P(Malfunction = true| Database = true) = 0.14 (M = true| Database = true 1 TestA = frue) = 0.
) (we will see how to get these numbers later)
(we will see how to get these numbers later)
Probabilistic Inference Simple Forward Inference (Chai

Computing marginal requires simple forward propagation of

Matunction

Gancer

probabilities
@ P(J) =y er P(J.M,ET)
(marginalisation - sum rule)
o e T ] o w0 PU=
Lo ) >mer P(JIM, ET)P(M|ET)P(ET)
P (chain rule)
ANV o P(J)= Y P(JIM)P(M|ET)P(ET)
oo T ) e M.ET
- (conditional indep).
Suppose Test A is negative , though! - o P(J)="_P(JIM)Y " P(MET)P(ET)
we want P(Cancer = true|Database = true A TestA = false) —l ET
(distribution of sum)
@ P(Cancer = true|Database = true A TestA = false) = 0.48

Note: all terms on the last line are CPTs in the BN

@ P(M = true|Database = true A TestA = false) = 0.27 Note: only ancestors of J considered. Why?

(we will see how to get these numbers later)




Simple Forward Inference (Chain) Simple Forward Inference

With multiple parents the evidence is “pooled”
Same idea when evidence “upstream”

e - o P(Jlet) = Yy P(J, Mlet) O
(marginalisation) By y .
DICT o P(Jlet) = X, P(JIM, et) P(M|et) 2 e =
(chain rule) —
= o P(Jlet) = X4y P(JIM)P(M|et) -
(conditional indep).
- P(Fev)= >~ P(Fev,Flu,M, TS, ET)
Flu,M.TS.ET
= > P(Fev|M, Flu)[ ZP(FIU\TS (TS) ][ZP MI|ET)P(ET)]
Flu,M
Simple Forward Inference Simple Backward Inference

When evidence is downstream of query, then we must reason

“backwards”. This requires Bayes’ rule
also works with “upstream” evidence

P(ET|j) = P(|ET)P(ET)/P(J)  P(j, ET)
_ _ = = = P(jlET)P(ET)
) = P(Fev|ts, ) = > P(Fev, Flu|m, t
(Fev|ts, m) ; (Fev, Flu|m, ts) o S PG METIRET)
DI =" P(Fev|Flu, ts,m)P(Flults, m) Y M
Flu

=" P(Fev|Flu, )P (Flu|ts)

Flu
(S

=" P(j|M,ET)P(M|ET)P(ET) (chain rule)
M

= z P(jIM)P(M|ET)P(ET)
M

normalising constant is %' but this can be computed as

=Y P(ET.))
ET



Backward Inference Variable Elimination

. - - @ intuitions above : polytree algorithm
http://imgs.xkcd.com/comics/bridge.png . .
@ works for simple networks without loops
[P(C —true) —00007) [PF—true) 0] @ more general algorithm: Variable Elimination
@ applies sum-out rule repeatedly
F: Bridge on Fire @ distributes sums
C: All friends Crazy
J: All friends Jump
What is P(F|J = true)?
F C P(J-telF.C)
T 0%
P(J ~truefF.C)~t f 099
ft 0w
fr oo

Factors Example factors - Restricting a factor

A factor is a representation of a function from a tuple of Y Z]| val
random variables into a number. X Y Z]val t t |01
We will write factor f on variables Xi,..., X;as f(Xi,.. t t t |01 r(X=t,Y,Z){t f |09
We can assign some or all of the variables of a factor t t f 109 f ot |02
—(this is restricting a factor): t fotj]oz2 f flo8

o (X =1, %, ... X)), where v; ¢ dom(X;), is a R R Py
factoron Xz, ..., X; . f t f |06 Y | val
o (X =w, Xo=Vo,..., X;=V;) is @ number that is the fof t]03| r(X=tY,zZ=fjt [09
value of f when each X; has value v;. f f flo7 flos

The former is also written as f(Xi, Xz, ..., Xj)x, =, etc. r(X=t,y=f.z=f) =08



Multiplying factors Multiplying factors example

A BT val
t t]01 A B CJ va
fir]t f |09 .
The product of factor f;(X, Y) and (Y, Z), where Y are the 1 f ot 02 : : ? ggg
variables in common, is the factor (f; x £)(X, Y, Z) defined by: f flos t f t |054
fixh|t f f |036
(hxR)X.Y.2) = H(X.Y)(Y.2). B Clval Pl ot oo
t t |03 f t f |0.14
bt f 07 f f t]048
f t |06 f f f]032
f f |04

Summing out variables Summing out a variable example

. . . A B C| val

We can sum out a variable, say X; with domain {vs,..., v}, Tt t 003
from factor f(Xi, ..., X)), resulting in a factor on Xz, ..., X; t ot f 0:07 A Cl va
defined by: tof ot 054 Tt [057
Rt f f |036 Sphilt f |043

)(Xa, ..., X; 3 8"
(; ... %) f t t|006 f t |054
f f .14 fof .4

= =t X)) e F(XG = Vi X)) R BN 048

f f f 1032




Evidence Probability of a conj

If we want to compute the posterior probability of Z given Suppose the variables of the belief network are Xi, ..., X,.

evidence Vi =vi A ... A Y=V To compute P(Z, Yy =v,..., Yj=V;), we
P(ZIY = _ sum out the variables other than query Z and evidence Y ,
(Z1Y1 = Zino Zo= KXo Xah {2} — Vs Y

We order the Z; into an elimination ordering Z; ... Zj.

P(Z, Yi=v,....Yj=V)

=V
YzP(ZYi=wvi,....Yj=V)). — Z'“ZP(Xh---:Xn)v‘:w.,.‘v/:v/-
Z Z
The computation reduces to the joint probability of ‘ ' n
P(Z,Yi=w,.... Yj=V). = YD TI P(Xilparents(X;))v, = v,..v,= -
2z Z i=1

normalize at the end.

Computing sums of products Computing sums of products

Computation in belief networks reduces to Computation in belief networks reduces to
computing the sums of products. computing the sums of products.
@ How can we compute ab + ac efficiently? @ How can we compute ab + ac efficiently?

@ Distribute out the a giving a(b + ¢)



Computing sums of products Computing sums of products

Computation in belief networks reduces to Computation in belief networks reduces to
computing the sums of products. computing the sums of products.
@ How can we compute ab + ac efficiently? @ How can we compute ab -+ ac efficiently?
o Distribute out the a giving a(b + c) @ Distribute out the a giving a(b + ¢)
@ How can we compute 3~ [T}, P(Xi|parents(X;)) @ How can we compute 3_, [17-, P(Xi|parents(X;))
efficiently? efficiently?

@ Distribute out those factors that don’t involve Z;.

Variable elimination algorithm Summing out a variable

To compute P(Z|Yi = v A ... A Yj=V)): To sum out a variable Z; from a product f, .. ., f of factors:
@ Construct a factor for each conditional probability . @ Partition the factors into
> those that don’t contain Zj, say fi,...,f;
@ Restrict the observed variables to their observed values > those that contain Z, say fi1,..., fi
@ Sum out each of the other variables (the {Z, ..., Z} We know:
from slide 45) according to some elimination ordering :
for each Z; in order starting from i = 1: foxeoosche = fix e xFix foosnxt,
» collect all factors that contain Z; ; ! K ! ! ; s k-
> multiply together and sum out Z; ! !
> add resulting new factor back to the pool
o Multiply the remaining factors. @ Explicitly construct a representation of the rightmost
o Normalize by dividing factor (Zz, iy ka)-

the resulting factor f(Z) by 3~ f(2). @ Replace the factors f, 1, ..., f, by the new factor.



Example | Notes on VE

@ Complexity is linear in number of variables, and
exponential in the size of the largest factor

== [ o T @ When we create new factors: sometimes this blows up
@ Depends on the elimination ordering
@ For polytrees : work outside in
see note variableelim.pdf @ For general BNs this can be hard

@ simply finding the optimal elimination ordering is NP-hard
for general BNs

@ inference in general is NP-hard

Variable Ordering: Polytrees iable Ordering: Relevance

O—e—0

@ Certain variables have no impact

@ @ @ @ In ABC network above, computing P(A) does not require
summing over Band C
@ eliminate singly-connected nodes (D, A, C, X1, ..., Xk) P(A) = Z P(C|B)P(B|A)P(A)
first B.C
@ Then no factor is ever larger than original CPTs = P(A)Z P(B\A)ZP(C\B) =P(A)+1.0+1.0
B c

@ If you eliminate B first, a large factor is created that
includes A, C, X1, ..., Xk



able Ordering: Relevance Example Il

@ Can restrict attention to relevant variables:
@ Given query Q and evidence E, complete approximation

isy .

> Qis relevant

» if any node is relevant, its parents are relevant

» if E € E is a descendent of a relevant variable, then E is

relevant

irrelevant variable: a node that is not an ancestor of a
query or evidence variable
this will only remove irrelevant variables, but may not
remove them all

Pe-mamc)= 1 1 0=

Maltunction Gancer

> (zTETE)
CRTR A - e T 50

.
P oow

=]

see note variableelim.pdf

°
o
@
.
@
o
S
=
@
)
Q
o]
)
o
=

Noisy Or : P(x|Y1,...,

Logistic Regression

P(x|Y1,..., Yi) = sigmoid(D_ w;Y;)
i

Any deep differentiable function — see a. stassopouiou and M. Petrou
Obtaining the correspondence between Bayesian and Neural Networks, International journal of pattern
recogniton and artcial intellgence 12.07 (1998): 901-920.

https://doi.org/10.1142/5021800149800045K

@ Reasoning under Uncertainty Part Il (Poole & Mackworth
(2nd ed.)Chapter 8.5-8.9)



