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Lecture 8 - Reasoning under Uncertainty
(Part I)

Jesse Hoey
School of Computer Science

University of Waterloo

June 2, 2022

Readings: Poole & Mackworth (2nd ed.)Chapt. 8 up to 8.4
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Uncertainty

Why is uncertainty important?
Agents (and humans) don’t know everything ,

but need to make decisions anyways!

Decisions are made in the absence of information ,

or in the presence of noisy information (sensor readings)
The best an agent can do:
know how uncertain it is, and act accordingly
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Probability: Frequentist vs. Bayesian

Frequentist view:
probability of heads = # of heads / # of flips
probability of heads this time = probability of heads (history)
Uncertainty is ontological : pertaining to the world

Bayesian view:

probability of heads this time = agent’s belief about flip
belief of agent A : based on previous experience of agent A

Uncertainty is epistemological : pertaining to knowledge
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Probability: Bayesian

Bayesian probability
all else being equal (Prior)

before any flips
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Probability: Bayesian

Bayesian probability
all else being equal (Prior)

after 2 flips heads, heads (Posterior)
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Probability: Bayesian

Bayesian probability
all else being equal (Prior)

after 2 flips tails,tails (Posterior)
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Probability: Bayesian
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Probability: Bayesian

Should you wear your seatbelt ?

estimate P(injury) given you do/don’t wear it
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Probability: Bayesian

Should you wear your seatbelt ?

estimate P(injury) given you do/don’t wear it

Frequentist:
test day result P(fatality)

- Sunday (prior to start) - ?

1 Monday 0.0

2 Tuesday 0.0

3 Tuesday 0.33333

4 Thursday 0.25

5 Friday 0.2
... ... ... ...

N Number of injuries / N 5/ 56

Probability: Bayesian

Should you wear your seatbelt ?

estimate P(injury) given you do/don’t wear it

Bayesian:
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Probability Measure
if X is a random variable (feature, attribute),
it can take on values x , where x ∈ Domain(X ) (or Dom(X ))
Assume x is discrete

P(x) is the probability that X = x
joint probability P(x,y) is the

probability that X = x and Y = y at the same time

Joint probability distribution:

Where is the robot?
features: X,Y

7/ 56

Axioms of Probability

Axioms are things we have to assume about probability:
P(X ) ≥ 0∑

x P(X = x) = 1.0
P(a ∨ b) = P(a) + P(b) if a and b are contradictory - can’t
both be true at the same time e.g.
P(win ∨ lose) = P(win) + P(lose) = 1.0

Some notes:
probability between 0-1 is purely convention

P(a) = 0 means you think a is definitely false

P(a) = 1 means you think a is definitely true

0 < P(a) < 1 means you have belief about the truth of a.
It does not mean that a is true to some degree, just that
you are ignorant of its truth value.
Probability = measure of ignorance
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Independence

describe a system with n features: 2n − 1 probabilities
Use independence to reduce number of probabilities
e.g. radially symmetric dartboard, P(hit a sector)
P(sector) = P(r , θ) where r = 1, . . . ,4 and θ = 1, . . . ,8.
32 sectors in total - need to give 31 numbers
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Independence

describe a system with n features: 2n − 1 probabilities
Use independence to reduce number of probabilities
e.g. radially symmetric dartboard, P(hit a sector)
assume radial independence : P(r , θ) = P(r)P(θ)

only need 7+3=10 numbers
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Conditional Probability

if X and Y are random variables, then

P(x |y) is the probability that X = x given that Y = y .

e.g.
P(flies|is bird) is different than P(flies)
P(flies|is a penguin, is bird) is different again

incorporate independence:
P(flies|is bird ,has feathers) = P(flies|is bird)

Product rule (Chain rule):
P(flies, is bird) = P(flies|is bird)P(is bird)
P(flies, is bird) = P(is bird |flies)P(flies)
leads to : Bayes’ rule

P(is bird |flies) = P(flies|is bird)P(is bird)
P(flies)
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Sum Rule

We know (an Axiom):∑
x

P(X = x) = 1.0 and therefore that
∑

x

P(X = x |Y ) = 1.0

This means that (Sum Rule)∑
x

P(X = x ,Y ) = P(Y )

proof:∑
x

P(X = x ,Y ) =
∑

x

P(X = x |Y )P(Y )

= P(Y )
∑

x

P(X = x |Y )

= P(Y )

We call P(Y ) the marginal distribution over Y
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Conditional Probability

X and Y are independent iff

P(X ) = P(X |Y )

P(Y ) = P(Y |X )

P(X ,Y ) = P(X )P(Y )

so learning Y doesn’t influence beliefs about X
X and Y are conditionally independent given Z iff

P(X |Z ) = P(X |Y ,Z )

P(Y |Z ) = P(Y |X ,Z )

P(X ,Y |Z ) = P(X |Z )P(Y |Z )

so learning Y doesn’t influence beliefs about X
if you already know Z ...does not mean X and Y are
independent

12/ 56

Expected Values

expected value of a function on X , V (X ):

E(V ) =
∑

x∈Dom(X) P(x)V (x)

where P(x) is the probability that X = x .

This is useful in decision making ,
where V (X ) is the utility of situation X .

Bayesian decision making is then

E(V (decision)) =
∑

outcome P(outcome|decision)V (outcome)
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Value of Independence

complete independence reduces both representation and

inference from O(2n) to O(n)
Unfortunately, complete mutual independence is rare
Fortunately, most domains do exhibit a fair amount of
conditional independence

Bayesian Networks or Belief Networks (BNs) encode
this information
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Belief Networks

Bayesian network or belief network
Directed Acyclic graph
Encodes independencies in a graphical format
Edges give P(Xi |parents(Xi))

Cancer diagnosis example:

Test A

CancerMalfunction

Report

Database

Test B

Two tests A and B

Test A is quick and cheap, but imprecise

Test A results are read directly

Test B uses a machine that sometimes
malfunctions, but is more precise

Test B results are not read directly,

a Report is written
(by a human who makes mistakes)

the Report is entered into a database
(by another human who makes
mistakes)
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Correlation and Causality

Directed links in Bayes’ net
≈ causal

However, not always the case:
chocolate→ Nobel or
Nobel→ chocolate?
In a Bayes net, it doesn’t matter!
But, some structures will be
easier to specify

In this example, its probably
chocolate← “Switzerland − ness′′ → Nobel
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Bayesian networks - example

If Jesse’s alarm doesn’t go off (A), Jesse proba-
bly won’t get coffee (C); if Jesse doesn’t get coffee,
he’s likely grumpy (G). If he is grumpy then it’s pos-
sible that the lecture won’t go smoothly L. If the
lecture does not go smoothly then the students will
likely be sad S.

A C G L S

A=Jesse’s alarm doesn’t go off
C=Jesse doesn’t get coffee
G=Jesse is grumpy
L=lecture doesn’t go smoothly
S=students are sad

all variables binary (true/false)
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Conditional Independence

A C G L S

If you learned any of A,C,G, or L, would your assessment
of P(S) change?
I If any of these are seen to be true, you would increase

P(s)and decrease P(s).
I So S is not independent of A, C, G, L.

If you knew the value of L, would learning the value of A,
C, or G influence P(S)?
I Influence that these factors have on S is mediated by their

influence on L.
I Students aren’t sad because Jesse was grumpy, they are

sad because of the lecture.
I Therefore, S is conditionally independent of A, C, and G

(given L)
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Conditional Independence

A C G L S

We say: S is independent of A, C, and G, given L

(this is conditional independence )

Similarly, we can say
I S is independent of A and C, given G
I G is independent of A, given C
I ...

This means that:
I P(S|L,G,C,A) = P(S|L)
I P(L|G,C,A) = P(L|G)
I P(G|C,A) = P(G|C)
I P(C|A) and P(A) don’t “simplify”
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Conditional Independence

A C G L S

Chain rule ( product rule ):

P(S,L,G,C,A) =
P(S|L,G,C,A)P(L|G,C,A)P(G|C,A)P(C|A)P(A)

Independence:

P(S,L,G,C,A) = P(S|L)P(L|G)P(G|C)P(C|A)P(A)

So we can specify the full joint probability

using the five local conditional probabilities :

P(S|L),P(L|G),P(G|C),P(C|A),P(A)
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Bayesian Networks

A Bayesian Network (Belief Network, Probabilistic Network) or
BN over variables {X1,X2, . . . ,XN} consists of:

a DAG whose nodes are the variables

a set of Conditional Probability tables (CPTs) giving
P(Xi |Parents(Xi)) for each Xi

example probability tables for the Coffee Bayes Net:

A C G L S

P(A = true) = 0.3 P(C = true|A) =

A P(C = true|A)
t 0.8
f 0.15

P(G = true|C) =

C P(G = true|C)

t 1.0
f 0.2

P(L = true|G) =

G P(L = true|G)

t 0.7
f 0.2

P(S = true|L) =
L P(S = true|L)
t 0.9
f 0.3
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Another example quantification

Cancer diagnosis:

M
Malfunction

C
Cancer

A
Test A

B
Test B

RReport

D Database

P(M = true) = 0.08

P(C = true) = 0.32

P(A = true|C) =

C P(A = true|C)

t 0.80
f 0.15P(B = true|M,C) =

M C P(B = true|M,C)

t t 0.61
t f 0.52
f t 0.78
f f 0.044

P(R = true|B) =

B P(R = true|B)

t 0.98
f 0.01

P(D = true|R) =

R P(D = true|R)

t 0.96
f 0.001
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Semantics of a Bayes’ Net

The structure of the BN means that :
every Xi is conditionally independent of all

its nondescendants given its parents:

P(Xi |S,Parents(Xi)) = P(Xi |Parents(Xi))

for any subset S ⊆ NonDescendants(Xi)

The BN defines a factorization of the joint probability
distribution. The joint distribution is formed by multiplying the
conditional probability tables together.
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Constructing belief networks

To represent a domain in a belief network, you need to
consider:

What are the relevant variables ?
I What will you observe? - this is the evidence
I What would you like to find out? - this is the query
I What other features make the model simpler? - these are

the other variables

What values should these variables take?

What is the relationship between them? This should be

expressed in terms of local influence .
How does the value of each variable
depend on its parents ? This is expressed in terms of the

conditional probabilities .
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Bayesian Networks - Independence assumptions

Test A

CancerMalfunction

Report

Database

Test B

Test B depends on Cancer and
Malfunction

Test A depends only on Cancer

Report depends only on Test B

Database depends only on Report

What are the independencies?
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Three Basic Bayesian Networks

Test A

CancerMalfunction

Report

Database

Test B
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Three Basic Bayesian Networks

is observed
independent if Report

Database and Test B
Report

Database

Test B
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Three Basic Bayesian Networks

is observed

Test B and Test A are

independent if Cancer

Test A

Cancer

Test B
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Three Basic Bayesian Networks

is not observed

independent if Test B

Malfunction and Cancer are

CancerMalfunction

Test B

23/ 56

Three Basic Bayesian Networks

http://imgs.xkcd.com/comics/bridge.png

Friends Crazy Bridge on Fire

Friends Jump
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Three Basic Bayesian Networks...Recap

Test A

CancerMalfunction

Report

Database

Test B
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Testing Independence

Given a BN, how do we determine if two variables X,Y are
independent ( given evidence E )?

D-separation : A set of variables E d-separates X and Y

if it blocks every undirected path in the BN between X and
Y
But what does block mean?

25/ 56

Blocked Paths
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Markov Blanket

The Markov Blanket of a node (variable) V is:
the parents, children, and the (other) parents of children
the minimal set of nodes that d-separates V from all other
variables

The joint distribution over the Markov Blanket allows for the
computation of the distribution P(V ).
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D-Separations: Example

TravelSubway and
Thermometer (given no
evidence)?
TravelSubway and
Thermometer (given Flu
or Fever)?
TravelSubway and Malaria
(given Fever)?
TravelSubway and Exotic
Trip (given Jaundice)?
TravelSubway and Exotic
Trip (given Jaundice and
Thermometer)?
TravelSubway and Exotic
Trip (given Malaria and
Thermometer)?
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Updating belief: Bayes’ Rule

Agent has a prior belief in a hypothesis , h, P(h),

Agent observes some evidence e
that has a likelihood given the hypothesis: P(e|h).

The agent’s posterior belief about h after observing e, P(h|e),

is given by Bayes’ Rule:

P(h|e) = P(e|h)P(h)
P(e)

=
P(e|h)P(h)∑
h P(e|h)P(h)
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Why is Bayes’ theorem interesting?

Often you have causal knowledge :
P(symptom | disease)
P(light is off | status of switches and switch positions)
P(alarm | fire)

P(image looks like | a tree is in front of a car)

and want to do evidential reasoning :
P(disease | symptom)
P(status of switches | light is off and switch positions)
P(fire | alarm).

P(a tree is in front of a car | image looks like )

30/ 56

Probabilistic Inference

M
Malfunction

C
Cancer

A
Test A

B
Test B

RReport

D Database

P(M = true) = 0.08

P(C = true) = 0.32

P(A = true|C) =

C P(A = true|C)

t 0.80
f 0.15P(B = true|M,C) =

M C P(B = true|M,C)

t t 0.61
t f 0.52
f t 0.78
f f 0.044

P(R = true|B) =

B P(R = true|B)

t 0.98
f 0.01

P(D = true|R) =

R P(D = true|R)

t 0.96
f 0.001

Before you get any information

P(Cancer) = 0.32
P(Malfunction) = 0.08
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Probabilistic Inference

M
Malfunction

C
Cancer

A
Test A

B
Test B

RReport

D Database

P(M = true) = 0.08

P(C = true) = 0.32

P(A = true|C) =

C P(A = true|C)

t 0.80
f 0.15P(B = true|M,C) =

M C P(B = true|M,C)

t t 0.61
t f 0.52
f t 0.78
f f 0.044

P(R = true|B) =

B P(R = true|B)

t 0.98
f 0.01

P(D = true|R) =

R P(D = true|R)

t 0.96
f 0.001

Suppose the doctor reads a positive Test B in the Database
evidence gives Database=true (not directly Test B= true)
we want to know P(Cancer = true|Database = true)

P(Cancer = true|Database = true) = 0.80
P(Malfunction = true|Database = true) = 0.14

(we will see how to get these numbers later)
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Probabilistic Inference
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P(R = true|B) =

B P(R = true|B)

t 0.98
f 0.01

P(D = true|R) =

R P(D = true|R)

t 0.96
f 0.001

Suppose Test A is positive as well
we want P(Cancer = true|Database = true ∧ TestA = true)

P(Cancer = true|Database = true ∧ TestA = true) = 0.95
P(M = true|Database = true ∧ TestA = true) = 0.08

(we will see how to get these numbers later)
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Probabilistic Inference

M
Malfunction

C
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A
Test A

B
Test B

RReport

D Database
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t 0.80
f 0.15P(B = true|M,C) =

M C P(B = true|M,C)

t t 0.61
t f 0.52
f t 0.78
f f 0.044

P(R = true|B) =

B P(R = true|B)

t 0.98
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P(D = true|R) =

R P(D = true|R)

t 0.96
f 0.001

Suppose Test A is negative , though!
we want P(Cancer = true|Database = true ∧ TestA = false)

P(Cancer = true|Database = true ∧ TestA = false) = 0.48
P(M = true|Database = true ∧ TestA = false) = 0.27

(we will see how to get these numbers later)
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Simple Forward Inference (Chain)

Computing marginal requires simple forward propagation of
probabilities

P(J) =
∑

M,ET P(J,M,ET )
(marginalisation - sum rule)
P(J) =∑

M,ET P(J|M,ET )P(M|ET )P(ET )
(chain rule)

P(J) =
∑

M,ET

P(J|M)P(M|ET )P(ET )

(conditional indep).

P(J) =
∑
M

P(J|M)
∑
ET

P(M|ET )P(ET )

(distribution of sum)
Note: all terms on the last line are CPTs in the BN
Note: only ancestors of J considered. Why?



32/ 56

Simple Forward Inference (Chain)

Same idea when evidence “upstream”

P(J|et) =
∑

M P(J,M|et)
(marginalisation)
P(J|et) =

∑
M P(J|M,et)P(M|et)

(chain rule)
P(J|et) =

∑
M P(J|M)P(M|et)

(conditional indep).
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Simple Forward Inference

With multiple parents the evidence is “pooled”

P(Fev) =
∑

Flu,M,TS,ET

P(Fev ,Flu,M,TS,ET )

=
∑

Flu,M

P(Fev |M,Flu)[
∑
TS

P(Flu|TS)P(TS)][
∑
ET

P(M|ET )P(ET )]
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Simple Forward Inference

also works with “upstream” evidence

P(Fev |ts,m) =
∑
Flu

P(Fev ,Flu|m, ts)

=
∑
Flu

P(Fev |Flu, ts,m)P(Flu|ts,m)

=
∑
Flu

P(Fev |Flu,m)P(Flu|ts)
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Simple Backward Inference

When evidence is downstream of query, then we must reason
“backwards”. This requires Bayes’ rule

P(ET |j) = P(j |ET )P(ET )/P(J) ∝ P(j ,ET )

= P(j |ET )P(ET )

=
∑
M

P(j ,M|ET )P(ET )

=
∑
M

P(j |M,ET )P(M|ET )P(ET ) (chain rule)

=
∑
M

P(j |M)P(M|ET )P(ET )

normalising constant is 1
P(j) , but this can be computed as

P(j) =
∑
ET

P(ET , j)
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Backward Inference

http://imgs.xkcd.com/comics/bridge.png

F: Bridge on Fire
C: All friends Crazy
J: All friends Jump
What is P(F |J = true)?

C F

J

P(C = true) = 0.0001 P(F = true) = 0.1

P(J = true|F,C) =

F C P(J = true|F ,C)

t t 0.95
t f 0.99
f t 0.99
f f 0.01
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Variable Elimination

intuitions above : polytree algorithm
works for simple networks without loops
more general algorithm: Variable Elimination
applies sum-out rule repeatedly
distributes sums
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Factors

A factor is a representation of a function from a tuple of
random variables into a number.
We will write factor f on variables X1, . . . ,Xj as f (X1, . . . ,Xj) .
We can assign some or all of the variables of a factor

→(this is restricting a factor):

f (X1 = v1,X2, . . . ,Xj), where v1 ∈ dom(X1), is a
factor on X2, . . . ,Xj .

f (X1 = v1,X2 = v2, . . . ,Xj = vj) is a number that is the
value of f when each Xi has value vi .

The former is also written as f (X1,X2, . . . ,Xj)X1 = v1 , etc.
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Example factors - Restricting a factor

r(X ,Y ,Z ):

X Y Z val
t t t 0.1
t t f 0.9
t f t 0.2
t f f 0.8
f t t 0.4
f t f 0.6
f f t 0.3
f f f 0.7

r(X=t ,Y ,Z ):

Y Z val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

r(X=t ,Y ,Z=f ):
Y val
t 0.9
f 0.8

r(X=t ,Y=f ,Z=f ) = 0.8
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Multiplying factors

The product of factor f1(X ,Y ) and f2(Y ,Z ), where Y are the
variables in common, is the factor (f1 × f2)(X ,Y ,Z ) defined by:

(f1 × f2)(X ,Y ,Z ) = f1(X ,Y )f2(Y ,Z ).
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Multiplying factors example

f1:

A B val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

f2:

B C val
t t 0.3
t f 0.7
f t 0.6
f f 0.4

f1 × f2:

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32
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Summing out variables

We can sum out a variable, say X1 with domain {v1, . . . , vk},
from factor f (X1, . . . ,Xj), resulting in a factor on X2, . . . ,Xj
defined by:

(
∑
X1

f )(X2, . . . ,Xj)

= f (X1 = v1, . . . ,Xj) + · · ·+ f (X1 = vk , . . . ,Xj)
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Summing out a variable example

f3:

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32

∑
B f3:

A C val
t t 0.57
t f 0.43
f t 0.54
f f 0.46
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Evidence

If we want to compute the posterior probability of Z given
evidence Y1 = v1 ∧ . . . ∧ Yj = vj :

P(Z |Y1 = v1, . . . ,Yj = vj)

=
P(Z ,Y1 = v1, . . . ,Yj = vj)

P(Y1 = v1, . . . ,Yj = vj)

=
P(Z ,Y1 = v1, . . . ,Yj = vj)∑
Z P(Z ,Y1 = v1, . . . ,Yj = vj).

The computation reduces to the joint probability of

P(Z ,Y1 = v1, . . . ,Yj = vj).

normalize at the end.
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Probability of a conjunction

Suppose the variables of the belief network are X1, . . . ,Xn.
To compute P(Z ,Y1 = v1, . . . ,Yj = vj), we
sum out the variables other than query Z and evidence Y ,
Z1, . . . ,Zk = {X1, . . . ,Xn} − {Z} − {Y1, . . . ,Yj}.
We order the Zi into an elimination ordering Z1 . . .Zk .

P(Z ,Y1 = v1, . . . ,Yj = vj)

=
∑
Zk

· · ·
∑
Z1

P(X1, . . . ,Xn)Y1 = v1,...,Yj = vj .

=
∑
Zk

· · ·
∑
Z1

n∏
i=1

P(Xi |parents(Xi))Y1 = v1,...,Yj = vj .
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Computing sums of products

Computation in belief networks reduces to
computing the sums of products.

How can we compute ab + ac efficiently?

Distribute out the a giving a(b + c)
How can we compute

∑
Z1

∏n
i=1 P(Xi |parents(Xi))

efficiently?
Distribute out those factors that don’t involve Z1.
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Variable elimination algorithm

To compute P(Z |Y1 = v1 ∧ . . . ∧ Yj = vj):

Construct a factor for each conditional probability .

Restrict the observed variables to their observed values

Sum out each of the other variables (the {Z1, . . . ,Zk}
from slide 45) according to some elimination ordering :
for each Zi in order starting from i = 1:
I collect all factors that contain Zi
I multiply together and sum out Zi
I add resulting new factor back to the pool

Multiply the remaining factors.

Normalize by dividing
the resulting factor f (Z ) by

∑
Z f (Z ).
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Summing out a variable

To sum out a variable Zj from a product f1, . . . , fk of factors:

Partition the factors into
I those that don’t contain Zj , say f1, . . . , fi ,
I those that contain Zj , say fi+1, . . . , fk

We know:

∑
Zj

f1× · · ·×fk = f1× · · ·×fi×

∑
Zj

fi+1× · · ·×fk

 .

Explicitly construct a representation of the rightmost

factor
(∑

Zj
fi+1× · · ·×fk

)
.

Replace the factors fi+1, . . . , fk by the new factor.
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Example I

A C G L S

P(A = true) = 0.3 P(C = true|A) =

A P(C = true|A)
t 0.8
f 0.15

P(G = true|C) =

C P(G = true|C)

t 1.0
f 0.2

P(L = true|G) =

G P(L = true|G)

t 0.7
f 0.2

P(S = true|L) =
L P(S = true|L)
t 0.9
f 0.3

see note variableelim.pdf
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Notes on VE

Complexity is linear in number of variables, and
exponential in the size of the largest factor

When we create new factors: sometimes this blows up

Depends on the elimination ordering

For polytrees : work outside in
For general BNs this can be hard
simply finding the optimal elimination ordering is NP-hard
for general BNs
inference in general is NP-hard
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Variable Ordering: Polytrees

eliminate singly-connected nodes (D,A,C,X1, . . . ,Xk )
first
Then no factor is ever larger than original CPTs
If you eliminate B first, a large factor is created that
includes A,C,X1, . . . ,Xk
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Variable Ordering: Relevance

Certain variables have no impact

In ABC network above, computing P(A) does not require
summing over B and C

P(A) =
∑
B,C

P(C|B)P(B|A)P(A)

= P(A)
∑

B

P(B|A)
∑

C

P(C|B) = P(A) ∗ 1.0 ∗ 1.0
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Variable Ordering: Relevance

Can restrict attention to relevant variables:

Given query Q and evidence E, complete approximation
is:I Q is relevant
I if any node is relevant, its parents are relevant
I if E ∈ E is a descendent of a relevant variable, then E is

relevant

irrelevant variable: a node that is not an ancestor of a
query or evidence variable
this will only remove irrelevant variables, but may not
remove them all
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Example II

M
Malfunction

C
Cancer

A
Test A

B
Test B

RReport

D Database

P(M = true) = 0.08

P(C = true) = 0.32

P(A = true|C) =

C P(A = true|C)

t 0.80
f 0.15P(B = true|M,C) =

M C P(B = true|M,C)

t t 0.61
t f 0.52
f t 0.78
f f 0.044

P(R = true|B) =

B P(R = true|B)

t 0.98
f 0.01

P(D = true|R) =

R P(D = true|R)

t 0.96
f 0.001

see note variableelim.pdf
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Other Representations for Probability distributions

Decision Tree or Graph:

Action

Rain Full

0.8 0.1 0.6 0.3

go out get coffee

t f t f

Noisy Or : P(x |Y1, . . . ,Yk )

Logistic Regression

P(x |Y1, . . . ,Yk ) = sigmoid(
∑

i

wiYi)

Any deep differentiable function – see A. Stassopoulou and M. Petrou

Obtaining the correspondence between Bayesian and Neural Networks, International journal of pattern

recognition and artificial intelligence 12.07 (1998): 901-920.

https://doi.org/10.1142/S021800149800049X
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Next:

Reasoning under Uncertainty Part II (Poole & Mackworth
(2nd ed.)Chapter 8.5-8.9)


