
1/ 44

Lecture 7a - Supervised Machine Learning I

Jesse Hoey
School of Computer Science

University of Waterloo

May 28, 2022

Readings: Poole & Mackworth (2nd ed.)Chapt. 7.1-7.3.1,7.4

2/ 44

Learning

Learning is the ability to improve behavior based on experience

The range of behaviors is expanded: the agent can do more.

The accuracy on tasks is improved: the agent can do things
better.

The speed is improved: the agent can do things faster.

3/ 44

Components of a learning problem

The following components are part of any learning problem:

task The behavior or task that’s being improved.
For example: classification, acting in an environment

data The experiences that are being used to improve
performance in the task.

measure of improvement How can the improvement be
measured?
For example: increasing accuracy in prediction, new skills that
were not present initially, improved speed.

4/ 44

Types of learning

Make a prediction from a knowledge base (causes and laws):
deduction (top-down)

Infer laws from data (causes and effects): induction
(bottom-up)

Infer causes from experience and knowledge: abduction (we
will not cover this)

The richer (more complex) the representation, the
more useful it is for subsequent problem solving.

The richer the representation, the more difficult it is to learn.

5/ 44

Common Learning Tasks

Supervised classification Given a set of pre-classified training
examples, classify a new instance.

Unsupervised learning Find natural classes for examples.

Reinforcement learning Determine what to do based on
rewards and punishments.

Transfer Learning Learning from an expert

Active Learning Learner actively seeks to learn

Inductive logic programming Build richer models in terms of
logic programs.

6/ 44

Feedback

Learning tasks can be characterized by the feedback given to the
learner.

Supervised learning What has to be learned is specified for
each example.

Unsupervised learning No classifications are given; the
learner has to discover categories and regularities in the data.

Reinforcement learning Feedback occurs after a sequence of
actions. Credit assignment problem. Is a form of Supervised
Learning.

7/ 44

Measuring Success

The measure of success is not how well the agent performs on
the training examples, but
how well the agent performs for new (unseen) examples .

Consider two agents solving a binary classification task:
I P claims the negative examples seen are the only negative

examples. Every other instance is positive.
I N claims the positive examples seen are the only positive

examples. Every other instance is negative.

Both agents correctly classify every training example , but

disagree on every other example .

8/ 44

Bias

The tendency to prefer one hypothesis over another is called a
bias.

A bias is necessary to make predictions on unseen data

Saying a hypothesis is better than N’s or P’s hypothesis
isn’t something that’s obtained from the data .

To have any inductive process make predictions on unseen
data, you need a bias .

What constitutes a good bias is an empirical question about
which biases work best in practice .

9/ 44

Learning as search

Given a representation and a bias, the problem of learning can
be reduced to one of search .

Learning is search through the space of possible
representations looking for the representation or
representations that best fits the data, given the bias.

These search spaces are typically prohibitively large for
systematic search.

A learning algorithm is made of a
search space , an evaluation function , and a

search method .

10/ 44

Supervised Learning

Given:

a set of input features X1, . . . ,Xn

a set of target features Y1, . . . ,Yk

a set of training examples where the values for the input
features and the target features are given for each example

a set of test examples , where only the values for the input
features are given

predict the values for the target features for the test examples.

classification when the Yi are discrete

regression when the Yi are continuous

Very important : keep training and test sets separate! (see “N and
P” agents slide)

11/ 44

Noise

Data isn’t perfect:
I some of the features are assigned the wrong value

I the features given are inadequate to predict the classification

I there are examples with missing features

overfitting occurs when a distinction appears in the data, but
doesn’t appear in the unseen examples. This occurs because
of random correlations in the training set.

12/ 44

Evaluating Predictions

Suppose Y is a feature and e is an example:

Y (e) is the value of feature Y for example e.

Ŷ (e) is the predicted value of feature Y for example e.

The error of the prediction is a measure of how close Ŷ (e) is
to Y (e).

There are many possible errors that could be measured.

13/ 44

Measures of error

E is the set of examples. T is the set of target features.

absolute error∑
e∈E

∑
Y∈T

∣∣∣Y (e)− Ŷ (e)
∣∣∣

sum of squares error∑
e∈E

∑
Y∈T

(Y (e)− Ŷ (e))2

worst-case error :

max
e∈E

max
Y∈T

∣∣∣Y (e)− Ŷ (e)
∣∣∣ .

A cost-based error takes into account costs of various errors.

13/ 44

Measures of error

E is the set of examples. T is the set of target features.

absolute error∑
e∈E

∑
Y∈T

∣∣∣Y (e)− Ŷ (e)
∣∣∣

sum of squares error∑
e∈E

∑
Y∈T

(Y (e)− Ŷ (e))2

worst-case error :

max
e∈E

max
Y∈T

∣∣∣Y (e)− Ŷ (e)
∣∣∣ .

A cost-based error takes into account costs of various errors.

13/ 44

Measures of error

E is the set of examples. T is the set of target features.

absolute error∑
e∈E

∑
Y∈T

∣∣∣Y (e)− Ŷ (e)
∣∣∣

sum of squares error∑
e∈E

∑
Y∈T

(Y (e)− Ŷ (e))2

worst-case error :

max
e∈E

max
Y∈T

∣∣∣Y (e)− Ŷ (e)
∣∣∣ .

A cost-based error takes into account costs of various errors.

13/ 44

Measures of error

E is the set of examples. T is the set of target features.

absolute error∑
e∈E

∑
Y∈T

∣∣∣Y (e)− Ŷ (e)
∣∣∣

sum of squares error∑
e∈E

∑
Y∈T

(Y (e)− Ŷ (e))2

worst-case error :

max
e∈E

max
Y∈T

∣∣∣Y (e)− Ŷ (e)
∣∣∣ .

A cost-based error takes into account costs of various errors.

14/ 44

Measures of error (cont.)

When target features are Y (e) ∈ {0, 1} and predicted features are
Ŷ (e) ∈ [0, 1] (predicted features: probability the target is 1):

likelihood of the data (maximize this)∏
e∈E

∏
Y∈T

P(Ŷ (e)|Y (e))

∏
e∈E

∏
Y∈T

Ŷ (e)Y (e)(1− Ŷ (e))(1−Y (e))

entropy or negative log likelihood (minimize this: a cost)

−
∑
e∈E

∑
Y∈T

[Y (e) log Ŷ (e)+

(1− Y (e)) log(1− Ŷ (e))]

14/ 44

Measures of error (cont.)

When target features are Y (e) ∈ {0, 1} and predicted features are
Ŷ (e) ∈ [0, 1] (predicted features: probability the target is 1):

likelihood of the data (maximize this)∏
e∈E

∏
Y∈T

P(Ŷ (e)|Y (e))

∏
e∈E

∏
Y∈T

Ŷ (e)Y (e)(1− Ŷ (e))(1−Y (e))

entropy or negative log likelihood (minimize this: a cost)

−
∑
e∈E

∑
Y∈T

[Y (e) log Ŷ (e)+

(1− Y (e)) log(1− Ŷ (e))]

15/ 44

Precision and Recall

Not all errors are equal, e.g. predict:
I a patient has a disease when they do not
I a patient doesn’t have a disease when they do

need to map out both kinds of errors to find the best trade-off

predicted
T F

actual T true positive (TP) false negative (FN)

F false positive (FP) true negative (TN)

recall = sensitivity = TP/(TP+FN)

specificity = TN/(TN+FP)

precision = TP/(TP+FP)

F1-measure = 2*Precision*Recall/(Precision+Recall)
gives even weight to precision and recall

16/ 44

Receiver Operating Curve (ROC)

(model parameters)

"best you can do"
agent

bias

False Positives

T
ru

e
 P

o
s
it

iv
e
s

for all examples
predicts T

agent "P"

predicts F
agent "N"

for all examples

"perfect" agent

The ROC gives
full range of performance of an algorithm across different biases

17/ 44

Basic Models for Supervised Learning

Many learning algorithms can be seen as deriving from:

decision trees

linear classifiers (incl. neural networks)

Bayesian classifiers

18/ 44

Example: user discussion board

Consider an application that predicts if a user will read or

skip a discussion board article

User action depends on the following attributes or features
of articles:
I the author of the article is known or unknown to the user,
I the thread is new or a follow up ,

I the article’s length is long or short ,

I the user reads the article at home or at work .

Try to predict, based only on your prior knowledge of
threaded discussion boards, what the user’s action will be
(read or skip) for the following examples:

example author thread length where read user’s action
t1 unknown new long work
t2 known new short home
t3 unknown follow up short work
t4 unknown follow up long home
t5 known follow up short home

19/ 44

Dataset: discussion board behaviors

After seeing this dataset, Now what is your prediction?

example author thread length where read user’s action
e1 known new long home skips
e2 unknown new short work reads
e3 unknown follow up long work skips
e4 known follow up long home skips
e5 known new short home reads
e6 known follow up long work skips
e7 unknown follow up short work skips
e8 unknown new short work reads
e9 known follow up long home skips
e10 known new long work skips
e11 unknown follow up short home skips
e12 known new long work skips
e13 known follow up short home reads
e14 known new short work reads
e15 known new short home reads
e16 known follow up short work reads
e17 known new short home reads
e18 unknown new short work reads
e19 unknown new long work ?
e20 unknown follow up long home ?

20/ 44

Example: user discussion board behaviors

It appears the user mostly skips long articles (yellow lines) with
two exceptions (green lines)

example author thread length where read user’s action
e1 known new long home skips
e2 unknown new short work reads
e3 unknown follow up long work skips
e4 known follow up long home skips
e5 known new short home reads
e6 known follow up long work skips
e7 unknown follow up short work skips
e8 unknown new short work reads
e9 known follow up long home skips
e10 known new long work skips
e11 unknown follow up short home skips
e12 known new long work skips
e13 known follow up short home reads
e14 known new short work reads
e15 known new short home reads
e16 known follow up short work reads
e17 known new short home reads
e18 unknown new short work reads
e19 unknown new long work ?
e20 known follow up short home ?

21/ 44

Learning Decision Trees

Simple, successful technique for supervised learning from discrete
data

Representation is a decision tree.

Bias is towards simple decision trees.

Search through the space of decision trees, from simple
decision trees to more complex ones.

22/ 44

Decision Trees

Nodes are input attributes/features

Branches are labeled with input feature value(s)

Leaves are predictions for target features (point estimates)

Can have many branches per node

Branches can be labeled with multiple feature values

23/ 44

Example Decision Trees

Which decision tree is better for the discussion board example?

knownunknown

follow_upnew

shortlong

Length

Thread

Author

skips

reads

skips reads

shortlong

Length

reads with
probability 0.82

skips

24/ 44

Learning a decision tree

Incrementally split the training data

Recursively solve sub-problems

Hard part: how to split the data?

Criteria for a good decision tree (bias):
I small decision tree,
I good classification (low error on training data),
I good generalisation (low error on test data)

25/ 44

Decision tree learning: pseudocode

//X is input features, Y is output features,
//E is training examples
//output is a decision tree, which is either
// - a point estimate of Y , or
// - of the form < Xi ,T1, . . . ,TN > where
// Xi is an input feature and T1, . . . ,TN are decision trees
procedure DecisionTreeLearner (X,Y,E)
if stopping criteria is met then

return pointEstimate(Y,E)
else

select feature Xi ∈ X
for each value xi of Xi do
Ei = all examples in E where Xi = xi
Ti = DecisionTreeLearner(X\{Xi},Y ,Ei)

end for
return < Xi ,T1, . . . ,TN >

end procedure
26/ 44

Decision tree classification: pseudocode

//X is is input features, Y is output features,
//e is test example
//DT is a decision tree
//output is a prediction of Y for e

procedure ClassifyExample (e,X,Y,DT)
S ← DT
while S is internal node of the form < Xi ,T1, . . . ,TN > do

j ← Xi (e)
S ← Tj

end while
return S
end procedure

27/ 44

Remaining issues

Stopping criteria

Selection of features

Point estimate (final return value at leaf)

Reducing number of branches (partition of domain for N-ary
features)

28/ 44

Stopping Criteria

How do we decide to stop splitting?

The stopping criteria is related to the final return value

Depends on what we will need to do

Possible stopping criteria:
I No more features
I Performance on training data is good enough

29/ 44

Feature Selection

Ideal: choose sequence of features that result in smallest tree

Actual: myopically split - as if only allowed one split, which
feature would give best performance?

heuristics for best performing feature:
I Most even split
I Maximum information gain
I GINI index
I ... others domain dependent ...

30/ 44

Good Feature Selection

reads

thread

skips

length

long short

author

new follow up

unknownknown

skips

reads

30/ 44

Bad Feature Selection

reads

thread

skips

length

long short

author

new follow up

unknownknown

skips

reads

home

skips reads skips

thread thread

author

length lengthlength

reads skips

skips

known

follow up new

longshort

newfollow up

unknown

short longlongshort

reads skips reads skips

thread thread

author

length lengthlength

reads skips

skips

known

follow up new

longshort

newfollow up

unknown

short longlongshort

where read

work

reads

31/ 44

Information Theory

a bit is a binary digit: 0 or 1

n bits can distinguish 2n items

can do better by taking probabilities into account

Example:
distinguish {a, b, c , d} with
P(a) = 0.5,P(b) = 0.25,P(c) = P(d) = 0.125
If we encode

a:00 b:01 c:10: d:11
uses on average
2 bits

but if we encode
a:0 b:10 c:110 d:111

uses on average

P(a)× 1 + P(b)× 2 + P(c)× 3 + P(d)× 3 =

1.75 bits

32/ 44

Information Theory

In general, need −log2 P(x) bits to encode x

Each symbol requires on average

−P(x) log2 P(x) bits

To transmit an entire sequence distributed according to P(x),
we need on average∑

x

−P(x) log2 P(x) bits

of information per symbol we wish to transmit

information content or entropy of the sequence

33/ 44

Information gain

Given a set E of N training examples, if the number of examples
with output feature Y = yi is Ni , then

P(Y = yi) = P(yi) =
Ni

N

(the point estimate)
Total information content for the set E is (assume log ≡ log2):

I (E) = −
∑
yi∈Y

P(yi) logP(yi)

So, after splitting E up into E1 and E2 (size N1, N2) based on
input attribute Xi , the information content

I (Esplit) =
N1

N
I (E1) +

N2

N
I (E2)

and we want the Xi that maximises the information gain :

I (E)− I (Esplit)

34/ 44

Example: user discussion board behaviors

Build a decision tree for this dataset, using information gain to
split,
then make predictions for two unlabeled test examples

example author thread length where read user’s action
e1 known new long home skips
e2 unknown new short work reads
e3 unknown follow up long work skips
e4 known follow up long home skips
e5 known new short home reads
e6 known follow up long work skips
e7 unknown follow up short work skips
e8 unknown new short work reads
e9 known follow up long home skips
e10 known new long work skips
e11 unknown follow up short home skips
e12 known new long work skips
e13 known follow up short home reads
e14 known new short work reads
e15 known new short home reads
e16 known follow up short work reads
e17 known new short home reads
e18 unknown new short work reads
e19 unknown new long work ?
e20 unknown follow up long home ?

(see dtexample.pdf handout)

35/ 44

Final return value

Point estimate of Y (output features) over all examples

Point estimate is just a prediction of target features
I mean value,
I median value,
I most likely classification,
I etc.

e.g.

P(Y = yi) =
Ni

N

where
I Ni is the number of training samples at the leaf with Y = Yi

I N is the total number of training samples at the leaf.

36/ 44

Using a Priority Queue to Learn the DT

The “vanilla” version we saw grows all branches for a node

But there might be some branches that are more worthwhile
to expand

Idea: sort the leaves using a priority queue ranked by how
much information can be gained with the best feature at that
leaf

always expand the leaf at the top of the queue

37/ 44

Priority Queue (PQ) Decision Tree: Pseudocode V1

procedure DecisionTreeLearner (X,Y,E)

Start PQ with a single node (index 0) with
- whole data set E0 ≡ E ,
- the point estimate for E0, y0,
- the best next feature to split E0 on, X0 and
- the amount of information gain ∆I0 if E0 split on X0.
- add node 0 to PQ

Repeat until a stopping criteria is reached:

- find leaf (index i) with highest information gain (head of PQ)
→ leaf i is the next split to do.

- Split the data at that leaf (Ei) according to the Best-Feature Xi

→ two datasets Ei+ and Ei−
- Add 2 children to node i , one with Ei+ and one with Ei−
- for each new child: compute and store in the child nodes:

- point estimate,
- best next feature to split on (of all the remaining features), and
- information gain for that split

- add child nodes to PQ by information gain

38/ 44

Decision tree learning: pseudocode V2

procedure DecisionTreeLearner (X,Y,E)
DT = pointEstimate(Y ,E) = initial decision tree
{X ′,∆I} ← best feature and Information Gain value for E
PQ ← {DT ,E ,X ′,∆I} = priority queue of leaves ranked by ∆I
while stopping criteria is not met do:
{Sl ,El ,Xl ,∆Il} ← leaf at the head of PQ
for each value xi of Xl do
Ei = all examples in El where Xl = xi
{Xj ,∆Ij} = best feature and value for Ei

Ti ← pointEstimate(Y ,Ei)
insert {Ti ,Ei ,Xj ,∆Ij} into PQ according to ∆Ij

end for
Sl ←< Xl ,T1, . . . ,TN >

end while
return DT
end procedure

39/ 44

Overfitting

Sometimes the decision tree is too good at classifying the training

data, and will not generalise very well.

This often occurs when there is not much data
Attributes:
bad weather (W), I burnt my toast (T), my train is late (L)
training data:

W , T , L ;

true, true, true;

false, false, false;

false, false, false;

true, false, false;

false, true, false;

true, false, true;

false,false, false;

true, true, true;

true, false, true;

false, true, false;

burnt toast

yes no

train not late

best decision tree (info gain):

train late

Decision tree predicts the train based on burnt toast

39/ 44

Overfitting

Sometimes the decision tree is too good at classifying the training

data, and will not generalise very well.

This often occurs when there is not much data
Attributes:
bad weather (W), I burnt my toast (T), my train is late (L)
training data:

W , T , L ;

true, true, true;

false, false, false;

false, false, false;

true, false, false;

false, true, false;

true, false, true;

false,false, false;

true, true, true;

true, false, true;

false, true, false;

bad weather

yes no

train not late

best decision tree (info gain):

train late

Decision tree predicts the train based on the weather 40/ 44

Overfitting

Some methods to avoid overfitting

Regularization : e.g. Prefer small decision trees over big ones,
so add a ’complexity’ penalty to the stopping criteria - stop
early

Pseudocounts : add some data based on prior knowledge

Cross validation

41/ 44

Overfitting

Test set errors caused by:

bias : the error due to the algorithm finding an imperfect
model.
I representation bias : model is too simple

I search bias : not enough search

variance : the error due to lack of data.

noise : the error due to the data depending on features not
modeled or because the process generating the data is
inherently stochastic.

bias-variance trade-off :
I Complicated model, not enough data (low bias, high variance)
I Simple model, lots of data (high bias, low variance)

see handout biasvariance.pdf

42/ 44

Overfitting

capacity of a model is its ability to fit a wide variety of
functions

capacity is like the inverse of bias - a high capacity model has
low bias and vice-versa

→ slight wrinkle in this story (see https://www.bradyneal.com/

bias-variance-tradeoff-textbooks-update and
https://arxiv.org/abs/1810.08591.

43/ 44

Cross Validation

Cross Validation

Split training data into a training and a validation set

Use the validation set as a “pretend” test set

Optimise the decision maker to perform well on the
validation set, not the training set

Can do this multiple times with different validation sets

44/ 44

Next:

Uncertainty (Poole & Mackworth (2nd ed.)Chapter 8)

