Planning

Planning is deciding what to do based on an agent’s ability, its goals, and the state of the world.

Planning is finding a sequence of actions to solve a goal.

Initial assumptions:
- A single agent
- The world is deterministic.
- There are no exogenous events outside of the control of the agent that change the state of the world.
- The agent knows what state it is in (full observability)
- Time progresses discretely from one state to the next.
- Goals are predicates of states that need to be achieved or maintained.

Actions

A deterministic action is a partial function from states to states.
The preconditions of an action specify when the action can be carried out.
The effect of an action specifies the resulting state.

Delivery Robot Example

Features:
- RLoc – Rob’s location (cs, off, mr, lab)
- RHC – Rob has coffee
- SWC – Sam wants coffee
- MW – Mail is waiting
- RHM – Rob has mail

Actions:
- mc – move clockwise
- mcc – move counterclockwise
- puc – pickup coffee
- dc – deliver coffee
- pum – pickup mail
- dm – deliver mail

Explicit State-space Representation

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Resulting State</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨lab, ¬rhc, swc, ¬mw, rhm⟩</td>
<td>mc</td>
<td>⟨mr, ¬rhc, swc, ¬mw, rhm⟩</td>
</tr>
<tr>
<td>⟨lab, ¬rhc, swc, ¬mw, rhm⟩</td>
<td>mcc</td>
<td>⟨off, ¬rhc, swc, ¬mw, rhm⟩</td>
</tr>
<tr>
<td>⟨off, ¬rhc, swc, ¬mw, rhm⟩</td>
<td>dm</td>
<td>⟨off, ¬rhc, ¬swc, ¬mw, ¬rhm⟩</td>
</tr>
<tr>
<td>⟨off, ¬rhc, swc, ¬mw, rhm⟩</td>
<td>mcc</td>
<td>⟨cs, ¬rhc, swc, ¬mw, rhm⟩</td>
</tr>
<tr>
<td>⟨off, ¬rhc, swc, ¬mw, rhm⟩</td>
<td>mc</td>
<td>⟨lab, ¬rhc, swc, ¬mw, rhm⟩</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Feature-based representation of actions

For each action:
- **precondition** is a proposition that specifies when the action can be carried out.

For each feature:
- **causal rules** that specify when the feature gets a new value and
- **frame rules** that specify when the feature keeps its value.
Example feature-based representation

- **Precondition of pick-up coffee (puc):**
 \[RLoc = cs \land \neg rhc \]
- **Rules for location is cs:**
 \[RLoc' = cs \leftarrow RLoc = off \land Act = mcc \]
 \[RLoc' = cs \leftarrow RLoc = mr \land Act = mc \]
 \[RLoc' = cs \leftarrow RLoc = cs \land Act \neq mcc \land Act \neq mc \]
- **Rules for “robot has coffee”**
 \[rhc' \leftarrow rhc \land Act \neq dc \]
 \[rhc' \leftarrow Act = puc \]

Example STRIPS representation

- **Pick-up coffee (puc):**
 - **precondition:** \([cs, \neg rhc]\)
 - **effect:** \([rhc]\)
- **Deliver coffee (dc):**
 - **precondition:** \([off, rhc]\)
 - **effect:** \([\neg rhc, \neg swc]\)

Frame assumption: all non-mentioned features stay the same. Therefore, \(V = v\) after act if:
- if \(V = v\) was on effect list of act or
- if \(V\) is not on the effect list of act, and \(V = v\) immediately before act

Example STRIPS representation

- **Pick-up coffee (puc):**
 - **precondition:** [cs, ¬rhc]
 - **effect:** [rhc]
- **Deliver coffee (dc):**
 - **precondition:** [off, rhc]
 - **effect:** [¬rhc, ¬swc]

Planning

- Given:
 - A description of the effects and preconditions of the actions
 - A description of the initial state
 - A goal to achieve
- **Forward Planning**
 - **Idea:** search in the state-space graph.
 - The nodes represent the states
 - The arcs correspond to the actions: The arcs from a state \(s\) represent all of the actions that are legal in state \(s\).
 - A plan is a path from the state representing the initial state to a state that satisfies the goal.
 - Can use any of the search techniques from Chap. 3
Regression Planning

Idea: search backwards from the goal description: nodes correspond to subgoals, and arcs to actions.

- **Nodes** are propositions: a formula made up of assignments of values to features.
- **Arcs** correspond to actions that can achieve one of the goals.
- Neighbors of a node N associated with arc A specify what must be true immediately before A so that N is true immediately after.
- The start node is the goal to be achieved.
- $\text{goal}(N)$ is true if N is a proposition that is true of the initial state.

Planning as a CSP

- Search over planning horizons.
- For each planning horizon, create a CSP constraining possible actions and features:
 - Choose a planning horizon k.
 - Create a variable for each state feature and each time from 0 to k.
 - Create a variable for each action feature for each time in the range 0 to $k-1$.

Action Variables

- **PUC**: Boolean variable, the agent picks up coffee.
- **DelC**: Boolean variable, the agent delivers coffee.
- **PUM**: Boolean variable, the agent picks up mail.
- **DelM**: Boolean variable, the agent delivers mail.
- **Move**: variable with domain $\{mc, mac, nm\}$ specifies whether the agent moves clockwise, anti-clockwise or doesn’t move.

Constraints

- **state constraints**: between variables at the same time step.
- **precondition constraints**: between state variables at time t and action variables at time t that specify what actions are available from a state.
- **effect constraints**: between state variables at time t, action variables at time t and state variables at time $t+1$.
- **action constraints** that specify which actions cannot co-occur. These are sometimes called mutual exclusion or mutex constraints.
- **initial state constraints** that are usually domain constraints on the initial state (at time 0).
- **goal constraints** that constrains the final state to be a state that satisfies the goals that are to be achieved.
CSP for Delivery Robot (horizon=2)

- \(RLoc_i \) — Rob's location
- \(RHC_i \) — Rob has coffee
- \(SWC_i \) — Sam wants coffee
- \(MW_i \) — Mail is waiting
- \(RHM_i \) — Rob has mail

Action \(i \) — Rob's action

\(SWC_0 = true \) — initial state
\(RHC_0 = false \) — initial state
\(SWC_2 = false \) — Goal

no solution possible:
(must use 3 actions at least and robot must start in cs)

Next:

- Supervised Learning (Poole & Mackworth (2nd ed.) Chapter 7.1-7.6)
- Uncertainty (Poole & Mackworth (2nd ed.) Chapter 8)