Two methods for solving problems:

- **Procedural**
 - devise an algorithm
 - program the algorithm
 - execute the program

- **Declarative**
 - identify the knowledge needed
 - encode the knowledge in a representation (knowledge base - KB)
 - use logical consequences of KB to solve the problem
Two methods for solving problems:

- **Procedural**
 - “how to” knowledge
 - programs
 - meaning of symbols is meaning of computation
 - languages: C, C++, Java, ...

- **Declarative**
 - descriptive knowledge
 - databases
 - meaning of symbols is meaning in world
 - languages: propositional logic, Prolog, relational databases, ...
A logic consists of

- **syntax**: what is an acceptable sentence?
- **semantics**: what do the sentences and symbols mean?
- **proof procedure**: how do we construct valid proofs?

A proof: a sequence of sentences derivable using an inference rule
Logical Connectives

- **and** (*conjunction*) \(\land \)
- **or** (*disjunction*) \(\lor \)
- **not** (*negation*) \(\neg \)
- **if . . . then . . .** (*implication*) \(\rightarrow \)
- **. . . if and only if . . .** \(\leftrightarrow \)

Note: often logical statements with implication are written backwards: \(A \rightarrow B \) is the same as \(B \leftarrow A \).
Implication Truth Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(A \rightarrow B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

A **B** **\(A \rightarrow B \)**

If it rains, then I will carry an umbrella
Implication Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$A \rightarrow B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

(A) If it rains, then I will carry an umbrella
(B) If you don’t study, then you will fail
Implication Truth Table

(A) \(\text{no rain or I will carry an umbrella} \)

(B) \(\text{study or you will fail} \)
If and only if Truth Table

\[
\begin{array}{c|c|c}
A & B & A \leftrightarrow B \\
\hline
F & F & T \\
F & T & F \\
T & F & F \\
T & T & T \\
\end{array}
\]

\[A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)\]
De Morgan’s Laws

$$A \lor B \equiv \neg (\neg A \land \neg B)$$

it rains OR I play football
not true that (it doesn’t rain AND I don’t play football)

$$A \land B \equiv \neg (\neg A \lor \neg B)$$

I’m a politician AND I lie
not true that (I’m not a politician OR I tell the truth)
Modus Ponens

Modus Ponens is a Tautology
If it’s raining then the grass is wet
it’s raining
therefore the grass is wet
Modus Tolens

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A → B</th>
<th>(A → B) ∧ ¬B</th>
<th>((A → B) ∧ ¬B) → ¬A</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Modus Tolens is a **Tautology**

If it’s raining then the grass is wet
the grass is not wet
therefore it’s not raining
Modus Bogus

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A → B</th>
<th>(A → B) ∧ B</th>
<th>((A → B) ∧ B) → A</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Modus Bogus is **not** a Tautology

If it’s raining then the grass is wet
the grass is wet
therefore its raining
Logical Consequence

- \(\{X\} \) is a set of **statements**.
- A set of truth assignments to \(\{X\} \) is an **interpretation**.
- A **model** of \(\{X\} \) is an interpretation that makes \(\{X\} \) true.
- We say that the world in which these truth assignments hold is a **model** (a verifiable **example**) of \(\{X\} \).
- \(\{X\} \) is **inconsistent** if it has **no model**.
A statement, A, is a logical consequence of a set of statements $\{X\}$, if A is true in every model of $\{X\}$.

If, for every set of truth assignments that hold for $\{X\}$ (for every \textit{model} of $\{X\}$), some other statement (A) is always true,
 then this other statement is a logical consequence of $\{X\}$.
An argument is **valid** if any of the following is true:

- the conclusions are a **logical consequence** of the premises.
- the conclusions are true in **every model** of the premises
- there is **no** situation in which the premises are all true, but the conclusions are false.
- argument $→$ conclusions is a **tautology** (always true)

(These four statements are identical)
Arguments and Models

P1: If I play hockey, then I’ll score a goal if the goalie is not good
P2: If I play hockey, the goalie is not good
D: Therefore, if I play hockey, I’ll score a goal

P: I play hockey
C: I’ll score a goal
H: the goalie is good

\[P1 : \, P \rightarrow (\neg H \rightarrow C) \quad P2 : \, P \rightarrow \neg H \]
\[D : \, P \rightarrow C \]

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>C</td>
<td>H</td>
<td>¬H → C</td>
<td>P1</td>
<td>P2</td>
<td>D</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Arguments and Models

P1: If I play hockey, then I’ll score a goal if the goalie is not good
P2: If I play hockey, the goalie is not good
D: Therefore, if I play hockey, I’ll score a goal

P: I play hockey
C: I’ll score a goal
H: the goalie is good

\[P1 : P \rightarrow (\neg H \rightarrow C) \quad P2 : P \rightarrow \neg H \]
\[D : P \rightarrow C \]

<table>
<thead>
<tr>
<th>P</th>
<th>C</th>
<th>H</th>
<th>\neg H \rightarrow C</th>
<th>P1</th>
<th>P2</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Arguments and Models

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>C</td>
<td>H</td>
<td>−H → C</td>
<td>P1</td>
<td>P2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Each row is an **interpretation**: an assignment of T/F to each proposition.

In all the green lines, the premises are true: these interpretations are **models** of P_1 and P_2.

Every model of P_1 and P_2 is a model of D.

Therefore, D is a **logical consequence** of P_1 and P_2:

$$P_1, P_2 \models D.$$
Logical Consequence

P1: Elvis is Dead
P2: Elvis is Not Dead
D: Therefore, Jerry is Alive

Is this argument valid?
Logical Consequence

P1: Elvis is Dead
P2: Elvis is Not Dead
D: Therefore, Jerry is Alive

Is this argument valid?
Yes!
E: Elvis is Alive
J: Jerry is Alive

<table>
<thead>
<tr>
<th>E</th>
<th>¬ E</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

An argument is **valid** if there is **no** situation in which the premises are all true, but the conclusions are false.
But here, there is **no model of the premises**, so the argument is **valid**.
Given a knowledge base, we want to prove things that are true. We can use

- **Truth Table**
- **Natural Deduction**
- **Semantic Tableaux**
- **Axiomatic Logic (Modus Ponens)**
 \[((A \rightarrow B) \land A) \rightarrow B \]
- **Resolution Refutation (Reductio Ad Absurdum)**
 \[(\neg A) \land \ldots \land \ldots \rightarrow \bot \rightarrow A \]
A Knowledge Base (KB) is a set of axioms

A proof procedure is a way of proving theorems.

KB ⊢ g means g can be derived from KB using the proof procedure.

If KB ⊢ g, then g is a theorem.

A proof procedure is sound:
if KB ⊢ g then KB ⊨ g.

A proof procedure is complete:
if KB ⊨ g then KB ⊢ g.

Two types of proof procedures: bottom up and top down.
Complete Knowledge

- we assume a **closed world**
 - the agent knows everything (or can prove everything)
 - if it can’t prove something: must be false
 - negation as failure

- other option is an **open world**:
 - the agent doesn’t know everything
 - can’t conclude anything from a lack of knowledge
Bottom-up proof

also known as forward chaining - start from facts and use rules to generate all possible atoms

rain ← clouds ∧ wind.
clouds ← humid ∧ cyclone.
clouds ← near_sea ∧ cyclone.
wind ← cyclone.
near_sea.
cyclone.
also known as **forward chaining** - start from facts and use rules to generate all possible atoms

rain ← clouds ∧ wind.
clouds ← humid ∧ cyclone.
clouds ← near_sea ∧ cyclone.
w风 ← cyclone.
near_sea.
cyclone.
{near_sea,cyclone}
Bottom-up proof

also known as **forward chaining** - start from facts and use rules to generate all possible atoms

\[
\begin{align*}
\text{rain} & \leftarrow \text{clouds} \land \text{wind}. \\
\text{clouds} & \leftarrow \text{humid} \land \text{cyclone}. \\
\text{clouds} & \leftarrow \text{near}_\text{sea} \land \text{cyclone}. \\
\text{wind} & \leftarrow \text{cyclone}. \\
\text{near}_\text{sea}. \\
\text{cyclone}. \\
\{\text{near}_\text{sea}, \text{cyclone}\} \\
\{\text{near}_\text{sea}, \text{cyclone}, \text{wind}\}
\end{align*}
\]
Bottom-up proof

also known as forward chaining - start from facts and use rules to generate all possible atoms

\[
\begin{align*}
\text{rain} & \leftarrow \text{clouds} \land \text{wind}. \\
\text{clouds} & \leftarrow \text{humid} \land \text{cyclone}. \\
\text{clouds} & \leftarrow \text{near_sea} \land \text{cyclone}. \\
\text{wind} & \leftarrow \text{cyclone}. \\
\text{near_sea}. \\
\text{cyclone}. \\
\{\text{near_sea}, \text{cyclone} \} \\
\{\text{near_sea}, \text{cyclone}, \text{wind} \} \\
\{\text{near_sea}, \text{cyclone}, \text{wind}, \text{clouds} \}
\end{align*}
\]

Bottom-up proof

also known as **forward chaining** - start from facts and use rules to generate all possible atoms

\[
\begin{align*}
\text{rain} & \leftarrow \text{clouds} \land \text{wind}. \\
\text{clouds} & \leftarrow \text{humid} \land \text{cyclone}. \\
\text{clouds} & \leftarrow \text{near_sea} \land \text{cyclone}. \\
\text{wind} & \leftarrow \text{cyclone}. \\
\text{near_sea}. \\
\text{cyclone}. \\
\{\text{near_sea}, \text{cyclone}\} \\
\{\text{near_sea}, \text{cyclone}, \text{wind}\} \\
\{\text{near_sea}, \text{cyclone}, \text{wind}, \text{clouds}\} \\
\{\text{near_sea}, \text{cyclone}, \text{wind}, \text{clouds}, \text{rain}\}
\end{align*}
\]
Bottom-up proof

\[C := \{ \}; \]
repeat
 \[
 \text{select } r \in KB \text{ such that }
 \]
 \[
 \cdot r \text{ is } h \leftarrow b_1 \land \ldots \land b_m
 \]
 \[
 \cdot b_i \in C \quad \forall \quad i
 \]
 \[
 \cdot h \notin C
 \]
 \[
 C := C \cup \{ h \}
 \]
until no more clauses can be selected

Sound and Complete
Top-Down Proof

start from query and work backwards

\[\text{rain } \leftarrow \text{clouds } \land \text{wind}. \]
\[\text{clouds } \leftarrow \text{humid } \land \text{cyclone}. \]
\[\text{clouds } \leftarrow \text{near_sea } \land \text{cyclone}. \]
\[\text{wind } \leftarrow \text{cyclone}. \]
\[\text{near_sea}. \]
\[\text{cyclone}. \]

Start with query: if \text{rain} is proved, “yes” is the logical result (the answer to the question)
Top-Down Proof

start from query and work backwards

\[
\text{rain} \leftarrow \text{clouds} \land \text{wind}.
\]
\[
\text{clouds} \leftarrow \text{humid} \land \text{cyclone}.
\]
\[
\text{clouds} \leftarrow \text{near}_\text{sea} \land \text{cyclone}.
\]
\[
\text{wind} \leftarrow \text{cyclone}.
\]
\[
\text{near}_\text{sea}.
\]
\[
\text{cyclone}.
\]

Start with query: if \text{rain} is proved, “yes” is the logical result (the answer to the question)
\[
\text{yes} \leftarrow \text{rain}.
\]
Top-Down Proof

start from query and work backwards

rain ← clouds ∧ wind.
clouds ← humid ∧ cyclone.
clouds ← near_sea ∧ cyclone.
wind ← cyclone.
near_sea.
cyclone.

yes ← rain.
yes ← clouds ∧ wind
Top-Down Proof

start from query and work backwards

rain ← clouds ∧ wind.
clouds ← humid ∧ cyclone.
clouds ← nearsea ∧ cyclone.
wind ← cyclone.
nearsea.
cyclone.

yes ← rain.
yes ← clouds ∧ wind
yes ← nearsea ∧ cyclone ∧ wind
Top-Down Proof

start from query and work backwards

rain ← clouds ∧ wind.
clouds ← humid ∧ cyclone.
clouds ← near_sea ∧ cyclone.
wind ← cyclone.
near_sea.
cyclone.

yes ← rain.
yes ← clouds ∧ wind
yes ← near_sea ∧ cyclone ∧ wind
yes ← near_sea ∧ cyclone ∧ cyclone
Top-Down Proof

start from query and work backwards

\[\text{rain} \leftarrow \text{clouds} \land \text{wind}. \]
\[\text{clouds} \leftarrow \text{humid} \land \text{cyclone}. \]
\[\text{clouds} \leftarrow \text{near}_\text{sea} \land \text{cyclone}. \]
\[\text{wind} \leftarrow \text{cyclone}. \]
\[\text{near}_\text{sea}. \]
\[\text{cyclone}. \]

\[\text{yes} \leftarrow \text{rain}. \]
\[\text{yes} \leftarrow \text{clouds} \land \text{wind} \]
\[\text{yes} \leftarrow \text{near}_\text{sea} \land \text{cyclone} \land \text{wind} \]
\[\text{yes} \leftarrow \text{near}_\text{sea} \land \text{cyclone} \land \text{cyclone} \]
\[\text{yes} \leftarrow \text{near}_\text{sea} \land \text{cyclone} \]
Top-Down Proof

start from query and work backwards

rain ← clouds ∧ wind.
clouds ← humid ∧ cyclone.
clouds ← near_sea ∧ cyclone.
wind ← cyclone.
near_sea.
cyclone.

yes ← rain.
yes ← clouds ∧ wind
yes ← near_sea ∧ cyclone ∧ wind
yes ← near_sea ∧ cyclone ∧ cyclone
yes ← near_sea ∧ cyclone
yes ← cyclone
Top-Down Proof

start from query and work backwards

\[
\begin{align*}
\text{rain} & \leftarrow \text{clouds} \land \text{wind}. \\
\text{clouds} & \leftarrow \text{humid} \land \text{cyclone}. \\
\text{clouds} & \leftarrow \text{near}_\text{sea} \land \text{cyclone}. \\
\text{wind} & \leftarrow \text{cyclone}. \\
\text{near}_\text{sea} & . \\
\text{cyclone} & . \\
\end{align*}
\]

\[
\begin{align*}
\text{yes} & \leftarrow \text{rain}. \\
\text{yes} & \leftarrow \text{clouds} \land \text{wind} \\
\text{yes} & \leftarrow \text{near}_\text{sea} \land \text{cyclone} \land \text{wind} \\
\text{yes} & \leftarrow \text{near}_\text{sea} \land \text{cyclone} \land \text{cyclone} \\
\text{yes} & \leftarrow \text{near}_\text{sea} \land \text{cyclone} \\
\text{yes} & \leftarrow \text{cyclone} \\
\text{yes} & \leftarrow \\
\end{align*}
\]
solve\((q_1 \land \ldots \land q_k) \):

\[
ac := \text{"yes } \leftarrow q_1 \land \ldots \land q_k''
\]

repeat

\textbf{select} a conjunct \(q_i \) from body of \(ac \)

\textbf{choose} a clause \(C \) from KB with \(q_i \) as head

replace \(q_i \) in body of \(ac \) by body of \(C \)

until \(ac \) is an answer

select: \textbf{"don't care nondeterminism "}

If one doesn’t give a solution, no point trying others! any one will do, but be careful: some selections will lead more quickly to solutions!

choose: \textbf{"don't know nondeterminism"}

if one doesn’t give a solution, others may have to do them all: can determine complexity of the problem.
Towards Automated Methods

- A proof procedure gives us a method for deriving theorems.
- Therefore, given a knowledge base of assumptions, we can 'prove' things and know they are tautologies (they are logical consequences of our knowledge base).

but
The method is difficult and requires some know-how - how could we make it work more automatically?
A well-formed formula is in **conjunctive normal form** (CNF) if it is a conjunction of disjunctions of atoms.

\[(p_1 \lor p_2) \land (p_3 \lor p_4 \lor p_5) \land (p_6 \lor p_7 \lor \ldots) \ldots \land (p_{n-1} \lor p_n)\]

Convert a propositional formula to CNF:

1. Eliminate \(\leftrightarrow\) using \(A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)\)
2. Eliminate \(\rightarrow\) using \(A \rightarrow B \equiv \neg A \lor B\)
3. Use deMorgan’s laws to push \(\neg\) into atoms
4. Use \(\neg \neg A \equiv A\) to eliminate double negatives
5. Use distributive law to complete \(A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)\)

write \((p_1 \lor p_2) \land (p_3 \lor p_4 \lor p_5) \land (p_6 \lor p_7 \lor \ldots) \ldots \land (p_{n-1} \lor p_n)\) as

\[
\{\{p_1, p_2\}, \{p_3, p_4, p_5\}, \{p_6, p_7, \ldots\} \ldots, \{p_{n-1}, p_n\}\}
\]
Refutation of Modus Ponens

\[A \land (A \rightarrow B) \vdash B \]

show a contradiction \(\bot \): means “false”

If our refutation leads to a contradiction, it must be “false”, so the conclusion must be true

\[A \land (A \rightarrow B) \land \neg B \models \bot \]

1. \(A \land (\neg A \lor B) \land (\neg B) \)
2. \(\{\{A\}, \{\neg A, B\}, \{\neg B\}\} \)

can already tell this is false since \(A \) must be true, so \(B \) must be true, but \(B \) must be false

We will demonstrate using resolution on slide 28
Transitivity of Implication

\(((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C)\)

try to show a contradiction

\((A \rightarrow B) \land (B \rightarrow C) \land \neg(A \rightarrow C) \models \bot\)

1. \((\neg A \lor B) \land (\neg B \lor C) \land \neg(\neg A \lor C)\)

2. \((\neg A \lor B) \land (\neg B \lor C) \land (\neg\neg A \land \neg C)\)

3. \((\neg A \lor B) \land (\neg B \lor C) \land A \land \neg C\)

4. \{\{\neg A, B\}, \{\neg B, C\}, \{A\}, \{\neg C\}\}
A complementary pair of propositions is \(p_i, \neg p_i \)
Can show that two clauses with a complementary pair:
\[\{\{A, B\}, \{C, \neg B\}\} \equiv \{\{A, B\}, \{C, \neg B\}, \{A, C\}\} \]
That is, since \(B \) and \(\neg B \) cannot both be true, one of \(A \) or \(C \) has to be true, otherwise the whole formula is false.
Therefore, we can resolve \(\{A, B\}, \{C, \neg B\} \) into \(\{A, C\} \)
This means that \(\{A, C\} \) is true whenever \(\{A, B\}, \{C, \neg B\} \) is true.
So we can add \(\{A, C\} \) to the statement without changing the truth value.
\[\{\{A\}, \{\neg A\}\} \text{ resolves to } \bot\]
Resolution

- Proof by **resolution refutation**: deny the conclusions and show a resolution to \bot.
- Resolve clauses - adds new clauses that are true whenever the existing clauses are true
- If you can find a contradiction, then
 - the existing clauses cannot all be true
 - If the premises are all true, the refutation of the conclusion **must** be false,
 - so the argument is valid
- If you cannot find a contradiction after resolving all clauses
 - the refutation of the conclusion **must** be true
 - so the argument is invalid
Refutation of Modus Ponens

\[A \land (A \rightarrow B) \vdash B \]

show a contradiction

\[A \land (A \rightarrow B) \land \neg B \vdash \bot \]

1. \[A \land (\neg A \lor B) \land (\neg B) \]
2. \[\{\{A\}, \{\neg A, B\}, \{\neg B\}\} \]
3. \[\{\{A\}, \{\neg A, B\}, \{B\}, \{\neg B\}\} \]
4. \[\bot \]
Transitivity of Implication (again)

\[((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C)\]

try to show a contradiction

\[(A \rightarrow B) \land (B \rightarrow C) \land \neg(A \rightarrow C) \vDash \bot\]

1. \((\neg A \lor B) \land (\neg B \lor C) \land \neg(\neg A \lor C)\)
2. \((\neg A \lor B) \land (\neg B \lor C) \land (\neg \neg A \land \neg C)\)
3. \((\neg A \lor B) \land (\neg B \lor C) \land A \land \neg C\)
4. \{\{\neg A, B\}, \{\neg B, C\}, \{A\}, \{\neg C\}\}
5. \{\{\neg A, B\}, \{\neg B, C\}, \{\neg A, C\}, \{A\}, \{\neg C\}\}
6. \{\{\neg A, B\}, \{\neg B, C\}, \{\neg A, C\}, \{A\}, \{C\}, \{\neg C\}\}
7. \bot
P1: If I play hockey, then I’ll score a goal if the goalie is not good
P2: If I play hockey, the goalie is not good
D: if I play hockey, I’ll score a goal

P: I play hockey, C: I’ll score a goal, H: the goalie is good
P1: \(P \rightarrow (\neg H \rightarrow C) \)
P2: \(P \rightarrow \neg H \)
D: \(P \rightarrow C \)

Test (refutation of \(D \)): \(P1 \land P2 \land \neg D \)

\[
(P \rightarrow (\neg H \rightarrow C)) \land (P \rightarrow \neg H) \land \neg(P \rightarrow C) \\
(\neg P \lor (\neg H \rightarrow C)) \land (\neg P \lor \neg H) \land \neg(\neg P \lor C) \\
(\neg P \lor (\neg \neg H \lor C)) \land (\neg P \lor \neg H) \land \neg(\neg P \lor C) \\
(\neg P \lor \neg \neg H \lor C) \land (\neg P \lor \neg H) \land (\neg \neg P \land \neg C) \\
(\neg P \lor H \lor C) \land (\neg P \lor \neg H) \land (P) \land (\neg C) \\
\{\{\neg P, H, C\}, \{\neg P, \neg H\}, \{P\}, \{\neg C\}\} \\
\{\{\neg P, H, C\}, \{\neg P, \neg H\}, \{\neg P, C\}, \{P\}, \{\neg C\}\} \\
\{\{\neg P, H, C\}, \{\neg P, \neg H\}, \{\neg P, C\}, \{P\}, \{C\}, \{\neg C\}\}
\]
\(\bot \)
CNF for weather example

rain ← clouds ∧ wind.
clouds ← humid ∧ cyclone.
clouds ← near_sea ∧ cyclone.
wind ← cyclone.
near_sea.
cyclone.

prove rain by converting to CNF and resolving
Many problems can be formulated as a CNF:
- Satisfiability
- Logic circuits
- Gene decoding
- Scheduling
- Air traffic control
- ...
A CSP variable Y with domain $\{v_1, \ldots, v_k\}$ can be converted into k Boolean variables $\{Y_1, \ldots, Y_k\}$ where Y_i is true when Y has value v_i and false otherwise.

Thus, k atoms y_1, \ldots, y_k are used to represent the CSP variable.

Constraints:

- exactly one of y_1, \ldots, y_k must be true:
 - y_i and y_j cannot both be true when $i \neq j$: $\neg y_i \lor \neg y_j$ for $i < j$
 - at least one of the y_i must be true: $y_1 \lor \ldots \lor y_k$

- There is a clause for each false assignment in each constraint that specifies which assignments are not allowed.
- Thus, if there are two variables Y and Z, and a constraint $Y \neq Z$, then we have clauses $\neg y_i \lor \neg z_i$ for all i (Assuming Y and Z have the same domains).
Example Delivery robot: activities \(a, b\), times \(1, 2, 3, 4\).

Constraints:
\[
(A \neq 2) \land (B \neq 1) \land (A < B)
\]

We have two 8 variables in the CNF:
\[
a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4
\]

where \(a_i\) means \(A = i\) is true and \(b_i\) means \(B = i\) is true.

Constraints saying that \(A\) (and \(B\)) must be exactly one value:

\[
\neg a_i \lor \neg a_j \quad \text{for} \quad i < j \\
\neg b_i \lor \neg b_j \quad \text{for} \quad i < j
\]

\[
a_1 \lor a_2 \lor a_3 \lor a_4 \\
b_1 \lor b_2 \lor b_3 \lor b_4
\]

Domain constraints \(\neg a_2\) and \(\neg b_1\)

The binary constraint \(A < B\) has one \(\neg (a_i \land b_j)\) for all \(j \leq i\)
Beyond propositions: Individuals and Relations

knowledge base

- `in(kim, r123).`
- `part_of(r123, cs_building).`
- `in(X, Y) ← part_of(Z, Y) Λ in(X, Z).`

interpretation

- `kim`
- `r123`
- `r023`
- `cs_building`
- `in(●, ●)`
- `part_of(●, ●)`
- `person(●)`

proof procedure

logical consequence

- KB can contain **relations**: `part_of(C, A)` is true if C is a “part of” A (in the world)
- KB can contain **quantification**: `part_of(C, A)` holds `∀ C, A`
- proof procedure is the same, with a few extra bits to handle relations & quantification
First order example

symptom(runny_nose,flu).
symptom(fever,flu).
symptom(fever,hepatitis).
symptom(chills,flu).
symptom(chills,hypothermia).
symptom(aches,flu).
symptom(rash,hepatitis).

has_symptom(john,fever).
has_symptom(john,runny_nose).
has_symptom(mary,chills).
has_symptom(mary,rash).

has_condition(Person,Condition):-
 symptom(Symptom,Condition),
 has_symptom(Person,Symptom).
MIU Puzzle

- Symbols: M, I, U
- Axiom: MI
- Rules:
 - if xI is a theorem, so is xIU
 - Mx is a theorem, so is Mxx
 - in any theorem, III can be replaced by U
 - UU can be dropped from any string

Starting from MI, can you generate MU? (use top-down or bottom-up)
Next:

- Planning under certainty (Poole & Mackworth 2nd ed. Chapter 6.1-6.4)
- Supervised Learning (Poole & Mackworth 2nd ed. Chapter 7.1-7.6)