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Lecture 5 - Propositions and Inference

Jesse Hoey
School of Computer Science

University of Waterloo

May 16, 2022

Readings: Poole & Mackworth 2nd ed. chapter 5.1-5.3, and
13.1-13.2
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Problem Solving

Two methods for solving problems:

Procedural
I devise an algorithm
I program the algorithm
I execute the program

Declarative
I identify the knowledge needed
I encode the knowledge in a representation (knowledge base -

KB)
I use logical consequences of KB to solve the problem
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Problem Solving

Two methods for solving problems:

Procedural
I “how to” knowledge
I programs
I meaning of symbols is meaning of computation
I languages: C,C++,Java ...

Declarative
I descriptive knowledge
I databases
I meaning of symbols is meaning in world
I languages: propositional logic, Prolog, relational databases, ...
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Proof Procedures

A logic consists of

syntax : what is an acceptable sentence?

semantics : what do the sentences and symbols mean?

proof procedure : how do we construct valid proofs?

A proof: a sequence of sentences derivable using an inference rule
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Logical Connectives

and (conjunction)
∧

or (disjunction)
∨

not (negation) ¬
if . . . then . . . ( implication ) →

. . . if and only if . . . ↔

Note: often logical statements with implication are written
backwards: A→ B is the same as B ← A. 5/ 40

Implication Truth Table

A B A→ B

F F T
F T T
T F F
T T T

(A) (B)
If it rains, then I will carry an umbrella
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Implication Truth Table

A B A→ B

F F T
F T T
T F F
T T T

(A) (B)
If it rains, then I will carry an umbrella
If you don’t study, then you will fail
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Implication Truth Table

A B A→ B A ∧ ¬B ¬(A ∧ ¬B) ¬A ∨ B

F F T F T T
F T T F T T
T F F T F F
T T T F T T

(A) (B)
no rain or I will carry an umbrella
study or you will fail



6/ 40

If and only if Truth Table

A B A↔ B

F F T
F T F
T F F
T T T

A↔ B ≡ (A→ B) ∧ (B → A)
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De Morgan’s Laws

A ∨ B ≡ ¬(¬A ∧ ¬B)
it rains OR I play football
not true that ( it doesn’t rain AND I don’t play football )

A ∧ B ≡ ¬(¬A ∨ ¬B)
I’m a politician AND I lie
not true that ( I’m not a politician OR I tell the truth)
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Modus Ponens

A B A→ B (A→ B) ∧ A ((A→ B) ∧ A)→ B

F F T F T
F T T F T
T F F F T
T T T T T

Modus Ponens is a Tautology
If it’s raining then the grass is wet
it’s raining
therefore the grass is wet
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Modus Tolens

A B A→ B (A→ B) ∧ ¬B ((A→ B) ∧ ¬B)→ ¬A

F F T T T
F T T F T
T F F F T
T T T F T

Modus Tolens is a Tautology
If it’s raining then the grass is wet
the grass is not wet
therefore it’s not raining
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Modus Bogus

A B A→ B (A→ B) ∧ B ((A→ B) ∧ B)→ A

F F T F T
F T T T F
T F F F T
T T T T T

Modus Bogus is not a Tautology
If it’s raining then the grass is wet
the grass is wet
therefore its raining
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Logical Consequence

{X} is a set of statements

A set of truth assignments to {X} is an interpretation

A model of {X} is an interpretation that makes {X} true.

We say that the world in which these truth assignments hold
is a model (a verifiable example ) of {X}.

{X} is inconsistent if it has no model
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Logical Consequence

A statement, A, is a logical consequence of a set of statements {X},
if A is true in every model of {X}.

If, for every set of truth assignments that hold for {X} (for every
model of {X}), some other statement (A) is always true,

then this other statement is a logical consequence of {X}
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Argument Validity

An argument is valid if any of the following is true:

the conclusions are a logical consequence of the premises.

the conclusions are true in every model of the premises

there is no situation in which the premises are all true, but
the conclusions are false.

argument → conclusions is a tautology (always true)

(these four statements are identical)
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Arguments and Models

P1: If I play hockey , then I’ll score a goal if the goalie is not good
P2: If I play hockey , the goalie is not good
D: Therefore, if I play hockey , I’ll score a goal

P: I play hockey
C: I’ll score a goal
H: the goalie is good

P1 : P → (¬H → C ) P2 : P → ¬H
D : P → C

P C H ¬H → C P1 P2 D
F F F F T T T
F F T T T T T
F T F T T T T
F T T T T T T
T F F F F T F
T F T T T F F
T T F T T T T
T T T T T F T

14/ 40

Arguments and Models

P1: If I play hockey , then I’ll score a goal if the goalie is not good
P2: If I play hockey , the goalie is not good
D: Therefore, if I play hockey , I’ll score a goal

P: I play hockey
C: I’ll score a goal
H: the goalie is good

P1 : P → (¬H → C ) P2 : P → ¬H
D : P → C

P C H ¬H → C P1 P2 D
F F F F T T T
F F T T T T T
F T F T T T T
F T T T T T T
T F F F F T F
T F T T T F F
T T F T T T T
T T T T T F T

15/ 40

Arguments and Models

P C H ¬H → C P1 P2 D

F F F F T T T
F F T T T T T
F T F T T T T
F T T T T T T
T F F F F T F
T F T T T F F
T T F T T T T
T T T T T F T

Each row is an interpretation : an assignment of T/F to each
proposition
In all the green lines, the premises are true:

these interpretations are models of P1 and P2.

Every model of P1 and P2 is a model of D.

Therefore, D is a logical consequence of P1 and P2:

P1,P2 |= D.
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Logical Consequence

P1: Elvis is Dead
P2: Elvis is Not Dead
D: Therefore, Jerry is Alive

Is this argument valid?

Yes!
E: Elvis is Alive
J: Jerry is Alive

E ¬ E J

F T F
F T T
T F F
T F T

An argument is valid if there is no situation in which the
premises are all true, but the conclusions are false.
But here, there is no model of the premises , so the argument is

valid .
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Is this argument valid?
Yes!
E: Elvis is Alive
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Deduction and Proof

Given a knowledge base, we want to prove things that are true.
We can use

Truth Table

Natural Deduction

Semantic Tableaux

Axiomatic Logic (Modus Ponens)

((A→ B) ∧ A)→ B

Resolution Refutation (Reductio Ad Absurdum)

(¬A) ∧ ... ∧ ...→ ⊥)→ A
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Proofs

A Knowledge Base (KB) is a set of axioms

A proof procedure is a way of Proving Theorems

KB `g means g can be derived from KB using the proof
procedure

If KB `g, then g is a Theorem

A proof procedure is sound :
if KB `g then KB |=g.

A proof procedure is complete :
if KB |=g then KB `g.

Two types of proof procedures:
bottom up and top down
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Complete Knowledge

we assume a closed world
I the agent knows everything (or can prove everything)
I if it can’t prove something: must be false
I negation as failure

other option is an open world :
I the agent doesn’t know everything
I can’t conclude anything from a lack of knowledge
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Bottom-up proof

also known as forward chaining - start from facts and use rules to
generate all possible atoms

rain ← clouds ∧ wind.

clouds ← humid ∧ cyclone.

clouds ← near sea ∧ cyclone.

wind ← cyclone.

near sea.

cyclone.

{near sea,cyclone }
{near sea ,cyclone ,wind }
{near sea ,cyclone ,wind ,clouds }
{near sea ,cyclone ,wind ,clouds ,rain }
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Bottom-up proof

also known as forward chaining - start from facts and use rules to
generate all possible atoms

rain ← clouds ∧ wind.

clouds ← humid ∧ cyclone.

clouds ← near sea ∧ cyclone.

wind ← cyclone.

near sea.

cyclone.

{near sea,cyclone }
{near sea ,cyclone ,wind }
{near sea ,cyclone ,wind ,clouds }

{near sea ,cyclone ,wind ,clouds ,rain }
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Bottom-up proof

also known as forward chaining - start from facts and use rules to
generate all possible atoms

rain ← clouds ∧ wind.

clouds ← humid ∧ cyclone.

clouds ← near sea ∧ cyclone.

wind ← cyclone.

near sea.

cyclone.

{near sea,cyclone }
{near sea ,cyclone ,wind }
{near sea ,cyclone ,wind ,clouds }
{near sea ,cyclone ,wind ,clouds ,rain }
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Bottom-up proof

C := {};
repeat

select r ∈ KB such that
· r is h← b1 ∧ . . . ∧ bm
· bi ∈ C ∀ i
· h /∈ C

C := C ∪ {h}
until no more clauses can be selected

Sound and Complete
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Top-Down Proof

start from query and work backwards

rain ← clouds ∧ wind.

clouds ← humid ∧ cyclone.

clouds ← near sea ∧ cyclone.

wind ← cyclone.

near sea.

cyclone.

Start with query: if rain is proved, “yes” is the logical result (the
answer to the question)

yes ← rain.

yes ← clouds ∧ wind

yes ← near sea ∧ cyclone ∧ wind

yes ← near sea ∧ cyclone ∧ cyclone

yes ← near sea ∧ cyclone

yes ← cyclone

yes ←
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Top-Down Interpreter

solve(q1 ∧ . . . ∧ qk):
ac := “yes ← q1 ∧ . . . ∧ q′′k
repeat

select a conjunct qi from body of ac

choose a clause C from KB with qi as head
replace qi in body of ac by body of C

until ac is an answer

select: “don’t care nondeterminism ”
If one doesn’t give a solution, no point trying others!
any one will do, but be careful: some selections will lead more

quickly to solutions!
choose: “don’t know nondeterminism”

if one doesn’t give a solution, others may
have to do them all: can determine complexity of the problem
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Towards Automated Methods

A proof procedure gives us a method for deriving theorems

Therefore, given a knowledge base of assumptions, we can
’prove’ things and know they are tautologies (they are logical
consequences of our knowledge base)

but ....
The method is difficult and requires some know-how - how could
we make it work more automatically?



25/ 40

Conjunctive Normal Form

A well-formed formula is in conjunctive normal form (CNF) if it is
a conjunction of disjunctions of atoms.

(p1 ∨ p2) ∧ (p3 ∨ p4 ∨ p5) ∧ (p6 ∨ p7 ∨ ...)... ∧ (pn−1 ∨ pn)

Convert a propositional formula to CNF:

1. Eliminate ↔ using A↔ B ≡ (A→ B) ∧ (B → A)

2. Eliminate → using A→ B ≡ ¬A ∨ B

3. Use deMorgan’s laws to push ¬ into atoms

4. Use ¬¬A ≡ A to eliminate double negatives

5. use distributive law to complete
A ∨ (B ∧ C ) ≡ (A ∨ B) ∧ (A ∨ C )

write
(p1 ∨ p2) ∧ (p3 ∨ p4 ∨ p5) ∧ (p6 ∨ p7 ∨ ...)... ∧ (pn−1 ∨ pn)
as
{{p1, p2}, {p3, p4, p5}, {p6, p7, ...}..., {pn−1, pn}} 26/ 40

Conjunctive Normal Form - Example 1

Refutation of Modus Ponens

A ∧ (A→ B) ` B

show a contradiction ⊥: means “false”

If our refutation leads to a contradiction , it must be “false”, so
the conclusion must be true

A ∧ (A→ B) ∧ ¬B � ⊥
1. A ∧ (¬A ∨ B) ∧ (¬B)

2. {{A}, {¬A,B}, {¬B}}
can already tell this is false since A must be true, so B must be
true, but B must be false

We will demonstrate using resolution on slide 28

27/ 40

Conjunctive Normal Form - Example 2

Transitivity of Implication

((A→ B) ∧ (B → C ))→ (A→ C )

try to show a contradiction

(A→ B) ∧ (B → C ) ∧ ¬(A→ C ) � ⊥

1. (¬A ∨ B) ∧ (¬B ∨ C ) ∧ ¬(¬A ∨ C )

2. (¬A ∨ B) ∧ (¬B ∨ C ) ∧ (¬¬A ∧ ¬C )

3. (¬A ∨ B) ∧ (¬B ∨ C ) ∧ A ∧ ¬C
4. {{¬A,B}, {¬B,C}, {A}, {¬C}}
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Resolution

A complementary pair of propositions is pi ,¬pi
Can show that two clauses with a complementary pair :
{{A,B}, {C ,¬B}} ≡ {{A,B}, {C ,¬B}, {A,C}}
That is, since B and ¬B cannot both be true, one of A or C
has to be true, otherwise the whole formula is false

Therefore, we can resolve {A,B}, {C ,¬B} into {A,C}
This means that {A,C} is true whenever {A,B}, {C ,¬B} is
true

So we can add {A,C} to the statement without changing
the truth value

{{A}, {¬A}} resolves to ⊥
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Resolution

Proof by resolution refutation : deny the conclusions and
show a resolution to ⊥.

Resolve clauses - adds new clauses that are true whenever the
existing clauses are true

If you can find a contradiction, then
I the existing clauses cannot all be true
I If the premises are all true, the refutation of the conclusion

must be false,
I so the argument is valid

If you cannot find a contradiction after resolving all clauses
I the refutation of the conclusion must be true
I so the argument is invalid
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Resolution - Example 1

Refutation of Modus Ponens

A ∧ (A→ B) ` B

show a contradiction

A ∧ (A→ B) ∧ ¬B � ⊥
1. A ∧ (¬A ∨ B) ∧ (¬B)

2. {{A}, {¬A,B}, {¬B}}
3. {{A}, {¬A,B}, {B}, {¬B}}
4. ⊥
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Resolution - Example 2

Transitivity of Implication (again)

((A→ B) ∧ (B → C ))→ (A→ C )

try to show a contradiction

(A→ B) ∧ (B → C ) ∧ ¬(A→ C ) � ⊥

1. (¬A ∨ B) ∧ (¬B ∨ C ) ∧ ¬(¬A ∨ C )

2. (¬A ∨ B) ∧ (¬B ∨ C ) ∧ (¬¬A ∧ ¬C )

3. (¬A ∨ B) ∧ (¬B ∨ C ) ∧ A ∧ ¬C
4. {{¬A,B}, {¬B,C}, {A}, {¬C}}
5. {{¬A,B}, {¬B,C}, {¬A,C}, {A}, {¬C}}
6. {{¬A,B}, {¬B,C}, {¬A,C}, {A}, {C}, {¬C}}
7. ⊥
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Resolution - Example 3

P1: If I play hockey , then I’ll score a goal if the goalie is not good
P2: If I play hockey , the goalie is not good

D: if I play hockey , I’ll score a goal

P: I play hockey , C: I’ll score a goal , H: the goalie is good
P1 : P → (¬H → C ) P2 : P → ¬H

D : P → C test ( refutation of D ): P1 ∧ P2 ∧ ¬D

(P → (¬H → C )) ∧ (P → ¬H) ∧ ¬(P → C )

(¬P ∨ (¬H → C )) ∧ (¬P ∨ ¬H) ∧ ¬(¬P ∨ C )

(¬P ∨ (¬¬H ∨ C )) ∧ (¬P ∨ ¬H) ∧ ¬(¬P ∨ C )

(¬P ∨ ¬¬H ∨ C ) ∧ (¬P ∨ ¬H) ∧ (¬¬P ∧ ¬C )

(¬P ∨ H ∨ C ) ∧ (¬P ∨ ¬H) ∧ (P) ∧ (¬C )

{{¬P,H,C}, {¬P,¬H}, {P}, {¬C}}
{{¬P,H,C}, {¬P,¬H}, {¬P,C}, {P}, {¬C}}
{{¬P,H,C}, {¬P,¬H}, {¬P,C}, {P}, {C}, {¬C}}

⊥
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CNF for weather example

rain ← clouds ∧ wind.

clouds ← humid ∧ cyclone.

clouds ← near sea ∧ cyclone.

wind ← cyclone.

near sea.

cyclone.

prove rain by converting to CNF and resolving
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Combinatorial Search Problems

Many problems can be formulated as a CNF

Satisfiability

Logic circuits

Gene decoding

Scheduling

Air traffic control

...
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Constraint Satisfaction as CNF

A CSP variable Y with domain {v1, . . . , vk} can be converted
into k Boolean variables {Y1, . . . ,Yk} where Yi is true when
Y has value vi and false otherwise.

Thus, k atoms y1, . . . , yk are used to represent the CSP
variable

Constraints:
I exactly one of y1, . . . , yk must be true:

I yi and yj cannot both be true when i 6= j : ¬yi ∨ ¬yj for i < j
I at least one of the yi must be true: y1 ∨ . . . ∨ yk

I There is a clause for each false assignment in each constraint
that specifies which assignments are not allowed.

I Thus, if there are two variables Y and Z , and a constraint
Y 6= Z , then we have clauses ¬yi ∨ ¬zi for all i (Assuming Y
and Z have the same domains).
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Constraint Satisfaction as CNF

Example Delivery robot: activities a,b , times 1,2,3,4 .
constraints :
(A 6= 2) ∧ (B 6= 1) ∧ (A < B)
We have two 8 variables in the CNF:

a1, a2, a3, a4, b1, b2, b3, b4

where ai means A = i is true and bi means B = i is true.
Constraints saying that A (and B) must be exactly one value:

¬ai ∨ ¬aj for i < j a1 ∨ a2 ∨ a3 ∨ a4

¬bi ∨ ¬bj for i < j b1 ∨ b2 ∨ b3 ∨ b4

Domain constraints ¬a2 and ¬b1
The binary constraint A < B has one ¬(ai ∧ bj) for all j ≤ i
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Beyond propositions: Individuals and Relations

proof procedure

knowledge base

logical consequence

interpretation

laptop

stone age

KB can contain relations : part of(C,A) is true if C is a
“part of” A (in the world)

KB can contain quantification : part of(C,A) holds ∀C ,A

proof procedure is the same, with a few extra bits to handle
relations & quantification
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First order example

symptom(runny nose,flu).

symptom(fever,flu).

symptom(fever,hepatitis).

symptom(chills,flu).

symptom(chills,hypothermia).

symptom(aches,flu).

symptom(rash,hepatitis).

has symptom(john,fever).

has symptom(john,runny nose).

has symptom(mary,chills).

has symptom(mary,rash).

has condition(Person,Condition):-

symptom(Symptom,Condition),

has symptom(Person,Symptom).
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MIU Puzzle

Symbols: M,I,U

Axiom: MI

Rules:
I if x I is a theorem, so is x IU
I M x is a theorem, so is M xx
I in any theorem, III can be replaced by U
I UU can be dropped from any string

Starting from MI , can you generate MU ? (use top-down
or bottom-up)
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Next:

Planning under certainty (Poole & Mackworth 2nd ed.
Chapter 6.1-6.4)

Supervised Learning (Poole & Mackworth 2nd ed. Chapter
7.1-7.6)


