Constraint Satisfaction Problems (CSPs)

- A set of **variables**
- A **domain** for each variable
- A set of **constraints** or **evaluation function**
- Two kinds:
 1. **Satisfiability** Problems: Find an assignment that satisfies constraints (hard constraints)
 2. **Optimization** Problems: Find an assignment that optimises the evaluation function (soft constraints)
- A **solution** to a CSP is an assignment to the variables that satisfies all constraints
- A solution is a **model** of the constraints.

CSPs as Graph searching problems

Two ways:
- **Complete** Assignment:
 - nodes: assignment of value to all variables
 - neighbors: change one variable value

- **Partial** Assignment:
 - nodes: assignment to first \(k - 1 \) variables
 - neighbors: assignment to \(k^{th} \) variable

But,
- these search spaces can get extremely large (thousands of variables), so the branching factors can be big!
- path to goal is not important, only the goal is
- no predefined starting nodes

Classic CSP: Crossword Construction

Fill in all horizontal and vertical slots with words or phrases
Classic CSP: Crossword Construction

Dual Representations

Two ways to represent the crossword as a CSP

- **Primal** representation:
 - nodes represent word positions: 1-down... 6-across
 - domains are the words
 - constraints specify that the letters on the intersections must be the same.

- **Dual** representation:
 - nodes represent the individual squares
 - domains are the letters
 - constraints specify that the words must fit

Real World Example Domains

- Transportation Planning (Pascal Van Hentenryck)
 - https://www.youtube.com/watch?v=SxvM0jG3qLA
- Ride-sharing scheduling
- Air Traffic Control
 - http://dx.doi.org/10.1017/S026988912000215
- Disaster Recovery
- Factory process management
- Scheduling (courses, meetings, etc)
- ...
Constraints:
- Can be **N-ary** (over sets of N variables - e.g. “dual representation” for crossword puzzles with letters as domains)
- Here: Consider only **Unary** and **Binary** (e.g. “primal representation” for crossword puzzles with words as domains)

Solutions:
- Generate and test
- Backtracking
- Consistency
- Hill-Climbing
- Randomized incl. Local Search

Example

Delivery robot: activities a,b,c,d,e, times $1,2,3,4$.
- A: variable representing the time activity a will occur
- B: variable representing the time activity b will occur

Domains:
- $D_A = \{1,2,3,4\}$
- $D_B = \{1,2,3,4\}$

Constraints:
- $(B \neq 3) \land (C \neq 2) \land (A \neq B) \land (B \neq C) \land (C < D) \land (A = D) \land (E < A) \land (E < B) \land (E < C) \land (E < D) \land (B \neq D)$

Generate and Test

Exhaustively go through all combinations, check each one
- $D = D_A \times D_B \times D_C \times D_D \times D_E$
- $D = \{< 1,1,1,1,1>, < 1,1,1,1,2>, ..., < 4,4,4,4,4 >\}$

- test: $< 1,1,1,1,1 > \ldots$ fail $\neg(A \neq B)$
- test: $< 1,1,1,1,2 > \ldots$ fail $\neg(A \neq B)$
- test: $< 1,1,1,1,3 > \ldots$ fail $\neg(A \neq B)$
- ...
- test: $< 1,2,1,1,1 > \ldots$ fail $\neg(C < D)$
- test: $< 1,2,1,1,2 > \ldots$ fail $\neg(C < D)$
- ...

Backtracking

Can use the fact that large portions of the state space can be pruned.
1. Order all variables
2. Evaluate constraints into the order as soon as they are grounded

- e.g. Assignment $A = 1 \land B = 1$ is inconsistent with constraint $A \neq B$ regardless of the value of the other variables.
Backtracking - Example

- Efficiency depends on order of variables!
- Finding optimal ordering is as hard as solving the problem
- Idea: push failures as high as possible
- Cut off large branches of the tree as soon as possible

Consistency

- More general approach
- Look for inconsistencies.
- E.g. C=4 in example inconsistent with any value of D (C < D)
- Backtracking will "re-discover" this for every value of A,B
- Graphical representation

Goal: Each domain has a single element, and all constraints are satisfied.
Consistency:
Constraint Network (CN)

- **Constraint Network** (CN)
- **domain constraint** is unary constraint on values in a domain, written \(\langle X, c(X) \rangle \).
- A node in a CN is **domain consistent** if no domain value violates any domain constraint.
- A CN is **domain consistent** if all nodes are domain consistent.
- Arc \(\langle X, c(X, Y) \rangle \) is a constraint on \(X \).
- An arc \(\langle X, c(X, Y) \rangle \) is **arc consistent** if for each \(X \in D_X \), there is some \(Y \in D_Y \) such that \(c(X, Y) \) is satisfied.
- A CN is **arc consistent** if all arcs are arc consistent.
- A set of variables \(\{X_1, X_2, X_3, \ldots, X_N\} \) is **path consistent** if all arcs and domains are consistent.

AC-3

- Alan Mackworth 1977!
- Makes a CN **arc consistent** (and **domain consistent**)
- To-Do Arcs Queue (TDA) has all inconsistent arcs

1. **Make** all domains domain consistent
2. **Put** all arcs \(\langle Z, c(Z, ___________) \rangle \) in TDA
3. **repeat**
 a. **Select** and remove an arc \(\langle X, c(X, Y) \rangle \) from TDA
 b. **Remove** all values of domain of \(X \) that don’t have a value in domain of \(Y \) that satisfies the constraint \(c(X, Y) \)
 c. If any were removed, **Add** all arcs \(\langle Z, c'(Z, X) \rangle \) to TDA \(\forall Z \neq Y \) until TDA is empty

When AC-3 Terminates

- AC-3 **always** terminates with one of these three conditions:
 - Every domain is empty: there is **no solution**
 - Every domain has a single value: **solution!**
 - Some domain has more than one value: split it in two, run AC-3 recursively on two halves. Don’t have to start from scratch - only have to put back all arcs \(\langle Z, c'(Z, X) \rangle \) if \(X \) was the domain that was split.
- Connection between domain splitting and search.
Constraint Satisfaction: Example

{1,2,3,4} {1,2,4}
{1,2,3,4} {1,3,4}
{1,2,3,4}
AB
D C
E
A ≠ B
B ≠ D
C < D
A = D
E < A
B ≠ C
C < D
E < B
E < C
E < D

Goal: each domain has a single element, and all constraints are satisfied.

Example: Crossword Puzzle

Words:
ant, big, bus, car, has book, buys, hold, lane, year
beast, ginger, search, symbol, syntax

Variable Elimination

- Idea: **eliminate** the variables one-by-one passing their constraints to their neighbours
- When there is a single variable remaining, if it has no values, the network was **inconsistent**.
- The variables are eliminated according to some **elimination ordering**
- Different elimination orderings result in different size intermediate constraints.

Variable elimination (cont.)

- **Variable Elimination** Algorithm:
 - If there is only one variable, return the intersection of the (unary) constraints that contain it
 - Select a variable X
 - Join the constraints in which X appears, forming constraint R
 - Project R onto its variables other than X: call this R₂
 - Place new constraint R₂ between all variables that were connected to X
 - Remove X
 - Recursively solve the simplified problem
 - Return R joined with the recursive solution
Example network

\begin{itemize}
 \item $A \neq B$
 \item $B < E$
 \item $E - A \text{ is odd}$
 \item $D < C$
\end{itemize}

Example: arc-consistent network

\begin{itemize}
 \item $A \neq B$
 \item $E \neq C$
 \item $E \neq D$
 \item $D < C$
 \item $A < D$
 \item $B < E$
 \item $E - A \text{ is odd}$
\end{itemize}

Example: eliminating C

\begin{tabular}{c|c|c}
 $r_1 : C \neq E$ & C & E \\
 3 & 2 & \\
 3 & 4 & \\
 4 & 2 & \\
 4 & 3 & \\
\end{tabular}

\begin{tabular}{c|c|c}
 $r_2 : C > D$ & C & D \\
 3 & 2 & \\
 4 & 2 & \\
 4 & 3 & \\
\end{tabular}

\begin{tabular}{c|c|c}
 $r_3 : r_1 \bowtie r_2$ & C & D & E \\
 3 & 2 & 2 & \\
 3 & 2 & 4 & \\
 4 & 2 & 2 & \\
 4 & 2 & 3 & \\
 4 & 3 & 2 & \\
 4 & 3 & 3 & \\
\end{tabular}

\begin{tabular}{c|c|c}
 $r_4 : \pi_{(D,E)} r_3$ & D & E \\
 2 & 2 & \\
 2 & 3 & \\
 2 & 4 & \\
 3 & 2 & \\
 3 & 3 & \\
\end{tabular}

\text{new constraint}

Resulting network after eliminating C

\begin{itemize}
 \item $A \neq B$
 \item $E \neq D$
 \item $D < C$
 \item $A < D$
 \item $B < E$
 \item $E - A \text{ is odd}$
 \item $r_4(E,D)$
\end{itemize}
Local Search

Back to CSP as Search (Local Search):

- **Maintain** an assignment of a value to each variable.
- At each step, select a **neighbor** of the current assignment (e.g., one that improves some **heuristic** value).
- Stop when a **satisfying** assignment is found, or return the best assignment found.

Requires:
- What is a neighbor?
- Which neighbor should be selected?

(Some methods maintain **multiple assignments**.)

Local Search for CSPs

- Aim is to find an assignment with **zero unsatisfied** constraints.
- Given an assignment of a value to each variable, a **conflict** is an unsatisfied constraint.
- The goal is an assignment with **zero conflicts**.
- **Heuristic** function to be minimized: the number of conflicts.

Greedy Descent Variants

- Find the variable-value pair that **minimizes** the number of conflicts at every step.
- Select a variable that participates in the **most** number of conflicts. Select a value that **minimizes** the number of conflicts.
- Select a variable that appears in **any** conflict. Select a value that **minimizes** the number of conflicts.
- Select a variable at **random**. Select a value that **minimizes** the number of conflicts.
- Select a variable and value at **random**; **accept** this change if it **doesn’t increase** the number of conflicts.

GSAT (Greedy SATisfyability)

Let \(n \) be random assignment of values to all variables
\(h(n) \) is number of un-satisfied constraints

repeat
- evaluate neighbors, \(n' \) of \(n \).
- can’t change the same variable twice in a row
- \(n = n^*, \) where \(n^* = \arg \min_{n'}(h(n')) \)
 even if \(h(n^*) > h(n) \)!
Until stopping criteria is reached

- e.g. start with \(A = 2, B = 2, C = 3, D = 2, E = 1 \) \(h=3 \)
 - change B to 4 ...
 - \(h = 1 \)
 - local minimum
 - change D to 4 (\(h=2 \))
 - change A to 4 (\(h=2 \))
 - change B to 2 (\(h=0 \))
Problems with Greedy Descent

- A **local minimum** that is not a global minimum
- A **plateau** where the heuristic values are uninformative
- A **ridge** is a local minimum where \(n \)-step look-ahead might help

Randomized Greedy Descent

As well as downward steps we can allow for:

- **Random steps:** move to a random neighbor.
- **Random restart:** reassign random values to all variables.

Which is more expensive computationally?
A mix of the two = **stochastic local search**

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

(a) ![Graph](image1.png)
(b) ![Graph](image2.png)

Which method would most easily find the **global** minimum?

What happens in hundreds or **thousands of dimensions**?

What if different parts of the search space have **different structure**?

High Dimensional Search Spaces

- In high dimensions the search space is less easy to visualize
- Often consists of long, nearly flat "canyons"
- Hard to optimize using local search
- Step-size can be adjusted
Stochastic Local Search

Stochastic local search is a mix of:
- **Greedy descent**: move to a lowest neighbor
- **Random walk**: taking some random steps
- **Random restart**: reassigning values to all variables

Variant: Simulated Annealing

- Pick a variable at random and a new value at random.
- If it is an improvement, adopt it.
- If it isn’t an improvement, adopt it probabilistically depending on a temperature parameter, T.
 - With current assignment n and proposed assignment n' we move to n' with probability $e^{-(h(n')-h(n))/T}$
- Temperature can be reduced.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>1-worse</th>
<th>2-worse</th>
<th>3-worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.91</td>
<td>0.81</td>
<td>0.74</td>
</tr>
<tr>
<td>1</td>
<td>0.37</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>0.25</td>
<td>0.02</td>
<td>0.0003</td>
<td>0.000005</td>
</tr>
<tr>
<td>0.1</td>
<td>0.00005</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Simulated Annealing

Let n be random assignment of values to all variables Let T be a (high) temperature

```
repeat
  Select neighbor $n'$ of $n$ at random
  If $h(n') < h(n)$ then
    $n = n'$
  else
    $n = n'$ with probability $e^{-(h(n')-h(n))/T}$
reduce $T$
until stopping criteria is reached
```
Tabu lists

- recall GSAT: never choose same variable twice.
- To prevent cycling we can maintain a tabu list of the k last assignments.
- Don’t allow an assignment that is already on the tabu list.
- If $k = 1$, we don’t allow an assignment of to the same value to the variable chosen.
- We can implement it more efficiently than as a list of complete assignments.
- It can be expensive if k is large.

Parallel Search

A total assignment is called an individual.

- maintain a population of k individuals instead of one.
- At every stage, update each individual in the population.
- Whenever an individual is a solution, it can be reported.
- Like k restarts, but uses k times the minimum number of steps.

Beam Search

- Like parallel search, with k individuals, but choose the k best out of all of the neighbors (all if there are less than k).
- When $k = 1$, it is greedy descent.
- The value of k lets us limit space and parallelism.

Stochastic Beam Search

- Like beam search, but it probabilistically chooses the k individuals at the next generation.
- The probability that a neighbor is chosen is proportional to its heuristic value: $e^{-h(n)/T}$.
- This maintains diversity amongst the individuals.
- The heuristic value reflects the fitness of the individual.
- Like asexual reproduction: each individual mutates and the fittest ones survive.
Genetic Algorithms

Like stochastic beam search, but pairs of individuals are combined to create the offspring:

- For each generation:
 - Randomly choose pairs of individuals where the fittest individuals are more likely to be chosen.
 - For each pair, perform a cross-over: form two offspring each taking different parts of their parents:
 - Mutate some values.
- Stop when a solution is found.

Crossover

Given two individuals:

\[X_1 = a_1, X_2 = a_2, \ldots, X_m = a_m \]
\[X_1 = b_1, X_2 = b_2, \ldots, X_m = b_m \]

- Select \(i \) at random.
- Form two offspring:

\[X_1 = a_1, \ldots, X_i = a_i, X_{i+1} = b_{i+1}, \ldots, X_m = b_m \]
\[X_1 = b_1, \ldots, X_i = b_i, X_{i+1} = a_{i+1}, \ldots, X_m = a_m \]

The effectiveness depends on the ordering of the variables.
- Many variations are possible.

Comparing Stochastic Algorithms

How can you compare three algorithms when

- one solves the problem 30% of the time very quickly but doesn’t halt for the other 70% of the cases
- one solves 60% of the cases reasonably quickly but doesn’t solve the rest
- one solves the problem in 100% of the cases, but slowly?

How can you compare three algorithms when

- one solves the problem 30% of the time very quickly but doesn’t halt for the other 70% of the cases
- one solves 60% of the cases reasonably quickly but doesn’t solve the rest
- one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time, and mode run time don’t make much sense.
Runtime Distribution

- Plots runtime (or number of steps) and the proportion (or number) of the runs that are solved within that runtime.

Next:

- Inference (Poole & Mackworth (2nd Ed.) chapter 5.1-5.3 and 13.1-13.2)