A set of variables
A domain for each variable
A set of constraints or evaluation function
Two kinds:
1. Satisfiability Problems: Find an assignment that satisfies constraints (hard constraints)
2. Optimization Problems: Find an assignment that optimises the evaluation function (soft constraints)

A solution to a CSP is an assignment to the variables that satisfies all constraints
A solution is a model of the constraints.

CSPs as Graph searching problems
Two ways:
Complete Assignment:
- nodes: assignment of value to all variables
- neighbors: change one variable value
Partial Assignment:
- nodes: assignment to first $k - 1$ variables
- neighbors: assignment to k^{th} variable

But,
- these search spaces can get extremely large (thousands of variables), so the branching factors can be big!
- path to goal is not important, only the goal is
- no predefined starting nodes

Example Domains
- Distaster Recovery (Pascal Van Hentenryck)
 http://videolectures.net/icaps2011_van_hentenryck_disaster/
- Transportation Planning (Pascal Van Hentenryck)
 https://www.youtube.com/watch?v=SxvM0jG3qLA
- Air Traffic Control
 https://doi.org/10.1016/S1571-0661(04)80797-7
 https://doi.org/10.1017/S0269888912000215
- Factory process management
- Scheduling (courses, meetings, etc)

Dual Representations
Two ways to represent the crossword as a CSP
- First representation:
 - nodes represent word positions: 1-down... 6-across
 - domains are the words
 - constraints specify that the letters on the intersections must be the same.
- Dual representation:
 - nodes represent the individual squares
 - domains are the letters
 - constraints specify that the words must fit
Posing a CSP

Variables: V_1, V_2, \ldots, V_n

Domains: Each variable, V_i has a domain D_{V_i}

Constraints: restrictions on the values a set of variables can jointly have.

E.g.

<table>
<thead>
<tr>
<th>problem</th>
<th>variables</th>
<th>domains</th>
<th>constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>crosswords</td>
<td>letters</td>
<td>a-z</td>
<td>words in dictionary</td>
</tr>
<tr>
<td>crosswords</td>
<td>words</td>
<td>dictionary</td>
<td>letters match</td>
</tr>
<tr>
<td>scheduling</td>
<td>times</td>
<td>times, dates</td>
<td>before, after same resource</td>
</tr>
<tr>
<td>Chess</td>
<td>pieces</td>
<td>board positions</td>
<td>occupied checks</td>
</tr>
<tr>
<td>party planning</td>
<td>guests</td>
<td>values</td>
<td>cliques</td>
</tr>
<tr>
<td>politics</td>
<td>people</td>
<td>needs</td>
<td>resources</td>
</tr>
</tbody>
</table>

Constraints

- Can be N-ary (over sets of N variables - e.g. “dual representation” for crossword puzzles with letters as domains)
- Here: Consider only **Unary** and **Binary** (e.g. “first representation” for crossword puzzles with words as domains)

Examples

Delivery robot: activities a,b,c,d,e, times $1,2,3,4$.

A: variable representing the time activity a will occur

B: variable representing the time activity b will occur etc.

Domains:

$D_A = \{1,2,3,4\}$

$D_B = \{1,2,3,4\}$

Constraints:

$\neg (A = B)$

Exhaustively go through all combinations, check each one

$D = D_A \times D_B \times D_C \times D_D \times D_E$

$D = \{<1,1,1,1,1>, <1,1,1,1,2>, \ldots, <4,4,4,4,4>\}$

- test: $<1,1,1,1,1> \ldots$ fail $\neg (A \neq B)$
- test: $<1,1,1,1,2> \ldots$ fail $\neg (A \neq B)$
- test: $<1,1,1,1,3> \ldots$ fail $\neg (A \neq B)$
- ...
- test: $<1,2,1,1,1> \ldots$ fail $\neg (C < D)$
- test: $<1,2,1,1,2> \ldots$ fail $\neg (C < D)$
- ...

but ... we knew all along that $A \neq B$

Backtracking - Example

Can use the fact that large portions of the state space can be pruned.

E.g $A=D$ means we can essentially remove one variable (A or D)

1. Order all variables
2. Evaluate constraints into the order as soon as they are grounded

E.g. Assignment $A=1 \land B=1$ is inconsistent with constraint $A \neq B$ regardless of the value of the other variables.

Exhaustively go through all combinations, check each one

$D = D_A \times D_B \times D_C \times D_D \times D_E$

$D = \{<1,1,1,1,1>, <1,1,1,1,2>, \ldots, <4,4,4,4,4>\}$

- test: $<1,1,1,1,1> \ldots$ fail $\neg (A \neq B)$
- test: $<1,1,1,1,2> \ldots$ fail $\neg (A \neq B)$
- test: $<1,1,1,1,3> \ldots$ fail $\neg (A \neq B)$
- ...
- test: $<1,2,1,1,1> \ldots$ fail $\neg (C < D)$
- test: $<1,2,1,1,2> \ldots$ fail $\neg (C < D)$
- ...
- test: $<1,2,1,1,3> \ldots$ fail $\neg (C < D)$
- ...
- test: $<2,3,1,1> \ldots$ ok

(draw the search tree using the partial assignment method)
Backtracking

Efficiency depends on order of variables!
Finding optimal ordering is **as hard** as solving the problem.

idea: push failures as high as possible

e.g.: generate and test:

\[
\begin{align*}
V_1 & \\
V_2 & \\
\vdots & \\
V_N & \\
C_1 & \\
C_2 & \\
\vdots & \\
C_N
\end{align*}
\]

instantiation of all variables

FAIL FAIL
FAIL FAIL YES!

Backtracking

Consistency

More general approach
look for inconsistencies.
e.g. C=4 in example inconsistent with any value of D (C < D)
backtracking will "re-discover" this for every value of A,B

Graphical representation

Goal: each domain has a single element, and all constraints are satisfied.

Constraint Satisfaction: Graphically

- Constraint Network (CN)
- A node in a CN is **domain consistent** if no domain value violates any domain constraint.
- A CN is **domain consistent** if all nodes are **domain consistent**
- Arc \(< X, c(X, Y) > \) is a **constraint** on \(X \).
- An arc \(< X, c(X, Y) > \) is **arc consistent** if for each \(X \in D_X \), there is some \(Y \in D_Y \) such that \(c(X, Y) \) is satisfied.
- A CN is **arc consistent** if all arcs are **arc consistent**
- A set of variables \(\{X_1, X_2, X_3, \ldots, X_N\} \) is **path consistent** if all arcs and domains are consistent.

AC-3

- Alan Mackworth 1977
- Makes a CN **arc consistent** (and **domain consistent**)
- To-Do Arcs Queue (TDA) has all inconsistent arcs

1. **Make** all domains domain consistent
2. **Put** all arcs \(< Z, c(Z, _) > \) in TDA
3. **repeat**
 a. **Select** and remove an arc \(< X, c(X, Y) > \) from TDA
 b. **Remove** all values of domain of \(X \) that don’t have a value in domain of \(Y \) that satisfies the constraint \(c(X, Y) \)
 c. **If** any were removed,
 Add all arcs \(< Z, c'(Z, X) > \) to TDA
until TDA is empty
When AC-3 Terminates

AC-3 always terminates with one of these three conditions:
- Every domain is empty: there is no solution
- Every domain has a single value: solution!
- Some domain has more than one value: split it in two, run AC-3 recursively on two halves. Don’t have to start from scratch - only have to put back all arcs \(<Z, c'(Z, X) > \) if \(X \) was the domain that was split.
- Connection between domain splitting and search.

Constraint Satisfaction: Example

\[
\begin{align*}
\{1,2,3,4\} & \quad \{1,2,4\} \\
\{1,2,3,4\} & \quad \{1,3,4\} \\
\{1,2,3,4\} & \quad \{1,2,3,4\} \\
\end{align*}
\]

AB

D C

E

A ≠ B
B ≠ D
C < D
A = D
E < A
B ≠ C
E < B
E < D
E < C

Goal: each domain has a single element, and all constraints are satisfied.

Alternatively, we can use a constraint network to represent this problem:

Variable Elimination

- Idea: eliminate the variables one-by-one passing their constraints to their neighbours
- When there is a single variable remaining, if it has no values, the network was inconsistent.
- The variables are eliminated according to some elimination ordering
- Different elimination orderings result in different size intermediate constraints.

Example network

Variable Elimination Algorithm:
- If there is only one variable, return the intersection of the (unary) constraints that contain it
- Select a variable \(X \)
 - Join the constraints in which \(X \) appears, forming constraint \(R \)
 - Project \(R \) onto its variables other than \(X \)
 - Recursively solve the simplified problem
 - Return \(R \) joined with the recursive solution
Example: arc-consistent network

Example: eliminating C

Resulting network after eliminating C

Local Search

Greedy Descent Variants

- Aim is to find an assignment with zero unsatisfied constraints.
- Given an assignment of a value to each variable, a conflict is an unsatisfied constraint.
- The goal is an assignment with zero conflicts.
- Heuristic function to be minimized: the number of conflicts.

Local Search for CSPs

- Find the variable-value pair that minimizes the number of conflicts at every step.
- Select a variable that participates in the most number of conflicts. Select a value that minimizes the number of conflicts.
- Select a variable that appears in any conflict. Select a value that minimizes the number of conflicts.
- Select a variable at random. Select a value that minimizes the number of conflicts.
- Select a variable and value at random; accept this change if it doesn’t increase the number of conflicts.

Back to CSP as Search (Local Search):
- Maintain an assignment of a value to each variable.
- At each step, select a “neighbor” of the current assignment (e.g., one that improves some heuristic value).
- Stop when a satisfying assignment is found, or return the best assignment found.

Requires:
- What is a neighbor?
- Which neighbor should be selected?
 (Some methods maintain multiple assignments.)
Let n be a random assignment of values to all variables. $h(n)$ is the number of unsatisfied constraints.

Repeat:
- Evaluate neighbors, n' of n.
 - Can't change the same variable twice in a row.
 - $n = n^*$, where $n^* = \arg\min_{n'} (h(n'))$ (even if $h(n^*) > h(n)$!)

Until stopping criteria is reached.

e.g. Start with $A = 2$, $B = 2$, $C = 3$, $D = 2$, $E = 1$ $h = 3$
- Change B to 4 ... $h = 1$
 - Local minimum
 - Change D to 4 ($h = 2$)
 - Change A to 4 ($h = 2$)
 - Change B to 2 ($h = 0$)

Randomized Greedy Descent

As well as downward steps, we can allow for:
- **Random steps**: Move to a random neighbor.
- **Random restart**: Reassign random values to all variables.

Which is more expensive computationally?
A mix of the two = stochastic local search.

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

- Which method would most easily find the global minimum?
- What happens in hundreds or thousands of dimensions?
- What if different parts of the search space have different structure?

High Dimensional Search Spaces

Stochastic Local Search

Stochastic local search is a mix of:
- Greedy descent: Move to a lowest neighbor
- Random walk: Taking some random steps
- Random restart: Reassigning values to all variables
Simulated Annealing

- Pick a variable at random and a new value at random.
- If it is an improvement, adopt it.
- If it isn’t an improvement, adopt it probabilistically depending on a temperature parameter, \(T \).
 - With current assignment \(n \) and proposed assignment \(n' \) we move to \(n' \) with probability \(e^{-(h(n')-h(n))/T} \).
- Temperature can be reduced.

Probability of accepting a change:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>1-worse</th>
<th>2-worse</th>
<th>3-worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.91</td>
<td>0.81</td>
<td>0.74</td>
</tr>
<tr>
<td>1</td>
<td>0.37</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>0.25</td>
<td>0.02</td>
<td>0.0003</td>
<td>0.000005</td>
</tr>
<tr>
<td>0.1</td>
<td>0.00005</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabu lists

- recall GSAT: never choose same variable twice.
- To prevent cycling we can maintain a tabu list of the \(k \) last assignments.
- Don’t allow an assignment that is already on the tabu list.
- If \(k = 1 \), we don’t allow an assignment of to the same value to the variable chosen.
- We can implement it more efficiently than as a list of complete assignments.
- It can be expensive if \(k \) is large.

Parallel Search

A total assignment is called an individual.

- Idea: maintain a population of \(k \) individuals instead of one.
- At every stage, update each individual in the population.
- Whenever an individual is a solution, it can be reported.
- Like \(k \) restarts, but uses \(k \) times the minimum number of steps.

Beam Search

- Like parallel search, with \(k \) individuals, but choose the \(k \) best out of all of the neighbors (all if there are less than \(k \)).
- When \(k = 1 \), it is greedy descent.
- When \(k = \infty \), it is breadth-first search.
- The value of \(k \) lets us limit space and parallelism.
Stochastic Beam Search

- Like beam search, but it probabilistically chooses the \(k \) individuals at the next generation.
- The probability that a neighbor is chosen is proportional to its heuristic value: \(e^{-h(n)/T} \).
- This maintains diversity amongst the individuals.
- The heuristic value reflects the fitness of the individual.
- Like asexual reproduction: each individual mutates and the fittest ones survive.

Genetic Algorithms

- Like stochastic beam search, but pairs of individuals are combined to create the offspring:
 - For each generation:
 - Randomly choose pairs of individuals where the fittest individuals are more likely to be chosen.
 - For each pair, perform a cross-over: form two offspring each taking different parts of their parents.
 - Mutate some values.
 - Stop when a solution is found.

Crossover

Given two individuals:

\[
X_1 = a_1, X_2 = a_2, \ldots, X_m = a_m \\
X_1 = b_1, X_2 = b_2, \ldots, X_m = b_m
\]

Select \(i \) at random.

Form two offspring:

\[
X_1 = a_1, \ldots, X_i = a_i, X_{i+1} = b_{i+1}, \ldots, X_m = b_m \\
X_1 = b_1, \ldots, X_i = b_i, X_{i+1} = a_{i+1}, \ldots, X_m = a_m
\]

The effectiveness depends on the ordering of the variables.

Comparing Stochastic Algorithms

How can you compare three algorithms when

- one solves the problem 30% of the time very quickly but doesn’t halt for the other 70% of the cases
- one solves 60% of the cases reasonably quickly but doesn’t solve the rest
- one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time, and mode run time don’t make much sense.

Runtime Distribution

Plots runtime (or number of steps) and the proportion (or number) of the runs that are solved within that runtime.
Inference (Poole & Mackworth (2nd Ed.) chapter 5.1-5.3 and 13.1-13.2)