
1/ 48

Lecture 4 - Features and Constraints

Jesse Hoey
School of Computer Science

University of Waterloo

May 20, 2022

Readings: Poole & Mackworth (2nd Ed.) Chapt. 4.1-4.8 (skip 4.9)

2/ 48

Constraint Satisfaction Problems (CSPs)

A set of variables

A domain for each variable

A set of constraints or evaluation function

Two kinds:

1. Satisfiability Problems: Find an assignment that satisfies

constraints (hard constraints)

2. Optimization Problems: Find an assignment that optimises

the evaluation function (soft constraints)

A solution to a CSP is an assignment to the variables that
satisfies all constraints

A solution is a model of the constraints.

3/ 48

CSPs as Graph searching problems

Two ways:
Complete Assignment:

nodes: assignment of value to all variables

neighbors: change one variable value

Partial Assignment:

nodes: assignment to first k − 1 variables

neighbors: assignment to kth variable

But,

these search spaces can get extremely large (thousands of
variables), so the branching factors can be big!

path to goal is not important, only the goal is

no predefined starting nodes

4/ 48

Classic CSP: Crossword Construction

Fill in all horizontal and vertical slots with words or phrases

5/ 48

Classic CSP: Crossword Construction

at,eta,be,hat,he,her,it,him

on,one,desk,dance,usage,easy,dove

first,else,loses,fuels,help,haste,

given,kind,sense,soon,sound,this,think

1 2

4 5

6

3

6/ 48

Dual Representations

Two ways to represent the crossword as a CSP

Primal representation:
I nodes represent word positions: 1-down. . . 6-across
I domains are the words
I constraints specify that the letters on the intersections must

be the same.

Dual representation:
I nodes represent the individual squares
I domains are the letters
I constraints specify that the words must fit

7/ 48

Real World Example Domains

Transportation Planning (Pascal Van Hentenryck)
https://www.youtube.com/watch?v=SxvM0jG3qLA

Ride-sharing scheduling
https://arxiv.org/pdf/2111.03204

Air Traffic Control
http://dx.doi.org/10.1017/S0269888912000215

Disaster Recovery

Factory process management

Scheduling (courses, meetings, etc)

...

8/ 48

Posing a CSP

Variables : V1,V2, . . . ,Vn

Domains : Each variable, Vi has a domain DVi

Constraints : restrictions on the values a set of variables can
jointly have.
e.g.

problem variables domains constraints

crosswords letters a-z words in dictionary

crosswords words dictionary letters match

scheduling times times,dates before, after
events types same resource

resources values

Chess pieces board occupied
positions checks

party planning guests values cliques

ride sharing people/trips locations cars

9/ 48

Constraints

Constraints:

Can be N-ary (over sets of N variables - e.g. “dual
representation” for crossword puzzles with letters as domains)

Here: Consider only Unary and Binary (e.g. “primal
representation” for crossword puzzles with words as domains)

Solutions:

Generate and test

Backtracking

Consistency

Hill-Climbing

Randomized incl. Local Search

10/ 48

Example

Delivery robot: activities a,b,c,d,e, times 1,2,3,4.
A: variable representing the time activity a will occur
B: variable representing the time activity b will occur
etc..
Domains:
DA = {1, 2, 3, 4}
DB = {1, 2, 3, 4}
....
constraints :
(B 6= 3) ∧ (C 6= 2) ∧ (A 6= B) ∧ (B 6= C)∧
(C < D) ∧ (A = D) ∧ (E < A) ∧ (E < B) ∧ (E < C)
∧(E < D) ∧ (B 6= D)

11/ 48

Generate and Test

Exaustively go through all combinations, check each one
D = DA × DB × DC × DD × DE

D = {< 1, 1, 1, 1, 1 >,< 1, 1, 1, 1, 2 >, . . . , < 4, 4, 4, 4, 4 >}

test: < 1, 1, 1, 1, 1 > . . . fail ¬(A 6= B)
test: < 1, 1, 1, 1, 2 > . . . fail ¬(A 6= B)
test: < 1, 1, 1, 1, 3 > . . . fail ¬(A 6= B)
...
...
test: < 1, 2, 1, 1, 1 > . . . fail ¬(C < D)
test: < 1, 2, 1, 1, 2 > . . . fail ¬(C < D)
...
but ... we knew all along that A 6= B

12/ 48

Backtracking

Can use the fact that large portions of the state space can be
pruned.
1. Order all variables
2. Evaluate constraints into the order as soon as they are grounded

e.g. Assignment A = 1 ∧ B = 1 is inconsistent with constraint
A 6= B regardless of the value of the other variables.

13/ 48

Backtracking - Example

test: < 1, , , , > . . . ok
test: < 1, 1, , , > . . . fail ¬(A 6= B)
test: < 1, 2, 1, , > . . . ok
test: < 1, 2, 1, 1, > . . . fail ¬(C < D)
test: < 1, 2, 1, 2, > . . . fail ¬(A = D)
test: < 1, 2, 1, 3, > . . . fail ¬(A = D)
test: < 1, 2, 1, 4, > . . . fail ¬(A = D)
backtrack
test: < 1, 2, 2, , > . . . fail ¬(C 6= 2)
test: < 1, 2, 3, , > . . . ok
test < 1, 2, 3, 1, > . . . fail ¬(C < D)
...
...
test: < 2, , , , > ok
...
(draw the search tree using the partial assignment method)

14/ 48

Backtracking

Efficiency depends on order of variables!

Finding optimal ordering is as hard as solving the problem

idea: push failures as high as possible

cut off large branches of the tree as soon as possible

15/ 48

Consistency

More general approach

look for inconsistencies .

e.g. C=4 in example inconsistent with any value of D
(C < D)

backtracking will “re-discover” this for every value of A,B

graphical representation

16/ 48

Constraint Satisfaction: Graphically

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C

Goal : each domain has a single element, and all constraints are
satisfied.

17/ 48

Consistency:

Constraint Network (CN)

domain constraint is unary constraint on values in a domain,
written 〈X , c(X)〉.
A node in a CN is domain consistent if no domain value
violates any domain constraint.

A CN is domain consistent if all nodes are

domain consistent

Arc 〈X , c(X ,Y)〉 is a constraint on X .

An arc 〈X , c(X ,Y)〉 is arc consistent if for each X ∈ DX ,
there is some Y ∈ DY such that c(X ,Y) is satisfied.

A CN is arc consistent if all arcs are arc consistent

A set of variables {X1,X2,X3, . . . ,XN} is path consistent if
all arcs and domains are consistent.

18/ 48

Constraint Satisfaction: Graphically (formal)

A B CA < B B < C

B 6= 3

〈A,A < B〉 〈B,A < B〉 〈B,B < C 〉 〈C ,B < C 〉

〈B,B 6= 3〉

19/ 48

AC-3

Alan Mackworth 1977!

Makes a CN arc consistent (and domain consistent)

To-Do Arcs Queue (TDA) has all inconsistent arcs

1. Make all domains domain consistent

2. Put all arcs 〈Z , c(Z ,)〉 in TDA
3. repeat

a. Select and remove an arc 〈X , c(X ,Y)〉 from TDA

b. Remove all values of domain of X
that don’t have a value in domain of Y
that satisfies the constraint c(X ,Y)

c. If any were removed,

Add all arcs 〈Z , c ′(Z ,X)〉 to TDA ∀Z 6= Y
until TDA is empty

20/ 48

When AC-3 Terminates

AC-3 always terminates with one of these three conditions:

Every domain is empty: there is no solution

Every domain has a single value: solution!

Some domain has more than one value: split it in two, run
AC-3 recursively on two halves. Don’t have to start from
scratch - only have to put back all arcs 〈Z , c ′(Z ,X)〉 if X was
the domain that was split.

Connection between domain splitting and search.

21/ 48

Constraint Satisfaction: Example

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C

Goal: each domain has a single element, and all constraints are
satisfied. 22/ 48

Example: Crossword Puzzle

1 2

3

4

Words:

ant, big, bus, car, has
book, buys, hold,
lane, year
beast, ginger, search,
symbol, syntax

23/ 48

Variable Elimination

Idea: eliminate the variables one-by-one passing their
constraints to their neighbours

When there is a single variable remaining, if it has no values,
the network was inconsistent .

The variables are eliminated according to some
elimination ordering

Different elimination orderings result in different size
intermediate constraints.

24/ 48

Variable elimination (cont.)

Variable Elimination Algorithm:

If there is only one variable, return the intersection of the
(unary) constraints that contain it

Select a variable X
I Join the constraints in which X appears, forming constraint R
I Project R onto its variables other than X : call this R2

I Place new constraint R2 between all variables that were
connected to X

I Remove X
I Recursively solve the simplified problem
I Return R joined with the recursive solution

25/ 48

Example network

{1,2,3,4}

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

A

B

E

C

DA ≠ B

E ≠ C

E ≠ D
D<C

A<D

B<E

E-A is odd

26/ 48

Example: arc-consistent network

{1,2}

{1,2,3}

{2,3,4} {3,4}

{2,3}

A

B

E
C

DA ≠ B

E ≠ C

E ≠ D
D<C

A<D

B<E

E-A is odd

27/ 48

Example: eliminating C

r1 : C 6= E C E
3 2
3 4
4 2
4 3

r2 : C > D C D
3 2
4 2
4 3

r3 : r1 ./ r2 C D E
3 2 2
3 2 4
4 2 2
4 2 3
4 3 2
4 3 3

r4 : π{D,E}r3 D E
2 2
2 3
2 4
3 2
3 3

↪→ new constraint

28/ 48

Resulting network after eliminating C

{1,2}

{1,2,3}

{2,3,4}

{2,3}

A

B

E

DA ≠ B

E ≠ D

r4(E,D)

A<D

B<E

E-A is odd

29/ 48

Local Search

Back to CSP as Search (Local Search):

Maintain an assignment of a value to each variable.

At each step, select a neighbor of the current assignment

(e.g., one that improves some heuristic value).

Stop when a satisfying assignment is found, or return the
best assignment found.

Requires:

What is a neighbor?

Which neighbor should be selected?

(Some methods maintain multiple assignments .)

30/ 48

Local Search for CSPs

Aim is to find an assignment with zero unsatisfied
constraints.

Given an assignment of a value to each variable, a conflict is
an unsatisfied constraint.

The goal is an assignment with zero conflicts .

Heuristic function to be minimized: the number of conflicts.

31/ 48

Greedy Descent Variants

Find the variable-value pair that minimizes the number of
conflicts at every step.

Select a variable that participates in the most number of
conflicts. Select a value that minimizes the number of
conflicts.

Select a variable that appears in any conflict. Select a value

that minimizes the number of conflicts.

Select a variable at random . Select a value that minimizes
the number of conflicts.

Select a variable and value at random ; accept this change

if it doesn’t increase the number of conflicts.

32/ 48

GSAT (Greedy SATisfyability)

Let n be random assignment of values to all variables
h(n) is number of un-satisfied constraints

repeat
evaluate neighbors, n′ of n.
can’t change the same variable twice in a row
n = n∗, where n∗ = arg minn′(h(n′))
(even if h(n∗) > h(n)!)

Until stopping criteria is reached

e.g. start with A = 2,B = 2,C = 3,D = 2,E = 1 h= 3
change B to 4 ... h = 1
local minimum
change D to 4 (h=2)
change A to 4 (h=2)
change B to 2 (h=0)

33/ 48

Problems with Greedy Descent

a local minimum that is
not a global minimum

a plateau where the
heuristic values are
uninformative

a ridge is a local
minimum where n-step
look-ahead might help

Ridge

Local Minimum

Plateau

34/ 48

Randomized Greedy Descent

As well as downward steps we can allow for:

Random steps: move to a random neighbor.

Random restart: reassign random values to all variables.

Which is more expensive computationally?
A mix of the two = stochastic local search

35/ 48

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

(a) (b)

Which method would most easily find the global minimum?

What happens in hundreds or thousands of dimensions ?

What if different parts of the search space have
different structure ?

36/ 48

High Dimensional Search Spaces

In high dimensions the
search space is less easy to
visualize

Often consists of long,
nearly flat “canyons”

Hard to optimize using local
search

Step-size can be adjusted

37/ 48

Stochastic Local Search

Stochastic local search is a mix of:

Greedy descent : move to a lowest neighbor

Random walk : taking some random steps

Random restart : reassigning values to all variables

38/ 48

Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it is an improvement, adopt it.

If it isn’t an improvement, adopt it probabilistically depending
on a temperature parameter, T .
I With current assignment n and proposed assignment n′ we

move to n′ with probability e−(h(n
′)−h(n))/T

Temperature can be reduced.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000005
0.1 0.00005 0 0

38/ 48

Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it is an improvement, adopt it.

If it isn’t an improvement, adopt it probabilistically depending
on a temperature parameter, T .
I With current assignment n and proposed assignment n′ we

move to n′ with probability e−(h(n
′)−h(n))/T

Temperature can be reduced.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000005
0.1 0.00005 0 0

39/ 48

Simulated Annealing

Let n be random assignment of values to all variables
Let T be a (high) temperature
repeat

Select neighbor n′ of n at random
If h(n′) < h(n) then
n = n′

else

n = n′ with probability e−(h(n
′)−h(n))/T

reduce T
until stopping criteria is reached

40/ 48

Tabu lists

recall GSAT: never choose same variable twice.

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value
to the variable chosen.

We can implement it more efficiently than as a list of
complete assignments.

It can be expensive if k is large.

41/ 48

Parallel Search

A total assignment is called an individual .

maintain a population of k individuals instead of one.

At every stage, update each individual in the population.

Whenever an individual is a solution, it can be reported.

Like k restarts, but uses k times the minimum number of
steps.

42/ 48

Beam Search

Like parallel search, with k individuals, but choose the k best
out of all of the neighbors (all if there are less than k).

When k = 1, it is greedy descent.

The value of k lets us limit space and parallelism.

43/ 48

Stochastic Beam Search

Like beam search, but it probabilistically chooses the k
individuals at the next generation.

The probability that a neighbor is chosen is proportional to its
heuristic value : e−h(n)/T .

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.

Like asexual reproduction: each individual mutates and the
fittest ones survive.

44/ 48

Genetic Algorithms

Like stochastic beam search, but pairs of individuals are
combined to create the offspring :

For each generation:
I Randomly choose pairs of individuals where the fittest

individuals are more likely to be chosen.
I For each pair, perform a cross-over : form two offspring each

taking different parts of their parents:
I Mutate some values.

Stop when a solution is found.

45/ 48

Crossover

Given two individuals:

X1 = a1,X2 = a2, . . . ,Xm = am

X1 = b1,X2 = b2, . . . ,Xm = bm

Select i at random.

Form two offspring:

X1 = a1, . . . ,Xi = ai ,Xi+1 = bi+1, . . . ,Xm = bm

X1 = b1, . . . ,Xi = bi ,Xi+1 = ai+1, . . . ,Xm = am

The effectiveness depends on the ordering of the variables.

Many variations are possible.

46/ 48

Comparing Stochastic Algorithms

How can you compare three algorithms when

I one solves the problem 30% of the time very quickly but
doesn’t halt for the other 70% of the cases

I one solves 60% of the cases reasonably quickly but doesn’t
solve the rest

I one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time,
and mode run time don’t make much sense.

46/ 48

Comparing Stochastic Algorithms

How can you compare three algorithms when

I one solves the problem 30% of the time very quickly but
doesn’t halt for the other 70% of the cases

I one solves 60% of the cases reasonably quickly but doesn’t
solve the rest

I one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time,
and mode run time don’t make much sense.

47/ 48

Runtime Distribution

Plots runtime (or number of steps) and the proportion (or
number) of the runs that are solved within that runtime.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

48/ 48

Next:

Inference (Poole & Mackworth (2nd Ed.) chapter 5.1-5.3 and
13.1-13.2)

