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Lecture 3 - States and Searching

Jesse Hoey
School of Computer Science

University of Waterloo

May 10, 2022

Readings: Poole & Mackworth Chapt. 3 (all)
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Searching

Often we are not given an algorithm to solve a problem, but
only a specification of what is a solution — we have to

search for a solution.

A typical problem is when the agent is in one state, it has a
set of deterministic actions it can carry out, and wants to

get to a goal state .

Many AI problems can be abstracted into the problem of

finding a path in a directed graph .

Often there is more than one way to represent a problem as
a graph.
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Directed Graphs

A graph consists of a set N of nodes and a set A of ordered
pairs of nodes, called arcs .

Node n2 is a neighbor of n1 if there is an arc from n1 to n2.
That is, if 〈n1, n2〉 ∈ A.

A path is a sequence of nodes 〈n0, n1, . . . , nk〉 such that
〈ni−1, ni 〉 ∈ A.

Given a set of start nodes and goal nodes, a solution is a
path from a start node to a goal node.

Often there is a cost associated with arcs and the cost of a
path is the sum of the costs of the arcs in the path.
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Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.
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Graph for the Delivery Robot
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Problem space search

Partial Search Space for a Video Game
Grid game: collect coins C1, C2, C3, C4, don’t run out of fuel, and
end up at location (1, 1):

Fuel
Rob
C3
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Problem space search

Partial Search Space for a Video Game
Grid game: collect coins C1, C2, C3, C4, don’t run out of fuel, and
end up at location (1, 1):

Fuel
Rob
C3

5

State:
〈X-pos,Y-pos,Fuel,C1,C2,C3,C4 〉

〈5,8,6,f,t,f,f 〉

〈5,9,5,f,t,f,f 〉 〈5,7,5,f,t,t,f 〉

〈4,9,20,f,t,f,f 〉
〈5,8,4,f,t,f,f 〉

〈5,8,4,f,t,t,f 〉

〈6,8,5,f,t,f,f 〉

〈5,9,19,f,t,f,f 〉

4

9
8
7

Goal:
〈1,1,?,t,t,t,t 〉
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Graph Searching

Generic search algorithm: given a graph, start nodes, and goal
nodes, incrementally explore paths from the start nodes.

Maintain a frontier of paths from the start node that have
been explored.

As search proceeds, the frontier expands into the unexplored
nodes until a goal node is encountered.

The way in which the frontier is expanded defines the
search strategy.
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Problem Solving by Graph Searching

ends of 
paths on 
frontier

explored nodes

unexplored nodes

start
node
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Graph Search Algorithm

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier ;
if goal(nk)
return 〈n0, . . . , nk〉;

for every neighbor n of nk
add 〈n0, . . . , nk , n〉 to frontier ;

end while
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Graph Search Algorithm

We assume that after the search algorithm returns an answer,
it can be asked for more answers and the
procedure continues .

The neighbors define the graph.

Which value is selected from the frontier (and how the new

values are added to the frontier) at each stage defines the
search strategy.

goal defines what is a solution .
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Types of Search

Uninformed (blind)

Heuristic

More sophisticated “hacks”
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Depth-first Search

Depth-first search treats the frontier as a stack

It always selects the last element added to the frontier.

If the list of paths on the frontier is [p1, p2, . . .]
I p1 is selected. Paths that extend p1 are added to the front of

the stack (in front of p2).
I p2 is only selected when all paths from p1 have been explored.
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Illustrative Graph — Depth-first Search
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Complexity of Depth-first Search

Depth-first search not guaranteed to halt on infinite graphs
or on graphs with cycles.

The space complexity is linear in the size of the path being
explored.

Search is unconstrained by the goal until it happens to
stumble on the goal (uninformed or blind)

What is the worst-case time complexity of depth-first search?
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Cycle Checking

s

A searcher can prune a path that ends in a node

already on the path ,

Using depth-first methods, with the graph explicitly stored,
this can be done in constant time (add a flag to each node)

For other methods, the cost is linear in path length, since we

only have to check for cycles in the current path .
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Graph Search Algorithm - with Cycle Check

s

g

Use Depth First Search to get from s to g

Number the nodes as they are removed

add neighbours CCW from top L,D,R,U

Use a cycle check

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier ;
if goal(nk)
return 〈n0, . . . , nk〉;

for every neighbor n of nk

if n /∈ 〈n0, . . . , nk〉
add 〈n0, . . . , nk , n〉 to frontier ;

end while
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Breadth-first Search

Breadth-first search treats the frontier as a queue .

It always selects hte earliest element added to the frontier.

If the list of paths on the frontier is [p1, p2, . . . , pr ]:
I p1 is selected. Its neighbors are added to the end of the queue,

after pr .
I p2 is selected next.
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Illustrative Graph — Breadth-first Search
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Complexity of Breadth-first Search

The branching factor of a node is the number of its
neighbors.

If the branching factor for all nodes is finite, breadth-first
search is guaranteed to find a solution if one exists .

It is guaranteed to find the path with fewest arcs .

Time complexity is exponential in the path length:

bn, where b is branching factor , n is path length.

Space complexity is exponential in path length: bn.

Search is unconstrained by the goal.

Not affected by cycles (remains exponential).
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Multiple-Path Pruning

s

Multiple path pruning: prune a path to node n that

any path has been found to .

Multiple-path pruning subsumes a cycle check (because the
current path is a path to the node).

This entails storing all nodes it has found paths to.

Want to guarantee that an optimal solution can still be
found. (See slide 40)

22/ 52

Graph Search Algorithm - with Multiple Path Pruning

s

g

Use Breadth First Search to get from s to g

Number the nodes as they are removed

add neighbours CW from top U,R,D,L

Use multiple path pruning

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
has path := {};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier ;

if nk /∈ has path:

add nk to has path ;

if goal(nk)
return 〈n0, . . . , nk〉;

for every neighbor n of nk
add 〈n0, . . . , nk , n〉 to frontier ;

end while
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Lowest-cost-first Search

Sometimes there are costs associated with arcs. The cost of

a path is the sum of the costs of its arcs.

cost(〈n0, . . . , nk〉) =
k∑

i=1

|〈ni−1, ni 〉|

At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

The frontier is a priority queue ordered by path cost.

It finds a least-cost path to a goal node

When arc costs are equal =⇒ breadth-first search.

Uniformed/Blind search (in that it does not take the goal

into account)

Complexity: exponential
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Heuristic Search

Idea: don’t ignore the goal when selecting paths.

Often there is extra knowledge that can be used to guide the
search: heuristics.

h(n) is an estimate of the cost of the shortest path from
node n to a goal node.

h(n) uses only readily obtainable information (that is easy to
compute) about a node.

computing the heuristic must be much easier than solving
the problem

h can be extended to paths: h(〈n0, . . . , nk〉) = h(nk).

h(n) is an underestimate if there is no path from n to a goal
that has path length less than h(n).
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Example Heuristic Functions

If the nodes are points on a Euclidean plane and the cost is
the distance, we can use the straight-line distance from n to
the closest goal as the value of h(n).

If the nodes are locations and cost is time , we can use the
distance to a goal divided by the maximum speed.

If nodes are locations on a grid and cost is distance, we can
use the Manhattan Distance : distance by taking horizontal
and vertical moves only.

Think of heuristics for your favorite games: chess? go?
starcraft?
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Greedy Best-first Search

Idea: select the path whose end is closest to a goal

according to the heuristic function.

Best-first search selects a path on the frontier with

minimal h-value .

It treats the frontier as a priority queue ordered by h.
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Illustrative Example — Best First Search

cost

C GBAS

4
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heuristic

best first: S-A-C-G (not optimal)
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Graph Search Algorithm - with Multiple Path Pruning

s

g

Use Best First Search to get from s to g

Number the nodes as they are removed

Use multiple path pruning

break ties arbitrarily

Use Manhattan Distance as heuristic

Input: a graph + start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
has path := {};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier ;

if nk /∈ has path:

add nk to has path ;

if goal(nk)
return 〈n0, . . . , nk〉;

for every neighbor n of nk
add 〈n0, . . . , nk , n〉 to frontier ;

end while
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Heuristic Depth-first Search

Idea: Do a depth-first seach, but add paths to the stack

ordered according to h

Locally does a best-first search, but agressively pursues the

best looking path (even if it ends up being worse than one
higher up).

Suffers from the same problems as depth-first search

Is often used in practice
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Illustrative Graph — Heuristic Search

g

s

cost of an arc is its length
heuristic: euclidean distance
red nodes all look better than green nodes
a challenge for heuristic depth first search
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Graph Search Algorithm - with Multiple Path Pruning

s

g

Use Heuristic Depth-First Search

Number the nodes as they are removed

Use multiple path pruning

break ties arbitrarily

Use Manhattan Distance as heuristic

Input: a graph + start nodes
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
has path := {};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier ;

if nk /∈ has path:

add nk to has path ;

if goal(nk)
return 〈n0, . . . , nk〉;

for every neighbor n of nk
add 〈n0, . . . , nk , n〉 to frontier ;

end while
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A∗ Search

A∗ search uses both path cost and heuristic values

cost(p) is the cost of path p.

h(p) estimates the cost from the end of p to a goal.

Let f (p) = cost(p) + h(p). f (p) estimates the
total path cost of going from a start node to a goal via p.

start
path p−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f (p)
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A∗ Search Algorithm

A∗ is a mix of lowest-cost-first and best-first search .

It treats the frontier as a priority queue ordered by f (p) .

It always selects the node on the frontier with the
lowest estimated distance from the start to a goal node

constrained to go via that node.
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Illustrative Example — A∗ sxearch

cost

C GBAS

4

4 3 2 1 0

2112

heuristic

recall best first: S-A-C-G (not optimal)
A∗ : S-A-B-C-G (optimal)
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Admissibility of A∗

If there is a solution, A∗ always finds an optimal solution —the

first path to a goal selected— if

the branching factor is finite

arc costs are bounded above zero (there is some ε > 0 such
that all of the arc costs are greater than ε), and

h(n) is a lower bound on the length (cost) of the shortest
path from n to a goal node.

Admissible heuristics never overestimate the cost to the goal.
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Why is A∗ with admissible h optimal?

s
p g

p'

p''

path'

path

assume: paths → p → g is the optimal

f (p) = cost(s, p) + h(p) < cost(s, g) due to h being a lower
bound

cost(s, g) < cost(s, p′) + cost(p′, g) due to optimality of path

therefore cost(s, p) + h(p) = f (p) < cost(s, p′) + cost(p′, g)

therefore, we will never choose path′ while path is unexplored.

A∗ halts, as the costs of the paths on the frontier keeps
increasing, and will eventually exceed any finite number.
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Graph Search Algorithm - with Multiple Path Pruning

s

g

Use A* search

Number the nodes as they are removed

Use multiple path pruning

break ties arbitrarily

Use Manhattan Distance as heuristic

Input: a graph and set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
has path := {};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier ;

if nk /∈ has path:

add nk to has path ;

if goal(nk)
return 〈n0, . . . , nk〉;

for every neighbor n of nk
add 〈n0, . . . , nk , n〉 to frontier ;

end while 38/ 52

How do we construct a heuristic?

“magic square” tiles can move into adjacent empty slot only

Relax the game (make it simpler, easier)

1. Can move tile from position A to position B if A is next to B
(ignore whether or not position is blank)

2. Can move tile from position A to position B if B is blank
(ignore adjacency)

3. Can move tile from position A to position B
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How do we construct a heuristic?

“magic square” tiles can move into adjacent empty slot only

Relax the game (make it simpler, easier)

1. Can move tile from position A to position B if A is next to B
(ignore whether or not position is blank)

I leads to manhattan distance heuristic
I To solve the puzzle need to slide each tile into its final position
I Admissible
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How do we construct a heuristic?

“magic square” tiles can move into adjacent empty slot only

Relax the game (make it simpler, easier)

3. Can move tile from position A to position B
I leads to misplaced tile heuristic
I To solve this problem need to move each tile into its final

position
I Number of moves = number of misplaced tiles
I Admissible



39/ 52

Summary of Search Strategies

Strategy Frontier Selection Halts? Space Time

Depth-first Last node added No Linear Exp
Breadth-first First node added Yes Exp Exp
Heuristic depth-first Local1 min h(n) No Linear Exp
Best-first Global2 min h(n) No Exp Exp
Lowest-cost-first Minimal cost(n) Yes Exp Exp
A∗ Minimal f (n) Yes Exp Exp

1Locally in some region of the frontier
2Globally for all nodes on the frontier 40/ 52

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first
path to n?

remove all paths from the frontier that use the longer path.

change the initial segment of the paths on the frontier to use
the shorter path.

ensure this doesn’t happen . Make sure that the shortest
path to a node is found first (lowest-cost-first search)
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Multiple-Path Pruning & A∗

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

cost(p) + h(n) ≤ cost(p′) + h(n′) because p was selected
before p′.

cost(p′) + cost(n′, n) < cost(p) because the path to n via p′

is shorter (by assumption).

cost(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

You can ensure this doesn’t occur if h(n′)−h(n) ≤ cost(n′, n).
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Monotone Restriction

Heuristic function h satisfies the monotone restriction if
h(m)− h(n) ≤ cost(m, n) for every arc 〈m, n〉.
h(m)− h(n) is the heuristic estimate of the path cost from m
to n

The heurstic estimate of the path cost is always less than
the actual cost.

If h satisfies the monotone restriction, A∗ with multiple path
pruning always finds the shortest path to a goal.



43/ 52

Monotonicity and Admissibility

This is a strengthening of the admissibility criterion.

if n = g so h(n) = 0 and cost(n′, n) = cost(n′), then we can
derive from

h(n′) ≤ cost(n′, n) + h(n)

that

h(n′) ≤ cost(n′)

which is admissibility

So Monotonicity is like Admissibility but between
any two nodes
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Iterative Deepening

So far all search strategies that are guaranteed to halt use
exponential space .

Idea: let’s recompute elements of the frontier rather than
saving them.

Look for paths of depth 0, then 1, then 2, then 3, etc.

You need a depth-bounded depth-first searcher.

If a path cannot be found at depth B, look for a path at
depth B + 1. Increase the depth-bound when the search fails
unnaturally (depth-bound was reached).

45/ 52

Iterative Deepening Complexity

Complexity with solution at depth k & branching factor b:

# times each node is expanded
level breadth-first iterative deepening # nodes

1 1 k b
2 1 k − 1 b2

... ... ... ...
k − 1 1 2 bk−1

k 1 1 bk

≥ bk ≤ bk
(

b
b−1

)2

bk + 2bk−1 + 3bk−2 + . . . = bk
k∑

n=1

n

(
1

b

)n−1

rewrite (1)

< bk
∞∑
n=1

n

(
1

b

)n−1

extend to infinity (2)

= bk
(

b

1 − b

)2

derivative of the geometric series (3)
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Direction of Search

The definition of searching is symmetric : find path from
start nodes to goal node or from goal node to start nodes.

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

Note: sometimes when graph is dynamically constructed, you
may not be able to construct the backwards graph.
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Bidirectional Search

You can search backward from the goal and forward from the
start simultaneously .

This wins as 2bk/2 � bk . This can result in an exponential
saving in time and space.

The main problem is making sure the frontiers meet .

This is often used with one breadth-first method that builds
a set of locations that can lead to the goal. In the other
direction another method can be used to find a path to these
interesting locations.
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Island Driven Search

Idea: find a set of islands between s and g .

s −→ i1 −→ i2 −→ . . . −→ im−1 −→ g

There are m smaller problems rather than 1 big problem.

This can win as mbk/m � bk .

The problem is to identify the islands that the path must

pass through. It is difficult to guarantee optimality .

You can solve the subproblems using islands =⇒
hierarchy of abstractions.
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Dynamic Programming

Start from goal and work backwards

Compute the cost-to-goal at each node recursively

e.g. Dijkstra’s algorithm

Cost from n→ goal is
Cost from m→ goal + cost from n to m

dist(n) is cost-to-goal from node n, and cost(n,m) is cost to
go from n to m

dist(n) =

{
0 if n is goal
minm(cost(n,m) + dist(m)) otherwise

dist(n) is a value function over nodes

policy(n) is best m for each n, so best path is

path(n, goal) = arg min
m

(cost(n,m) + dist(m))

problem: space needed to store entire graph
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Discounted Dynamic Programming

assume goal has a reward , R(n)

arcs still have costs

Rewards far in the future are less valuable

“a bird in the hand is worth two in the bush”

Discount factor β < 1

maximize rewards

dist(n) =

{
R(n) if n is goal
maxm(βdist(m)− cost(n,m)) otherwise



51/ 52

Minimax Search

for competitive, two-person, zero-sum games (tic-tac-toe)

try to find the best option for you (“O”)

assume competitor (“X”) will take the worst option for you
label each node here with expected reward (-1,0 or +1)
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Next:

Constraints (Poole & Mackworth chapter 4)


