Lecture 2 - Agents and Abstraction

Jesse Hoey
School of Computer Science
University of Waterloo

January 12, 2019

Readings: Poole & Mackworth 1.3-1.10
Situated Agent

- Abilities
- Goals/Preferences
- Prior Knowledge
- Stimuli
- Past Experiences

Agent

Environment

Actions
A symbol is a meaningful physical pattern that can be manipulated.

A symbol system creates, copies, modifies and destroys symbols.

Physical symbol system hypothesis (Newell & Simon, 1976):

A physical symbol system has the necessary and sufficient means for general intelligent action.

implies that: AI on a computer is possible in theory, but not necessarily feasible in practice
A good representation should be
- Rich enough to express the problem
- Close to the problem: compact, natural and maintainable
- Amenable to efficient computation
- Amenable to elicitation from people, data and experiences
Four Example Application Domains (From Book)

- **Autonomous delivery robot** roams around an office environment and delivers coffee, parcels, ...
- **Diagnostic assistant** helps a human troubleshoot problems and suggests repairs or treatments. E.g., electrical problems, medical diagnosis.
- **Intelligent tutoring system** teaches students in some subject area.
- **Trading agent** buys goods and services on your behalf.

Let’s talk about the Autonomous Delivery Robot and then I’ll discuss:
- **Cognitive Assistant** helps you remember things.
Domain for Delivery Robot
Example inputs:

- **Abilities:** movement, speech, pickup and place objects, sense weather
- **Observations:** about its environment from cameras, sonar, sound, laser range finders, or keyboards.
- **Prior knowledge:** its capabilities, objects it may encounter, maps.
- **Past experience:** which actions are useful and when, what objects are there, how its actions affect its position.
- **Goals:** what it needs to deliver and when, tradeoffs between acting quickly and acting safely, effects of getting wet.
What does the Delivery Robot need to do?

- Determine where Jesse’s office is. Where coffee is...
- Find a path between locations.
- Plan how to carry out multiple tasks.
- Make default assumptions about where Jesse is.
- Make tradeoffs under uncertainty: should it go near the stairs or outside?
- Learn from experience.
- Sense the world, avoid obstacles, pickup and put down coffee.
Assistance for Persons with Dementia: COACH

University of Toronto/University of Waterloo
Example: COACH Handwashing Assistant
COACH (Handwashing System)

- ** Abilities:** Provide passive assistive prompting
- ** Observations:** Video images, audio feeds
- ** Prior knowledge:** Effects of dementia, steps of handwashing, affect/emotion/culture
- ** Past experience:** Prior behaviours of user, effects of prompts
- ** Goals:** Get hands clean, maintain independence, reduce caregiver burden
What does the COACH need to do?

- Sense the world, determine what steps the user has completed
- Estimate the user’s current responsiveness, awareness and emotion
- Provide timely prompts only if needed
- Call for assistance if it can’t help
- Learn from experience.
Research proceeds by making simplifying assumptions, and gradually reducing them.

Each simplifying assumption gives a dimension of complexity
- Can be multiple values in a dimension: values go from simple to complex
- Simplifying assumptions can be relaxed in various combinations

Much of the history of AI can be seen as starting from the simple and adding in complexity in some of these dimensions.
Dimensions of Complexity

- Flat \rightarrow modular \rightarrow hierarchical
- Explicit states \rightarrow features \rightarrow objects and relations
- Static \rightarrow finite stage \rightarrow indefinite stage \rightarrow infinite stage
- Fully observable \rightarrow partially observable
- Deterministic \rightarrow stochastic dynamics
- Goals \rightarrow complex preferences
- Single-agent \rightarrow multiple agents
- Knowledge is given \rightarrow knowledge is learned from experience
- Perfect rationality \rightarrow bounded rationality
Succinctness and Expressiveness

Much of modern AI is about finding compact representations and exploiting that compactness for computational gains. A agent can reason in terms of:

- **explicit states** — a state is one way the world could be
Much of modern AI is about finding compact representations and exploiting that compactness for computational gains. A agent can reason in terms of:

- **explicit states** — a state is one way the world could be
- **features** or **propositions**.
 - It’s often more natural to describe states in terms of features.
 - 30 binary features can represent $2^{30} = 1,073,741,824$ states.
Much of modern AI is about finding compact representations and exploiting that compactness for computational gains. A agent can reason in terms of:

- **explicit states** — a state is one way the world could be
- **features** or **propositions**.
 - It’s often more natural to describe states in terms of features.
 - 30 binary features can represent $2^{30} = 1,073,741,824$ states.
- **individuals** and **relations**
 - There is a feature for each relationship on each tuple of individuals.
 - Often we can reason without knowing the individuals or when there are infinitely many individuals.
Example: Delivery Robot
Example: Handwashing Task: Plan steps

- **Dirty, dry water off**
- **Soapy, dry water on**
- Behavior: Rinse
- **Clean, wet water on**
- **Clean, dry water off**
Planning horizon

...how far the agent looks into the future when deciding what to do.

- **Static:** world does not change
- **Finite stage:** agent reasons about a fixed finite number of time steps
- **Indefinite stage:** agent is reasoning about finite, but not predetermined, number of time steps
- **Infinite stage:** the agent plans for going on forever (process oriented)
Uncertainty

What the agent can determine the state from the observations:

- **Fully-observable**: the agent knows the state of the world from the observations.
- **Partially-observable**: there can be many states that are possible given an observation.
Handwashing: Partial Observability

- Observational Uncertainty: hand locations
- True non-observability: user awareness and responsiveness

(a) 4974
(b) 5096
(c) 5502
(d) 5576
Uncertain dynamics

If the agent knew the initial state and the action, could it predict the resulting state?

The dynamics can be:

- **Deterministic**: the state resulting from carrying out an action in state is determined from the action and the state
- **Stochastic**: there is uncertainty over the states resulting from executing a given action in a given state.
Goals or complex preferences

- **achievement goal** is a goal to achieve. This can be a complex logical formula.
- **maintenance goal** is a goal to be maintained.
- **complex preferences** that may involve tradeoffs between various desiderata, perhaps at different times. Either ordinal or cardinal (e.g., utility)
- **Examples:** coffee delivery robot, medical doctor
handwashing assistant:

- get hands clean
- user independence
- caregiver burden

Example: Complex Preferences
Single agent or multiple agents

- **Single agent** reasoning is where an agent assumes that any other agents are part of the environment. (delivery robot)
- **Multiple agent** reasoning is when an agent needs to reason strategically about the reasoning of other agents. (robot soccer, trading agents)

Agents can have their own goals: cooperative, competitive, or goals can be independent of each other.
Learning from experience

Whether the model is fully specified a priori:

- knowledge is given
- knowledge is learned from data or past experience
Perfect rationality or bounded rationality

- **Perfect rationality:** the agent can determine the best course of action, without taking into account its limited computational resources.

- **Bounded rationality:** the agent must make good decisions based on its perceptual, computational and memory limitations.
Dimensions of Complexity: Handwashing problem

- flat \rightarrow modular \rightarrow hierarchical
- explicit states \rightarrow features \rightarrow objects and relations
- static \rightarrow finite stage \rightarrow indefinite stage \rightarrow infinite stage
- fully observable \rightarrow partially observable
- deterministic \rightarrow stochastic actions
- goals \rightarrow complex preferences
- single agent \rightarrow multiple agents
- knowledge is given \rightarrow learned
- perfect rationality \rightarrow bounded rationality
Next:

- Read Poole & Mackworth chapter 2.1-2.3
- Uninformed Search (Poole & Mackworth chapter 3)
- Informed Search (Poole & Mackworth chapter 4)