Lecture 10 - Planning under Uncertainty (I11)

Jesse Hoey
School of Computer Science
University of Waterloo

July 21, 2022

Readings: Poole & Mackworth (2nd ed.)Chapter 12.1,12.3-12.9

Reinforcement Learning

What should an agent do given:
@ Prior knowledge possible states of the world
possible actions

@ Observations current state of world
immediate reward / punishment

@ Goal act to maximize accumulated reward

Like decision-theoretic planning, except model of dynamics and
model of reward not given.

Experiences

@ We assume there is a sequence of experiences :
state, action, reward, state, action, reward,

@ What should the agent do next?
@ It must decide whether to:
» explore to gain more knowledge

P> exploit the knowledge it has already discovered

Reinforcement Learning: “Bandit” problem

Each machine has a Pr(win) ... but you don’t know what it is...
Which machine should you play?

Why is reinforcement learning hard?

@ What actions are responsible for the reward may have
occurred a long time before the reward was received.

@ The long-term effect of an action of the robot depends on
what it will do in the future.

@ The explore-exploit dilemma : at each time should the robot
be greedy or inquisitive?

Reinforcement learning: main approaches

@ search through a space of policies (controllers)

@ Model Based RL : learn a model consisting of state
transition function P(s’|a, s) and reward function R(s, a,s’);
solve this as an MDP.

e Model-Free RL learn Q*(s, a) , use this to guide action.

Temporal Differences

@ Suppose we have a sequence of values:

Vi, V2, V3,...

And want a running estimate of the average of the first k
values:

V]_++Vk

AL =
k k

Temporal Differences (cont)

@ When a new value vy arrives:
Vit Ve Vi

A =
, k
KAk = vi+--+v_1+w
= (k—1)Ax_1 + v
k—1 1
Ax = p Ak—1+ VK
Let a = % then
A = (1—a)Ak—1+ av
= A1+ oa(vik — Ac-1)
“TD formula”

@ Often we use this update with « fixed.

o Idea: store Q[State, Action]; update this as in
asynchronous value iteration , but using experience (empirical
probabilities and rewards).

@ Suppose the agent has an experience (s, a, r,s’)
@ This provides one piece of data to update Q[s, a].

@ The experience (s, a, r,s’) provides the data point:
r+vymax Q[s, a']
a/
which can be used in the TD formula giving:

Qls,a] « Q[s, a] + « (r + 7y max Qls', a1 — Q[s, a]>

begin
initialize Q[S, A] arbitrarily
observe current state s
repeat forever:
select and carry out an action a
observe reward r and state s’
Qls. a] « Qls,a] + a(r + ymaxy Q[s', 2] - Qs. a])
s« ¢,
end-repeat
end

Properties of Q-learning

@ Q-learning converges to the optimal policy , no matter what
the agent does, as long as it
tries each action in each state enough (infinitely often).
@ But what should the agent do?
P exploit : when in state s, select the action that maximizes
Q[s, 3]

» explore : select another action

Exploration Strategies

@ The e-greedy strategy: choose a random action with
probability € and choose a best action with probability 1 — €.

@ Softmax action selection: in state s, choose action a with
probability
eQls,al/T
Za eQls,al/T

where 7 > 0 is the temperature . Good actions are chosen
more often than bad actions; 7 defines how often good
actions are chosen. For 7 — o0, all actions are equiprobable.
For 7 — 0, only the best is chosen.

Exploration Strategies

@ optimism in the face of uncertainty : initialize Q to values
that encourage exploration.

e Upper Confidence Bound (UCB) : Also store N[s, a] (number
of times that state-action pair has been tried) and use

N[s]
N[s, a]

arg max [Q(s, a)+ k

where N[s] = >"_ N[s, a]

Example: studentbot

studentbot ‘
(o

&

Y™ oo

state variables:
e tired: studentbot is tired (no/a bit/very)
@ passtest: studentbot passes test (no/yes)

e knows: studentbot'’s state of knowledge (nothing/a bit/a
lot/everything)

e goodtime: studentbot has a good time (no/yes)

Example: studentbot

studentbot ‘
(o

&

Y™ oo

studentbot actions:

o study: studentbot’s knowledge increases, studentbot gets
tired

@ sleep: studentbot gets less tired

@ party: studentbot has a good time, but gets tired and loses
knowledge

o take test: studentbot takes a test (can take test anytime)

Example: studentbot

studentbot ‘ | ‘
(o

&

Y™ oo

studentbot rewards:
@ +20 if studentbot passes the test
@ +2 if studentbot has a good time when not very tired

basic tradeoff: short term vs. long-term rewards

Studentbot Policy

Model-based Reinforcement Learning

@ Model-based reinforcement learning uses the experiences in a
more effective manner.

@ It is used when collecting experiences is expensive (e.g., in a
robot or an online game), and you can do lots of computation
between each experience.

@ Idea: learn the MDP and interleave acting and planning.

@ After each experience, update probabilities and the reward,
then do some steps of asynchronous value iteration.

Model-based Reinforcement Learning

@ Model-based reinforcement learning uses the experiences in a
more effective manner.

@ It is used when collecting experiences is expensive (e.g., in a
robot or an online game), and you can do lots of computation
between each experience.

@ ldea: learn the MDP and interleave acting and planning.

@ After each experience, update probabilities and the reward,
then do some steps of asynchronous value iteration.

Model-based learner

Data Structures: Q[S,A], T[S, A, S], R[S, A]
Assign @, R arbitrarily, T = prior counts
« is learning rate
observe current state s
repeat forever:
select and carry out action a
observe reward r and state s’
T[s,a,s] + T[s,a,s]+1
R[s,a] <+ axr+(1—«) x R][s, a
repeat for a while (asynchronous VI):
select state sj, action ap

let P =3, Tls1,a1,%)]

Qls1, a1] + Z T[Sl’;hsﬂ (R[SL a1l +~ max Q[s2, 32])

s« s

Off/On-policy Learning

@ Q-learning does off-policy learning: it learns the value of the
optimal policy, no matter what it does.

@ This could be bad if the exploration policy is dangerous.

@ On-policy learning learns the value of the policy being
followed.
e.g., act greedily 80% of the time and act randomly 20% of
the time

o If the agent is actually going to explore, it may be better to
optimize the actual policy it is going to do.

@ SARSA uses the experience (s, a,r,s’,a’) to update Q[s, a.

SARSA

begin
initialize Q[S, A] arbitrarily
observe current state s
select action a using a policy based on @
repeat forever:
carry out an action a
observe reward r and state s’
select action a’ using a policy based on Q
Q[s,a] « Q[s,a] + a(r+~Q[s',d] — Q[s, a])
s« s';
a+ a;
end-repeat
end

Large State Spaces

o Computer Go : 33!states

ABCDEFGHJKLMNOPQRST
0

19 19
18 18
16 16
15 15
i Q1R GO 1
12 12
" [T . 1
9 1 9
8 8
7 7
6 | 6
iy ;
;O NN o
. 8 I 5 :

ABCDEFGHJKLMNOPQRST

e Atari Games 210 x 160 x 3 dimensions (pixels)

Q-function Approximations

o Let s = (x1,x2,...,xy)"

@ Linear

QW(Sa a) R Z WaiXij
i

e Non-linear (e.g. neural network)

Qu(s,a) ~ g(x;w)

Recall: Logistic Regression

Logistic function of linear weighted inputs:

Y7(e) = f(wo+wiXi(e)+- 4w, Xo(e)) = f (Z W,-x,-(e)>

The sum of squares error is:

Y(e)—f <Z W, * X,-(e))
i=0

The partial derivative with respect to weight w; is:

OB E®) _ L, o (Z s x,-<e>) < X(e)

2

Error(E, W) = Z

ecE

aW,'
where § = (Y(e) — F(3_1, wiXi(e))).

Thus, each example e updates each weight w; by

wi — wi+nxdx*f (ZW,-*X,-(e))*X,-(e)

1

Approximating the Q-function

e for experience tuple s, a, r, s’ we have:
> target Q-function: R(s) + v maxy Qu(s’,a") or
R(s) +1Qu(s’, ')
> current Q-function: Qu(s, a)

@ Squared error:

2
Err(w) = % [QW(S, a) — R(s) — ymax Qu (s, a/)}
o Gradient:
OErr ;] 0Qu(s,a)
= Quls.9) - R —max Qs)| T2

SARSA with linear function approximation

Given ~y:discount factor; a:learning rate
Assign weights w = (wyp, . .., w,) arbitrarily
begin
observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s’
select action &’ (using a policy based on Qy)
let 6 = r+vQw(s’,a") — Qu(s, a)
Fori=0ton

8Qw(s,a)

Wi wj+a xdx D

s« s a« 4
end-repeat
end

Convergence

@ Linear Q-learning (Qu(s,a) =), waiX;) converges under
same conditions as Q-learning

wi < wi + a [Qu(s,a) — R(s) — yQu(s', a)] xi

@ Non-linear Q-learning (e.g. neural network,
Qu(s, a) =~ g(x; w)) may diverge
» Adjusting w to increase Q at (s, a) might introduce errors at
nearby state-action pairs.

Mitigating Divergence

Two tricks used in practice:
1. Experience Replay

2. Use two Q function (two networks):

> @ network (currently being updated)
» Target network (occasionally updated)

Experience Replay

e Idea: Store previous experiences (s, a,r,s’,a’) in a buffer and
sample a mini-batch of previous experiences at each step to
learn by Q-learning

e Breaks correlations between successive updates (more stable
learning)

@ Few interactions with environment needed to converge
(greater data efficiency)

Target Network

@ lIdea: use a separate target network that is
updated only periodically

@ target network has weights W and computes Qg(s, a)

e repeat for each (s, a, r,s’,a) in mini-batch :

OQu(s,a)

w4 w+a [Qu(s,a) — R(s) — yQu(s',d')] ow

o W< Ww

Deep Q-Network

Assign weights W = (wp, ..., w,) at random in [—1,1]

begin
observe current state s
select action a
repeat forever:

end

carry out action a
observe reward r and state s’
select action &’ (using a policy based on Qy)
add (s,a,r,s’,a’) to experience buffer
Sample mini-batch of experiences from buffer
For each experience (8, 4, 7,8, &) in mini-batch:
let 6 = 7 +vQw(, &) — Qu(&,3)
W= W+ x4 X aog\(j"s)
s« s;a+
every c steps, update target w < w

end-repeat

Deep Q-Network for Atari

Convglution Convglution Fully cgnnected Fully cgnnected
_______ (Noinput)
. .
/ a / \
ol @ e i \ ==
/ e\ e \ EER
a / \
o8 A\ e
N
. o

AN

R

el
Bl-e
-

LY

[a] [

Gouoooh dodoooh _EEdoo

a

R

i

Ei
©s00000ccs0090000000 00 0 ¢

>0 00
s e 00000

z*r&(-kd«y-)“
R PR e Y
© (@ (© () (€]] (¢ (©

from: Mnih et. al. Human-level control through deep reinforcement learning.
Nature 18(7540):529-533 2015.

P
el
o
o
<
-
(g°)
()
=
—
7
>
X
—
o
=
et}
[0}
=
1
o
o
[}
(]
()

ﬁ.ccm.q cco.—ccc ccm oav ccm ch cc— c
L L)) L L I L 1 |

Tl

Joureo Jeau 1508 wl

[oAs]-uBWINY MOjOg

8r0GE 10 [ons|-UBWNy 1y

“||‘mm“m“ﬁllhiniiiimm

-

®
o
]
=
c
=
£
S
2
&

sBuansy s,BWNZOIUON
@43 ejeAud
JeyARID

iqisoid

sploisisy

UBN-0Bd SN
Buymog

sjung sjanoq
Jsenbeeg

@unuep

ey

Jepiuy

uoxxez

PreY JoAl

1sioH fueg
epadnusn
puewwo) seddoyy
10M J0 PIEZIM
suoz ejeg

umog pue dn
Aquaq Busia
oinpuz

101d ewiL
Kemsaig

Je1SE N4-Bunyy
weyyuein|
Joply weag
sispenu| soedg
6uod

sjuusy.

puog sewep
oosebuey
Jeuuny peoy
unessy

i

BweD siy] sweN
oERY uoweq
1aydon

Jequuo Azeo
siuepy
sueiogoy
JeuUNg JBIg
noxeaig
Buixog

Ilequid 08pIA

—533 2015.

7540):520.

(

level control through deep reinforcement learning. Nature 18

Human-|

Bayesian Reinforcement Learning

Include the parameters (transition function and observation
function) in the state space

Model-based learning though inference (belief state)

State space is now continuous,
belief space is a space of continuous functions

Can mitigate complexity by modeling reachable beliefs

optimal exploration-exploitation tradeoff.

@ Recap

