Lecture 10 - Planning under Uncertainty (III)

Jesse Hoey
School of Computer Science
University of Waterloo

July 21, 2022

Readings: Poole & Mackworth (2nd ed.) Chapter 12.1, 12.3-12.9
Reinforcement Learning

What should an agent do given:

- **Prior knowledge** possible states of the world, possible actions
- **Observations** current state of world, immediate reward / punishment
- **Goal** act to maximize accumulated reward

Like decision-theoretic planning, except model of dynamics and model of reward not given.
We assume there is a sequence of experiences:

\[\text{state, action, reward, state, action, reward, ...} \]

What should the agent do next?
- It must decide whether to:
 - **explore** to gain more knowledge
 - **exploit** the knowledge it has already discovered
Reinforcement Learning: “Bandit” problem

Each machine has a $Pr(win)$... but you don’t know what it is... Which machine should you play?
Why is reinforcement learning hard?

- What actions are responsible for the reward may have occurred a long time before the reward was received.
- The long-term effect of an action of the robot depends on what it will do in the future.
- The explore-exploit dilemma: at each time should the robot be greedy or inquisitive?
Reinforcement learning: main approaches

- search through a space of policies (controllers)

 - **Model Based RL**: learn a model consisting of state transition function $P(s'|a,s)$ and reward function $R(s,a,s')$; solve this as an MDP.

 - **Model-Free RL**: learn $Q^*(s,a)$, use this to guide action.
Temporal Differences

Suppose we have a sequence of values:

\[v_1, v_2, v_3, \ldots \]

And want a running estimate of the average of the first \(k \) values:

\[A_k = \frac{v_1 + \cdots + v_k}{k} \]
Temporal Differences (cont)

- When a new value v_k arrives:
 \[
 A_k = \frac{v_1 + \cdots + v_{k-1} + v_k}{k}
 \]
 \[
 kA_k = v_1 + \cdots + v_{k-1} + v_k
 = (k-1)A_{k-1} + v_k
 \]
 \[
 A_k = \frac{k-1}{k}A_{k-1} + \frac{1}{k}v_k
 \]

 Let $\alpha = \frac{1}{k}$, then
 \[
 A_k = (1 - \alpha)A_{k-1} + \alpha v_k
 = A_{k-1} + \alpha(v_k - A_{k-1})
 \]

 “TD formula”

- Often we use this update with α fixed.
Q-learning

• **Idea:** store $Q[State, Action]$; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).

• Suppose the agent has an experience $\langle s, a, r, s' \rangle$.

• This provides one piece of data to update $Q[s, a]$.

• The experience $\langle s, a, r, s' \rangle$ provides the data point:

$$r + \gamma \max_{a'} Q[s', a']$$

which can be used in the **TD formula** giving:

$$Q[s, a] \leftarrow Q[s, a] + \alpha \left(r + \gamma \max_{a'} Q[s', a'] - Q[s, a] \right)$$
Q-learning

begin
 initialize $Q[S, A]$ arbitrarily
 observe current state s
 repeat forever:
 select and carry out an action a
 observe reward r and state s'
 $Q[s, a] \leftarrow Q[s, a] + \alpha (r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$
 $s \leftarrow s'$;
 end-repeat
end
Properties of Q-learning

- Q-learning **converges to the optimal policy**, no matter what the agent does, as long as it tries each action in each state enough (infinitely often).

- But what should the agent do?
 - **exploit**: when in state s, select the action that maximizes $Q[s, a]$
 - **explore**: select another action
The ϵ-greedy strategy: choose a random action with probability ϵ and choose a best action with probability $1 - \epsilon$.

Softmax action selection: in state s, choose action a with probability

$$e^{Q[s,a]/\tau} \sum_a e^{Q[s,a]/\tau}$$

where $\tau > 0$ is the temperature. Good actions are chosen more often than bad actions; τ defines how often good actions are chosen. For $\tau \to \infty$, all actions are equiprobable. For $\tau \to 0$, only the best is chosen.
Exploration Strategies

- **optimism in the face of uncertainty**: initialize Q to values that encourage exploration.

- **Upper Confidence Bound (UCB)**: Also store $N[s, a]$ (number of times that state-action pair has been tried) and use

$$\arg \max_a \left[Q(s, a) + k \sqrt{\frac{N[s]}{N[s, a]}} \right]$$

where $N[s] = \sum_a N[s, a]$
Example: studentbot

studentbot

state variables:

- **tired**: studentbot is tired (no/a bit/very)
- **passtest**: studentbot passes test (no/yes)
- **knows**: studentbot’s state of knowledge (nothing/a bit/a lot/everything)
- **goodtime**: studentbot has a good time (no/yes)
Example: studentbot

studentbot actions:

- **study**: studentbot’s knowledge increases, studentbot gets tired
- **sleep**: studentbot gets less tired
- **party**: studentbot has a good time, but gets tired and loses knowledge
- **take test**: studentbot takes a test (can take test anytime)
Example: studentbot

studentbot rewards:

- +20 if studentbot passes the test
- +2 if studentbot has a good time when not very tired

basic tradeoff: short term vs. long-term rewards
Studentbot Policy

tired

knows

no a_bit very

knows

a_lot everything a_bit nothing a_bit nothing a_lot everything

take_test study party sleep
Model-based reinforcement learning uses the experiences in a more effective manner.

It is used when collecting experiences is expensive (e.g., in a robot or an online game), and you can do lots of computation between each experience.

Idea: learn the MDP and interleave acting and planning.

After each experience, update probabilities and the reward, then do some steps of asynchronous value iteration.
Model-based reinforcement learning uses the experiences in a more effective manner.

It is used when collecting experiences is expensive (e.g., in a robot or an online game), and you can do lots of computation between each experience.

Idea: learn the MDP and interleave acting and planning.

After each experience, update probabilities and the reward, then do some steps of asynchronous value iteration.

Assign Q, R arbitrarily, $T = \text{prior counts}$

α is learning rate

observe current state s

repeat forever:

select and carry out action a

observe reward r and state s'

$T[s, a, s'] \leftarrow T[s, a, s'] + 1$

$R[s, a] \leftarrow \alpha \times r + (1 - \alpha) \times R[s, a]$

repeat for a while (asynchronous VI):

select state s_1, action a_1

let $P = \sum_{s_2} T[s_1, a_1, s_2]$

$Q[s_1, a_1] \leftarrow \sum_{s_2} \frac{T[s_1, a_1, s_2]}{P} \left(R[s_1, a_1] + \gamma \max_{a_2} Q[s_2, a_2] \right)$

$s \leftarrow s'$
Q-learning does **off-policy** learning: it learns the value of the optimal policy, no matter what it does.

This could be bad if the exploration policy is dangerous.

On-policy learning learns the value of the policy being followed.

e.g., act greedily 80% of the time and act randomly 20% of the time

If the agent is actually going to explore, it may be better to optimize the actual policy it is going to do.

SARSA uses the experience $\langle s, a, r, s', a' \rangle$ to update $Q[s, a]$.
begin
 initialize $Q[S, A]$ arbitrarily
 observe current state s
 select action a using a policy based on Q
repeat forever:
 carry out an action a
 observe reward r and state s'
 select action a' using a policy based on Q
 $Q[s, a] \leftarrow Q[s, a] + \alpha (r + \gamma Q[s', a'] - Q[s, a])$
 $s \leftarrow s'$;
 $a \leftarrow a'$;
end-repeat
end
Large State Spaces

- **Computer Go**: 3^{361} states

- **Atari** Games $210 \times 160 \times 3$ dimensions (pixels)
Q-function Approximations

Let \(s = (x_1, x_2, \ldots, x_N)^T \)

Linear

\[
Q_w(s, a) \approx \sum_i w_{ai} x_i
\]

Non-linear (e.g. neural network)

\[
Q_w(s, a) \approx g(x; w)
\]
Recall: Logistic Regression

Logistic function of linear weighted inputs:

\[\hat{Y}^w(e) = f(w_0 + w_1 X_1(e) + \cdots + w_n X_n(e)) = f \left(\sum_{i=0}^{n} w_i X_i(e) \right) \]

The sum of squares error is:

\[\text{Error}(E, \overline{w}) = \sum_{e \in E} \left[Y(e) - f \left(\sum_{i=0}^{n} w_i \ast X_i(e) \right) \right]^2 \]

The partial derivative with respect to weight \(w_i \) is:

\[\frac{\partial \text{Error}(E, \overline{w})}{\partial w_i} = -2 \ast \delta \ast f' \left(\sum_{i} w_i \ast X_i(e) \right) \ast X_i(e) \]

where \(\delta = (Y(e) - f(\sum_{i=0}^{n} w_i X_i(e))) \).

Thus, each example \(e \) updates each weight \(w_i \) by

\[w_i \leftarrow w_i + \eta \ast \delta \ast f' \left(\sum_{i} w_i \ast X_i(e) \right) \ast X_i(e) \]
Approximating the Q-function

- for experience tuple s, a, r, s' we have:
 - target Q-function: $R(s) + \gamma \max_{a'} Q_w(s', a')$ or $R(s) + \gamma Q_w(s', a')$
 - current Q-function: $Q_w(s, a)$

- Squared error:

\[
Err(w) = \frac{1}{2} \left[Q_w(s, a) - R(s) - \gamma \max_{a'} Q_w(s', a') \right]^2
\]

- Gradient:

\[
\frac{\partial Err}{\partial w} = \left[Q_w(s, a) - R(s) - \gamma \max_{a'} Q_w(s', a') \right] \frac{\partial Q_w(s, a)}{\partial w}
\]
SARSA with linear function approximation

Given γ: discount factor; α: learning rate
Assign weights $\overline{w} = \langle w_0, \ldots, w_n \rangle$ arbitrarily
begin
 observe current state s
 select action a

 repeat forever:
 carry out action a
 observe reward r and state s'
 select action a' (using a policy based on Q_w)
 let $\delta = r + \gamma Q_w(s', a') - Q_w(s, a)$
 For $i = 0$ to n
 $w_i \leftarrow w_i + \alpha \times \delta \times \frac{\partial Q_w(s, a)}{\partial w}$
 $s \leftarrow s'$; $a \leftarrow a'$
 end-repeat
end
Convergence

- Linear Q-learning \(Q_w(s, a) \approx \sum_i w_{ai}x_i \) converges under same conditions as Q-learning

\[
 w_i \leftarrow w_i + \alpha \left[Q_w(s, a) - R(s) - \gamma Q_w(s', a') \right] x_i
\]

- Non-linear Q-learning (e.g. neural network, \(Q_w(s, a) \approx g(x; w) \)) may diverge
 - Adjusting \(w \) to increase \(Q \) at \((s, a) \) might introduce errors at nearby state-action pairs.
Mitigating Divergence

Two tricks used in practice:

1. **Experience Replay**

2. **Use two Q function** (two networks):
 - Q network (currently being updated)
 - Target network (occasionally updated)
Experience Replay

- **Idea:** Store previous experiences \((s, a, r, s', a')\) in a buffer and sample a mini-batch of previous experiences at each step to learn by Q-learning.
- **Breaks correlations** between successive updates (more stable learning).
- Few interactions with environment needed to converge (greater data efficiency).
Target Network

- **Idea**: use a separate target network that is updated only periodically.
- Target network has weights \overline{w} and computes $Q_{\overline{w}}(s, a)$.
- Repeat for each (s, a, r, s', a') in mini-batch:

 $$ w \leftarrow w + \alpha \left[Q_w(s, a) - R(s) - \gamma Q_{\overline{w}}(s', a') \right] \frac{\partial Q_w(s, a)}{\partial w} $$

- $\overline{w} \leftarrow w$
Assign weights $\overline{w} = \langle w_0, \ldots, w_n \rangle$ at random in $[-1, 1]$

begin

observe current state s
select action a

repeat forever:

carry out action a
observe reward r and state s'
select action a' (using a policy based on Q_w)
add (s, a, r, s', a') to experience buffer
Sample mini-batch of experiences from buffer
For each experience $(\hat{s}, \hat{a}, \hat{r}, \hat{s}', \hat{a}')$ in mini-batch:

let $\delta = \hat{r} + \gamma Q_{\overline{w}}(\hat{s}', \hat{a}') - Q_w(\hat{s}, \hat{a})$

\[w \leftarrow w + \alpha \times \delta \times \frac{\partial Q_w(\hat{s}, \hat{a})}{\partial w} \]

$s \leftarrow s'$; $a \leftarrow a'$

every c steps, update target $\overline{w} \leftarrow w$

end-repeat

end
Deep Q-Network for Atari

from: Mnih et. al. Human-level control through deep reinforcement learning.
Deep Q-Network vs. Linear Approx.

Bayesian Reinforcement Learning

- **Include the parameters** (transition function and observation function) in the state space
- **Model-based learning** though inference (belief state)
- State space is now continuous,
 belief space is a space of continuous functions
- Can mitigate complexity by **modeling reachable beliefs**
- **Optimal** exploration-exploitation tradeoff.
Recap