Reinforcement Learning

Lecture 10 - Planni certainty (I11)

What should an agent do given:
@ Prior knowledge possible states of the world
Jesse Hoey possible actions
School of Computer Science

University of Waterl @ Observations current state of world
niversity of Waterloo

immediate reward / punishment
@ Goal act to maximize accumulated reward

July 21, 2022 Like decision-theoretic planning, except model of dynamics and
model of reward not given.

Readings: Poole & Mackworth (2nd ed.)Chapter 12.1,12.3-12.9

Experiences

@ We assume there is a sequence of experiences :
state, action, reward, state, action, reward,

@ What should the agent do next?
@ It must decide whether to:
> explore to gain more knowledge

> exploit the knowledge it has already discovered

Each machine has a Pr(win) ... but you don’t know what it is...
Which machine should you play?

is reinforcement learning i main approaches

@ What actions are responsible for the reward may have o search through a space of policies (controllers)
i th d ived. -
occurred a [ONEINEIRER) the reward was receive @ Model Based RL : learn a model consisting of state
o The long-term effect of an action of the robot depends on transition function P(s'|a, s) and reward function R(s,a,s’);
what it will do in the future. solve this as an MDP.
@ The explore-exploit dilemma : at each time should the robot o Model-Free RL learn Q*(s,a) , use this to guide action.

be greedy or inquisitive?

mporal Differences (cont)

mporal Differences

@ When a new value vy arrives:
Vit Vet v

@ Suppose we have a sequence of values: A = k
KA = wvit+- v+ v
Vi, V2, V3. .. = (k—1)Ak_1+ v
And want a running estimate of the average of the first k A = k- lAk?1 + lvk
values: k k
Let a = % then
A=t k + vk Ac = (1—a)Ar1+av
= Ak +a(vi — A1)
“TD formula”

@ Often we use this update with « fixed.

Q-learning

Q-learning

o Idea: store Q[State, Action]; update this as in

asynchronous value iteration , but using experience (empirical

probabilities and rewards). begn.] o o

S th th . , initialize Q[S, A] arbitrarily
@ Suppose the agent has an experience (s, a,r,s’) observe current state s

repeat forever:
select and carry out an action a
observe reward r and state s’
Qls. 3] « Qls.a] + o (r + 7 maxy QIS 2] - Qfs.a])
s+ s';
end-repeat
end

@ This provides one piece of data to update Q[s, a).
o The experience (s, a, r,s’) provides the data point:

r+ymax Q[s', a']
B
which can be used in the TD formula giving:

Qls,a] < Q[s,a] + (r +7max Q5,41 - Qls, a])

Properties of Q-learning Exploration Strategies

o The e-greedy strategy: choose a random action with
probability € and choose a best action with probability 1 — e.

@ Q-learning converges to the optimal policy , no matter what
Q 8 E Belb B2l e Softmax action selection: in state s, choose action a with
the agent does, as long as it L
- S v probability
tries each action in each state enough (infinitely often).
@ But what should the agent do? eQls:al/m
» exploit : when in state s, select the action that maximizes Za eQls:al/™
Qls. 3 _ _
» explore : select another action where 7 > 0 is the temperature . Good actions are chosen
more often than bad actions; 7 defines how often good

actions are chosen. For 7 — oo, all actions are equiprobable.
For 7 — 0, only the best is chosen.

Exploration Strategies Example: studentbot
| \

studentbot

@ optimism in the face of uncertainty : initialize Q to values
that encourage exploration.

@ Upper Confidence Bound (UCB) : Also store N[s, a] (number
of times that state-action pair has been tried) and use

state variables:
o tired: studentbot is tired (no/a bit/very)
o passtest: studentbot passes test (no/yes)

where N[s] = 3=, N[s, a] ° ll;nt(/);se:rystt:i?‘egr;tbot's state of knowledge (nothing/a bit/a

N[s]
Nls, a]

argmax [Q(s,a) +k

o goodtime: studentbot has a good time (no/yes)

Example: studentbot Example: studentbot
H
studentbot studentbot

studentbot actions: studentbot rewards:

@ study: studentbot's knowledge increases, studentbot gets @ +20 if studentbot passes the test
tired e +2 if studentbot has a good time when not very tired

o sleep: studentbot gets less tired basic tradeoff: short term vs. long-term rewards

@ party: studentbot has a good time, but gets tired and loses
knowledge

o take test: studentbot takes a test (can take test anytime)

Model-based Reinf

Model-based reinforcement learning uses the experiences in a
more effective manner.

It is used when collecting experiences is expensive (e.g., in a
robot or an online game), and you can do lots of computation
between each experience.

Idea: learn the MDP and interleave acting and planning.
After each experience, update probabilities and the reward,
then do some steps of asynchronous value iteration.

Model-based Reinforcement Learni

@ Model-based reinforcement learning uses the experiences in a
more effective manner.

@ It is used when collecting experiences is expensive (e.g., in a
robot or an online game), and you can do lots of computation
between each experience.

o Idea : learn the MDP and interleave acting and planning.

@ After each experience, update probabilities and the reward,
then do some steps of asynchronous value iteration.

Model-based lear

Data Structures: Q[S, A], T[S, A, S], R[S, A]
Assign Q, R arbitrarily, T = prior counts
« is learning rate
observe current state s
repeat forever:
select and carry out action a
observe reward r and state s’
T[s,a,s'] « T[s,a,s]+1
R[s,a] < ax r+(1—a)x R[s,a|
repeat for a while (asynchronous VI):
select state s;, action ay
let P =3 Tls1,a1,%]

R S L REL T Ea)

s+ s

Off/On-policy Learning SARSA

begin
@ Q-learning does off-policy learning: it learns the value of the initialize Q[S, A] arbitrarily
optimal policy, no matter what it does. observe current state s
@ This could be bad if the exploration policy is dangerous. select action a using a policy based on Q
e On-policy learning learns the value of the policy being repeat forever:
followed. carry out an action a
e.g., act greedily 80% of the time and act randomly 20% of observe reward r and state s’
the time select action a’ using a policy based on Q
/o
o If the agent is actually going to explore, it may be better to OE’ a;_‘i Qls,al +a(r +9Qls',]~ Qls, al)
optimize the actual policy it is going to do. : - :,‘_
@ SARSA uses the experience (s, a,r, s, a) to update Qs a]. end-repeat

Large State Spaces Q-function Approximations

o Computer Go : 3%!states

o Let s = (x1,x,

o Linear

Qu(s,a) = Z WaiXi

o Non-linear (e.g. neural network)
o Atari Games 210 x 160 x 3 dimensions (pixels)

Qu(s,a) ~ g(x;w)

Recall: Logistic Regressi

Approximating the Q-functio

Logistic function of linear weighted inputs:
"(e) = F(wo+wiXa(e)+- -+ waXn(e)) = f (Z w.-x,-(e)>
i=0

The sum of squares error is:

n 2
Y(e)—f (Z w; *x,-(e)ﬂ

i=0

Error(E,w) = Z

ecE

The partial derivative with respect to weight w; is:

OError(E,w)

o =2%0x%f (Z w;*X;(e)) * Xi(e)

where § = (Y(e) — (3 7_o wiXi(e)))-
Thus, each example e updates each weight w; by

wi o witnxdxf <ZW;*X.'(E))*X1(9)
i

SARSA with line:

unction approximati

Given ~y:discount factor; c:learning rate
Assign weights W = (wp, ..., w,) arbitrarily
begin
observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s’
select action a’ (using a policy based on Q)
let 6 =r+yQu(s',a) — Qu(s,a)
Fori=0ton
Wi = wj+axdx
s« s a+a;
end-repeat
end

9Qu(s,a)
ow

o for experience tuple s, a, r,s’ we have:
> target Q-function: R(s) 4~y maxy Q,(s',a") or
R(s) +7Qu(s',)
» current Q-function: Q,(s, a)

@ Squared error:

1 2
Err(w) = 3 [Qw(s,a) —R(s) — 7 max Qu(s', a’)]

o Gradient:

OErr] 2Quis.a)
= [QW(S., a)— R(s) — v max Qu(s', 4)] v

o Linear Q-learning (Qu(s,a) & _; wajx;) converges under

same conditions as Q-learning

w; = Wi+ a [Qu(s,a) — R(s) = vQu(s', a)] xi

o Non-linear Q-learning (eAg. neural network,

Qu(s. a) ~ g(x;w)) may diverge
> Adjusting w to increase Q at (s, a) might introduce errors at
nearby state-action pairs

Mitigating Divergence Experience Replay

o Idea: Store previous experiences (s, a, r,s’,a’) in a buffer and

Two tricks used in practice: sample a mini-batch of previous experiences at each step to

1. Experience Replay learn by Q-learning

2. Use two Q function (two networks): o Breaks correlations between successive updates (more stable
> Q network (currently being updated) learning)
> Target network (occasionally updated) o Few interactions with environment needed to converge

(greater data efficiency)

Target Network Deep Q-Network

Assign weights W = (wo, w,) at random in [—1,1]
begin
observe current state s
o Idea: use a separate target network that is select action a

updated only periodically repeat forev:er: ;
carry out action a

observe reward r and state s’

Sy s . -) ¥

o repeat for each (s, a, r,s',2) in ‘mini-batch : select action &’ (using a policy based on Q)
add (s, a,r,s’,a') to experience buffer

o target network has weights W and computes Qg(s, a)

w e w+a [Qu(s,a) — R(s) — 7Qw(s’, a)] 0Quls,a) Sample mini-batch of experiences from buffer
ow . A n A AN s X
For each experience (5,4, 7,§,4’) in mini-batch:
oW w let § = 7+ Qu(3,3) — Qul5,3)

9Qu!

W Wt axdx =0
s—s;aea;
every c steps, update target W < w
end-repeat
end

Deep Q-Network for Atari Deep Q-Network vs. Linear Approx.

o

Comeluton Gomglton Fuycomected Full comected i H
i
Al i
ERN == (] H g
n A\ ¢ 1) == o
A\ 3 = E]
B A\E "
A D .
c@: i©: = |
P : .
- v)/ o
. . . H
. . . o b
A ||Il'|'|'|! :
i .
oam 3
i

from: Mnih et. al. Human-level control through deep reinforcement learning.
Nature 18(7540):529-533 2015.

from: Mnih et al.. Human-level control through deep reinforcement learning. Nature 18(7540):520-533 2015.

o Include the parameters (transition function and observation
function) in the state space

o Model-based learning though inference (belief state)

@ State space is now continuous, o Recap
belief space is a space of continuous functions

e Can mitigate complexity by modeling reachable beliefs

e optimal exploration-exploitation tradeoff.

