Lecture 10 - Planning under Uncertainty (I1)

Jesse Hoey
School of Computer Science
University of Waterloo

July 4, 2022

Readings: Poole & Mackworth (2nd ed.)Chapter 9.5

Agents as Processes

Agents carry out actions:
o forever infinite horizon
@ until some stopping criteria is met indefinite horizon

o finite and fixed number of steps finite horizon

Decision-theoretic Planning

What should an agent do when

e it gets rewards (and punishments) and tries to
maximize its rewards received

@ actions can be noisy; the
outcome of an action can't be fully predicted

@ there is a model that specifies the
probabilistic outcome of actions

o the world is fully observable : the current state is always fully
in evidence

for the various planning horizons?

World State

@ The world state is the information such that if you knew the
world state, no information about the past is relevant to the
future. Markovian assumption .

@ Let S;, A; be the state,action at time /
P(5t+1‘50, AO, ey Sta At) == P(St—f—l‘sta At)

P(s'|s, a) is the probability that the agent will be in state s’
immediately after doing action a in state s.

@ The dynamics is stationary if the distribution is the same for
each time point.

Example: Simple Grid World

-1

+3

-10 +10

Grid World Model

Actions : up, down, left, right.

100 states corresponding to the positions of the robot.

Robot goes in the commanded direction with probability 0.7,
and one of the other directions with probability 0.1.

@ If it crashes into an outside wall, it remains in its current
position and has a reward of —1.

Four special rewarding states ; the agent gets the reward
when leaving the state.

Planning Horizons

The planning horizon is how far ahead the planner looks to make a
decision.
@ The robot gets flung to one of the corners at random after
leaving a positive (+10 or +3) reward state.
» the process never halts
» infinite horizon
@ The robot gets +10 or +3 entering the state, then it stays
there getting no reward. These are absorbing states.

» The robot will eventually reach the absorbing state.
» indefinite horizon

Decision Processes

@ A Markov decision process augments a Markov chain with
actions and values (information arcs not shown).

S S B
[
O Oy Oy C

Ao Aq Ao

Markov Decision Processes

For an MDP you specify:
@ set S of states .
@ set A of actions .
@ P(S:+1|St, At) specifies the dynamics .
@ R(St, At, St+1) specifies the reward . The agent gets a
reward at each time step (rather than just a final reward).

R(s,a,s’) is the expected reward received when the agent is
in state s, does action a and ends up in state s’.

Information Availability

What information is available when the agent decides what to do?

o fully-observable MDP the agent gets to observe S; when
deciding on action A;.

e partially-observable MDP (POMDP) the agent has some
noisy sensor of the state. It needs to remember its sensing
and acting history. It can do this by maintaining a sufficiently
complex belief state .

Rewards and Values

Suppose the agent receives the sequence of rewards
rn, r,rs,r, What value should be assigned?

oo
o total reward V = Z r
i=1
e average reward V = lim (n+---+ry)/n
n—o0

o discounted reward V =n +vrn + ’y2r3 + ’y3r4 +
v is the discount factor 0 <~ < 1.

Policies

@ A stationary policy is a function:
m:S5—=A

Given a state s, 7m(s) specifies what action the agent who is
following 7 will do.

@ An optimal policy is one with maximum expected discounted
reward.

@ For a fully-observable MDP with stationary dynamics and
rewards with infinite or indefinite horizon, there is
always an optimal stationary policy.

Value of a Policy

@ Q7(s,a), where ais an action and s is a state, is the
expected value of doing a in state s, then following policy 7.

@ V/7(s), where s is a state, is the expected value of following
policy 7 in state s.

@ Q™ and V7™ can be defined mutually recursively:
Q7(s,a) = > P(s|a,s)(r(s,a,5) +4V7(s))
SI
Vi(s) = Q7(s,m(s))

Value of the Optimal Policy

@ Q*(s,a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy .

e 7*(s) is the optimal action to take in state s

e V*(s), where s is a state, is the
expected value of following the optimal policy in state s.

@ Q* and V* can be defined mutually recursively:
Q(s,a) = D _P(s'a,s) (r(s,a,8") +V*(s))
5/
V*(s) = maxQ*(s,a)

m(s) = argmax,Q*(s,a)

Value lteration

@ The t-step lookahead value function , V! is the expected
value with t steps to go

@ Idea: Given an estimate of the t-step lookahead value
function, determine the t + 1-step lookahead value function.

Value lteration

o Set VO arbitrarily, t =1
e Compute Q*f, V! from Vi1,

Qt(sv a) =

R(s)+v > _ Pr(s']s,a) vf—l(s’)]

Vi(s) = max Q'(s, a)

@ The policy with t stages to go is simply the actions that
maximizes this

mi(s) = argmax, [R(s) +v > Pr(s'ls,a)Vi~1(s')]

@ This is dynamic programming

e This converges exponentially fast (in t) to the optimal value
function.

o Convergence when ||[Vi(s) — Vi71(s)|| < ¢ 77) ensures V!
is within € of optimal (||X|| = max{|x|,x € X})

Value Iteration: Simple Example

State space graph (NOT a DBN):
s=1

a,b(1.0)

s=0
b(0.25)

b(0.75) b(10)

s=3

Value Iteration: Simple Example

This same graph, represented as a decision network, would have
the following factors, where the (row, col) = (i,) entry in each
probability table is P(S" = j|S =i, A)

[0.0 1.0 0.0 0.0 0.0
0.0 0.0 05 0.0 05
P(S'|S,A=a)= {00 0.0 00 08 02
0.0 0.0 00 0.0 1.0
0.0 0.0 0.0 0.0 1.0

0.0 0.0 025 0.75 0.0 0
00 00 03 00 0.7 2
P(S'|S,A=b)= |00 00 00 05 05|R(S) = |-2
00 00 00 00 1.0 2

10.0 0.0 00 0.0 1.0 0

Value Iteration: Simple Example

first iteration , using v = 0.9
VO(s') = R(s)
Q'(s,a) = R(s) +7 > _ P(s'|s,a)V(s)

~[1.8 1.1 —056 2.0 0
~ 109 146 —11 20 0

Vi(s) = max,(Q(s, a))
=[1.8 1.46 —0.56 2.0 0]

m(s)=1[a b a a 4

Value Iteration: Simple Example

second iteration

Q*(s,a) = R(s) +7 > _ P(s'|s,a)V(s)

s/
131 175 —056 2.0 0
122 185 —11 20 0

V2(s) = max,(Q%(s, a))
=[131 1.84 —056 2.0 0

7T2(s):[a b a a 4

on convergence, optimal value function is
V*(s)=[1.66 1.85 —0.56 2.0 0]
policy is

m™(s)=1[a b a a a

Asynchronous Value Iteration

@ You don't need to sweep through all the states, but can
update the value function for each state individually .

@ This converges to the optimal value function, if each state
and action is visited infinitely often in the limit.

@ You can either store V[s] or Q[s, a].

Asynchronous VI: storing V[s]

@ Repeat forever:

> Select state s;
> V[s] + maxZ P(s'|s,a) (R(s,a,s") + yV[s']);
a
S/

Asynchronous VI: storing Qs, aj

@ Repeat forever:
» Select state s, action a;

> Q[s,a] + Z P(s'|s, a) (R(s, a,s') +ymaxQ[s’, a’]);

Markov Decision Processes: Factored State

Represent S = {X1, Xo,..., Xn}

X; are random variables

for each X;, and each action a € A, we have P(X]|S, A)
Reward R(X1, Xa,...,Xy) may be additive :

R(X1, Xo, ..., Xn) = Z R(Xi)

Value iteration proceeds as usual but can do one variable at a
time (e.g. variable elimination)

Example: studentbot

studentbot ‘ | ‘
(o

&

Y™ oo

state variables (3x2x4x2=48 states):
e tired : studentbot is tired (no/a bit/very)
@ passtest : studentbot passes test (no/yes)
e knows : studentbot’s state of knowledge (nothing/a bit/a
lot/everything)

e goodtime : studentbot has a good time (no/yes)

Example: studentbot

studentbot ‘
(o

&

Y™ oo

studentbot actions:

@ study : studentbot’s knowledge increases, studentbot gets
tired

@ sleep : studentbot gets less tired

@ party : studentbot has a good time if he's not tired, but gets
tired and loses knowledge

o take test : studentbot takes a test (can take test anytime)

Example: studentbot

studentbot ‘ | ‘
(o

&

Y™ oo

studentbot rewards:
@ +20 if studentbot passes the test
@ +2 if studentbot has a good time

basic tradeoff: short term vs. long-term rewards

State-based:
P(s'|s,a) = [48 x 48]

R(s) = [48 x 1]

Studentbot

As a dynamic decision network :

Tired"
Knowledge’ Action _Tired_no_a.bit_very
Action _Tired_Knowledge _nothing _a.bit _a.lot_everything. study 08 02 00
Study nothing 05 05 0 0 study abit 00 08 02
0 05 05 0 stdy _vey 00 00 10
00 00 o5 05 Seep T 0 0
0 0 10 A —
05 05 0 0 pary abit 0 0 1
0 05 05 0.0 Pparty t 0 0 1
y o o o5 0 Take-test T 0 1
abit everhing 0 0 0 10
very nothing 10 0 0 0
very it 0o 10 00 00 PassTest'
very ot o o 10 00 Action _Tired _Knowledge _no_yes
very evething 00 0 10 Take-test nonothing 10
P~ nothing 10000 g noabit 09 01
noabit 05 05 00 00 noalkt 07 03
nadt 00 05 05 00 no eventhing 01 09
no__everything 0 0 05 05 abit nothing 1 0
sleep - nothing 10 0.0 0 0 a_bit abit 09 01
- " do 10 o0 oo abit alt 07 03
y 00 00 10 00 bt everything 01 09
~ evnthig 000 00 10 very 3
[- 000 0 0 T 0
Good_Time'
ves

Action _Tired _no
m

party
party yes 10 00

other _— 10 00
Good_Time _Pass. Test _U(Good_Time, Pass. Test)
es es
Yes o 2
no yes 20

Studentbot Policy

Partially Observable Markov Decision Processes

(POMDPs)

A POMDP is like an MDP, but

some variables are not observed . It is

a tuple (5,A, T,R,0,Q)

S: finite set of unobservable states /@

A: finite set of agent actions
T:S x A— S transition function
R:Sx A— R reward function

O: set of observations @ @

Q:5x A— O observation function

e.g. 1-D Tiger problem

The material after this is optional

Partially Observable Markov Decision Processes

(POMDPs)

A POMDP is like an MDP, but

some variables are not observed. It is

a tuple (5,A, T,R,0,Q)

S: finite set of unobservable states /@

A: finite set of agent actions
T :S x A— S transition function
R:S x A— R reward function

O: set of observations @ @

Q:5 x A— O observation function

e.g. 1-D Tiger problem

Value Functions and Conditional Plans

Vk+1(b) — maax Ra(b) —+ ’yz Pr(o\b, a) Vk(bg)

V/(b) can be represented with a piecewise linear function over the
belief space - pieces are called « vectors

e.g. Tiger problem, after zero iterations

. P=0 . p=1
Tiger: left Tiger: right
Value
2 — — 2
a—listen
0 0

a=open right a=open left

Tiger problem, after one iteration

p=0
Tiger: left

Value 23 =

1.44 —

0.36 —

p=1
Tiger: right

= 1%

— 1.44

— 0.36

-0.36

18 =

3 —

-0.36

Value

-13.6 —

all generated a vectors

P

—-13.6

- p=0 p=1
— 1§ Tiger: left Tiger: right

optimal value function

Point-based Value lteration

1. Generate belief samples to make belief set belief set B

0 belief 1
2. compute forward-propagated belief states

b3(s") = T(s'|a,5)Q(ols’, a)b(s) Vb e B

seS

Point-Based Value Iteration Il

1. start with one alpha vector: ag = R(s, a)

2. repeat until converged:
2.1 for each belief sample, b:

R(s,a —|—Z Z T(s'|a,5)Q(o]s’, a)argmaxaj(s)bi(s)VaeAbeB
s'€eS ocO
2.2 Maximize over actions at each b:

U {arg max (Fs- b))}

beB

Policies

Policy: maps beliefs states into actions 7(b(s)) — a
Two ways to compute a policy
1. Backwards search
» Dynamic programming (Variable Elimination)
> in MDP:
Q:(s,a) = R(s,a) +v>_, Pr(s’|s,a) maxy Q;—1(s’,a")
> in POMDP: Q:(b(s),a)
» Point-based backups make this efficient
2. Forwards search : Monte Carlo Tree Search (MCTS)
» Expand the search tree
» Expand more deeply in promising directions
» Ensure exploration using e.g. UCB

Select node to visit
based on tree policy.

Backpropagation

Sampled statistics from the
A new node is added to simulated trial is propagated
the tree upon selection. back up from the child

nodes to the ancestor nodes.

Run trial simulation based
on a default policy (usu-
ally random) from the
newly created node until
terminal node is reached.

Forward Monte-Carlo Search for POMDPs

procedure GetValue(b(s))

for each action-observation pair a, o:
ba(s’) + propagate the full belief state forwards
for each action and observation (using stochastic simulation)
if b2(s’) not at a leaf:
evaluate recursively by further growing the tree:
V2 + GetValue(b3(s"))
else:
create a new leaf for a, 0
do a series of single-belief point rollouts
(e.g. propagate a single belief forward stochastically
gathering reward until termination condition is met),
use the total returned value as VZ.

return. R(b(s)) + maxa {73, P(el|b(s),a) > o V5b5(s'))}

e.g. Tiger problem, two steps expanded

[05.05] 0918

A | 0802 204 [05.05 -3 D | Ps.05] 3‘ c‘[nzos] 0‘

[0.984,0016] 0 ‘ [05.08] ~916 ‘ ‘ [05.05] 316 ‘ [08.02) 0‘

@ Reinforcement Learning Poole & Mackworth (2nd ed.)Chapter
12.1,12.3-12.9

@ Deep Reinforcement Learning

