
1/ 43

Lecture 10 - Planning under Uncertainty (II)

Jesse Hoey
School of Computer Science

University of Waterloo

July 4, 2022

Readings: Poole & Mackworth (2nd ed.)Chapter 9.5

2/ 43

Agents as Processes

Agents carry out actions:

forever infinite horizon

until some stopping criteria is met indefinite horizon

finite and fixed number of steps finite horizon

3/ 43

Decision-theoretic Planning

What should an agent do when

it gets rewards (and punishments) and tries to
maximize its rewards received

actions can be noisy; the
outcome of an action can’t be fully predicted

there is a model that specifies the
probabilistic outcome of actions

the world is fully observable : the current state is always fully
in evidence

for the various planning horizons?

4/ 43

World State

The world state is the information such that if you knew the
world state, no information about the past is relevant to the
future. Markovian assumption .

Let Si ,Ai be the state,action at time i

P(St+1|S0,A0, . . . ,St ,At) = P(St+1|St ,At)

P(s ′|s, a) is the probability that the agent will be in state s ′

immediately after doing action a in state s.

The dynamics is stationary if the distribution is the same for
each time point.

5/ 43

Example: Simple Grid World

+10-10

-5-1

-1

-1

-1

+3

6/ 43

Grid World Model

Actions : up, down, left, right.

100 states corresponding to the positions of the robot.

Robot goes in the commanded direction with probability 0.7,
and one of the other directions with probability 0.1.

If it crashes into an outside wall, it remains in its current
position and has a reward of −1.

Four special rewarding states ; the agent gets the reward
when leaving the state.

7/ 43

Planning Horizons

The planning horizon is how far ahead the planner looks to make a
decision.

The robot gets flung to one of the corners at random after
leaving a positive (+10 or +3) reward state.
I the process never halts
I infinite horizon

The robot gets +10 or +3 entering the state, then it stays
there getting no reward. These are absorbing states.
I The robot will eventually reach the absorbing state.
I indefinite horizon

8/ 43

Decision Processes

A Markov decision process augments a Markov chain with
actions and values (information arcs not shown).

S0 S1 S3S2

A0 A1 A2

R1 R2 R3

9/ 43

Markov Decision Processes

For an MDP you specify:

set S of states .

set A of actions .

P(St+1|St ,At) specifies the dynamics .

R(St ,At ,St+1) specifies the reward . The agent gets a
reward at each time step (rather than just a final reward).
R(s, a, s ′) is the expected reward received when the agent is
in state s, does action a and ends up in state s ′.

10/ 43

Information Availability

What information is available when the agent decides what to do?

fully-observable MDP the agent gets to observe St when
deciding on action At .

partially-observable MDP (POMDP) the agent has some
noisy sensor of the state. It needs to remember its sensing
and acting history. It can do this by maintaining a sufficiently
complex belief state .

11/ 43

Rewards and Values

Suppose the agent receives the sequence of rewards
r1, r2, r3, r4, What value should be assigned?

total reward V =
∞∑
i=1

ri

average reward V = lim
n→∞

(r1 + · · ·+ rn)/n

discounted reward V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
γ is the discount factor 0 ≤ γ ≤ 1.

12/ 43

Policies

A stationary policy is a function:

π : S → A

Given a state s, π(s) specifies what action the agent who is
following π will do.

An optimal policy is one with maximum expected discounted
reward.

For a fully-observable MDP with stationary dynamics and
rewards with infinite or indefinite horizon, there is
always an optimal stationary policy.

13/ 43

Value of a Policy

Qπ(s, a) , where a is an action and s is a state, is the
expected value of doing a in state s, then following policy π.

V π(s) , where s is a state, is the expected value of following
policy π in state s.

Qπ and V π can be defined mutually recursively:

Qπ(s, a) =
∑
s′

P(s ′|a, s)
(
r(s, a, s ′) + γV π(s ′)

)
V π(s) = Qπ(s, π(s))

14/ 43

Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy .

π∗(s) is the optimal action to take in state s

V ∗(s), where s is a state, is the
expected value of following the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =
∑
s′

P(s ′|a, s)
(
r(s, a, s ′) + γV ∗(s ′)

)
V ∗(s) = max

a
Q∗(s, a)

π∗(s) = argmaxaQ
∗(s, a)

15/ 43

Value Iteration

The t-step lookahead value function , V t is the expected
value with t steps to go

Idea: Given an estimate of the t-step lookahead value
function, determine the t + 1-step lookahead value function.

16/ 43

Value Iteration

Set V 0 arbitrarily, t = 1

Compute Qt , V t from V t−1.

Qt(s, a) =

[
R(s) + γ

∑
s′

Pr(s ′|s, a)V t−1(s ′)

]

V t(s) = max
a

Qt(s, a)

The policy with t stages to go is simply the actions that
maximizes this
πt(s) = arg maxa

[
R(s) + γ

∑
s′ Pr(s ′|s, a)V t−1(s ′)

]
This is dynamic programming

This converges exponentially fast (in t) to the optimal value
function.

Convergence when ||V t(s)− V t−1(s)|| < ε (1−γ)
γ ensures V t

is within ε of optimal (||X || = max{|x |, x ∈ X})

17/ 43

Value Iteration: Simple Example

State space graph (NOT a DBN):

b(0.75)

r=0 r=0

r=2

r=2

r=−2

a(1.0)

b(0.25)

a(0.5)

b(0.3)

b(0.5)

a(0.8)

a(0.2)

b(0.5)

a(0.5)

b(0.7)

a,b(1.0)

a,b(1.0)

s=0

s=1

s=2

s=3

s=4

18/ 43

Value Iteration: Simple Example

This same graph, represented as a decision network, would have
the following factors, where the (row , col) = (i , j) entry in each
probability table is P(S ′ = j |S = i ,A)

P(S ′|S ,A = a) =


0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.5 0.0 0.5
0.0 0.0 0.0 0.8 0.2
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 1.0



P(S ′|S ,A = b) =


0.0 0.0 0.25 0.75 0.0
0.0 0.0 0.3 0.0 0.7
0.0 0.0 0.0 0.5 0.5
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 1.0

R(S) =


0
2
−2
2
0



19/ 43

Value Iteration: Simple Example

first iteration , using γ = 0.9

V 0(s ′) = R(s ′)

Q1(s, a) = R(s) + γ
∑
s′

P(s ′|s, a)V 0(s ′)

=

[
1.8 1.1 −0.56 2.0 0
0.9 1.46 −1.1 2.0 0

]
V 1(s) = maxa(Q1(s, a))

=
[
1.8 1.46 −0.56 2.0 0

]
π1(s) =

[
a b a a a

]

20/ 43

Value Iteration: Simple Example

second iteration

Q2(s, a) = R(s) + γ
∑
s′

P(s ′|s, a)V 1(s ′)

=

[
1.31 1.75 −0.56 2.0 0
1.22 1.85 −1.1 2.0 0

]
V 2(s) = maxa(Q2(s, a))

=
[
1.31 1.84 −0.56 2.0 0

]
π2(s) =

[
a b a a a

]
on convergence, optimal value function is

V ∗(s) =
[
1.66 1.85 −0.56 2.0 0

]
policy is

π∗(s) =
[
a b a a a

]

21/ 43

Asynchronous Value Iteration

You don’t need to sweep through all the states, but can
update the value function for each state individually .

This converges to the optimal value function, if each state
and action is visited infinitely often in the limit.

You can either store V [s] or Q[s, a].

22/ 43

Asynchronous VI: storing V [s]

Repeat forever:
I Select state s;
I V [s]← max

a

∑
s′

P(s ′|s, a) (R(s, a, s ′) + γV [s ′]);

23/ 43

Asynchronous VI: storing Q[s, a]

Repeat forever:
I Select state s, action a;
I Q[s, a]←

∑
s′

P(s ′|s, a)
(
R(s, a, s ′) + γmax

a′
Q[s ′, a′]

)
;

24/ 43

Markov Decision Processes: Factored State

Represent S = {X1,X2, . . . ,Xn}
Xi are random variables

for each Xi , and each action a ∈ A, we have P(X ′i |S ,A)

Reward R(X1,X2, . . . ,XN) may be additive :

R(X1,X2, . . . ,XN) =
∑
i

R(Xi)

Value iteration proceeds as usual but can do one variable at a
time (e.g. variable elimination)

25/ 43

Example: studentbot

studentbot

state variables (3x2x4x2=48 states):

tired : studentbot is tired (no/a bit/very)

passtest : studentbot passes test (no/yes)

knows : studentbot’s state of knowledge (nothing/a bit/a
lot/everything)

goodtime : studentbot has a good time (no/yes)

25/ 43

Example: studentbot

studentbot

studentbot actions:

study : studentbot’s knowledge increases, studentbot gets
tired

sleep : studentbot gets less tired

party : studentbot has a good time if he’s not tired, but gets
tired and loses knowledge

take test : studentbot takes a test (can take test anytime)

25/ 43

Example: studentbot

studentbot

studentbot rewards:

+20 if studentbot passes the test

+2 if studentbot has a good time

basic tradeoff: short term vs. long-term rewards

26/ 43

Studentbot

State-based:

P(s ′|s, a) = [48× 48]

R(s) = [48× 1]

27/ 43

Studentbot

As a dynamic decision network :

Action

Tired Tired’

Pass Test Pass Test’

Knowledge Knowledge’

Good Time Good Time’

Utility’Utility

Tired ′

Action Tired no a bit very

study no 0.8 0.2 0.0
study abit 0.0 0.8 0.2
study very 0.0 0.0 1.0

sleep − 1 0 0

party no 0 1 0
party a bit 0 0 1
party a lot 0 0 1

take test − 0 0 1

Good Time Pass Test U(Good Time,Pass Test)

yes yes 22
yes no 2
no yes 20
no no 0

PassTest′

Action Tired Knowledge no yes

take test no nothing 1 0
no a bit 0.9 0.1
no a lot 0.7 0.3
no everything 0.1 0.9
a bit nothing 1 0
a bit a bit 0.9 0.1
a bit a lot 0.7 0.3
a bit everything 0.1 0.9
very − 1 0

else − − 1 0

Good Time′

Action Tired no yes

party no 0.0 1.0
party yes 1.0 0.0
other − 1.0 0.0

Knowledge′

Action Tired Knowledge nothing a bit a lot everything

study no nothing 0.5 0.5 0 0
no a bit 0 0.5 0.5 0
no a lot 0.0 0.0 0.5 0.5
no everything 0 0 1.0
a bit nothing 0.5 0.5 0 0
a bit a bit 0 0.5 0.5 0.0
a bit a lot 0 0 0.5 0.5
a bit everything 0 0 0 1.0
very nothing 1.0 0 0 0
very a bit 0 1.0 0.0 0.0
very a lot 0 0 1.0 0.0
very everything 0 0 0 1.0

party − nothing 1.0 0.0 0 0
no a bit 0.5 0.5 0.0 0.0
no a lot 0.0 0.5 0.5 0.0
no everything 0 0 0.5 0.5

sleep − nothing 1.0 0.0 0 0
− a bit 0.0 1.0 0.0 0.0
− a lot 0.0 0.0 1.0 0.0
− everything 0 0.0 0.0 1.0

take test − − 1.0 0.0 0 0

28/ 43

Studentbot Policy

tired

knows

no

knows

verya_bit

party

nothing

study

a_bit

take_test

a_lot everything nothinga_bit

sleep

a_lot everything

29/ 43

Partially Observable Markov Decision Processes
(POMDPs)

A POMDP is like an MDP, but

some variables are not observed . It is

a tuple 〈S ,A,T ,R,O,Ω〉

S : finite set of unobservable states

A: finite set of agent actions

T : S × A→ S transition function

R : S × A→ R reward function

O: set of observations

Ω : S × A→ O observation function

R

t−1 t

OO

S S

A

30/ 43

e.g. 1-D Tiger problem

X

"right""left"

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

P(s|b,a)V(b)?

31/ 43

The material after this is optional

32/ 43

Partially Observable Markov Decision Processes
(POMDPs)

A POMDP is like an MDP, but

some variables are not observed. It is

a tuple 〈S ,A,T ,R,O,Ω〉

S : finite set of unobservable states

A: finite set of agent actions

T : S × A→ S transition function

R : S × A→ R reward function

O: set of observations

Ω : S × A→ O observation function

R

t−1 t

OO

S S

A

33/ 43

e.g. 1-D Tiger problem

X

"right""left"

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

P(s|b,a)V(b)?

34/ 43

Value Functions and Conditional Plans

V k+1(b) = max
a

Ra(b) + γ
∑
o

Pr(o|b, a)V k(bao)

V (b) can be represented with a piecewise linear function over the
belief space - pieces are called α vectors

3

5

4
α

α

2

1

α
α

α
V

0 1belief

α 3

α2α 5
α4

ο3

ο1 ο2

ο
3

1ο ο2

4 5

α1
1

2

3

a

a a a

a

35/ 43

e.g. Tiger problem, after zero iterations

p=0
Tiger: left

p=1
Tiger: right

Value

00

2

-10

2

-10

a=listen

a=open lefta=open right

36/ 43

e.g. Tiger problem, after one iteration

p=0 p=1

Value

Tiger: left Tiger: right

00

1.44

-1.8

-7.2

0.36 0.36

-7.2

1.8

-9

-6.84-6.84

-1.8

1.44

-0.36-0.36

-9

1.8
2

-10

-1.6

-13.6

-3

-8.2

-10

2

-8.2

-3

-13.6

-1.6

all generated α vectors

p=0 p=1

Value

Tiger: left Tiger: right

00

1.24561.2456

22

optimal value function

37/ 43

Point-based Value Iteration

1. Generate belief samples to make belief set belief set B

b
2

b
4b

3

b
1 b

5

3

5

4
α

α

2

1

α
α

α
V

0 1belief

2. compute forward-propagated belief states

bao(s ′) =
∑
s∈S

T (s ′|a, s)Ω(o|s ′, a)b(s) ∀b ∈ B

38/ 43

Point-Based Value Iteration II

1. start with one alpha vector: α0 = R(s, a)

2. repeat until converged:
2.1 for each belief sample, b:

Γa
b = R(s, a)+

∑
s′∈S

∑
o∈O

T (s ′|a, s)Ω(o|s ′, a) arg max
αj

αj(s
′)·ba

o(s ′) ∀ a ∈ A, b ∈ B

2.2 Maximize over actions at each b:

α† =
⋃
b∈B

{arg max
Γa
b

(Γa
b · bj)}

39/ 43

Policies

Policy: maps beliefs states into actions π(b(s))→ a
Two ways to compute a policy

1. Backwards search
I Dynamic programming (Variable Elimination)
I in MDP:

Qt(s, a) = R(s, a) + γ
∑

s′ Pr(s ′|s, a) maxa′ Qt−1(s ′, a′)
I in POMDP: Qt(b(s), a)
I Point-based backups make this efficient

2. Forwards search : Monte Carlo Tree Search (MCTS)
I Expand the search tree
I Expand more deeply in promising directions
I Ensure exploration using e.g. UCB

40/ 43

MCTS

Selection Expansion Simulation Backpropagation

Select node to visit
based on tree policy.

A new node is added to
the tree upon selection.

Run trial simulation based
on a default policy (usu-

ally random) from the
newly created node until
terminal node is reached.

Sampled statistics from the
simulated trial is propagated

back up from the child
nodes to the ancestor nodes.

41/ 43

Forward Monte-Carlo Search for POMDPs

procedure GetValue(b(s))

for each action-observation pair a, o:
bao(s ′)← propagate the full belief state forwards
for each action and observation (using stochastic simulation)

if bao(s ′) not at a leaf:
evaluate recursively by further growing the tree:
V a
o ← GetValue(bao(s ′))

else:
create a new leaf for a, o
do a series of single-belief point rollouts
(e.g. propagate a single belief forward stochastically
gathering reward until termination condition is met),
use the total returned value as V a

o .
return R(b(s)) + maxa {γ

∑
o P(o|b(s), a)

∑
s′ V

a
o b

a
o(s ′))}

42/ 43

e.g. Tiger problem, two steps expanded

[0.5, 0.5] 0.918

[0.8, 0.2] 2.04A [0.5, 0.5] − 3 [0.5, 0.5] − 3D [0.2, 0.8] 0C

[0.94, 0.06] 2.84B [0.5, 0.5] − 7.2 [0.5, 0.5] 1.2 [0.5, 0.5] 0

[0.984, 0.016] 0 [0.5, 0.5] − 9.16 [0.5, 0.5] 3.16 [0.8, 0.2] 0

a=list
en*,o=left

a=
op

en
le

ft

a=
open

right

a=listen*,o=right

a=
lis

te
n*

,o
=

le
ft a=

op
en

left

a=
open

right

a=listen*,o=right

a=
lis

te
n,

o=
le

ft a=
open

left

a=open
right*

a=listen,o=right

43/ 43

Next:

Reinforcement Learning Poole & Mackworth (2nd ed.)Chapter
12.1,12.3-12.9

Deep Reinforcement Learning

