Assignment 4: EM and Decision Making Under Uncertainty

CS486/686 – Winter 2020

Out: March 18th, 2020
Due: April 3rd, 2020 5pm

Submit your assignment via LEARN (CS486 site) in the Assignment 4 Dropbox folder.
No late assignments will be accepted

1. [50 pts] Expectation Maximization

Olertawo is a university town in New Zealand in which there is a strange medical condition called Dunetts Syndrome. Dunetts Syndrome comes in two forms: mild and severe (as well as not being there at all). It is known that about half the population of Olertawo have Dunetts, and that about half of those with Dunetts have it in severe form. Dunetts Syndrome has three observable symptoms, Sloepnea, Foriennditis, and Degar spots, all of which may be present if the patient has Dunetts, but with varying frequencies. In particular, it is well known that Foriennditis is present much more often when the condition is in its mild form (it is not as common in severe cases), whereas Degar spots are present much more often when the condition is in its severe form (and not as common in the mild cases). Sloepnea is present in either form of Dunetts Syndrome. However, about 10% of the population have a gene (called TRIMONO-HT/S) that makes it so they hardly ever show symptom Sloepnea (whether they have Dunetts Syndrome or not), but does not affect the other two symptoms. Symptoms Sloepnea, Foriennditis, and Degar spots are sometimes present (but much less often) even if the person does not have Dunetts Syndrome.

(a) construct a Bayesian network (BN) for the domain explained above. Assign priors to each CPT based on the prior information given above. You don’t need to be precise - just make rough guesses as to what the CPTs may be based on the description above.

(b) you are given a dataset from 2000 patients, giving the existence of the three symptoms Sloepnea, Foriennditis and Degar spots, and whether they have gene TRIMONO-HT/S or not. About 5% of the data also has a record of whether the patient actually had Dunetts Syndrome or not. Using the Expectation Maximization (EM) algorithm, learn the CPTs for your BN. Run EM until the likelihood of the complete data (the sum of all your “weights” over Dunetts Syndrome) only changes by 0.01 or less. Start EM from your prior model, but add a small amount δ of random white noise to each parameter. Do this by adding a different randomly generated number $r \in [0, \delta]$ to each probability in each CPT, and then renormalising. So if you have a distribution $[p, 1-p]$ you draw two random numbers δ_1 and δ_2 between $[0, \delta]$ for whatever δ you are using, and then you compute $
abla_{p} \frac{p+\delta_1}{1+\delta_1+\delta_2}, \frac{(1-p)+\delta_2}{1+\delta_1+\delta_2}$ Repeat the EM learning for a range of settings of δ from ~ 0 to 4., and do 20 trials for each setting with different randomizations at the start of each trial (but not at the start of each EM iteration). Use at least 20 values of δ evenly spread in $[0, 4]$. The idea is to evaluate the sensitivity of EM to the initial guess. As δ gets bigger, your initial CPTs will become more and more random, and you should get increasing numbers of trials with low accuracy. If your initial guess is not very good, you may even find that adding a small amount of noise helps.

(c) To validate your learned model, you are given 100 test instances in which it is known whether the patient had Dunetts Syndrome. Make a prediction of whether Dunetts Syndrome is present for each example in the test set based on your learned model using EM and compare with the actual values of Dunetts Syndrome.

The datasets are available on the course webpage. trainData.txt is a file of 2000 training examples with five columns. The first three give the presence/absence of each symptom (in order Sloepnea,Foriennditis,Degar
spots with 0 indicating the symptom is not present, and 1 indicating it is). The fourth column gives the presence/absence of gene TRIMONO-HT/S (with 0 indicating the gene is not present, and 1 indicating it is). The fifth column is -1 if there is no record of Dunetts Syndrome, and 0, 1, 2 if Dunetts Syndrome is recorded as being not present, mild or severe, respectively. testData.txt is the 100 examples for testing, has an additional column giving the severity of Dunetts Syndrome (the last column: 0=none, 1=mild, 2=severe).

What to hand in:
- A drawing of your Bayesian network showing all CPTs
- A printout of your code for doing EM on this model. You don’t have to write code to do EM in general, just for this specific example.
- A graph showing the prediction accuracy on the test set, for each value of δ, giving mean accuracy and standard deviation (error bars) over the 20 trials. Plot both the accuracy before and after running EM.

2. [50 pts] Decision Networks:
The Monty Hall Problem is stated as follows.

Suppose you’re on a game show, and you’re given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what’s behind the doors, opens another door, say No. 3, which has a goat. He then says to you, “Do you want to pick door No. 2?” Is it to your advantage to switch your choice?

The host in this problem always opens a door with a goat behind it, but not the door you chose first, regardless of which door you chose first. You “reserve” the right to open that door, but can change to the remaining door after the host opens the door to reveal a goat. You get as a prize whatever is behind the final door you choose. You prefer cars over goats (cars are worth 1 and goats are worth 0). The car is behind doors 1 and 2 with probability p_1 and p_2, respectively (so is behind door 3 with probability $1 - p_1 - p_2$), and you know what these numbers are.

(a) Design a decision network to represent this problem. Your network should be as small as possible. For instance, the host’s choice has only two possibilities, not three, and your second choice also has only two possibilities (stay or switch). Draw all decision nodes, random nodes, and utility nodes, as well as all information arcs. Clearly state your variables and their interpretation, and show all probability and utility tables explicitly.

(b) Compute the policy of action for the first and second choices by using the variable elimination algorithm for decision networks when $p_1 = p_2 = \frac{1}{3}$. Show all your work including all the intermediate factors created. Clearly indicate the optimal policy (decision function for the first and second choices), and give the expected value of your decisions (this is a single number).

(c) Now do the calculation again, but use $p_1 = 0.8$ and $p_2 = 0.1$. Show the final decision functions and give the expected value.

(d) In the confused host version of the game, the host forgets which door the car is behind, and so takes a chance and opens a door randomly (and you know that his choice is random) but still reveals a goat (by chance). Compute the optimal policy (decision function for the first and second choices), and give the expected value of your decisions (this is a single number). use $p_1 = p_2 = \frac{1}{3}$

What to hand in for Question 2
- a drawing of your decision network from part (a), showing all tables and variable interpretations
- the work done for your variable elimination computation in part (b), and the final policy and values
- the work done for your variable elimination computation in part (c), and the final policy and values
- Your final policy and values for the confused host (part d) question.

2 this is also known as the “earthquake” version where just before opening a door, an earthquake happens and a door swings open because its hinges break, and it just so happens to reveal a goat.