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Benefits of the Approach

1. Vector Symbolic Architectures (VSAs) can write cognitive
models that incorporate probability

a. Provides hypotheses about uncertainty in the brain.
b. Gaps between models and behaviour can guide future work.

2. We can code probability statements to neural networks
a. Exploit low-power computation of neuromorphics.
b. Apply sophisticated Al in edge computing cases.
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Kernel Density Estimators

From a dataset D — (331; Lo, ... 73;'”)
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Kernel Measures Similarity

gaussian kernel, N=50

tophat kernel, N=50

epanechnikov kernel, N=50 exponential kernel, N=50
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“Problems” With KDEs

The amount of memory grows linearly with the number of
observations

The time to compute a probability grow linearly with # of
observations
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The right feature space approximates kernels

kn(x,x') ~ ¢p(x) - op(x')

............
(Rahimi & Recht, 2007) % WATERLOO



The Kernel Trick makes efficient Kernel Machines

(4

1
P(X_V\—— v%(v\r/\h(x)

Vector Symbolic Architectures provide a neurally
plausible feature space

P(X =x) = ¢p(x) - Mp
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Vector Symbolic Architectures
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Symbols are Represented by Vectors

It is a mapping of symbols to vectors:

Such that

Vri,x9 € X
T =Ty — sim(p(x1),P(x2)) = 1
r1 7 x2 = s1m (¢(11), ¢(22)) = 0
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Operators in Vector Symbolic Architectures

Similarity How similar is Ato B? Sim(A, B)

Bundling ORANGE is similar to RED UORANGE = RED + YELLOW
and similar to YELLOW

Binding  STOP is only similar RED STOP — RED ® OCT

and OCT, together

Unbinding RED is the other element of RED — STDP @ DCT

STOP

W UNIVERSITY OF
A Comparison of Vector Symbolic Architectures K. Schlegel, P. Neubert, & P. Protzel @ WATERLOO



VSA Operator Implementations We Used

Similarity Dot product ¢(ZC) ) ¢(y)

Bundling Vector addition é(a}) —I_ é(y)
Binding Circular Convolution ¢(ZU) @ ¢(y)
Unbinding Circular ¢_1 (ZU) @ Cb(ﬂf) = 1

Correlation/Involution

W IIIIIIIIIIII
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Representing Integers in VSAs

¢[n] = ONE ® ONE ® ... ® ONE

n -
= & ONE
i=1

= F ' {F{0oNE}"}
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Fractional Binding - Representing Real and Vector
values

6(x) = F~H{F X))
6(7) = & i (w:)

(Plate, 1997; Grosman, 2016; Frady, Kanerva, Sommer, 2018; Komer & CRIVERSITY OF
Eliasmith, 2020; Dumont & Eliasmith, 2021) % WATERLOO



N
Dot Product Provides a Usable Kernel

%
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o(x) - o(y) ~ | | sinc(ex — yil)
k=1 siveRsiTy oF
N

%> WATERLOO

A short letter on the dot product between rotated Fourier transforms (2020) AR Voelker



"Negative energies and
probabilities should not be
considered as nonsense. They are
well-defined concepts
mathematically, like a negative of
mohney."

- Paul Dirac
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Converting to Probability

PD(X — :C) = IMNaxXx {0, ¢(£IS‘) - Mp,h — f} Glad et al, 2003

2
P’D(X — Qj) p— (é(l‘) . Z Czé(ajz)) Agarawal et al., 2016
x;, €D
1 2 Born Rule*
Pp(X =z) = ” (¢(x) - Mpp)



Converting to Probability

PD(X — :C) = IMNaxXx {0, @(:C) - Mp,h — f} Glad et al, 2003

| True distribution A

ReLU(w - z + b)
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Memory is a Latent Probability Distribution

Mp = — E (%)
T
xX; ED
The distribution is stored in bundles of vector symbols.

We can apply manipulations to bundles to produce probabilistic
statements.
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Construct Networks that Estimate Probability
Distributions
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Unbinding Induces Conditioning

True Conditioned Distributions and FIE Estimates
u—u=-017 uy—pupg=001 pu—4a=0.01 p—pg=0.01 u—u=001 u—pup=001 u—ia=0.18
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Entropy




Mutual Information

¢ (' T ) > H(Y|X=X) N

Mp / H(Y)
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Other Approaches to Probabilistic Modelling Exist

Where we differ:

1. Provide a general and abstract framework for modelling
probabilities

2. Draw a direct connection between cognitive models and probability
statements

3. Provide network architectures for conditioning, marginalization,
entropy, and mutual information
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Applications: Cognitive Modelling

4.8 Bayesian Explanation target:

« How does the mind carry out functions such as inference?

Explanatory pattern:

« The mind has representations for statistical correlations and
conditional probabilities.

« The mind has the capacity for probabilistic computations such as
applications of Bayes’ theorem.

- Applying probabilistic computations to statistical representations
accomplishes mental tasks such as inference.

Although Bayesian methods have had impressive applications to a wide range
of phenomena, their psychological plausibility is debatable because of
assumptions about optimality and computations based on probability theory.

W UNIVERSITY OF
@ WATE R Loo Thagard, Paul, "Cognitive Science", The Stanford Encyclopedia of Philosophy (Winter 2020 Edition),

Edward N. Zalta (ed.), https://plato.stanford.edu/archives/win2020/entries/cognitive-science/



Applications: Robotics
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Bayesian Optimization for Exploration

M, (X)

0%(X)

Estimated Function

N

Variance

True Function

Acqguisition Function

Mutual Information (Ml) is a
common objective function used
in exploration

Gaussian Processes (GPs) are a
convenient, but computationally
intensive tool for computing Ml

We use Fractional Binding and
Bayesian linear regression to
approximate a GP while
improving in memory and time
complexity
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Where do p(x) and o2(x) come from?

Gaussian Process Regression Occupancy Grids
W UNIVERSITY OF
e.g., Contal et al., 2014; Yang et al., 2013; Thompson e.g., Zhang et al., 2020; Arora et al., 2019; AN WATERLOO
and Wettergreen, 2008 Charrow et al., 2015; Bourgault et al., 2002 @



Gaussian Process Bayesian Linear
Regression Regression

— Mean — Mean

104 X Data . x Data

Confidence Confidence

pe(x) = kt(ﬁ)Tct_l.Yt pe(r) = my - ¢(x)

o(x) = k(x,z) — k! (2)C; 'k(x) O'tZ(ZE) = % -+ gb(a})TZtgb(a:)

e.g. Perrone et al., 2017, Harrison et al., 2018,
Raneriee ot a1l 20270



Results - Himmelblau Function
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Summary

1. Vector Symbolic Architectures (VSAs) can be a probabilistic
programming language.

2. We can code exploit this relationship to bring sophisticated
Al to edge/constrained computing via neuromorphic
hardware.
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Future Work

Exploring the difference between exact and biological implementations

P(X =) =ReLU % Z D(x;) - d(x) — &

X, €D

What effect does biological g wnvensi or
implementation have? WATERLOO
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Questions?

michael.furlong@uwaterloo.ca
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