
A large-scale model of the functioning
brain - Supplemental material
1 Materials and methods

1.1 Semantic pointers

We adopt the methods of the Semantic Pointer Architecture (SPA) to construct Spaun (21).

The central kinds of representation employed in the SPA are “semantic pointers.” Semantic

pointers are neurally realized representations of a vector space generated through a compression

method. In the main text, we refer to these representations only as firing patterns, to avoid the

introduction of new theoretical terminology. However, introducing this terminology is helpful

for describing the methods used to construct the Spaun model.

Semantic pointers are constructed by compressing information from one or more other high-

dimensional neural vector representations, which can themselves be semantic pointers. The

newly generated semantic pointer is of a similar or lower dimensionality than its constituents.

Any semantic pointer can be subsequently decompressed (or “dereferenced”) to recover (much

of) the original information.

Semantic pointers are compact ways of referencing large amounts of data; consequently

they function similarly to “pointers” as understood in computer science. Typically, in computer

science a “pointer” is the address of some large amount of data stored in memory. Pointers are

easy to transmit, manipulate and store, because they are a few bytes. Hence they can act as an

efficient proxy for the data they point to. Semantic pointers provide the same kind of efficiency

benefits in a neural setting.

Unlike pointers in computer science, however, semantic pointers are semantic. That is,

they are systematically related to the information that they are used to reference, because they
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were generated via compression from that information. This means that semantic pointers carry

similarity information that is derived from their source, in contrast to an arbitrary index that

does not contain semantic information.

Compression operations used in the construction of semantic pointers can be learned or

defined explicitly. In Spaun, the visual hierarchy employs learned compression, whereas the

working memory and motor hierarchies employ defined compression (see section 1.3). The

decoded conceptual representations shown in similarity graphs (e.g. Figures 2 and 3) are the

dot product between the semantic pointer representation decoded from the neural activity (see

section 1.2) and a labelled, ideal semantic pointers. This is purely for visualization purposes, as

the model itself only processes the underlying neural activity.

1.2 Representing and transforming semantic pointers in spiking neurons

Semantic pointers are “neurally realized,” “compressed,” and “decompressed” (or “derefer-

enced”) representations in a vector space. To characterize both neural representation and neural

computation, the SPA employs the Neural Engineering Framework (NEF) (22). The NEF pro-

vides a set of methods for building biologically plausible models based on a functional speci-

fication of a neural system. These methods have been broadly employed to generate detailed

spiking neural models of a wide variety of neural systems and behaviors, including the barn owl

auditory system (23), parts of the rodent navigation system (24), escape and swimming control

in zebrafish (25), tactile working memory in monkeys (26), decision making in humans (27),

and central functions of the basal ganglia (28,14).

The central idea behind the NEF is that a group of spiking neurons can represent a vector

space over time, and that connections between groups of neurons can compute functions on

those vectors. The NEF provides a set of methods for determining what the connections need

to be to compute a given function on the vector space represented by a group of neurons.
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Suppose we wish to compute the function y = f(x), where vector space x is represented in

population A, and vector space y is represented in population B. To do so, the NEF assumes that

each neuron in A and B has a “preferred direction vector” (29) The preferred direction vector

is the vector (i.e. direction in the vector space) for which that neuron will fire most strongly.

This is a well-established way to characterize the behavior of motor neurons (30), because the

direction of motion – hence the vector represented in the neural group in motor cortex – is

directly observable. This kind of characterization of neural response has also been used in the

head direction system (31), visual system (32), and auditory system (23). The NEF generalizes

this notion to all neural representation.

The spiking activity of every neuron in population A can be written as

ai(x) = Gi[αieix+ J bias
i ] (1)

where ai is the spike train of the ith neuron in the population, G is the spiking neural nonlin-

earity, α is the gain of the neuron, e is the preferred direction (or “encoding”) vector, and J bias

is a bias current to account for background activity of the neuron. Notably, the elements in the

square brackets determine the current flowing into the cell, which then drives the spiking of the

chosen single cell model G. For computational efficiency, we employ a leaky-integrate-and-fire

(LIF) model of neurons in Spaun, but the NEF is defined more generally. Equation (1) describes

how a vector space is encoded into neural spikes. This equation is depicted for a 2-dimensional

vector space in Figure S1.

The NEF proposes that linear decoders can be found to provide an appropriate estimate of

any vector x given the neural activities from the encoding equation. We can write this as a

decoding equation:

x̂ =
N∑
i

ai(x)di (2)

where N is the number of neurons in the group, di are the linear decoders, and x̂ is the estimate
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Figure S1: NEF encoding in two dimensions with four neurons. a) Both dimensions of the
input plotted on the same graph, over 1.2s. The input to the two dimensions is x1 = sin(6t)
(black) and x2 = cos(6t) (gray). b) The spikes generated by the neurons in the group driven
by the input in a). c) The same input shown in the vector space. The path of the input is a
unit circle, where the arrowhead indicates the vector at the end of the run, and the direction of
movement. Older inputs are in progressively lighter gray. The preferred direction vectors of all
four neurons is also shown. d) The firing rate tuning curves of all four neurons. Gains and biases
are randomly chosen. The script for generating elements of this figure is in the supplementary
material (four neurons.py).
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of the input driving the neurons.

The NEF determines this complementary decoding for any given encoding. Specifically,

this decoding found using a least-squares optimization:

E =
1

2

∫
[x−

∑
i

ai(x)di]
2dx (3)

where di are the decoding vectors over which this error is minimized.

In effect, this optimization process replaces learning in most other approaches to construct-

ing neural networks. This optimization is not biologically plausible on its own, although net-

works generated in this manner can also be learned with a spike-based rule (15). In the Spaun

model, all optimizations of this type use 5000 or fewer sample points to find the decoders. This

results in a significant computational savings (several orders of magnitude) over trying to learn

the same function in a spiking network setting.

The decoding process is depicted in Figure S2, where the optimal linear decoders have been

found and used for twenty neurons. Notably, this kind of temporal decoding requires an as-

sumption about the nature of the temporal filter being used. Here we assume that post-synaptic

currents are such filters, and set the time constants to reflect the kind of neurotransmitter re-

ceptors in the connection (e.g., AMPA receptors have short time constants (˜10ms) and NMDA

receptors have longer time constants (˜50ms)).

Such temporal filters map to biophysical processes once we connect groups of neurons to-

gether. Defining the encoding and decoding for groups A and B using equations (1) and (2)

provides a means of connecting groups. For example, we can substitute the decoding of A into

the encoding of B, thereby deriving connection weights

ωij = diαjej (4)

where i indexes the neurons in group A and j indexes the neurons in B. These weights will

compute the function y = x (where y is the vector space represented in B and x is the vector
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Figure S2: NEF decoding in two dimensions with 20 neurons. The inputs in the vector space
are the same as in Figure S1. a) The original input and neuron estimate over 1.2s, with both
dimensions plotted on the same graph over time (black is x1, gray is x2). b) The same simulation
shown in the vector space. Older states are lighter gray. For both a and b, smooth lines represent
the ideal x values, while noisy lines represent the estimate x̂. c) The spikes generated by the 20
neurons during the simulation, and used to generate the decodings shown in a) and b). Encoding
vectors are randomly chosen from an uniform distribution around the unit circle, and gains and
biases are also randomly chosen, as in Spaun. The script for generating elements of this figure
is in the supplementary material (twenty neurons.py).
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Figure S3: Using NEF derived connection weights to compute functions between neural popu-
lations representing 2-dimensional vectors. a) Computing the identity function between A and
B. b) Computing the element-wise square between A and B. These simulations are 1.2s long.
Both populations have 20 neurons, with randomly chosen encoders, gains and biases. The script
for generating elements of this figure is in the supplementary material (vector square.py).
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space represented in A), as shown in Figure S3a. For the more general case, it is possible to

solve for decoders df
i for any function by substituting f(x) for x in equation (3), i.e., solving

E =
1

2

∫
[f(x)−

∑
i

ai(x)d
f
i ]

2dx. (5)

In addition, if the function to be computed is linear, the relevant linear operator can be intro-

duced into Equation (4). The resulting general weight equation for computing any combination

of linear and nonlinear functions becomes:

ωij = αjd
f
i Lej (6)

for any nonlinear function f and NB×NA linear operator L. Computing the nonlinear function

which is the element-wise square of the vector x (i.e., f(x) = [x21, x
2
2, ..., x

2
n] and L = I) is

shown in Figure S3b.

This brief discussion is insufficient to fully introduce the generality of the NEF. However,

showing how to compute linear and nonlinear functions of vector spaces is sufficient for many

neural computations. As these same methods can be used to compute connection weights for

recurrent connections, the NEF also allows for the neural implementation of a wide variety of

linear and nonlinear dynamical systems in recurrent networks (22). In the context of the Spaun

model, these methods are used to realize spiking implementations consistent with the functions

employed in Spaun’s functional architecture.

1.3 Details of Spaun’s architecture

In Figure 1 of the main text, we have diagrammed the anatomical and functional architecture

that underlies the Spaun model. Table S1 characterizes the mapping between these two views

of the model in more detail, defining abbreviations used, the functions of major brain areas

employed, and citations to relevant work. In the remainder of this section we provide more

in-depth descriptions of each of the functional elements from Figure 1b.
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Table S1: The function to anatomical mapping used in
Spaun, including anatomical abbreviations used in the main
text.

Functional element Acronym Full name and description
visual input V1 primary visual cortex: the first level of the vi-

sual hierarchy, tuned to small oriented patches
of different spatial frequencies (63)

V2 secondary visual cortex: pools responses from
V1, representing larger spatial patterns (63)

V4 extrastriate visual cortex: combines input from
V2 to recognize simple geometric shapes (63)

IT inferior temporal cortex: the highest level of the
visual hierarchy, representing complex objects
(63)

information encoding AIT anterior inferior temporal cortex: implicated
in representing visual features for classification
and conceptualization (64)

transform calculation VLPFC ventrolateral prefrontal cortex: area involved in
rule learning for pattern matching in cognitive
tasks (41)

reward evaluation OFC orbitofrontal cortex: areas involved in the rep-
resentation of received reward (43)

information decoding PFC prefrontal cortex: implicated in a wide variety
of functions, including executive functions and
manipulation of working memory (44)

working memory PPC posterior parietal cortex: involved in the tempo-
rary storage and manipulation of information,
particularly visual data (65,37)

DLPFC dorsolateral prefrontal cortex: temporary stor-
age and manipulation of higher level data re-
lated to cognitive control (66,40)

action selection Str (D1) striatum (D1 dopamine neurons): input to the
“direct pathway” of the basal ganglia (67)

Str (D2) striatum (D2 dopamine neurons): input to the
“indirect pathway” of the basal ganglia (67)

STN subthalamic nucleus: input to the “hyperdirect
pathway” of the basal ganglia (68)

VStr ventral striatum: involved in the representation
of expected reward in order to generate reward
prediction error (69)
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Functional element Acronym Full name and description
GPe globus pallidus externus: part of the “indirect

pathway”, projects to other components of the
basal ganglia in order to modulate their activity
(70)

GPi/SNr globus pallidus internus and substantia nigra
pars reticulata: the output from the basal gan-
glia (67)

SNc/VTA substantia nigra pars compacta and ventral
tegmental area: relay signal from ventral stria-
tum as dopamine modulation to control learning
in basal ganglia connections (71)

routing thalamus thalamus: receives output from the basal gan-
glia, sensory input, and coordinates/monitors
interactions between cortical areas (72)

motor processing PM premotor cortex: involved in the planning and
guidance of complex movement (45,73)

motor output M1 primary motor cortex: generates muscle based
control signals that realize a given internal
movement command (74)

SMA supplementary motor area: involved in the gen-
eration of complex movements (73)

Visual hierarchy The visual hierarchy is a model of the ventral visual stream, including ar-

eas V1, V2, V4, and IT. The model is constructed by training Restricted Boltzmann Machine

(RBM) based auto-encoders (6) on natural images and the Modified National Institute of Stan-

dards and Technology (MNIST) handwriting database1. The methods used result in a noise

tolerant and sparse RBM (33). The network has a 28×28 dimensional visible layer (the 728-

dimensional input image) and consecutive hidden layers of 1000, 500, 300 and 50 nodes. Like

the visual system, the first layer of the cortical visual system (V1) is higher-dimensional than

the actual input image. Hence we refer to it as an image-based space to distinguish it from the

original image space.

1The database can be downloaded at http://yann.lecun.com/exdb/mnist/.
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Data

Model

a)

b)

Figure S4: A sample of tuning curves of neurons in the model. a) These learned model rep-
resentations have a variety of orientations, spatial frequencies, and positions, like those found
in V1. b) A more direct comparison of data and model tuning curves from V1. The analytical
methods used to generate these images are identical for the model and monkey data (monkey
data adapted from (61).)
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This network learns the compression needed to reduce the original image to a 50-dimensional

semantic pointer. These layers define vector spaces that can be embedded into spiking neurons

using the NEF methods. The connections between these layers define the vector space trans-

formations that can be implemented in the NEF connection weights. Example tuning curves

from layer V1 of an RBM embedded into spiking neurons using the NEF are shown in Figure

S4. To enable running the full Spaun model on available hardware, Spaun only implements IT

in spiking neurons. The other layers compute the transformations between vector spaces in the

original RBM, although neural dynamics are included in this computation. Implementing these

transformations in spiking neurons would require approximately an additional 250,000 neurons

in Spaun. This made it infeasible to simulate the model on available hardware (see section 1.4).

Motor hierarchy The methods used to construct the motor hierarchy are described in detail

in (34). In brief, the hierarchy consists of an optimal controller in the workspace that deter-

mines control commands that are then projected to joint angle space. This model of the motor

hierarchy has been shown to account for the behavioral effects of a variety of motor system dis-

turbances, including Huntington’s, Parkinson’s, and cerebellar damage. In addition, it has been

shown to qualitatively reproduce the dynamics of spiking neurons observed in monkey cortex

during similar reaching tasks (34).

Working memory The working memory hierarchy is a central element of Spaun. It consists

of several distinct memory systems, each of which can store semantic pointers. Some employ

compression and some do not, but they have been grouped into a single subsystem for simplicity.

All are recurrent attractor neural networks, based on the multidimensional working memory

circuit of (26). This circuit has been shown to reproduce the variety of single cell dynamics

observed in somatosensory working memory, and recent extensions of this work account for

over 95% of the variance in a population of 800 cells (35). Anatomically, the functions of
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the working memory hierarchy in Spaun cover large portions of prefrontal and parietal cortex

(36,37).

The networks that employ compression use circular convolution to perform compression

(29). This is an example of a defined compression operator for generating semantic pointers

(this operator can also be learned in a spiking network (29)). This operator can be thought of

binding two vectors together (38). Consequently, serial memories are constructed by binding

the semantic pointer of the current input with its appropriate position, e.g.,

MemoryTrace = Position1⊗ Item1 + Position2⊗ Item2 + ... (7)

where Item semantic pointers are the semantic pointers to be stored (numbers in Spaun), and

Position semantic pointers are internally generated position index semantic pointers. Posi-

tion indices are generated using random unitary base semantic pointers, Base, where the next

position index is generated by successive convolution, e.g.,

Position1 = Base

Position2 = Position1⊗Base

Position3 = Position2⊗Base
... .

This allows for the generation of as many positions as needed to encode a given list. A unitary

vector is one which does not change length when it is convolved with itself. In the figures in the

main text Position1 is written as P1, and so on.

The overall memory trace is a sum of this encoding through two memory pathways, which

have different decay dynamics. In our past work, this approach to working memory has been

shown to reproduce human results on 7 different working memory experiments (including free
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recall, confusable item recall, delayed recall, backward recall, etc.), while being based on an

independent fit of only two parameters (39).

Anatomically, working memory responses are found in large areas of parietal and frontal

cortices, including PPC and DLPFC (37,40).

Information encoding The information encoding subsystem maps semantic pointers gen-

erated from images to conceptual semantic pointers that encode progression relations. This

information encoding is used for most tasks except the copy drawing task, where it is the visual

features of the input, not its conceptual properties, that matter for successful completion of the

task.

The conceptual semantic pointers for numbers are constructed in a similar manner to those

for position. That is,

One = Base

Two = One⊗ AddOne

Three = Two⊗ AddOne
... .

where Base and AddOne are random unitary semantic pointers.

Anatomically, this mapping is likely implemented in later parts of the ventral visual stream

such as AIT.

Transformation calculation The transformation calculation subsystem is a recurrent attrac-

tor network similar to the working memory elements, with an input transformation. Its purpose

is to compute the transformation between its inputs and store a running average of the result.

As a result, this running average is the inferred relation that exists between all of the inputs it
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is shown. This subsystem is most critical for the RPM and rapid variable creation tasks. fMRI

studies have suggested that rule learning of this kind takes place in VLPFC (41).

We are not aware of any past work outside of our group that has employed this method for

solving such tasks (42).

Reward evaluation This subsystem determines if the current input in the current context has

an associated reward. In Spaun this means that during the reinforcement learning task, if a ‘1’

is shown after a guess, a positive reward signal is generated and sent to the ventral striatum

and subsequently if the reward is unpredicted, to the dopamine system in the basal ganglia.

All further reward processing is done in the basal ganglia. This mapping from visual input to

reward is consistent with the function of OFC involvement in corticostriatal loops (43).

Information decoding The information decoding subsystem is largely used to extract infor-

mation that is useful for motor control from the working memory hierarchy. That is, when

information is encoded in working memory in the form shown in Equation 7 specific items

must be extracted so that they can be used to drive behavior. This sort of function is assumed

to be intermediate between working memory and motor areas, and hence is expected to be

anatomically located in medial PFC (44).

Motor processing The motor processing subsystem typically takes the results from the in-

formation decoding subsystem and helps to present it to the motor hierarchy for driving the

arm. Consequently it is important for timing the presentation of decoded output to ensure that

recently sent motor commands are completed before new ones are presented. Premotor cortex

is involved in this kind of motor planning (45).
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Table S2: Example input/output mappings for each task. Randomly selected handwritten digits
not used during training are used in the first two tasks. If Spaun does not know the proper
response, it will write a dash (see, e.g., serial working memory).

Task Name Input Examples Typical Output
Image recogni-
tion

A1 [ 3 ? 3

Copy drawing A0 [ 4 ? 4
Reinforcement
learning

A2 ? 1 ? 0 ? 0... 0 0 1

Serial working
memory

A3 [3 2 4 3 5] ?
A3 [4 2 5 3 4 2] ?

3 2 4 3 5
4 2 5 – 4 2

Counting A4 [3] [2] ?
A4 [0] [7] ?

5
7

Question
answering

A5 [4 3 8 6] [K] [4] ?
A5 [4 3 8 6] [P] [4] ?

1
6

Rapid variable
creation

A6 [3312] [12 ][3392] [92] [3362] [62] [3342] ?
A6 [342] [2 ][345] [5] [347] [7] [340] ?

4 2
0

Fluid reason-
ing

A7 [5] [55] [555] [2] [22] [222] [1] [11] ?
A7 [4] [3] [2] [8] [7] [6] [4] [3] ?

1 1 1
2

1.4 Simulation details

Table S2 shows examples of the kinds of inputs that Spaun receives for each task, and the kinds

of responses that it provides.

All neurons used in the simulations are leaky-integrate-and-fire (LIF) model neurons. The

membrane time constant was set to 20ms, the absolute refractory period to 2ms, and maximum

firing rates were chosen from a uniform distribution between 100-200Hz. Encoding vectors are

chosen from an uniform distribution around the unit hyper-sphere. AMPA glutamate receptors

were taken to have a time constant of 10ms, and were used for most projections in the model,

except recurrent projections, which were taken to employ NMDA receptors with a time constant

of 50ms. Projections in the basal ganglia employed inhibitory GABA receptors as anatomically

appropriate, with a time constant of 8ms. Dopamine projections used a time constant of 10ms.

All simulations were run using the freely available Nengo simulation software package
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(http://www.nengo.ca). The full model can be downloaded from the Nengo model

archive (http://models.nengo.ca/spaun).

The simulations were run on the clusters Orca and Kraken of the SharcNet High Perfor-

mance Computing Consortium (http://sharcnet.ca/). These were the only available

computers that could load the model, as it occupies approximately 24GB of RAM (to view the

structure of the model, the network can be constructed with very few neurons, requiring ap-

proximately 2GB of RAM; see the readme file for details). The simulations take approximately

2.5h of processing time for 1s of simulated time.

2 Supplemental results

2.1 Videos

Videos of all tasks can be viewed at http://nengo.ca/build-a-brain/spaunvideos,

and are included in the Supplemental Online Material.

2.2 Supporting figures

Figure S5a shows a single run on a reinforcement learning task. This demonstrates the behav-

ioral flexibility of the model, as it solves a three-armed bandit task by adjusting its behavior

given changing contingent rewards. In other work, we have shown that the detailed spike pat-

terns found in the striatum of this basal ganglia model matches those found in rats performing

this same task (14). As well, figure S5b shows many more trials than in Figure S5a. This

helps to demonstrate that changing contingencies are indeed learned by the model. Over 60

trials, each of the arms becomes the most highly rewarded for a period of time, and the model’s

choice probability tracks those changes.

Figure S6 provides another example pattern that Spaun can discover in the RPM task. In

general, any pattern that exploits either numerical ordering relations, or object number relations
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Figure S5: Choice probability in a three-armed bandit task in Spaun over 60 trials. Every 20
trials, the probability of reward for the three choices changes, as indicated at the top of the graph
(e.g. 0:0.12 indicates that choice 0 has a 12% chance of being rewarded). The probability of
choosing each action is indicated by the continuous lines. These probabilities are generated by
averaging over a 5-trial window. Reward delivery during the run is indicated by the ‘x’ marks
along the top of the graph. Note that Spaun learns to vary its selected choice as appropriate for
the changing environmental reward contingencies.
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Figure S6: An additional example of fluid reasoning in Spaun. The time course of Spaun’s
activity while inferring the pattern provided in the input images. This figure is plotted using the
same methods as in Figure 2 in the main text. Color is used to distinguish conceptual decodings
(also labelled). Spaun is able to complete the final set of three inputs by having learned the
appropriate transformation from the first two sets. It learns this transformation by comparing
the appropriate elements of DLPFC1 and DLPFC2.

will be discovered by the model, whether they be increasing or decreasing.

Figure S7 shows the rapid variable creation task for two example runs. This task was iden-

tified as one which no contemporary neural model could perform as quickly as humans (i.e.,

within 2 seconds) (20). Spaun provides an answer after 150ms of simulated time, for a variety

of patterns.

Figure S8a shows results from the counting task. Specifically, it shows the length of time

required by the model to produce a response, as a function of the number of positions counted.

The model reproduces the expected linear relationship between subvocal counting and response

times (46). Spaun’s count time per item (419±10 ms) lies within the human measured range of

344± 135 ms for subvocal counting (47), although the variance is lower. This is likely a result
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Figure S7: Time course plots for rapid variable creation. All graphs are plotted as described in
figure 2. Color is used to distinguish conceptual decodings (also labelled). Both graphs provide
examples of Spaun learning how to complete a syntactic pattern given input/output examples.
The examples are stored across DLPFC1 and DLPFC2, and the pattern is learned by comparing
these in VLPFC. a) A simple syntactic pattern where the last of two items is the variable item.
b) A more complex pattern, where the variable item is second last in a string of four items.
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Figure S8: Population level behavioral data for two Spaun tasks. a) Reaction time as a function
of the number of positions counted in the counting task. Error bars indicate one standard devi-
ation over 5 simulated individuals, each doing all five count lengths. These reaction times are
consistent with human reaction times, and correspondingly show increasing variability with list
length. b) Predicted accuracy as a function of queried item position for both query types in the
question answering task. Error bars indicate 95% confidence intervals for 10 simulated individ-
uals, each queried at every position and for each type of question. Spaun predicts that humans
will show no effect of question type, but show primacy and recency effects on the question
answering task.

of the relative simplicity of the model. Interestingly, the model reproduces the well-known

psychophysical regularity called Weber’s law (i.e., that the variance in response time increases

with the mean response time (48)), typically evident in such tasks. We suspect that this feature

of the model is present because, despite not adding noise to the simulation, it is highly stochastic

because of the many nonlinearities present. A stochastic system will tend to perform a random

walk, which diffuses over time, generating a higher variance after longer temporal delays.

Figure S8b shows the accuracy rates of the model on the question answering task for lists

of length 7. Cognitive modelers have long used the paradigm of question answering to evaluate

knowledge representation – a model’s ability to flexibly represent and access structured infor-

mation (e.g., (49)). Spaun is able to perform this task, but human data for this specific task is

not available. Consequently, Spaun produces the behavioral prediction that, while primacy and

recency effects will be evident, the type of question asked will not affect accuracy.
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Figure S9: The expected change of similarity in neural firing during a serial working memory
task. Each line indicates the expected similarity between a lone encoding of that item, and an
encoding of that item in a list of length one to five. a) Serial encoding as used in Spaun. b)
Slot-based encoding proposed by other models. Error bars are 95% confidence intervals.

A second prediction of the Spaun model comes from its means of implementing working

memory. Spaun’s implementation presumes a single memory into which items are added after

being tagged with position information (section S1.3). This contrasts with models of working

memory that assume a set number of independent ‘slots’ used to store subsequent items (50).

Figure S9 compares the expected change in neural activity patterns in DLPFC during a serial

working memory task. The figure shows the expected similarity between neural population

activity while remembering a list of one to five items, and each of the items remembered alone.

This figure was generated by directly comparing vector implementations of semantic pointers.

Spiking activity can also be extracted from Spaun for direct comparison to electrophysiological

experiments (not shown).

Figure S10 provides three examples of Spaun’s responses to invalid or unusual input. This

figure helps demonstrate the robustness of the model.

Figure S11 shows the results of an analysis on the working memory model spike trains

that is identical to the analysis performed on spike trains recorded from monkeys during a
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Figure S10: Invalid input in Spaun. a) A series of four tasks is identified before any valid input
is provided. Nevertheless, Spaun performs the last identified task (serial working memory)
correctly. b) Spaun is asked to complete an RPM matrix half way through the second row. It
uses the information provided to give a best guess, which in this case is correct. c) A completely
invalid question is asked in the question answering task (there is no “zero” position). Spaun does
not respond, but proceeds normally to the subsequent task.
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Figure S11: Oscillation frequency profiles during a working memory task. Spike spectrograms
for a single neuron (top) and the population average (bottom) during a simple working memory
task. White dashed lines indicate the stimulus presentation and recall cues. A) Data from
macaque (adapted from (62)). b) Model spike trains are processed using the same algorithms
as for the animal data. Both single cell responses show broadband power increase during the
delay period. Both population averages show broad gamma band increases during delay as well
as low frequency pulses during the start and end of the delay period.

working memory task. Both show a similar shift in the single cell and population frequency

analyses between pre-delay and delay periods. Specifically, both the model and the data show

a shift from minimal frequency response before the stimulus to stimulus-driven low frequency

information (at the first white line) to significantly higher frequency content during the delay

period, with a final reduction after response (at the second white line). Both population averages

show frequency content mainly in the gamma range.

Table S3 shows the coefficient of variation (C.V.) of spikes recorded from neurons while

Spaun performed the rapid variable creation task. In general, C.V.s of cortical and subcortical
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Table S3: Mean coefficient of variation (C.V.) and 95% confidence intervals (C.I.) across all
areas recorded during the rapid variable creation task. Abbreviations as in table S1.

Area Mean C.V. 95% C.I.
IT 1.26 (1.11-1.41)

PFC 0.25 (0.23, 0.27)
DLPFC/PPC 0.98 (0.86, 1.10)

Str 2.83 (1.85, 4.12)
GPi 1.48 (1.00, 2.12)

VLPFC 0.40 (0.30, 0.52)
SMA 0.59 (0.50, 0.71)

neurons are between 0.5 and 2 (51,52). See section S2.4 for further discussion.

2.3 Statistics

For the RPM task, it is somewhat difficult to compare the model to human data because the

task itself is slightly different. Spaun must generate the correct answer, but in the RPM, only

a match to one of 8 possible answers must be indicated. To enable a comparison, we com-

pute a match-adjusted success rate that assumes that Spaun narrows the response to two of the

eight possibilities and randomly chooses between them. Human subjects average 89% correct

(chance is 13%) on the Raven’s matrices that include only an induction rule (5 of 36 matrices;

(16)). Spaun is similarly good at these tasks, achieving a match-adjusted success rate of 88%.

The raw accuracy rate of Spaun is 75% (95% CI of 60% to 88%) over 40 runs. Assume that

Spaun’s answer on its error trials would pick the correct match 50% of the time, the match-

adjusted rate is 75%+25%×50% = 88%.

All reported confidence intervals were generated using 3000 bootstrapped samples.
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2.4 Discussion
Limitations of Spaun

In the main text, we list various limitations of the model, but note that many of these limitations

can be overcome using the same methods as were to used to construct Spaun. For instance,

missing functions can be included in a larger model that encompasses more brain areas and

includes more of the connectivity found in real brains. In the case of attention, we have devel-

oped a recent model that can be directly integrated into Spaun (53). Similarly, the limitation

of the representations to the space of digits is a result keeping the complexity of the model

manageable. However, the methods used for training the visual system and representing con-

cepts can scale to more complex cases (21). In general, increasing the complexity of the model

(adding neurons, anatomical areas, etc.) is consistent with the general methods used for Spaun.

However, we do not mean to suggest that these changes will be simple, but rather that we are

unaware of in principle limitations to addressing these kinds of challenges.

One of the limitations we mention in the main text that requires additional discussion is the

variability of neural spiking in the model. As shown in Table S3, the C.V.s of neurons in 5 of 7

areas are consistent with the expected C.V.s of cortical and subcortical neurons. However, C.V.s

are blunt metrics of variability, and closer inspection of spike rasters (figure S12) make it clear

that the neurons are distinguishable from neural recordings by their regularity, and higher than

expected firing rates. Consequently, Spaun does not always display the appropriate degree of

single cell variability and spike rates. But, past work has demonstrated that the observed variety

of neural variability can be fully reproduced with appropriate spike rates in NEF models (54).

However, doing so requires more neurons, which currently presents too high a computational

cost to allow us to run Spaun on available computers.

We also note that the sharp transitions in the raster plots in most figures are present for

three reasons: 1) we are showing very long run times; and 2) we have sorted neurons so similar
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Figure S12: Sample spike trains from Spaun. These graphs show a close up view of the spike
trains during a run of the rapid variable creation task. Coefficients of variation for these same
areas are reported in table S3. In a) and b), neurons were not sorted and are shown for 500ms.
However, only neurons with greater than 10% variability during the task were randomly selected
from. In c) neurons were also completely randomly chosen from the area.
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responses are near one another. Figure S12 does not make these assumptions, resulting in graphs

more typical of neural data plots. More detailed comparisons between the mechanisms used in

Spaun experimental raster data can be found in (14,26).

Learning

While Spaun is running, learning (i.e., updating future behavior based on past experience) oc-

curs using two main mechanism. One is changing connection weights (on the RL task), the

other is by updating neural activities that are sustained over time (on the RPM and rapid vari-

able creation tasks). These are only two of the many neural mechanisms that support learning

in the brain, and the model stands to be improved by including more.

In neural modeling, learning is also often used as a method of constructing the model. In the

main text we mention that all elements of Spaun can be learned using a spike-based rule. The

learning rule and other details are reported in (15). More specifically, that paper demonstrates

learning of attractor networks such as Spaun’s working memory, the learning methods used to

generate the visual system is in (33), and the learning of the compression operator for binding

is shown in (29). Additional examples of using this rule can be found in (55). While the rule

proposed in (15) is spike-based, general, and biologically plausible, it also relies on an error

signal. While many error signals have been identified in the brain, it remains a significant

challenge to determine how they could be generated and targeted so as to learn a structure as

complex as Spaun.

We generally do not use learning to generate model elements because the optimization

method described in section S1.2 is significantly more computationally efficient. However,

learning with the spike-based rule has been shown to be marginally more effective (15). No-

tably, learnability may also come at a very high cost as the dimensionality of the spaces being

learned in increases. We have not fully explored the resource scaling with complexity of the
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learned space. As discussed in the main text, we believe that ultimately learning the model one

element at a time does not reflect the challenge of learning faced by biological systems, which

must learn in the context of the whole system. This challenge is addressed by research on neural

development, for which Spaun has little to contribute as it stands, and by demonstrating robust

learning in a complex, largely developed brain, which Spaun does minimally with the RL task.

In sum, Spaun does not learn in nearly as a sophisticated manner as people do. However,

it has elements of robust weight-based learning (in the RL task), short-term adaptation (in the

RPM and rapid variable creation tasks), and all elements of Spaun are learnable by biologically

plausible mechanisms. Most models in computational neuroscience focus only on this last fea-

ture (i.e., learning of relatively local mechanisms). Consequently, we believe that Spaun can

provide a platform to greatly improve our understanding of the breadth of learning in neurobi-

ological systems.

The relation between NEF and Spaun

The Neural Engineering Framework (NEF) is described in more detail in S1.2. This set of

methods allows the implementation of arbitrary, dynamical vector functions in spiking net-

works. However, the NEF does not uniquely determine how functions are to be mapped to a

neural architecture, or which functions are relevant for understanding how the brain functions.

Consequently, the structure of Spaun is an independent hypothesis about neural organiza-

tion. That is, Spaun identifes a specific set of functions, and their organization, that exemplify a

detailed hypothesis about what functions the brain computes. The NEF is silent on such matters.

The more general architecture on which Spaun is based is described in (21).

Errors in Spaun

One of the interesting aspects of Spaun is its ability to reproduce the statistics of errors pro-

duced in human behaviour. We have not systematically analyzed all sources of error, but it is
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clear that errors arise from several sources, as in the real brain. These include noise (i.e., un-

predicatable fluctuations in neuarl activity), imperfect optimization of various mappings (i.e.,

the optimization depends on the specific, randomly chosen, tuning curves in any instantiation of

the model), interference between concurrent representations (e.g., adding more, similar memo-

ries to working memory), the particular tiling of the represented space by neuron tuning curves,

and differences in the quality of the input (i.e., variability in the input can change error rates in

tasks like classification).

These error rates can be systematically changed by changing the number of dimensions rep-

resented at various points in the model, by adding or removing neurons (42), or by changing

the optimization in various ways (e.g., weighting the optimization). All NEF optimizations are

done with an equal weighting across the optimized domain. In addition, we have not char-

acterized the relationship between these variables and behavioral error rates in Spaun in detail.

However, (22) discusses the relationships between the number of neurons and representation di-

mensionality and representational quality, computable functions, and dynamic stability in some

detail.

Predictions and scaling

Two as yet untested predictions we have derived from the Spaun model are exemplified in

Figures S8 and S9 and the surrounding discussion. In addition to these task specific predictions,

the architecture of the model includes general expectations about how the system will change as

additional tasks are added to the model’s repertoire. For instance, as long as the same cortical

elements are used, only the basal ganglia must be changed to add a new task. As a specific

example, the model with and without the RPM task only changes in size by 900 neurons in

the basal ganglia and thalamus (which are used to identify the task and help re-structure the

information flow to perfom the additional task). In contrast, adding a new cortical component
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would be much more demanding. For instance, an additional working memory subnetwork

would require about 200,000 additional neurons.

Dynamics in Spaun

One of the surprising features of the model is that its dynamics are largely determined by four

synaptic parameters (plus the network architecture). Specifically, throughout the model we

have set neurotransmitter time constants to be 50ms for NMDA (56), 8ms for GABA (57),

and 10ms for both AMPA (58) and dopamine (59). These are set by considering empirical

data, not parameter fitting. Nevertheless, Spaun is consistent with a wide variety of behavioural

(figure S8), population (figure S11), and single cell (table S3 and figure S12) dynamics data. In

past work, we have shown that shifting these parameters outside of their empirically consistent

ranges will remove this feature of the model (28). As a consequence, the dynamics of the full

model are highly constrained by these dynamical properties of synapses.

This has been a consistent feature of predecessor models, and has been shown to allow

predictions of fMRI dynamics (60), and account for cortical (26) and subcortical (14) single

cell dynamics.

This wide variety of detailed timing data available from the model is ripe for comparison

to experimental results. Unlike with smaller scale neural models, Spaun predicts such data

across many stages of reasonably complex tasks. Only recently has detailed single cell timing

data across several areas become available. This kind information provides excellent tests of

Spaun’s architectural assumptions.

In a more practical vein, the dynamical constraints in Spaun have mandated that stimuli be

shown to the model for at least 150ms to be encoded into working memory, which is consistent

with a lower limit on human working memory tasks (blanks in between stimuli presentation are

an assumption of the model that is important in order to know when the same digit is presented
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twice in a row). Because we attempt to minimize run times for tasks due to computational costs,

we have generally shown the model dynamically regular input. This rhythm can be broken with

no negative consequences – other than expected consequences such as working memory decay

– for model performance.

This kind of temporal invariance of the model arises from the fact that much of the process-

ing depends on stable, controlled dynamics of various attractor networks. Consequently, the

limitations on delay are coupled to the stability of elements such as the working memory. In

Spaun working memory decays with a time constant of about 5s. Importantly, no “re-learning”

is needed as the presentation dynamics change.
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