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A surprisingly sticky belief is that a machine learning model merely reflects existing algorithmic bias in the
dataset and does not itself contribute to harm. Why, despite clear evidence to the contrary, does the
myth of the impartial model still hold allure for so many within our research community? Algorithms
are not impartial, and some design choices are better than others. Recognizing how model design im-
pacts harm opens up new mitigation techniques that are less burdensome than comprehensive data
collection.
Moving beyond ‘‘algorithmic bias is a data problem’’
In the absence of intentional interventions, a trained machine

learning model can and does amplify undesirable biases in the

training data. A rich body of work to date has examined these

forms of problematic algorithmic bias, finding disparities—

relating to race, gender, geo-diversity, and more—in the perfor-

mance of machine learning models.1

However, a surprisingly prevalent belief is that a machine

learningmodel merely reflects existing algorithmic bias in the da-

taset and does not itself contribute to harm. Here, we start out

with a deceptively simple question: how does model design

contribute to algorithmic bias?

A more nuanced understanding of what contributes to algo-

rithmic bias matters because it also dictates where we spend

effort mitigating harm. If algorithmic bias is merely a data prob-

lem, the often-touted solution is to de-bias the data pipeline.

However, data ‘‘fixes’’ such as re-sampling or re-weighting the

training distribution are costly and hinge on (1) knowing a priori

what sensitive features are responsible for the undesirable bias

and (2) having comprehensive labels for protected attributes

and all proxy variables.

For real-world datasets, satisfying both (1) and (2) is more

often than not infeasible. For domains such as images, language,

and video, the high dimensionality of the problem and large size

of modern datasets make it hard to guarantee all features are

comprehensively labeled. Even if we are able to label sensitive

attributes at scale such as gender and race, algorithms can still

leverage proxy variables to reconstruct the forbidden label. Data

collection of even a limited number of protected attributes can be

onerous. For example, it is hard to align on a standard taxon-

omy—categories attributed to race or gender are frequently en-

coded in inconsistent ways across datasets.2 Furthermore, pro-

curing labels for these legally protected attributes is often

perceived as intrusive leading to noisy or incomplete labels.3,4

If we cannot guarantee we have fully addressed bias in data

pipeline, the overall harm in a system is a product of the interac-

tions between the data and our model design choices. Here,

acknowledging the impact of model design bias can play an

important role in curbing harm. Algorithms are not impartial,

and some design choices are better than others. Recognizing

how model design impacts harm opens up new mitigation tech-
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niques that are far less burdensome than comprehensive data

collection.

The impact of our model design choices
If you replace algorithmic bias with test-set accuracy, it becomes

a much more acceptable stance that our modeling choices—

architecture, loss function, optimizer, hyper-parameters—

express a preference for final model behavior. Most students

of machine learning are familiar with some variation of Figure 1,

where varying the degree of a polynomial function leads to

trained functions with differing levels of overfitting to the training

data.

We are well-versed in the connection between function choice

and test-set accuracy because objective functions such as

cross-entropy or mean squared error reflect our preference to

optimize for high test-set accuracy. Standard loss functions do

not explicitly encode preferences for other objectives we care

about such as algorithmic bias, robustness, compactness, or

privacy. However, just because these desiderata are not re-

flected does not mean they have ceased to exist. Turing award

winner Donald Knuth said that computers ‘‘do exactly what

they are told, no more and no less.’’ A model can fulfill an objec-

tive in many ways, while still violating the spirit of said objective.

Model design choices made to maximize test-set accuracy do

not hold static other properties we care about such as robust-

ness and fairness. On the contrary, training a parametric model

is akin to having a fixed amount of materials to build a house

with. If we decide to use more bricks building a bigger living

room, we force the redistribution of the number of bricks avail-

able for all other rooms. In the same vein, when we prioritize

one objective, whether that be test-set accuracy or additional

criteria such as compactness and privacy, we inevitably intro-

duce new trade-offs.

A key reason why model design choices amplify algorithmic

bias is because notions of fairness often coincide with how un-

derrepresented protected features are treated by the model.

Buolamwini and Gebru5 find that facial-analysis datasets reflect

a preponderance of lighter-skinned subjects, with far higher

model error rates for dark-skinned women. Shankar et al.6

show that models trained on datasets with limited geo-diversity

show sharp degradation on data drawn from other locales. Word
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Figure 1. Our model choices express a preference for model behavior. An example most students of machine learning will recognize is the
plot between the degrees of a polynomial (a) and the degree of overfitting.
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frequency co-occurrences within text datasets frequently reflect

social biases relating to gender, race, and disability.7

In all these cases, the algorithmic bias a model learns can be

attributed to the relative over-and-under representation of a pro-

tected attribute within a dataset category. Most real-world data

naturally have a skewed distribution similar to the one visualized

in Figure 2, with a small number of well-represented features and

a ‘‘long-tail’’ of features that are relatively underrepresented. The

skew in feature frequency leads to disparate error rates on the

underrepresented attribute. This prompts fairness concerns

when the underrepresented attribute is a protected attribute

but more broadly relates to the brittleness of deep neural

network performance in data-limited regimes. Understanding

which model design choices disproportionately amplify error

rates on protected underrepresented features is a crucial first

step in helping curb algorithmic harm.

Measuring complex trade-offs
In complex systems, it is challenging to manipulate one variable

in isolation and foresee all implications. Early televised drug pre-

vention advertisements in the 2000s led to increased drug use.8

The extermination of dogs and cats during the Black Death inad-

vertently helped spread the disease by accelerating the growth

of rat populations.9 The belief that model design merely reflects

algorithmic bias in the dataset can be partly ascribed to the dif-

ficulty of measuring interactions between all the variables we

care about.

This is changing. There is new urgency to scholarship that

considers the interactions between multiple model desiderata.

Recent work has proposed rigorous frameworks to understand

and measure the impact of trade-offs on algorithmic bias. For

example: How does optimizing for compactness impact robust-

ness and fairness? What about the trade-off between privacy

and fairness?

Recent work has shown that design choices to optimize for

either privacy guarantees or compression amplify the disparate

impact between minority and majority data subgroups such
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that the ‘‘rich get richer and the poor get poorer.’’ Bagdasaryan

et al.10 show that differential privacy techniques such as gradient

clipping and noise injection disproportionately degrade accu-

racy for darker-skinned faces in the Diversity in Faces (DiF) data-

set and users writing tweets in African-American English. My

own work with colleagues measures the impact of popular

compression techniques like quantization and pruning on low-

frequency protected attributes such as gender and age and finds

that these subgroups are systematically and disproportionately

impacted in order to preserve performance on the most frequent

features.11,12

These are not the only design choices that matter—evenmore

subtle choices like learning rate and length of training can also

disproportionately impact error rates on the long-tail of the data-

set. Work on memorization properties of deep neural networks

shows that challenging and underrepresented features are learnt

later in the training process and that the learning rate impacts

what is learnt.13 Thus, early stopping and similar hyper-param-

eter choices disproportionately and systematically impact a sub-

set of the data distribution.

A key takeaway is that our algorithms are not impartial. Some

design choices are better than others. Given the widespread use

of compression and differential privacy techniques in sensitive

domains like health care diagnostics, understanding the distribu-

tion of error is of paramount importance for auditing potentially

adverse harm to human welfare. Here, the trade-offs incurred

by pruning or gradient clipping may be intolerable given the

impact on human welfare. While these results suggest caution

should be used before using these techniques in sensitive do-

mains, it also provides a valuable roadmap to mitigate harm.

For example, a formidable hurdle given the large size of mod-

ern training sets is even knowing what to look at to audit for

problematic biases. Reasoning about model behavior is often

easier when presented with a subset of data points that are

more challenging for the model to classify. We can leverage

our knowledge about how model design choices exacerbate

harm to surface parts of the distribution most likely to require



Figure 2. Most natural image datasets exhibit a long-tail distribution with an unequal frequency of attributes in the training data. Notions of
fairness often coincidewith how underrepresented sensitive attributes are treated by themodel. Ourmodel design choices can excacerbate
or curb disparate harm on the long-tail.
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human auditing. Compression identified exemplars (CIEs) are

an example of this human-in-the-loop tooling, surfacing the

data points disproportionately impacted by compression.

These examples are a small subset of the overall distribution

and are identified by comparing predictive behavior of a com-

pressed and non-compressed model (so do not require pre-ex-

isting labels for all the features). Inspecting these examples di-

rects limited human auditing time to the most challenging

examples and, as shown by recent work by Joseph et al.,14

can also be used to directly optimize for a model that is both

compact and less harmful.
Why a more nuanced discussion of the origins of bias
matters
Diffusion of responsibility is a socio-psychological phenomenon

where an individual abstains from taking action due to the belief

that someone else is responsible for intervening. In computer

science, diffusion of responsibility often revolves around discus-

sion of what is and isn’t ‘‘out of scope.’’ Alan F. Blackwell wrote in

1997 that ‘‘many sub-goals can be deferred to the degree that

they becomewhat is known amongst professional programmers

as an ‘S.E.P.’—somebody else’s problem.’’

The belief that algorithmic bias is a dataset problem invites

diffusion of responsibility. It absolves those of us that design

and train algorithms from having to care about how our design

choices can amplify or curb harm. However, this stance rests

on the precarious assumption that bias can be fully addressed

in the data pipeline. In a world where our datasets are far from
perfect, overall harm is a product of both the data and our model

design choices.

The goal of this article is not to convince you to ignore the data

pipeline and focus solely onmodel design bias but rather that un-

derstanding the role that both data and themodel play in contrib-

uting to bias can be a powerful tool in mitigating harm. Algorithm

design is not impartial, and mitigating harm here is often more

feasible than collecting comprehensive labels. Work on under-

standing the interactions between model desiderata and the

impact of our model design choices on algorithmic bias is in its

nascency. Acknowledging that model design matters has the

benefit of spurring more research focus on how it matters and

will inevitably surface new insights into how we can design

models to minimize harm. As Lord Kelvin reflected, ‘‘If you

cannot measure it, you cannot improve it.’’
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