
Received: 13 November 2020 - Revised: 23 May 2021 - Accepted: 31 May 2021

DOI: 10.1111/phc3.12760

AR T I C L E

Algorithmic bias: Senses, sources, solutions

Sina Fazelpour1 | David Danks2

1Department of Philosophy and Religion,

Northeastern University, Boston,

Massachusetts, USA

2Department of Philosophy, Carnegie Mellon

University, Pittsburgh, Pennsylvania, USA

Correspondence

Sina Fazelpour, Department of Philosophy

and Religion and the Khoury College of

Computer Sciences, 360 Huntington Ave,

Northeastern University, Boston, MA 02115,

USA.

Email: s.fazel-pour@northeastern.edu

Funding information

Social Sciences and Humanities Research

Council of Canada, Grant/Award Number:

#756‐2019‐0289 2

Abstract

Data‐driven algorithms are widely used to make or assist

decisions in sensitive domains, including healthcare, social

services, education, hiring, and criminal justice. In various

cases, such algorithms have preserved or even exacerbated

biases against vulnerable communities, sparking a vibrant

field of research focused on so‐called algorithmic biases.

This research includes work on identification, diagnosis,

and response to biases in algorithm‐based decision‐making.

This paper aims to facilitate the application of philosophical

analysis to these contested issues by providing an overview

of three key topics: What is algorithmic bias? Why and how

can it occur? What can and should be done about it?

Throughout, we highlight connections—both actual and

potential—with philosophical ideas and concerns.

1 | INTRODUCTION

Key social and personal decisions that impact our lives are increasingly guided by predictive algorithms. Medical

diagnoses incorporate predictive models built using large datasets; loan approvals are informed by algorithmic

judgments of credit worthiness; decisions to send social workers to investigate potential child abuse are guided by

algorithm‐based risk scores; and the examples multiply every day. At the same time, there is increasing awareness

of the harmful impacts caused by biases in these algorithms: face recognition algorithms that perform worse for

people with feminine features or darker skin (and worse still for those with both) prevent people from accessing

resources; recidivism prediction models that rate people of color as significantly higher risk than white counterparts

lead to unjust continued imprisonment; and many more. In each case, the use of algorithms threatens to preserve,

or even compound, existing injustices.
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Philosophers have begun to help characterize, diagnose, and mitigate these algorithmic biases through both

critical conceptual work, and also applied efforts to respond to the impacts of algorithmic bias. In this paper, we

consider three key questions about algorithmic bias: What is it? How does it arise? What can or should be done

about it? While exploring each question, we indicate places where there is current philosophical research, and also

where more philosophical insight would prove helpful. Algorithms and their biases have already changed many of

our lives, and their importance will only increase in coming years.

Philosophical engagement with algorithms in general, and the challenges posed by them, extends to many topics

that are beyond our focus on algorithmic bias. Of course, there is not always a bright line that can be drawn to

distinguish philosophical work on algorithmic bias from those other topics, such as how non‐epistemic values might

influence model selection in machine learning (Dotan, 2020). At the same time, space constraints necessarily require

the omission of many important and related topics including trust (Danks, 2019), privacy (Véliz, 2020), transparency

(Creel, 2020), and much more. Algorithmic bias is only one issue within the broad collection of philosophical topics

often lumped together under the heading of ‘Ethics and AI’. Our focus will be algorithmic bias, but we do not thereby

mean to suggest that these other issues are unimportant or uninteresting, whether philosophically or societally.

Throughout this paper, we use a running example to illustrate the complexities. Many universities increasingly

use data from past students to build models for predicting ‘student success’ (defined in various ways), where those

models can support informed changes in policies and practices. This situation is a textbook example of modern

machine learning: collect data on past cases (e.g., students); train a model on these data that optimizes predictions

about an outcome of interest (e.g., probability of success); and use that predictive model to guide action (e.g., policies

for mentorship or admission strategies). These kinds of algorithms are being built at universities worldwide, likely

including those with which the reader has some past or present affiliation. Of course, universities might have multiple

goals for these models, including helping students, reducing attrition costs, improving the university's reputation,

increasing government funding, or others (Delen, 2010). As we discuss below, those goals can impact everything from

how we measure, to what we optimize, to which actions we pursue, to which people are benefited or harmed.

Finally, a terminological note: data scientists typically apply a learning algorithm L to a dataset D to build a

predictive model M that can function as a predictive algorithm. In practice, discussions about algorithmic bias are

essentially always about M, the predictive algorithm/model. As such, we will use the terms ‘algorithm’ and ‘model’

interchangeably in this paper to talk about M. When we are concerned specifically with L, we will explicitly talk

about the ‘learning algorithm.’

2 | SENSES OF BIAS

We begin with the question: What is algorithmic bias? In everyday usage, the term ‘bias’ typically carries negative

connotations, but it is more ambiguous when talking about algorithmic bias. At its most neutral, algorithmic bias is

simply systematic deviation in algorithm output, performance, or impact, relative to some norm or standard (Ant-

ony, 2016; Danks & London, 2017; Johnson, 2020). An algorithm can be morally, statistically, or socially biased (or

other), depending on the normative standard used. For example, our model's predictions of student success could be

statistically biased if those predictions differ from previously observed training data; predictions that systematically

deviate from past history encode a measure of statistical bias. Alternately, the predictions could be morally biased;

for example, they might depend in illegitimate ways on the gender of the student.1 More generally, specificity about

the normative standard enables more nuanced evaluations: not all statistically (or legally) biased behaviors are

ethically or morally problematic, while not all statistically fair or unbiased predictions are ethically or morally

acceptable. Moreover, algorithmic bias is not a function solely of the code or mathematics, but also depends on the

domains of application, goals for the algorithm use, and other contextual factors. The same student support algorithm

(in the sense of underlying code or mathematics) could be unbiased at one university, but biased—statistically,

morally, socially—if used at a different university. In this paper, we primarily use the term ‘algorithmic bias’ in the

more neutral sense, but our examples and focus will typically be on the more salient morally problematic instances.
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One might object that algorithms are only mathematical objects, and so must be completely objective. This

neutrality thesis holds that technological artifacts such as algorithms do not embody or implement values, and so

their use is the only appropriate locus of ethical evaluation. By analogy, one would typically not say that a hammer is

biased, though it can be used in biased ways. Much work in philosophy of technology and value‐sensitive design has

cast significant doubt on the neutrality thesis in general (e.g., Dotan, 2020; Friedman & Hendry, 2019; Simon, 2017).

In particular, algorithms implement values, and so potentially biases, in at least two high‐level ways. First, algo-

rithms make possible certain kinds of decisions or capabilities, and so embody the value that those decisions or

capabilities are important. The decision to employ data‐driven algorithms in a given domain can itself have social,

political, and economic significance, as the very existence of the algorithm can disproportionately and unjustly favor

one group over another (Liao & Huebner, in press; see also Winner, 1980). The widespread use of algorithms across

many aspects of society can act to rigidify unjust and oppressive social practices and structures, regardless of the

exact content of the predictive model (Castro, 2019; O'Neil, 2016).

Second, algorithms implement values because they are almost always optimized for performance relative to a

standard. They are developed to succeed according to some metric (e.g., predictive accuracy, sensitivity, specificity,

F1‐score), and the algorithm thus values or promotes whatever counts as ‘success’ on that metric. Algorithms are

not objective, but rather embody the value‐laden view that some performance is better or more important than

others. The algorithm developer's selection of a particular performance metric is thus key in determining

these implemented values. This issue clearly connects with debates in the philosophy of science about the value‐
ladenness of science (Douglas, 2009). In each case, the products of inquiry—algorithms or scientific theories—are

sometimes thought to be value‐free, at least in their ideal forms. But in each case, their creation requires many

choices that are informed by the inquirer's values, particularly about tradeoffs (e.g., accuracy vs. simplicity) or

evaluation standards. Of course, algorithms and scientific practice are not thereby a matter of arbitrary choice.

Rather, different algorithms, models, or theories might be appropriate depending on the particular context,

desiderata, and (value) constraints. Hence, data scientists, machine learners, and others building these decision

support systems should be explicit about the values (e.g., optimization criteria) that are implemented in their

algorithms.

The implementation of values in algorithms also connects with debates in ethics outside of algorithmic bias.

First, there are general normative ethical questions about which values ought to be prioritized or implemented in

our algorithms, and so which biases (if any) ought to be permissible. Second, algorithmic biases can lead to sig-

nificant harms and injustices, particularly if less‐important moral values are prioritized. Much of the focus here has

been on comparative harms (i.e., one group is unjustly favored by the algorithm over another), but non‐comparative

harms (i.e., everyone is made worse off) can also result (Eubanks, 2018; Fazelpour & Lipton, 2020; O'Neil, 2016).

Hence, there are many challenges in applied moral and political philosophy around diagnosis of the harms of

algorithmic biases, and how (or whether) we morally ought to mitigate or eliminate them. In our running example,

ethical questions about algorithmic bias concern both which values involving student success should be instantiated

in, or supported by, our algorithm (first type), as well as how we ought to respond to potential harmful biases due to

the algorithm (second type).

These ethical questions are particularly challenging in a value pluralistic society. As algorithms increasingly

control aspects of public life, including allocation of public goods and resources, epistemic and moral peers are

increasingly likely to disagree about exactly which values should be implemented or prioritized. Student success

provides a clear case of such pluralism, as members of a university community presumably place different weights

on overall retention, success of students who were unlikely to succeed, remedying historical inequities that hinder

the success of some groups, expected return on resources, and other values. Political philosophy has long wrestled

with questions about how states or organizations ought to determine policies given value pluralism and value

disagreement (Muldoon, 2016; Pildes & Anderson, 1990), and these questions arise equally for algorithm design

(Berendt, 2019). In fact, the challenges of value pluralism can be even worse for algorithms. Different values in

political settings sometimes imply the same policy (e.g., if values A and B are each advanced by policy P, then any
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relative weighting of A versus B will have the same policy implication). In contrast, different values almost always

imply different objective functions for learning a model, and so almost never result in the same algorithm. Even

small differences in values lead to underdetermination of algorithms (and possible biases).

3 | SOURCES OF BIAS

Given this characterization of algorithmic bias, we now ask: How and why does it arise? The full, complicated

pipeline of algorithm design, development, and deployment is depicted in Figure 1. We deliberately show some

details than are not usually philosophically relevant, as popular presentations of machine learning and data science

sometimes mistakenly suggest that algorithm development is a relatively simple pipeline. At the same time, given

that complexity, our discussion of sources of bias across this pipeline cannot be exhaustive. The many, often inter‐
dependent choice points—some seemingly innocuous—require value judgments, and so imbue the model with

values. A key general point is that the ethical and epistemic evaluation of an algorithm must focus on the process,

not simply the final technological product.

3.1 | Biases in problem specification

The first step in algorithm design is problem specification: What goal(s) will the algorithm be used to achieve

(perhaps as part of a broader system)? This specification requires thinking about our overall aims, the actions

available to us, and ways of using the algorithm to help achieve those aims (Mitchell et al., 2021). In most practical

settings, decision makers are interested in aims that are complex, contested, and sometimes intentionally ambig-

uous. Each of these elements requires consideration of values and normative standards, and thereby provides a

vehicle for the creation of biases.

Consider our running example: universities must determine what they aim to achieve, including clear specifi-

cation of what counts as ‘student success’ in terms of target variables to be predicted. The translation of the

complex and ambiguous outcome of interest into quantifiable surrogate target variables requires significant

domain‐specific expertise and value judgments (Passi & Barocas, 2019). Student success could be specified in terms

of many different target variables, including grades, respect from fellow students, employer prestige, post‐
graduation salary, and much more. This process of translating a vague goal into precise target variables is often

a matter of contestation with bargaining and negotiating between various stakeholders (Coyle & Weller, 2020),

precisely because different specifications can have different impacts. In particular, there can be disparate impacts,

where members of a protected group are differentially impacted relative to a (more) dominant group (Obermeyer

et al., 2019). For example, if predicted ‘success’ is measured by grades during a student's first year, then enrollment

or financial aid decisions based on that prediction might have a disparate negative impact on minority students

(violating anti‐discrimination legal norms; Barocas & Selbst, 2016) compared to using grades during the second year

(e.g., if minority students face additional challenges in the first year; Kleinberg 2018b). Importantly, if the exact

same code for the algorithm is used differently (e.g., to guide student support decisions), then we might instead

have disparate positive impact (cf. Barabas et al., 2018).

Further harmful algorithmic biases can emerge at the system‐level if our problem specifications or target

variables fail to capture our complex real‐world goals (Mitchell et al., 2021). For example, an algorithm that predicts

which individual students are at risk of low grades would naturally support individual‐level interventions that may

omit key group‐level goals (e.g., diversity; see Anderson, 2010). More generally, omitted payoff bias arises when we

omit key goals (or sources of “payoff”) from our target variables, which can be particularly common with complex

real‐world goals (Kleinberg et al., 2018a). Moving out from a specific algorithm, the very decision to employ pre-

dictive algorithms as (part of) the solution to these complex problems can alter institutional dynamics (Aizenberg &
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van den Hoven, 2020) and reshape core societal values (Merry, 2016). Philosophers should clearly inform and guide

these debates, particularly about the conditions in which such changes are ethically or socially defensible.

3.2 | Biases in data

Once we determine target variables to predict or optimize, standard practice for algorithm or model development is

to apply a learning algorithm to a dataset of historical cases in order to discover predictively useful patterns. Much

of the technical research in machine learning aims to create increasingly powerful learning algorithms and

representational frameworks for this kind of problem. Essentially, all such learning algorithms aim to produce

models that reflect, at least partially, statistical features of the input dataset; that is, basically all machine learning

algorithms output models that partially ‘mirror’ the statistics in the historical data (perhaps adjusted by our

background knowledge, goal‐ or context‐specific factors, or other non‐statistical information). Hence, when there

are biases (of some sort) in the historical data, then the resulting algorithm or model will typically reflect them. We

can usefully separate those data biases into issues with the (measured) real‐world systems, and issues with data

collection procedures (Danks & London, 2017; Mitchell et al., 2021).

First, algorithmic biases can result from existing biases in the real‐world systems that are measured in the data.

This source of bias is the most commonly‐cited one in public discussions about algorithmic bias, and is colloquially

captured in the slogan “bias in, bias out” (Courtland, 2018; Mayson, 2018; cf. Rambachan & Roth, 2020): any biases

in the measured world will typically be captured in the input data, and so embodied in the resulting models that

‘mirror’ those input data. For example, if there is systemic racism in a university that impacts student success, then

our historical data will show that members of under‐represented minorities are less likely to succeed, even when

other causes are the same. If we use a standard learning algorithm to develop a predictive model, then that model

will learn that these students have a lower probability of success. Of course, those biased predictions are not

reflective of any intrinsic features of the student, but rather are due to the racist system within which past students

(i.e., data subjects in our input data) have functioned. Data scientists often aim to collect and analyze representative

datasets that measure how the system actually is. But if the reality of the world does not align with our normative

ideals, then learning from those data can be a recipe for perpetuating harmful stereotypes and inequalities. Many

notable cases of algorithmic biases involve the algorithm mirroring structural inequities and biases that are un-

fortunately widespread in society. In fact, there are even recent efforts to use the presence of algorithmic bias as a

‘signal’ of previously unnoticed real‐world biases that should potentially be ameliorated (Carton et al., 2016;

Pierson et al., 2020).

Second, biased data can arise from limitations and biases in our measurement methods. The simplest case is

when we have non‐representative input data, often leading the resulting algorithms to exhibit worse performance

on the under‐sampled groups. For example, if we build a dataset of faces by automatically downloading pictures of

celebrities, then any resulting model (e.g., for feature identification or facial recognition) will likely underperform on

members of groups that are under‐represented among celebrities (Buolamwini & Gebru, 2018). In our running

example, if student success is partly measured by self‐reported need, and if perceived need is measured with

surveys handed out in a particular location in campus (e.g., counseling services), then students who do not regularly

visit that location (for whatever reason) will be much less likely to be represented in the input data (see Austin

et al., 1990). The resulting predictive algorithm will likely under‐perform, perhaps significantly, on those individuals;

that is, the algorithm will likely be biased against them.

A different data collection challenge is that historical data rarely reveal counterfactual outcomes. For example,

our student success dataset will not have information about the performance of applicants who were denied

admission. This so‐called selective labels problem (Lakkaraju et al., 2017)–the observed values of target variables in

the data are a selective function of past decisions2–can result in morally problematic biases in our data (Kallus &

Zhou, 2018). Even when the variables are observable (perhaps through various assumptions), label bias can arise
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when our measurement procedures are themselves biased (Corbett‐Davies & Goel, 2018). For example, if mea-

surements of student success incorporate informal human assessments, then our algorithm will be optimized to

predict these (potentially biased) human judgments. More generally, algorithm developers often aim to predict the

so‐called ‘ground truth’ of what is really the case. In many contexts, though, the ground truth itself lacks construct

validity: it is a biased, and so imperfect, proxy for the underlying phenomenon of interest (e.g., academic perfor-

mance or respect from fellow students). Importantly, this latter source of algorithmic bias is independent of real‐
world biases in the actual system under study. We can have label bias due to biased perceptions even if there are no

underlying differences in, say, performance between two individuals (see Madera et al., 2009). Label bias can

actually lead to the creation of new biases, not just the perpetuation of existing ones, if future decisions are made

on the basis of the biased measurements.

3.3 | Biases in modeling & validation

Given a dataset, developers use a learning algorithm to ‘fit’ a predictive model on a portion of the data–the ‘training

set’–whose performance is validated on a previously unseen portion of the dataset–the ‘test set’.3 These modeling

and validation processes, often conducted iteratively, almost always optimize and evaluate model performance

relative to some criteria of success. While this stage can be highly technical, it also involves multiple value judg-

ments. As noted earlier, the choice of objective function introduces values into our algorithms. Moreover, fine‐
grained details about this choice can matter: for example, we could focus on pure predictive performance (to

minimize errors), or on the distribution of errors (e.g., to minimize false positives or predictions of “no help needed”

for students who truly need help; see Thammasiri et al., 2014). In practice, developers often delegate these choices

to the decision‐makers who requested the algorithm.

A second type of value judgment arises because often many such performance metrics cannot be perfectly

satisfied in tandem. These types of value judgments are familiar in the context of discussions of ethical‐epistemic

tradeoffs in philosophy (e.g., Gendler, 2011; Dotan, 2020; Johnson, in press). Consider Gendler's dilemma: Should

we use information about, say, biased cultural practices or categories to improve our epistemic/predictive per-

formance (but support ethically problematic practices), or ignore that information on ethical grounds (but bear an

epistemic cost as a result)? Developers are generally cognizant that these value judgments cannot be resolved in a

purely technical way; the choice depends on the aims and values of users of the model (Kearns & Roth, 2019).4

Moreover, these tradeoffs are all heightened when algorithms are used repeatedly for multiple decisions, and so we

may have to decide whether to allow some short‐run ethical harms in order to gain additional knowledge that can

enable long‐term reduction in ethical harms.

A final source of potential bias paradoxically arises from efforts to reduce bias. Many proposed fairness metrics

(see Section 4) provide additional, normatively justified, performance criteria for optimization in modeling and

validation. Various value judgments thus arise about choice of fairness metrics. For example, the learned models

might have slightly worse accuracy in order to be, in some sense, fairer (though see Dutta et al., 2020). We discuss

these types of adjustments and tradeoffs below, but note here that they create new opportunities for bias.

3.4 | Biases in deployment

Finally, algorithmic biases can arise during the deployment of a predictive algorithm. As noted earlier, algorithms

implement values based on what they were trained to optimize, and important biases can arise if the users’ values

and the algorithm's values are substantively different (Danks & London, 2017). Moreover, such failures of value

alignment can happen without awareness, as the algorithm might be described to users simply as ‘predicting

student success’ without indicating what constitutes success. For example, if users care about students who are
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most likely to have low grades but the prediction algorithm is optimized to identify those likely to drop‐out, then

the algorithm outputs will not provide the right information. Moreover, depending on the situation, this divergence

might disproportionately impact members of already disadvantaged groups.

Biases due to failures of understanding can also arise when a purely predictive (observational) model is used to

make policy changes or decisions (Caruana et al., 2015). Variables or properties can predict an outcome even if they

are not causes of it; the symptoms of a disease are predictively valuable, but treating those symptoms does not

typically address the root cause. In the case of student success, enrolling in advanced classes might predict higher

likelihood of success, but it would surely be a mistake to encourage every student in remedial courses to instead

take more advanced ones in an effort to raise their probabilities of success. More generally, we need to ensure that

our algorithms and models provide the correct information–whether predictive, diagnostic, or causal–for our goals

and available actions, and that this information is communicated appropriately to end‐users (London, 2019).

We also must ensure that the deployment context is relevantly similar to the historical context of data

collection (or know how they differ). Models used in very different settings where the relevant causes are different

can have quite biased outputs, both statistically and ethically. For example, a student success predictive algorithm

trained on historical data from a small private university in the United States would not necessarily generalize to a

large public university in China. Contextual differences become increasingly challenging (as a potential source of

bias) as the algorithm is deployed for an extended period of time. Algorithms are frequently used in complex social

systems with numerous feedback loops that shape data evolution (Chouldechova & Roth, 2020); for example, to-

day's decisions about student support resources will influence next year's student population which will influence

which students succeed (and which need resources). The use of the algorithm can itself change the deployment

context in ways that introduce bias or other ethical complications (Benjamin, 2019; O'Neil, 2016).

In addition, a deployed algorithm might function only or primarily as decision support for humans who ulti-

mately make decisions. Student support might be determined not directly by an algorithm, but rather by an

administrator who receives algorithmic guidance. In such cases, the epistemic and ethical quality of the overall

decision will depend not only on properties of the algorithm, but also on how people understand and integrate its

outputs into their deliberations. However, people's uses of algorithmic outputs will differ based on decision context

(Kleinberg et al., 2018a), trust (Dietvorst et al., 2015), institutional accountability frameworks (De‐Arteaga

et al., 2020), decision focus (Green & Chen, 2019), and more. As a result, morally problematic decisions and unjust

harms could result from a biased algorithm supporting an unbiased human, an unbiased algorithm supporting a

biased human, or both being biased.

Broadening our scope even further, the immediate and long‐term impact of an algorithm will also be shaped by

interactions with other institutions (e.g., pre‐university education) or individuals (e.g., admissions personnel),

including through complex feedback loops (cf. Ensign et al., 2018; Milli et al., 2019). These broader interactions can

create unintended incentive effects when people strategically change their behaviors in response to features of the

algorithm (Dai et al., 2021). For example, the student success algorithm might lead to support only for students

below a specific grade average, thereby giving students an incentive to worsen their grades (so they can qualify for

support). Alternately, the algorithm might value those who have already sought out help (since they might be more

likely to take advantage of additional offerings), thereby disproportionately benefiting students with the knowl-

edge, time, and/or ability to seek support, regardless of their need. More generally, these instances of Goodhart's

law5 reveal the risks of deploying algorithms without carefully considering the resulting dynamics.

4 | SOLUTIONS TO BIAS

We now turn to the prescriptive question: What can or should we do about algorithmic biases? One common

response is to simply declare “Algorithms ought not use sensitive information about group membership”; one

might hope that an algorithm could not possibly be biased about property X if it is never told about whether an
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individual possesses X. For example, if we are concerned about racial bias in our student success prediction

algorithm, then we might simply design our algorithm by removing explicit racial identifiers from the input

training data.

In the US legal system, this kind of ‘fairness through unawareness’ is typically motivated on anti‐classification

grounds that aim to prevent direct discrimination or disparate treatment. Explicit use of protected attributes–

legally prescribed attributes such as race, gender, and nationality–often prompts strict scrutiny by US courts

(for a thoughtful critique of generic interpretations of this, see Hellman, 2020, Section 3). Unfortunately, this kind

of ‘fairness through unawareness’ almost never succeeds. Other variables in the input data will often be correlated

with, and so serve as proxies for, protected attributes; even when these sensitive attributes are not explicitly

included in the data, they are ‘redundantly encoded’ in these proxies (Dwork et al., 2012; Johnson, 2020). For

example, home zip codes are correlated with racial identification in the US. Hence, if we include zip codes in our

algorithm, then they can serve as proxies for racial identifiers, thereby leading our “unaware” algorithm to none-

theless mirror historical and ongoing patterns of racism. Moreover, algorithms often put special weight on pre-

dictors for the group in numerical majority (Dwork et al., 2012; Kearns & Roth, 2019), and so “fairness through

unawareness” can disadvantage members of smaller groups. And of course, explicit use of sensitive information is

only one possible source of bias.6

We cannot eliminate algorithmic bias through unawareness. Similarly, while adopting better measurement

strategies can lead to fairer algorithms (Hellman, 2020), the approach still fails to account for many other sources of

bias. Recent years have thus seen an explosion of (primarily technical, but also interdisciplinary) research on ‘fair

machine learning (ML).’ Most of this research has followed a standard strategy (discussed below), but it is important

to recognize the limits of this strategy. In particular, when biases are deeply entrenched in a particular organiza-

tional or societal setting, then the proper response should often be to try to fix the underlying real‐world problem

(Antony, 2016; Barabas et al., 2018; Mayson, 2018), rather than turning to the technical methods of fair ML.

Algorithmic bias is not a purely mathematical problem, and responses to it often must engage with the messy

complexities of the real world.

4.1 | The standard debiasing strategy

Most mainstream work in fair ML pursues a two‐stage strategy for addressing algorithmic bias: (1) Use one (or

more) mathematical fairness measures to quantify the amount of bias in the algorithmic output; and (2) Develop

mitigation responses that reduce, and ideally eliminate, bias according to that measure. Different fair ML methods

result largely from variation on one of these two dimensions (see Barocas, Hardt, & Narayanan, 2019 for a detailed

exposition of many of the technical features of the standard strategy).

Consider first the different proposed measures of bias. Three families of fairness measures, distinguished

primarily by their mathematical language, have been prevalent in the literature: (i) individual‐based, (ii) statis-

tical, and (iii) causal and counterfactual. Individual‐based fairness measures aim to mathematically quantify the

Aristotelian normative ideal of treating like cases alike (Dwork et al., 2012; Dwork et al., 2020). As oft‐noted by

philosophers and legal scholars, the core challenge for this ethical ideal is determining what counts as “relevant

similarity” with respect to the standards of a task (Hart, 1961; Westen, 1982). In practice, there are no

mathematically precise, context‐independent functions that appropriately quantify similarity between two in-

dividuals, so these measures are not widely used. However, given the long tradition of philosophical work on this

ideal, there may be opportunities for philosophers to guide the design and selection of context‐specific

measures.

Statistical (or group‐based) fairness measures are the most common ones, and track statistical disparities

(e.g., accuracy, or error rates relating to sensitivity or specificity) between algorithmic predictions across different

protected attributes that we typically think morally ought not impact decisions. For example, we might think that
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student success predictions should not depend (in one of several possible ways, such as error rates across

different groups) on morally arbitrary attributes such as race or gender. Many different statistical measures have

been proposed, each with normative claims that it measures the statistical disparities that must be avoided in an

ethically unbiased algorithm. These statistical disparities are often formalized as ratios or differences be-

tween some group‐based metric; different ones are connected to concepts7 such as: equality of treatment (e.g.,

Dieterich et al., 2016), the legal doctrines of disparate treatment (e.g., Berk et al., 2021) and disparate impact

(e.g., Feldman et al., 2015), and the ideal of equality of opportunity (e.g., Hardt et al., 2016). These measures all

use only the observable statistics of the deployment population and the algorithm outputs, rather than domain‐
specific understanding (except about which variables are protected in a sector or a legal system). Unfortunately,

a variety of impossibility results have shown that these measures are incompatible with one another in a wide

range of conditions (Chouldechova, 2017; Kleinberg et al., 2016). For example, when two groups differ in their

base rate for the target variable, then it is impossible to jointly satisfy parity in group‐wise predictive value and

group‐wise error rates.8 The core conceptual issue is that each statistical measure prioritizes its own kind of

‘equality’ across the algorithm predictions (in a given context), but we can only achieve all of these equalities

simultaneously if the relevant protected groups are homogenous or indistinguishable (in the relevant statistics).

We thus must make a normatively grounded value judgment about which statistical measure to prioritize and

minimize.

Finally, causal and counterfactual measures are motivated by the idea that questions about justice and

discrimination are causal in nature, and so we must attend to the causal reasons for patterns of injustice, including

what would have occurred (counterfactually) if the biases had not been present (Kusner et al., 2017; Kusner &

Loftus, 2020).9 In particular, these measures aim to eliminate algorithmic bias due to the causal influence of

protected attributes on the algorithmic predictions or resulting decisions, regardless of the predictive power of

those protected attributes. Causal and counterfactual measures are thus more epistemically demanding as we must

know (or infer, or estimate) the relevant causal information. For example, we might need to know whether a

student's gender has historically been a (morally inappropriate) cause of success, not just whether it is predictive of

such success. Variation in causal measures arises from their granularity about causal pathways (e.g., Loftus

et al., 2018 vs. Nabi & Shpitser, 2018), and their focus on population‐ or individual‐level causal impacts (e.g.,

Kilbertus et al., 2017 vs. Kusner et al., 2017).

Given a fairness measure from one of these three types, one must then decide how to enforce the ethical

constraints that it formalizes. One can pre‐process the historical data so that it is closer to what it ethically ‘should

have been’ (e.g., Feldman et al., 2015; Kamiran & Calders, 2012). Alternately, one can adjust the learning algorithm

so that it explicitly incorporates fairness as a value, usually by including the fairness measure as an additional

constraint on optimization (e.g., Zafar et al., 2017; Zhang & Bareinboim, 2018). There are different benefits to these

different mitigating strategies, but both presuppose that harmful ethical biases can be mitigated by introducing

statistical biases in design and development (rather than diagnosing and directly responding to the underlying

causes). These strategies also often require explicit use of group membership information, as well as difficult

decisions about how to potentially tradeoff ethical, epistemic, and statistical considerations.

The standard approach in fair ML requires many value choices. The impossibility results imply that we almost

always must choose between fairness measures. Different ways of incorporating fairness constraints into the

algorithm development pipeline can yield quite different models. Mitigation strategies can lead to significant social

costs depending on the degree to which fairness gains are ‘traded off’ for epistemically valuable measures (e.g.,

predictive accuracy) that also matter for societal welfare (Corbett‐Davies, Pierson, et al., 2017; Gendler, 2011;

Kleinberg et al., 2016). And these are just the most obvious ways in which fair ML requires people to make choices

that prioritize some values, and thereby perhaps only shift the biases in our algorithms, rather than eliminate them.

Although mathematical techniques have been useful in formalizing these incompatibilities and trade‐offs, choices

about how to resolve them require philosophical arguments and considerations that fall outside of the narrow

technical scope of the standard approach to fair ML.
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4.2 | Foundational questions about responses

Philosophical research directly on fair ML can be roughly divided based on its stance towards the standard

approach. Some research seeks to clarify and improve the often‐implicit normative underpinnings and commit-

ments of various fairness measures (Glymour & Herington, 2019; Hellman, 2020; Leben, 2020). Many fairness

measures are purportedly based in moral and legal doctrines (e.g., ‘disparate impact’, ‘equality of opportunity’, …),

and so we might naturally expect that those statistical measures would track the conceptual intuitions in a wide

range of cases. In practice, however, the mathematics of a particular measure is not always precisely connected

with the justifying concepts and principles, rendering the measure morally irrelevant (Hellman, 2020). Philosophical

clarification of the underlying normative principles may thus provide reasons to prefer a fairness measure in a given

context.

A second line of philosophical research fundamentally challenges the standard approach as an insufficient or

inappropriate way to reduce algorithmic bias and injustice (Fazelpour & Lipton, 2020; Hoffman, 2019; Selbst

et al., 2019). Works in this line often argue that the standard debiasing strategy incorporates unrealistic ideali-

zations and abstractions that render it ill‐suited for its intended purposes. For example, the narrow focus on static

prediction in the standard approach ignores epistemically and ethically critical aspects of deployment dynamics (see

Section 3.4). As a result, the standard approach can even lead to increased long‐term and system‐wide harms to the

very populations it aims to protect (Dai et al., 2021; Liu et al., 2018; Hu & Chen, 2018). This line of research thus

broadens the realm of normative questions and challenges that must be addressed for fair ML and the responsible

use of algorithms.

Finally, one might wonder whether all of these worries about algorithmic bias provide reasons to simply reject

algorithmic decision‐making in the first place. We suggest that this conclusion would be much too quick. Algorithms

can provide moral or societal benefits; they are not necessarily problematic. They can be used to identify existing

biases in human practices (e.g., Carton et al., 2016), improve medical diagnoses (Haenssle et al., 2018), and so much

more. Even biased algorithms can be superior to the human practices that they replace or inform (Corbett‐Davies,

Goel et al., 2017). Moreover, some aspects of algorithmic bias (e.g., the impossibility results for statistical measures

of bias) are mathematical theorems, and so potentially apply to any structured decision‐making, whether human‐ or

machine‐based (Tuana, 2010). The hype around algorithms and AI is frequently too loud and overwrought, and as

we have seen here, algorithms can certainly create and perpetuate massive injustices. Nonetheless, we suggest that

the proper response is to find ways to use algorithms to reduce inequities and injustices, not to stop using

computational algorithms altogether.

5 | FUTURE DIRECTIONS

Previous sections noted where philosophers have or could fruitfully contribute to discussions of algorithmic bias,

and we close by pointing to additional connections. Many of the core concerns about algorithmic bias involve

concepts such as race, gender, and disability. These concepts are usually operationalized with modular and

context‐insensitive classification and identification schemes (e.g., Hu & Kohler‐Hausmann, 2020). Work on socially‐
oriented metaphysics and epistemology (e.g., Beeghly, 2015) can provide guidance on how to understand these

concepts in the realm of algorithmic bias in nuanced, context‐sensitive ways that are attentive to issues of

intersectionality. Works in feminist social epistemology and philosophy of science can further uncover how these

concepts are implicated in measures and methods that are routinely used in algorithm design and evaluation

(Johnson, in press).

In addition, the harms of algorithmic bias are often treated in a relatively narrow way. Philosophical

research on algorithmic bias has centered on concerns about distributive or allocative harms, leaving open

foundational questions about the potential harms of biased and stereotypical representations (as characterized
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by Zheng 2016) in contexts such as image classification and natural language processing (see also Eubanks, 2018

on algorithm‐induced stigmatization and stereotyping). Broadening our scope, the dynamic, long‐term impacts of

algorithms are complicated by what Hacking (1995) calls ‘looping effects’ on individuals and societies (see also

Noble, 2018). Philosophical research can inform our understanding of these effects; for example, research in

aesthetics can illuminate potential risks in the use of algorithms in the recommendation and curation of

artworks.

6 | CONCLUSION

Predictive algorithms are quickly pervading our lives and societies. Organizations adopt algorithms to guide the

allocation of benefits and burdens in education, healthcare, workforce, criminal justice, finance, and more.

Algorithmic recommendations shape what we experience, and they affect our social ties and affiliations from

romance to politics. In many cases, these changes to our personal, institutional, and societal dynamics are accepted

only because the pervasive impact of adopting predictive algorithms remains implicit (cf. Winner, 1980). Close

philosophical engagement is key to characterize, identify, and respond to harmful biases that can result from the

simplistic adoption and use of predictive algorithms in our societies.
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ENDNOTES
1 This distinction helps to clarify the common situation in which an algorithm with problematic predictions is nonetheless

defended as “unbiased” (as with the infamous COMPAS algorithm). Almost always, the algorithm proponent focuses on

the algorithm being statistically unbiased, while the algorithm opponent focuses on moral biases. Both descriptions can be

correct when training data include morally problematic phenomena.

2 This problem is a specific instance of sample selection bias, where inclusion in the dataset depends partly on the values of

other variables. All responses rely on strong substantive assumptions (see De‐Arteaga et al., 2018).

3 Important value judgments arise in this train‐test split (e.g., with respect to distributional properties of the two datasets).

4 Developers sometimes seem less cognizant about these value dimensions, such as when success criteria involve

interpretability. In these cases, these metrics (e.g., simplicity) do not necessarily correspond to the actual aims of

decision‐makers that drive demands for interpretability (e.g., trust, decision support, etc.). For a thoughtful discussion,

see Krishnan (2020).

5 “When a measure becomes a target, it ceases to be a good measure.”

6 For a thorough critique of gender‐ and race‐blind social policies (beyond algorithm‐based ones), see Anderson, 2010.

7 We omit the particular mathematical translations of each of these concepts, as they are widely available in the fair ML

literature.

8 Many of these insights involve a re‐discovery of similar results in literature on test fairness; see the history provided in

Hutchinson and Mitchel (2019).
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9 Some U.S. law also supports causal metrics, as judgments of employment discrimination can turn on “whether the

employer would have taken the same action had the employee been of a different race (age, sex, religion, national origin,

etc.) and everything else had remained the same” (Carson v. Bethlehem Steel Corp. 82 F .3d 157 159 (7th Circ. 1996)).
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