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Preface: Meat That Predicts

‘They're made out of meat.

‘Meat?’

‘Meat. Theyre made out of meat.’

‘Meat?’

‘“There’s no doubt about it. We picked several from different parts of the
planet, took them aboard our recon vessels, probed them all the way
through. They‘re completely meat.’

Such are the opening remarks of the very puzzled non-carbon-based
aliens whose conversation is reported in the wonderful short story
‘Alien/Nation’ by science-fiction writer Terry Bissom (Omni, 1991). The
aliens’ puzzlement increases upon learning that the meaty strangers
were not even built by non-meat intelligences and do not harbour even
a simple non-carbon-based central processing unit hidden inside their
meaty exteriors. Instead, it’s meat all the way down. Even the brain, as one
of them exclaims, is made of meat. The upshot is startling:

"Yes, thinking meat! Conscious meat! Loving meat. Dreaming
meat. The meat is the whole deal! Are you getting the picture?’

Unable to overcome their initial surprise and disgust, the aliens soon
decide to continue their interstellar journey, casting us short-lived

xiii



Xiv PREFACE: MEAT THAT PREDICTS

meat-brains aside with the inevitable quip ‘who wants to meet
meat?’,

Such carnophobia aside, the aliens were surely right to be puzzled.
Thinking meat, dreaming meat, conscious meat, meat that under-
stands. It seems unlikely, to say the least. Of course, it would be no
less surprising were we made of silicon, or anything else for that mat-
ter. The mystery is, and remains, how mere matter manages to give
rise to thinking, imagining, dreaming, and the whole smorgasbord of
mentality, emotion, and intelligent action. Thinking matter, dream-
ing matter, conscious matter: that’s the thing that it’s hard to get your
head—whatever it’s made of—around. But there is an emerging clue.
It is one clue among many, and even if it’s a good one, it won't solve
all the problems and puzzles. Still, it’s a real clue, and it’s also one that
provides a handy umbrella under which to consider (and in some cases
rediscover) many of the previous clues.

The clue can be summed up in a single word: prediction. To deal
rapidly and fluently with an uncertain and noisy world, brains like ours
have become masters of prediction—surfing the waves of noisy and
ambiguous sensory stimulation by, in effect, trying to stay just ahead
of them. A skilled surfer stays ‘in the pocket” close to, yet just ahead of
the place where the wave is breaking. This provides power and, when
the wave breaks, it does not catch her. The brain’s task is not dissimilar.
By constantly attempting to predict the incoming sensory signal we
become able—in ways we shall soon explore in detail—to learn about
the world around us and to engage that world in thought and action.
Succesful, world-engaging prediction is not easy. It depends crucially
upon simultaneously estimating the state of the world and our own
sensory uncertainty. But get that right, and active agents can both know
and behaviourally engage their worlds, safely riding wave upon wave
of sensory stimulation.

Matter, when organized so that it cannot help but try (and try, and
try again) to successfully predict the complex plays of energies that
are washing across its energy-sensitive surfaces, has many interest-
ing properties. Matter, thus organized, turns out, as we’ll see, to be
ideally positioned to perceive, to understand, to dream, to imagine,
and (most importantly of all) to act. Perceiving, imagining, under-
standing, and acting are now bundled together, emerging as different
aspects and manifestations of the same underlying prediction-driven,
uncertainty-sensitive, machinery.

For such properties to fully emerge, however, several more condi-
tions need to be met. The energy-sensitive surfaces whose time-varying
(and action-relevant) perturbations are to be predicted need to be many
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and variegated. In us humans they include eyes, ears, tongues, noses,
and the whole of that somewhat neglected sensory organ, the skin.
They also include a range of more ‘inward-looking’ sensory channels,
including proprioception (the sense of the relative positions of bodily
parts, and the forces being deployed) and interoception (the sense of the
physiological conditions of the body, such as pain, hunger, and other
visceral states). Predictions concerning these more inward-looking
channels will prove crucial in the core account of action, and in account-
ing for feelings and conscious experiences.

Most important of all, perhaps, the prediction machinery itself
needs to operate in a distinctively complex, multilevel, variegated
internal environment. In this complex (and repeatedly reconfigu-
rable) neural economy, what gets traded are probabilistic predictions,
inflected at every level by changing estimates of our own uncertainty.
Here different (but densely interanimated) neuronal populations learn
to predict various organism-salient regularities obtaining at many spa-
tial and temporal scales. In so doing they lock on to patterns specifying
everything from lines and edges, to zebra stripes, to movies, mean-
ings, popcorn, parking lots, and the characteristic plays of offense and
defence by your favourite football team. The world thus revealed is a
world tailored to human needs, tasks, and actions. It is a world built
of affordances—opportunities for action and intervention. And it is a
world that is exploited, time and time again, to reduce the complexities
of neural processing by means of canny action routines that alter the
problem-space for the embodied, predictive brain.

But where, you might well ask, do all these predictions and
estimations of our own sensory uncertainty come from? Even if
prediction-based encounters with the play of energies across our
sensors are what reveal—as I shall argue they do—a complex struc-
tured world apt for engagement and action, the knowledge those
predictions reflect still needs to be accounted for. In an especially
satisfying twist, it will turn out that meat that constantly attempts
(using a multilevel inner organization) to predict the plays of (par-
tially self-caused) sensory data is nicely positioned to learn about
those regularities themselves. Learning and online processing are
thus supported using the same basic resources. This is because
perceiving our body and the world, if this story is correct, involves
learning to predict our own evolving sensory states—states that are
responding both to the body-in-action and to the world. A good way
to predict those changing sensory states is to learn about the world
(including our own body and actions) that is causing the changes.
The attempt to predict the play of sensory stimulation can thus itself
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be used gradually to install the very models that will enable the pre-
dictions to succeed. The prediction task, as we shall see, is thus a
kind of ‘bootstrap heaven'.

Meat like this is imagining and dreaming meat too. Such meat
becomes able to drive its own internal states ‘from the top-down’
using the knowledge and connections that enable it to match incom-
ing sensory data with structured predictions. And meat that dreams
and imagines is (potentially at least) meat that can harnass its imag-
inings to reason—to think about what actions it might, or might
not, perform. The upshot is a compelling ‘cognitive package deal’ in
which perception, imagination, understanding, reasoning, and action
are co-emergent from the whirrings and grindings of the predictive,
uncertainty-estimating, brain. Creatures that perceive and act on the
basis of such subterranean flows of prediction are active, knowledge-
able, imaginative beings in rich cognitive contact with a structured and
meaningful world. That world is a world made of patterns of expecta-
tion: a world in which unexpected absences are as perceptually salient
as any concrete event, and in which all our mental states are coloured
by delicate estimations of our own uncertainty.

To complete the picture, however, we must locate the inner pre-
diction engine in its proper home. That home—as the surfing image
is also meant to powerfully suggest—is a mobile embodied agent
located in multiple empowering webs of material and social struc-
ture. To make full and satisfying contact with the thinking and rea-
soning of agents like us, we must factor in the myriad effects of the
complex social and physical ‘designer environments” in which we
learn, act, and reason. Without this environment, our kind of selec-
tive response to the world could never emerge or be maintained. It is
the predictive brain operating in rich bodily, social, and technologi-
cal context that ushers minds like ours into the material realm. Here
especially, the focus on prediction pays rich dividends, offering new
and potent tools for thinking about the moment-by-moment orches-
tration of neural, bodily, and environmental resources into effective
transient problem-solving coalitions. By the end of our story, the pre-
dictive brain will stand revealed not as an insulated inner ‘inference
engine’ but an action-oriented engagement machine—an enabling
(albeit, as it happens, meaty) node in patterns of dense reciprocal
exchange binding brain, body, and world.

AC
Edinburgh, 2015
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Introduction

Guessing Games

This is a book about how creatures like us get to know the world and
to act in it. At the heart of such knowing engagements lies (if these sto-
ries are on track) a simple but remarkably powerful trick or stratagem.
That trick is trying to guess the incoming sensory stmulations as they
arrive, using what you know about the world. Failed guesses generate
‘prediction errors’ that are then used to recruit new and better guesses,
or to inform slower processes of learning and plasticity. Rooted in the
dynamics of self-organization, these ‘predictive processing’ (PP) mod-
els deliver compelling accounts of perception, action, and imagina-
tive simulation. They deliver new accounts of the nature and structure
of human experience. And they place centre stage a self-fuelling cycle
of circular causal commerce in which action continuously selects new
sensory stimulations, folding in environmental structure and opportu-
nities along the way. PP thus provides, or so I will argue, the perfect
neuro-computational partner for recent work on the embodied mind—
work that stresses the constant engagement of the world by cycles of
perceptuo-motor activity. The predictive brain, if this is correct, is not an
insulated inference engine so much as an action-oriented engagement
machine. It is an engagement-machine, moreover, that is perfectly posi-
tioned to select frugal, action-based routines that reduce the demands
on neural processing and deliver fast, fluent forms of adaptive success.
1



2 INTRODUCTION

Prediction is, of course, a slippery beast. It appears, even within
these pages, in many subtly (and not-so-subtly) different forms.
Prediction, in its most familiar incarnation, is something that a per-
son engages in, with a view to anticipating the shape of future events.
Such predictions are informed, conscious guesses, usually made well
in advance, generated by forward-looking agents in the service of their
plans and projects. But that kind of prediction, that kind of conscious
guessing, is not the kind that lies at the heart of the story I shall present.
At the heart of that story is a different (though not ultimately unrelated)
kind of prediction, a different kind of ‘guessing’. It is the kind of auto-
matically deployed, deeply probabilistic, non-conscious guessing that
occurs as part of the complex neural processing routines that under-
pin and unify perception and action. Prediction, in this latter sense,
is something brains do to enable embodied, environmentally situated
agents to carry out various tasks.

This emphasis on prediction has a long history in the sciences
of mind.! But it is only in the last decade or so that the key elements
have come together to offer what is (potentially at least) the first truly
unifying account of perception, cognition, and action. Those ele-
ments include practical computational demonstrations of the power
and feasibility of prediction-driven learning, the emergence of new
neuroscientific frameworks that complement the computational ones,
and a wealth of experimental results suggesting an inner economy in
which predictions, prediction-error signals, and estimates of our own
sensory uncertainty play a large and previously underappreciated
role. Such work straddles the once-firm divide between accounts that
stress the importance of inner, model-building activity and those that
recognize the delicate distributions of labour between brain, body,
and world.

PP, as I shall describe it, may best be seen as what Spratling (2013)
dubs an ‘intermediate-level model’. Such a model leaves unspecified a
great many important details concerning neural implementation, aim-
ing instead to ‘identify common computational principles that operate
across different structures of the nervous system [and] provide func-
tional explanations of the empirical data that are arguably the most
relevant to neuroscience’. It thus offers a distinctive set of tools and
concepts, and a kind of mid-level organizational sketch, as a means
of triangulating perception, cognition, emotion, and action. The PP
schema is especially attractive because it deeply illuminates the nest-
ing of the neural economy within the much larger nexus of embodied,
world-involving action. Applied to a wide variety of both normal and
pathological cases and phenomena, PP suggests new ways of making
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sense of the form and structure of human experience, and opens up
an interesting dialogue with work on self-organization, dynamics, and
embodied cognition.

Brains like ours, this picture suggests, are predictive engines, con-
stantly trying to guess at the structure and shape of the incoming sen-
sory array. Such brains are incessantly pro-active, restlessly seeking to
generate the sensory data for themselves using the incoming signal (in
a surprising inversion of much traditional wisdom) mostly as a means
of checking and correcting their best top-down guessing. Crucially,
however, the shape and flow of all that inner guessing is flexibly modu-
lated by changing estimations of the relative uncertainty of (hence our
confidence in) different aspects of the incoming signal. The upshot is
a dynamic, self-organizing system in which the inner (and outer) flow
of information is constantly reconfigured according to the demands
of the task and the changing details of the internal (interoceptively
sensed) and external context.

Such accounts make tempting contact with the form and structure
of human experience itself. That contact is evident, for example, in the
ease which such models accommodate the perceptual strangeness of
unexpected sensations (as when we take a sip of tea under the strong
expectation of coffee) or the remarkable salience of omissions (as when
the note that is suddenly absent from a well-predicted musical sequence
seems almost present in experience, before being replaced by a strong
sense of a very specific absence). PP models also illuminate a variety of
pathologies and disturbances, ranging from schizophrenia and autism
to ‘functional motor syndromes’ (in which expectations and altered
assignments of confidence (precision) result in false sensory ‘evidence’
of illness or injury).

More generally still, the PP framework delivers a compelling and
unifying account of familiar human experiences such as the capacity
to produce mental imagery, to reason ‘off-line’ about possible future
choices and actions, and to grasp the intentions and goals of other
agents. All these capacities, we shall see, emerge naturally from the use
of a top-down ‘generative model’ (more on which shortly) as a means of
intelligently guessing (predicting) the play of sensory data across mul-
tiple spatial and temporal scales. This same apparatus delivers a firm
and intuitive grip upon the nature and possibility of meaning itself.
For to be able to predict the play of sensory data at multiple spatial and
temporal scales just is, or so I shall argue, to encounter the world as a
locus of meaning, It is to encounter, in perception, action, and imagina-
tion, a world that is structured, populated by organism-salient distal
causes, and prone to evolve in certain ways. Perception, understanding,
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action and imagination, if PP is correct, are constantly co-constructed
courtesy of our ongoing attempts at guessing the sensory signal.

That guessing ploy is of profound importance. It provides the
common currency that binds perception, action, emotion, and the
exploitation of environmental structure into a functional whole. In
contemporary cognitive scientific parlance, this ploy turns upon the
acquisition and deployment of a ‘multilayer probabilistic generative
model’.

The phrase, when first encountered, is a little daunting. But the
basic idea is not. It can be illustrated right away, using as a springboard
a tale told to me by one of my true philosophical and scientific heroes,
Daniel Dennett, while we were rather splendidly marooned in his
Maine farmhouse late in the summer of 2011, courtesy of Hurricane
Irene. Back in the mid-1980s, Dennett encountered a colleague, a
famous palaeontologist who was worried that students were cheating
at their homework by simply copying (sometimes even tracing) the
stratigraphy drawings he really wanted them to understand. A stra-
tigraphy drawing—literally, the drawing of layers—is one of those
geological cross-sections showing (you guessed it) rock layers and lay-
erings, whose job is to reveal the way complex structure has accrued
over time. Successful tracing of such a drawing is, however, hardly a
good indicator of your geological grasp!

To combat the problem, Dennett imagined a device that was later
prototyped and dubbed SLICE. SLICE, named and built by the soft-
ware engineer Steve Barney? ran on an original IBM PC and was
essentially a drawing program whose action was not unlike that of the
Etch-a-Sketch device many of us played with as children. Except that
this device controlled the drawing in a much more complex and inter-
esting fashion. SLICE was equipped with a number of ‘virtual” knobs,
and each knob controlled the unfolding of a basic geological cause
or process, for example, one knob would deposit layers of sediment,
another would erode, another would intrude lava, another would con-
trol fracture, another fold, and so on.

The basic form of the homework is then as follows: the student is
given a stratigraphy drawing and has to recreate the picture not by trac-
ing or simple copying but by twiddling the right knobs, in the right
order. In fact, the student has no choice here, since the device (unlike
an Etch-a-Sketch or a contemporary drawing application) does not
support pixel-by-pixel, or line-by-line, control. The only way to make
geological depictions appear on screen is to find the right ‘geological
cause’ knobs (for example, depositing sediment, then intruding lava)
and deploy them with the right intensities. This means twiddling the
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right knobs, in the right sequence, and with the right intensities (‘vol-
umes’) so as to recreate the original drawing. Dennett’s thinking was
that IF a student could do that, then she really did understand quite a
lot about how hidden geological causes (like sedimentation, erosion,
lava flow, and fracture) conspire to generate the physical outcomes
captured by different stratigraphic drawings. In the terminology that
I will be using in the rest of this book, the successful student would
have to command a ‘generative model, enabling her to construct vari-
ous geological outcomes for herself, based upon an understanding of
what causes might be at work and how they would need to interact to
yield the target drawing. The target drawing thus plays the role of the
sensory evidence that the student needs to re-construct using her best
model of the geological domain.

We can take this further by requiring the student to command a
probabilistic generative model. For a single presented picture, there will
often be a number of different ways of combining the various knob
twiddlings to recreate it. But some of these combinations may represent
far more likely sequences and events than others. To get full marks,
then, the student should deploy the set of twiddlings that correspond
to the set of events (the set of ‘hidden geological causes’) that are the
most likely to have brought about the observed outcome. More advanced
tests might then show a picture while explicitly ruling out the most
common set of causes, thus forcing the student to find an alternative
way of bringing that state about (forcing her to find the next most likely
set of causes, and so on).

SLICE allows the user to deploy what she knows about geo-
logical causes (sedimentation, erosion, etc.) and how they interact to
self-generate a stratigraphic image: one that matches the image set in
the homework. This stops the cheating. To match the given picture (just
a set of pixels after all) by twiddling knobs that create that picture from
well-controlled mixtures of hidden causes such as erosion, sedimenta-
tion, and fracture just is to understand quite a lot about geology and
geological causes.

This is a nice—if limited—illustration of a fundamental trick that
the brain uses, if the models I will be considering are on track, to make
sense of the ongoing play of sensory signals (really, just impinging ener-
gies) received from the world. We perceive the world, this suggests, by
identifying the set of interacting worldly causes that make most likely
the current patterns of energies impinging upon our many (exterocep-
tive, proprioceptive, and and interoceptive) sensory receptors. In this
way, we see the world by (if you will) guessing the world, using the
sensory signal to refine and nuance the guessing as we go along.
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Notice that the real-world perceptual matching task targets nota
single static outcome (as in SLICE) but rather an evolving real-world
scene. Matching the incoming signal, in the kinds of cases we will
be considering, thus requires knowing how the elements of the
scene will evolve and interact across multiple spatial and temporal
scales. This can be accomplished courtesy of the multilevel nature
of the prediction-mongering neural organization—we shall have a
lot more to say about such multilevel architectures in the chapters
to follow.

To complete the illustration, we need to remove both the student
and as much of the prior knowledge as possible from the equation!
The resulting device is SLICE*: a self-sufficient version of SLICE that
acquires its own knowledge concerning geological hidden causes. In
microcosm at least, using prediction-driven learning in hierarchical
(deep, multilayer) architectures, this can be done. The key idea, one
that seems to be turning up in very many guises in contemporary cog-
nitive science, is that we also learn about the world by attempting to
generate the incoming sensory data for ourselves, from the top-down,
using the massed recurrent connectivity distinctive of advanced bio-
logical brains. This works because good models make better predic-
tions, and we can improve our models by slowly amending them (using
well-understood learning routines) so as to incrementally improve
their predictive grip upon the sensory stream.

The core idea, as it emerges for the simple but unrealistic (see
below) case of passive perception, can now be summarized. To perceive
the world is to meet the sensory signal with an apt stream of multilevel
predictions. Those predictions aim to construct the incoming sensory
signal ‘from the top down’ using stored knowledge about interacting
distal causes. To accommodate the incoming sensory signal in this way
is already to understand quite a lot about the world. Creatures deploy-
ing this kind of strategy learn to become knowledgeable consumers of
their own sensory stimulations. They come to know about their world,
and about the kinds of entity and event that populate it. Creatures
deploying this strategy, when they see the grass twitch in just that cer-
tain way, are already expecting to see the tasty prey emerge, and already
expecting to feel the sensations of their own muscles tensing to pounce.
An animal, or machine, that has that kind of grip on its world is already
deep into the business of understanding that world. This whole bed-
rock story about perception and learning is presented in Part 1 of the
present treatment.

But there is something crucial missing from this neat picture of
passive perception. What is missing is action, and action changes
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everything. Our massed recurrent neuronal ensembles are not just
buzzing away constantly trying to predict the sensory stream. They
are constantly bringing about the sensory stream by causing bodily
movements that selectively harvest new sensory stimulations.
Perception and action are thus locked in a kind of endless circular
embrace. This means that we need to make a further—and cogni-
tively crucial—amendment. Our new toy system is a robot (call it
Robo-SLICE) that must act in ways responsive to the sensory stimu-
lations it receives. It must act, that is to say, in ways appropriate to
the combinations of bodily and environmental causes that (it esti-
mates) make the current sensory data most likely. World-engaging
actions are now central to the account, enabling Robo-SLICE actively
to seek and select its own sensory stimulations, exposing its receptors
to the kinds of energetic inputs that matter for its own survival and
for the kinds of goals and purposes to which it has become attuned.
Robo-SLICE, moreovet, is able to use action upon the world to reduce
the complexity of its own inner processing, selecting frugal, efficient
routines that trade movement and environmental structure against
costly computation.

Imagining Robo-SLICE is a tall order, and the limitations of our little
thought experiment are rapidly revealed. For we have not specified any
kind of lifestyle, niche, or set of basic concerns for SLICE, and so we have
no sense of what might constitute apt action in response to the sensory
inputs. Nor have we yet shown how the ongoing attempt to predict the
sensory signal might cause such an agent to act appropriately, sampling
its world in ways designed to bring the sensory signal progressively in
line with some special subset of its own sensory predictions. This neat
trick, which turns some of our sensory predictions into self-fulfilling
prophecies, is the subject of Part II of the present treatment.

And we are not there yet. To complete the picture, we will need to
endow Robo-SLICE with a capacity to alter the long-term structure of
its own social and material environment, so as to inhabit a world in
which the ‘energetic inputs that matter” are more reliably served up as
and when required. Such world-structuring, repeated time and time
again, generation by generation, also enables beings like us to build
better and better worlds to think in, allowing impinging energies to
guide ever-more-complex forms of behaviour and enabling thought
and reason to penetrate domains that were previously ‘off-limits’.
This, then, is Situated Robo-SLICE —an autonomous, active, learning
system able to alter its world in ways that improve its thinking and
serve (and alter) its needs. This is the subject of Part III of the present
treatment.
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I want to end this brief Introduction by mentioning some key
features and attractions that are just-visible (or so I hope) from the
sketch above.

One feature is cognitive co-emergence. The strategy of multilevel
sensory prediction simultaneously supports rich, world-revealing
forms of perception, is learning-friendly, and looks well-placed to usher
imagination (and, as we will later see, more directed forms of mental
simulation) onto the biological stage. If we perceive the world by gen-
erating the incoming sensory data ‘top-down’ using stored knowledge
about the world to recreate salient aspects of those sensory patterns,
then perceiving itself involves a form of understanding: it involves
knowing what things are like, and how they are disposed to evolve over
time. Imagination is there too, since the capacity to self-generate (at least
an approximation to) the sensory signal implies that systems that can
perceive the world this way can also generate, off-line, perception-like
states for themselves. Such self-generation is simply another use of the
same generative-model-style knowledge that enables them to meet
incoming sensory stimulations with apt sensory predictions.

Such accounts make deep and suggestive contact with the recent
explosion of experimental results favouring the so-called ‘Bayesian
brain hypothesis” the hypothesis that the brain somehow implements
processing that approximates ideal ways of weighing new evidence
against prior knowledge. Finding the set of hidden causes that make
the current sensory data most likely corresponds to Bayesian inference.

Such brains will not, of course, get everything right, all the time!
I was struck recently by the following description by Lt Colonel Henry
Worsley, head of a British Army team on an expedition to the North Pole:

Whiteout days are tricky. That’s when the cloud cover gets so
low it obscures the horizon. Amundsen called it ‘the white
darkness”. You have no idea of distance or height. There’s a
story of him seeing what he thought was a man on the horizon.
As he started walking, he realized it was a dog turd just three
feet in front of him.?

The ‘man’ percept may well have been globally (i.e., overall, in the kind
of world we inhabit and in the light of our state of information) ‘Bayes’
optimal’ given that Amundsen believed that he was looking to a far
horizon. Colonel Worsley’s brain, that is to say, may have been crunch-
ing prior knowledge and present evidence together in the best possible
fashion. Nonetheless, that percept of a man on the horizon was really
tracking a mere turd. Whenever I use the worrying word ‘optimal’ in
this book, I mean to gesture only at this kind of ‘dog-turd optimality”.
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Another large-scale feature is integration. The perspective to be
explored will allow us to view a number of core cognitive phenomena
(perception, action, reason, attention, emotion, experience, and learn-
ing) in a unified way, and it will suggest ways of making qualitative
and perhaps even quantitative sense of many of the claims of ‘embod-
ied and situated” cognitive science. These latter integrations are made
possible by a kind of cognitive common denominator in the form of
‘ways of rendering increasingly predictable the stream of sensory data’.
We can twiddle the knobs in our generative model so as to match the
sensory data. But we can also alter the data to make it easier to capture
by twiddling the knobs—alterations that may be effected both by our
immediate actions, and by longer term bouts of environmental restruc-
turing. This potential unification of work on probabilistic neural pro-
cessing with work on the role of embodiment and action is, I believe,
one of the most attractive features of the emerging framework.

These same accounts open up new avenues for thinking about
the shape and nature of human experience. By foregrounding predic-
tion and (importantly) neural estimations of the reliability of those
predictions, they cast new light upon a variety of pathologies and
disturbances including schizophrenia, autism, and functional motor
and sensory symptoms.* They also help us to appreciate the large and
complex space of neurotypical human experience and may offer hints
(especially once we incorporate interoceptive predictions concerning
our own evolving visceral states) concerning the mechanistic origins of
conscious feelings and experience.

Despite all this, it is perhaps worth stressing that prediction is not
the only instrument in the brain’s cognitive toolkit. For prediction, at
least in the rather specific sense to be explored, involves the recruit-
ment, at quite short timescales, of top-down approximations to the
incoming sensory signal using prediction error signals computed dur-
ing online processing. This is a powerful strategy that may well under-
lie a wide variety of cognitive and behavioural effects. But it is surely
not the only strategy available to the brain, let alone to the active agent.
Adaptive response is a many-splendored thing, and multiple strategies
must surely combine to keep active agents in touch with their complex,
and partially self-constructed, worlds.

But even upon this wider playing field prediction may play a key
role, contributing to the moment-by-moment orchestration of our many
disparate inner and outer resources, as well as in the construction of
core forms of intelligent contact with the world. What emerges is a pic-
ture in which prediction-based processing (courtesy, we shall see, of
variable ‘precision-weighting’) selects transient neuronal ensembles.
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Those transient ensembles recruit, and are constantly recruited by,
bodily actions that may exploit all manner of environmental oppor-
tunities and structure. In this way, the vision of the predictive brain
makes full and fruitful contact with that of the embodied, environmen-
tally situated mind.

Finally, it is important to notice that there are really two stories
on offer in the present work. One is an extremely broad vision of the
brain as an engine of multilevel probabilistic prediction. The other is a
more specific proposal (‘hierarchical predictive coding’ or Predictive
Processing (PP)) concerning just how such a story might be told. It is
entirely possible that the broad story will turn out to be correct, even
if many of the details of the more specific proposal (PP) turn out to be
wrong or incomplete. The added value of pursuing the more specific
proposal is twofold. First, that proposal represents the most thoroughly
worked out version of the more general story that is currently available.
Second, it is a proposal that has already been applied to a large—and
ever-increasing—variety of phenomena. It thus serves as a powerful
illustration of the potential of some such story to tackle a wide range
of issues, illuminating perception, action, reason, emotion, experience,
understanding other agents, and the nature and origins of various
pathologies and breakdowns.

These are exciting developments. Their upshot is not, I think, yet
another ‘new science of the mind’, but something potentially rather bet-
ter. For what emerges is really just a meeting point for the best of many
previous approaches, combining elements from work in connectionism
and artificial neural networks, contemporary cognitive and computa-
tional neuroscience, Bayesian approaches to dealing with evidence and
uncertainty, robotics, self-organization, and the study of the embodied,
environmentally situated mind. By seeing brains as restless, pro-active
organs constantly driven to predict and help bring about the play of
sensory stimulation, we may be glimpsing some of the core functional-
ity that allows three pounds or so of mobile, body-based brain-meat,
immersed in the human social and environmental swirl, to know and
engage its world.



Part 1

THE POWER OF PREDICTION
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Prediction Machines

1.1 Two Ways to Sense the Coffee

What happens when, after a brief chat with a colleague, I re-enter my
office and visually perceive the hot, steaming, mug of coffee that I left
waiting on my desk? One possibility is that my brain receives a swathe of
visual signals (imagine, for simplicity, an array of activated pixels) that
rapidly specify a number of elementary features such as lines, edges,
and colour patches. Those elementary features are then fed forward,
progressively accumulated, and (where appropriate) bound together,
yielding higher and higher level types of information culminating in
an encoding of shapes and relations. At some point, these complex
shapes and relations activate bodies of stored knowledge, turning the
forward flow of sensation into world-revealing perception: the seeing
of steaming delicious coffee in (as it happens) a funky retro-green mug.
Such a model, though here simplistically expressed, corresponds quite
accurately to traditional cognitive scientific approaches that depict
perception as a cumulative process of ‘bottom-up’ feature detection.!
Here is an alternative scenario. As I re-enter my office my brain
already commands a complex set of coffee-and-office involving
expectations. Glancing at my desk, a few rapidly processed visual

13
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cues set off a chain of visual processing in which incoming sensory
signals (variously called ‘driving’ or ‘bottom-up signals’) are met by
a stream of downwards (and lateral?) predictions concerning the
most probable states of this little world. These predictions reflect the
buzzing, pro-active nature of much of our ongoing neuronal process-
ing. That torrent of downward-flowing prediction is in the business
of pre-emptively specifying the probable states of various neuro-
nal groups along the appropriate visual (and other) pathways. The
downwards (and lateral) flow of prediction concerns all aspects of
the unfolding encounter and is not limited to simple visual features
such as shape and colour. It may include a wealth of multimodal asso-
ciations and (as we shall see in subsequent chapters) a complex mix of
motoric and affective predictions. There ensues a rapid exchange (an
energetic dance between multiple top-down and bottom-up signals) in
which incorrect downward-flowing ‘guesses’ yield error signals that
propagate laterally and upwards and are used to leverage better and
better guesses. When the flow of prediction adequately accounts for the
incoming signal, the visual scene is perceived. As this process unfolds,
the system is trying to generate (at multiple spatial and temporal scales)
the incoming sensory signal for itself. When this succeeds, and a match
is established, we experience a structured visual scene.

That, I submit, is how I actually see the coffee. This bare-bones pro-
posal, to be nuanced, refined, and repeatedly augmented as our story
unfolds, recalls the catchy (but potentially a little distortive, as we shall
see in chapter 6) dictum that perception is controlled hallucination.> Our
brains try to guess what is out there, and to the extent that that guess-
ing accommeodates the sensory barrage, we perceive the world.

1.2 Adopting the Animal’s Perspective

How does all that knowledge—the knowledge that powers the predic-
tions that underlie perception and (as we shall later see) action—arise
in the first place? Surely we have to perceptually experience the
world before we can acquire the knowledge needed to make predic-
tions about it? In which case, perceptual experience cannot require
prediction-based processing after all.

To resolve this worry, we will need firmly to distinguish what
might be thought of as the mere transduction of energetic patterns via
the senses from the kinds of rich, world-revealing perception that result
(if this story is on track) when and only when that transduction can be
met with apt top-down expectations. The question then becomes: How,
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on the basis of mere energetic transduction, can apt expectations ever
be formed and brought to bear? It is an attractive feature of the story on
offer that the very same process (attempting to predict the current sen-
sory input) may turn out to underlie both learning and online response.

A good place to start (following Rieke et al,, 1997, and Eliasmith,
2005) is by contrasting the perspective of an external observer of some
system with that of the animal or system itself. The external observer
might be able to see, for example, that certain neurons in the frog’s brain
fire only when there is a pattern of retinal stimulation that most often
occurs when some juicy prey, such as a fly, is within tongue’s reach.
That pattern of neuronal activity might then be said to ‘represent’ the
presence of the prey. But such descriptions, though sometimes useful,
can blind us to a much more pressing problem. This is the problem of
how the frog, or any other system of interest, might come to get a grip
upon a world at all. To bring this question into better view, we need to
adopt (in an innocent sense to be explained shortly) the perspective not
of the external observer but of the frog itself. The way to do this is to
consider only the evidence available to the frog. In fact, even this may be
misleading, as it seems to invite us to imagine the world from some
kind of frog’s eye view. Instead, to adopt the animal’s perspective in
the sense at issue is to restrict ourselves to what can be known from
the flows of energetic stimulation that impinge upon the frog’s sen-
sory apparatus. Those energetic stimulations might indeed be caused
by what we, as external observers, recognize as a fly. But the only thing
that is ever available to the frog’s brain is the perturbations to its sen-
sory systems caused by the energies flowing from the world across its
many receptors. This means, as Eliasmith (2005, p. 102) points out, that
‘the set of possible stimuli is unknown, and an animal must infer what
isbeing presented given various sensory cues’.  would add (to anticpate
some of our later discussions) that ‘inferring what is being presented’ is
deeply related to selecting apt actions. The animal’s perspective, in this
sense, is determined by what information is made available, via chang-
ing states of the sensory receptors, to the animal’s brain. But the whole
point of ‘processing’ that information is to help select an appropriate
action, given the current state of the animal (e.g., how hungry it is) and
the state of the world as indexed by those impiniging energies.

It is also worth stressing that the term ‘information’ is here used
simply as a description of ‘energy transfer” (see Eliasmith, 2005; Fair,
1979). Talk of information, that is to say, must ultimately be cashed
simply in terms of the energies impinging upon the sensory receptors.
This is essential if we are to avoid, yet again, the illicit importation of
an observer’s perspective into our account of how informed observers
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are naturally possible in the first place. Information talk, thus used,
makes no assumptions concerning what the information is about. This
is essential, since sorting that out is precisely what the animal’s brain
needs to do if it is to serve as an empowering resource for the control of
an environmentally apt response. It is thus the task of the (embodied,
situated) brain to turn those energetic stimulations into action-guiding
information.

An early example of ‘taking the animal’s perspective’ in this way
can be found, Eliasmith notes, in the work of Fitzhugh (1958) who
explored ways to try to infer the nature of the environmental causes
from the responses of the animal’s nerve fibres alone, deliberately
ignoring everything he knew (as an external observer) about the kinds
of stimuli to which those fibres might be responding. In this way:

Just as a brain (or its parts) infer the state of the world from
sensory signals, Fitzhugh attempts to determine what is in the
world, once he knows a nerve fiber’s response to an unknown
stimulus. He purposefully limits the information he works
with to that available to the animal. The ‘extra’ information
available via the observer’s perspective is only used after the
fact to ‘check his answers’; it is not used to determine what the
animal is representing. (Eliasmith, 2005, p. 100)

Fitzhugh faced a formidable task. Yet such, in essence, is the task of
the biological brain. The brain must discover information about the
likely causes of impinging signals without any form of direct access to
their source. All that it ’knows’ about, in any direct sense, are the ways
its own states (e.g., spike trains) flow and alter. Such states also cause
effects in the embodied organism, some of which (an external observer
might notice) are effects upon the motion of the sensory transducers
themselves. In this way active agents get to structure their own sensory
flows, affecting the ebb and flow of their own energetic stimulation.
This, we shall later see, is an important additional source of informa-
tion. But it does not alter the basic situation. It remains correct to say
that all the system has direct access to is its own sensory states (pat-
terns of stimulation across its sensory receptors).

How, simply on the basis of patterns of stimulation across the sen-
sory receptors, can embodied, situated brains alter and adapt so as to
act as useful nodes (ones that incur considerable metabolic expense) for
the origination of adaptive response? Notice how different this concep-
tion is to ones in which the problem is posed as one of establishing a
mapping relation between environmental and inner states. The task is
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not to find such a mapping but to infer the nature of the signal source
(the world) from just the varying input signal itself.

1.3 Learning in Bootstrap Heaven

Prediction-driven learning provides a remarkably powerful way to
make progress under such initially unpromising conditions. The best
way to appreciate this is by first recalling the kind of learning that can
be achieved by providing a system with an apt ‘teacher’. The teacher, of
course, is not usually a human agent, but rather some automated signal
that tells the learner exactly what it ought to be doing or concluding
given the current input. Systems that rely on such signals are said to be
‘supervised’ learners. The most famous such systems are those relying
upon the so-called ‘back-propagation of error’ (e.g,, Rumelhart, Hinton,
& Williams, 1986a,b; and discussion in Clark, 1989, 1993). In these kinds
of ‘connectionist’ systems the current output (typically, some kind of cat-
egorization of the input) is compared to the correct output (as set-up in
some body of labelled or otherwise pre-classified training data) and the
connection weights that encode the system’s know-how slowly adjusted
to bring future response more and more into line. Such processes of
slow automatic adjustment (known as gradient descent learning) are
able to take systems starting with random assignments of connection
weights and gradually—all being well*—bring them up to speed.

The development and refinement of connectionist systems was a
crucial step in the long lineage leading to the predictive processing (PP)
models that we shall shortly be considering. Indeed, predictive pro-
cessing (and more generally, hierarchical Bayesian) models are prob-
ably best seen as a development within that same broad lineage (for
discussion, see McClelland, 2013, and Zorzi et al,, 2013). Prior to such
work, it was tempting® to simply deny that effective and fundamental
learning was possible, given only the apparently slim pickings of the
sensory evidence. Instead, the bulk of human knowledge might simply
have been innate, gradually installed in the shape and functioning of
our neural circuits over many millennia.

Connectionist models of learning raised important doubts
about such arguments, showing that it was actually possible to learn
quite a lot from the statistically rich bodies of sensory data that we
actually encountered (for a review, see Clark, 1993). But standard
(back-propagation-trained) connectionist approaches were hampered
in two ways. The first was the need to provide sufficient amounts of
pre-categorized training data to drive supervised learning. The second
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was the difficulty of training such networks in multilayer forms,® since
this required distributing the response to the error signal in hard-to-
determine ways across all the layers. Prediction-driven learning,
applied in multilayer settings, addresses both these issues.

Let’s take the training signal first. One way to think about
prediction-driven learning is to see it as offering an innocent (that is,
ecologically feasible) form of supervised learning. More accurately, it
offers a form of self-supervised learning, in which the ‘correct’ response
is repeatedly provided, in a kind of ongoing rolling fashion, by the
environment itself. Thus, imagine you are that brain/network, busily
transducing signals from the world, able to detect only the ongoing
changes in your own sensory registers. One thing you can do, while
thus helping yourself to nothing more than the ‘animal’s perspective’,
is busily to try to predict the next state of those very registers.

The temporal story here is, however, rather more complex than that
makes it seem. It is easiest to think of the process in terms of predic-
tion at discrete time-steps. But, in fact, the story we will explore depicts
the brain as engaging in a continuous process of sensory prediction in
which the target is a kind of rolling present. The line between “predict-
ing the present” and ‘predicting the very-near-future’ is one that simply
vanishes once we see the percept itself as a prediction-driven construct
that is always rooted in the past (systemic knowledge) and anticipating,
at multiple temporal and spatial scales, the future’

The good news about the prediction task is that the world itself will
now provide the training signal you need. For the states of your sen-
sory registers will change, in ways systematically driven by the incom-
ing signal, as the world around you changes. In this way, the evolving
states of your own sensory receptors provide a training signal allowing
your brain to ‘self-supervise’ its own learning. Thus:

predictive forms of learning are particularly compelling
because they provide a ubiquitous source of learning signals:
if you attempt to predict everything that happens next, then
every single moment is a learning opportunity. This kind of
pervasive learning can for example explain how an infant
seems to magically acquire such a sophisticated understand-
ing of the world, despite their seemingly inert overt behavior
(Elman, Bates, Johnson, Karmiloff-Smith, Parisi, & Plunkett,
1996)—they are becoming increasingly expert predictors of
what they will see next, and as a result, developing increas-
ingly sophisticated internal models of the world. (O'Reilly et
al. (submitted) p. 3)
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The prediction task, thus conceived, is a kind of bootstrap heaven.
For example, to predict the next word in a sentence, it helps to know
about grammar (and lots more too). But one way to learn a surpris-
ing amount about grammar (and lots more too) is to look for the best
ways to predict the next words in sentences. This is just the kind of
training that the world can naturally provide, since your attempts
at prediction are soon followed by the soundform corresponding to
(you guessed it) the next word in the sentence. You can thus use the
prediction task to bootstrap your way to the grammar, which you
then use in the prediction task in future. Properly handled, this kind
of bootstrapping (which implements a version of ‘empirical Bayes’,
see Robbins, 1956) turns out to provide a very potent training regime
indeed.

Prediction-driven learning thus exploits a rich, free, constantly
available, bootstrap-friendly, teaching signal in the form of the
ever-changing sensory signal itself. Whether the task is ecologically
basic (e.g., predicting the evolving visual scene so as to spot predators
and prey) or more ecologically advanced (e.g., detecting coffee cups or
predicting the next word in a sentence) the world can be relied upon
to provide a training signal allowing us to compare current predic-
tions with actual sensed patterns of energetic input. This allows
well-understood learning algorithms to unearth rich information
about the interacting external causes (latent variables’) that are actu-
ally structuring the incoming signal. But in practice this requires an
additional and vital ingredient. That ingredient is the use of multilevel
learning.

1.4 Multilevel Learning

Prediction-driven learning operating in hierarchical (multilayer) set-
tings plausibly holds the key to learning about our kind of world: a
world that is highly structured, displaying regularity and pattern at
many spatial and temporal scales, and populated by a wide variety of
interacting and complexly nested distal causes. It is there, where sen-
sory prediction and hierarchical learning combine, that we locate an
important computational advance over previous work. That advance
has roots in Helmholtz’s (1860) depiction of perception as a process of
probabilistic, knowledge-driven inference. From Helmholtz comes the
key idea that sensory systems are in the tricky business of inferring
worldly causes from their bodily (sensory) effects. It is thus a kind of bet
on what’s out there, constructed by asking how the world would have
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to be for the sensory organs to be stimulated the way they currently
are. Part of what makes this tricky is that a single such pattern of sen-
sory stimulation will be consistent with many different sets of worldly
causes, distinguished only by their relative (and context-dependent)
probability of occurrence.

Helmholz’s insights informed influential work by MacKay (1956),
Neisser (1967), and Gregory (1980), as part of the cognitive psycho-
logical tradition that became known as ‘analysis-by-synthesis” (for a
review, see Yuille & Kersten, 2006).® In machine learning, such insights
helped inspire a cascade of crucial innovations beginning with work
on the aptly named ‘Helmholz Machine’ (Dayan et al., 1995, Dayan
and Hinton, 1996; see also Hinton and Zemel, 1994). The Helmholz
Machine was an early example of a multilayer architecture trainable
without reliance upon experimenter pre-classified examples. Instead,
the system ‘self-organized’ by attempting to generate the training data
for itself, using its own downwards (and lateral) connections. That is to
say, instead of starting with the task of classifying (or ‘learning a recog-
nition model for’) the data, it had first to learn how to generate, using a
multilevel system, the incoming data for itself.

This can seem an impossible task, since generating the data requires
the very knowledge that the system is hoping to acquire. For example,
to generate the phonetic structures proper to some public language you
would need already to know a lot about the various speech sounds
and how they are articulated and combined.® Likewise, a system could
learn to perform the classification task (taking sound streams as input
and delivering a phonetic parse as output) if it already commanded a
generative model of phonetically structured speech in the language.
But, in the absence of either, where do you begin? The answer seems
to be ‘gradually, and in both places at once’. The impasse was solved,
in principle at least, by the development of new learning routines that
made iterated visits to ‘bootstrap heaven’.

The key development that made this possible was the discovery of
algorithms such as the ‘wake-sleep algorithm’ (Hinton et al., 1995) that
used each task (recognition and generation) gradually to bootstrap the
other. This algorithm! allowed the system to learn both the recognition
and the generation models by training both sets of weights in an alter-
nating fashion, in a process of ‘iterative estimation’. The wake-sleep
algorithm used its own top-down connections to provide the desired
(target) states for the hidden units, thus (in effect) self-supervising the
development of its perceptual Tecognition model” using a generative
model that tried to create the sensory patterns for itself (in ‘fantasy’, as
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it was sometimes said). Importantly, this kind of process could succeed
even starting with small random weight assignments throughout (for a
useful review, see Hinton, 2007a).

A generative model," in this quite specific sense, aims to cap-
ture the statistical structure of some set of observed inputs by infer-
ring a causal matrix able to give rise to that very structure. In the
Introduction, we met SLICE* whose acquired generative model com-
bined hidden geological causes such as fracture and lava intrusion
so as to best account for (by generating, from the top-down) the pixel
patterns in a target geological (stratigraphic) image. A good proba-
bilistic generative model for vision would likewise seek to capture
the ways that lower level visual patterns (ultimately, retinal stimula-
tions) are generated by an inferred interacting web of distal causes.
A certain pattern of retinal stimulation, encountered in a given con-
text, might thus be best accounted for using a generative model that
(as an admittedly simplistic illustration) combines top-level repre-
sentations of interacting agents, objects, motives, and motions with
multiple intermediate layers capturing the way colours, shapes, tex-
tures, and edges combine and temporally evolve. When the combina-
tion of such hidden causes (which span many spatial and temporal
scales) settles into a coherent whole, the system has self-generated the
sensory data using stored knowledge and perceives a meaningful,
structured scene.

It is again worth stressing that this grip upon the structured
distal scene must be generated using only the information available
from the animal’s perspective. It must be a grip, that is to say, rooted
entirely in the combination of whatever pre-structuring (of brain
and body) may be present thanks to the animal’s evolutionary his-
tory and the plays of energetic stimulation that have been registered
by the sensory receptors. A systematic means of achieving such a
grip is provided by the ongoing attempt to self-generate the sensory
signal using a multilevel architecture. In practice, this means that
top-down and lateral connections within a multilevel system come to
encode a probabilistic model of interacting causes operating at mul-
tiple scales of space and time. We recognize objects and states and
affairs, if these approaches are correct, by finding the most likely
set of interacting factors (distal causes) whose combination would
generate (hence predicts, and best accounts for) the incoming sen-
sory data (see, e.g., Dayan, 1997; Dayan et al,, 1995; Hinton et al., 1995;
Hinton & Ghahramani, 1997; Hinton & Zemel, 1994; Kawato et al.,
1993, Mumford, 1994; Olshausen & Field, 1996).
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1.5 Decoding Digits

Consider a practical problem that many of us solve daily, often without
much conscious effort: the problem of identifying handwritten digits.
Granted, there is less and less of this about. But when someone does
leave that hastily scrawled sticky-note on the bathroom mirror, it can be
essential (or at the very least, a matter of date or no date) to distinguish
the numbers. How do we do it?

The machine-learning theorist Geoffrey Hinton describes a bench-
mark machine-learning system capable of handwritten digit recog-
nition (see Hinton, 2007a, b; Hinton & Nair, 2006; see also Hinton &
Salakhutdinov, 2006). The system’s task is simply to classify images
of handwritten digits (images of handwritten 1s, 2s, 3s, etc). That is
to say, the system aims to take images of highly variable handwritten
digits as inputs, and output the correct classification (identifying the
digit as an instance of a 1, ora 2, or a 3 ... etc.). The set-up (see Figure
1.1) involves three layers of feature detectors trained on a corpus of
unlabelled images of handwritten digits. But instead of attempting
directly to train the multilayer neural network to classify the images,
the network learns and deploys a probabilistic generative model of the
kind described above. It learns a multilayer generative model capable
of producing such images for itself, using its top-down connections
(followed by some additional fine-tuning). The goal of the learning is
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FIGURE 1.1 Learning to Recognize Hand-Written Digits

(@) The generative model used to learn the joint distribution of digit images
and digit labels. (b) Some test images that the network classifies correctly
even though it has never seen them before.

Source: Hinton, 2007a.
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thus progressively to ‘adjust the weights on the topdown connections
so as to maximize the probability that the network would generate the
training data’ (Hinton, 2007a, p. 428). The route to successful perception
(in this case, handwritten digit recognition) thus goes via a learning
strategy that is actually much closer to the active generation of digits
(e.g., in computer graphics).

The results were impressive. The trained net gets all the (often
badly written) examples shown in Figure 1.1 right, although none
were actually in the training data. The network'? was tested exten-
sively using a benchmark database of 60,000 training images
and 10,000 test images. It outperformed all the more standard
(‘back-propagation’ trained) artificial neural networks except those
especially ‘hand-crafted’ to the task. It also performed nearly as well
as more computationally expensive methods involving so-called
‘support-vector machines’. And most important of all, it did so using
a learning routine that echoes, if the stories we will be considering are
on track, a key aspect of the functional organization of the brain: the
use of top-down connections to generate versions of the very data to
which the system seeks to respond.

Such an approach may be applied to any structured domain.
Hinton’s own variety (which, I should stress, differs in some very
important ways from the ‘predictive processing’ models that we
will soon be focussing upon®) has been successfully applied to tasks
as diverse as document retrieval, predicting the next word in a sen-
tence, and predicting what movies people will enjoy (see Hinton &
Salakhutdinov, 2006; Mnih & Hinton, 2007; Salakhutdinov et al., 2007).
To begin to appreciate the potential power of such approaches, it helps
to note that the entire digit recognition network, Hinton remarks, has
only ‘about as many parameters as 0.002 cubic millimeters of mouse
cortex’ and that ‘several hundred networks of this complexity would fit
within a single voxel of a high resolution fMRI scan’ (Hinton, 2005, p.
10). Hinton plays this card humbly, as a means of dramatizing just how
far machine learning still has to go. But looked at another way, it invites
us to appreciate just how deep a grip on the world that surrounds us a
brain as complex as ours, deploying some version of that potent learn-
ing strategy, might achieve.

1.6 Dealing with Structure

Prediction-driven multilevel learning also addresses another key
shortfall of early (‘back-propagation of error’ based) connectionist
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treatments—their lack of a principled means of dealing with struc-
ture. This is the need to represent and process ‘complex, articulated
structures’ (Hinton, 1990, p. 47) such as part-whole hierarchies: struc-
tures in which elements form wholes that can themselves be elements
of one or more larger wholes. Work in ‘classical Artificial Intelligence’
offered a rather (too) direct solution to this problem. Conventional
symbolic approaches used systems of ‘pointers’ in which one essen-
tially arbitrary digital object could be used to access another, which
might itself be used to access another, and so on. Within such a sys-
tem a symbol could be viewed as ‘a small [usually arbitrary] rep-
resentation of an object that provides an “remote access” path to a
fuller representation of the same object’. In this way ‘many [small]
symbols can be put together to create a “fully-articulated” representa-
tion of some larger structure’ (both quotes from Hinton, 1990, p. 47).
Such systems could indeed represent structured (nested, often hier-
archical) relationships in a manner that allowed for easy sharing and
recombination of elements. But they proved brittle and inflexible in
other ways, failing to display fluid context-sensitive responsiveness,
and floundering when required to guide behaviour in time-pressured
real-world settings.™

The need to deal in a principled manner with structured domains
drove much early scepticism (e.g., Fodor & Pylyshyn, 1988) about the
connectionist alternative to the use of classical, sentence-like internal
representational forms. But jump to the year 2007 and we find Geoffrey
Hinton, a machine-learning theorist not given to overstatement, writ-
ing that ‘the limitations of back-propagation learning can now be
overcome by using multilayer neural networks that contain top-down
connections and training them to generate sensory data rather than
to classify it’ (Hinton, 2007a, p. 428). The worries about structure are
directly addressed because (as we shall see frequently in the text)
prediction-driven learning, as it unfolds in these kinds of multilayer
settings, tends to separate out interacting distal (or bodily) causes oper-
ating at varying scales of space and time.

This is important since structured domains are ubiquitous in both
the natural and human-built world. Language exhibits densely nested
compositional structure in which words form clauses that form whole
sentences that are themselves understood by locating them in the con-
text of even larger linguistic (and non-linguistic) settings. Every visual
scene, such as a city street, a factory floor, or a tranquil lake, embeds
multiple nested structures (e.g., shops, shop doorways, shoppers in
the doorways; trees, branches, birds on the branches, leaves, patterns
on the leaves). Musical pieces exhibit structures in which overarching
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sequences are built from recurring and recombinant sub-sequences,
each of which has structure of its own. The world, we might reason-
ably suggest, is known by us humans (and doubtless most other ani-
mals too) as a meaningful arena populated by articulated and nested
structures of elements. Such structured forms of knowing are made
possible (in ways we are about to explore) by prediction-driven learn-
ing in which top-down connections try to build-up the sensory scene
using knowledge about worldy causes operating at multiple spatial and
temporal scales.

1.7  Predictive Processing

It is that twist—the strategy of using top-down connections to try to
generate, using world knowledge, a kind of virtual version of the sen-
sory data via a deep multilevel cascade—that lies at the heart of ‘hier-
archical predictive coding’ approaches to perception (Friston, 2005; Lee
& Mumford, 2003; Rao & Ballard, 1999). Hierarchical predictive coding
(or ‘predictive processing’ (Clark (2013)) combines the use of top-down
probabilistic generative models with a specific vision of how and when
such influence might operate. Borrowing from commercial work in
‘linear predictive coding, that vision depicts the top-down and lateral
flow of neural signals as constantly (not just during learning) aiming
to predict the current sensory barrage, leaving only any unpredicted
elements (in the form of residual ‘prediction errors’) to propagate infor-
mation forward within the system (see Brown et al,, 2011; Friston, 2005,
2010; Hohwy, 2013; Huang & Rao, 2011; jJehee & Ballard, 2009; Lee &
Mumford, 2003; Rao & Ballard, 1999).

Transposed (in ways we are about to explore) to the neural domain,
this makes prediction error into a kind of proxy (Feldman & Friston,
2010) for any as-yet-unexplained sensory information. Prediction error
here reports the ‘surprise’ induced by a mismatch between the sen-
sory signals encountered and those predicted. More formally—and
to distinguish it from surprise in the normal, experientially loaded
sense—this is known as surprisal (Tribus, 1961). As mentioned earlier,
I shall describe such systems as engaging in ‘predictive processing’. In
thus speaking of ‘predictive processing’ rather than resting with the
more common usage ‘predictive coding’, I mean to highlight the fact
that what distinguishes these approaches is not simply the use of the
data compression strategy (more on which shortly) known as predictive
coding. Rather, it is the use of that strategy in the very special context of
hierarchical (i.e., multilevel) systems deploying probabilistic generative
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models. Such systems exhibit powerful forms of learning and—as we
will later see—deliver rich forms of context-sensitive processing and
are able flexibly to combine top-down and bottom-up flows of informa-
tion within the multilayer cascade.

Predictive coding was first developed as a data compression strat-
egy in signal processing (for a history, see Shi & Sun, 1999). Thus con-
sider a basic task such as image transmission. In most images, the value
of one pixel regularly predicts the value of its nearest neighbours, with
differences marking important features such as the boundaries between
objects. That means the code for a rich image can be compressed (for a
properly informed receiver) by encoding only the ‘unexpected’ varia-
tion: the cases where the actual value departs from the predicted one.
The simplest prediction would be that neighbouring pixels all share
the same value (the same grey scale value, for example) but much more
complex predictions are also possible. As long as there is detectable
regularity, prediction (and hence this particular form of data compres-
sion) is possible. It is the deviations from what is predicted that then
carry the ‘news’, quantified as the difference (the ‘prediction error’)
between the actual current signal and the predicted one. This affords
major savings on bandwidth, an economy that was the driving force
behind the development of the techniques by James Flanagan and oth-
ers at Bell Labs during the 1950s (for a review, see Musmann, 1979).

Data-compression by informed prediction allows quite modest
encodings to be reconstructed into rich and florid renditions of the
original sights and sounds. Such techniques figure prominently in, for
example, motion-compressed coding for video. This is an especially
effective application since so much of the information needed to recon-
struct the image in the current frame of a video sequence is already
present in the previously processed frame. Take the case of a moving
object against a stable background. There, most of the background
information for the present frame can be assumed to be the same as
the previous frame, with prediction error signalling changes in what
is occluded, or camera pans. Nor is the technique limited to such sim-
ple cases. Predictable transforms of the moving object can themselves
be factored in (as long as the speed, or even the rate of acceleration,
remains the same) using so-called motion-compensated prediction
error. Thus, all the information required to construct frame 2 of a very
simple moving image might already be present in frame 1, with com-
pensation applied for motion. To receive the second frame, you would
then just need to transmit a simple message (e.g., informally ‘same as
before except move everything two pixels to the right’). In principle,
every systematic and regular change could be predicted leaving only
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truly unexpected deviations (e.g.,, the emergence of an unexpected,
previously occluded, object) as the source of residual errors.

The trick is thus trading intelligence and knowledge against the
costs of encoding and transmission on the day. Notice that nothing
here requires the receiver to engage in processes of conscious predic-
tion or expectation. All that matters is that the receiving system be
able to reconstruct the incoming signal in ways that make the most of
whatever regularities have been detected or that it has proven useful
to assume. In this way, animals like us may be saving valuable neural
bandwidth by using what we already know to predict as much of the
current sensory data as possible. When you seem almost to see your
beloved cat or dog when the curtains start to move in just the right way
(even if it was, on this occasion, only the wind that was responsible)
you may have been using well-trained prediction machinery to start to
complete the perceptual sequence, saving on bandwidth and (usually)
knowing your world better as a result.

Predictive processing thus combines the use, within a multilevel
bidirectional cascade, of ‘top-down’ probabilistic generative mod-
els with the core predictive coding strategy of efficient encoding and
transmission. If the predictive processing story is on track, then per-
ception is indeed a process in which we (or rather, various parts of
our brains) try to guess what is out there, using the incoming signal
more as a means of tuning and nuancing the guessing rather than as
a rich (and bandwidth-costly) encoding of the state of the world. This
does not mean, of course, that perceptual experience occurs only after
all forward-flowing error is eliminated. Full, rich, percepts here take
shape only when downward predictions match the incoming sensory
signal at many levels. But this matching (as we will later see) is itself
a piecemeal matter in which rapid perception of the general nature or
‘gist’ of a scene may be accomplished using a well-trained feedforward
sweep that is sensitive to simple (e.g., low spatial frequency®) cues.
Richer detail then emerges concurrently with the progressive reduc-
tion of residual error signals calculated relative to the ensuing waves of
top-down prediction. The ongoing process of perceiving, if such mod-
els are correct, is a matter of the brain using stored knowledge to pre-
dict, in a progressively more refined manner, the patterns of multilayer
neuronal response elicited by the current sensory stimulation. This
in turn underlines the surprising extent to which the structure of our
expectations (both conscious and non-conscious) may be determining
much of what we see, hear, and feel.

In the rest of this book, we will thus be exploring two dis-
tinct but overlapping stories. The first is a general, and increasingly
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well-supported, vision of the brain (and especially the neocortex) as
fundamentally an inner engine of probabilistic prediction (see, e.g.,
Bubic et al,, 2010; Downing, 2007; Engel, Fires, et al, 2001; Kvergaga
et al., 2007). The other is one specific proposal (hierarchical predictive
coding, or ‘predictive processing’) describing the possible shape and
nature of that core process of multilevel probabilistic prediction. This
proposal is conceptually elegant, computationally well-grounded, and
seems to have a reasonably promising shot at being neurally imple-
mented. As a result, it is being widely applied, with new phenomena
being brought under its umbrella at a surprising (sometimes even an
alarming) rate. It offers a very comprehensive vision. We should not
forget, however, that there are many possible models in this general
vicinity.

1.8 Signalling the News

To put some example-based flesh on all this, consider first a demonstra-
tion (Hosoya et al., 2005) of the basic predictive coding strategy at work
in the retina. The starting point of this account is the well-established
sense in which retinal ganglion cells take part in some form of predictive
coding, insofar as their receptive fields display centre-surround spatial
antagonism, as well as a kind of temporal antagonism. What this means
is that neural circuits predict, on the basis of local image characteris-
tics, the likely image characteristics of nearby spots in space and time
(basically, assuming that nearby spots will display similar image inten-
sities) and subtract this predicted value from the actual value. What gets
encoded is thus not the raw value but the differences between raw val-
ues and predicted values. In this way, ‘ganglion cells signal not the raw
visual image but the departures from the predictable structure, under
the assumption of spatial and temporal uniformity’ (Hosoya et al,, 2005,
p- 71). This saves on bandwidth and also flags what is (to use Hosoya
et al.'s own phrase) most ‘newsworthy’ in the incoming signal.

These computations of predicted salience might have been made
solely on the basis of average image statistics. Such an approach would,
however, lead to trouble in many ecologically realistic situations.
Consider the problem faced by ‘Mexican Walking Fish’, a salamander
that frequently moves between a watery environment and dry land.
The spatial scales at which nearby points in space and time are typi-
cally similar in image intensity vary markedly between such cases,
because the statistical properties of the different types of scene vary.
This is true in less dramatic cases too, such as when we move from
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inside a building to a garden or lake. Hosoya et al. thus predicted that,
in the interests of efficient, adaptively potent, encoding, the behaviour
of the retinal ganglion cells (specifically, their receptive field proper-
ties) should vary as a result of adaptation to the current scene or con-
text, exhibiting what they term ‘dynamic predictive coding’

Putting salamanders and rabbits into varying environments, and
recording from their retinal ganglion cells, Hosoya et al. confirmed
their hypothesis: Within a space of several seconds, about 50% of the
ganglion cells altered their behaviours to keep step with the changing
image statistics of the varying environments. A mechanism was then
proposed and tested using a simple feedforward neural network that
performs a form of anti-Hebbian learning. Anti-Hebbian feedforward
learning, in which correlated activity across units leads to inhibition
rather than to activation (see, e.g., Kohonen, 1989), enables the creation
of so-called ‘novelty filters’ that learn to become insensitive to the most
highly correlated (hence most familiar’) features of the input. This, of
course, is exactly what is required to learn to discount the most sta-
tistically predictable elements of the input signal in the way dynamic
predictive coding suggests. Better yet, there are neuronally plausible
ways to implement such a mechanism using amacrine cell synapses
to mediate plastic inhibitory connections that in turn alter the recep-
tive fields of retinal ganglion cells (for details, see Hosoya et al.,, 2005,
p- 74) 50 as to suppress the most correlated components of the stimulus.
In sum, retinal ganglion cells seem to be engaging in a computation-
ally and neurobiologically explicable process of dynamic predictive
recoding' of raw image inputs, whose effect is to ‘strip from the visual
stream predictable and therefore less newsworthy signals’ (Hosoya
et al., 2005, p. 76).

1.9 Predicting Natural Scenes

Predictive processing takes this biological emphasis on the newswor-
thy several steps further, offering a new take on cortical organization
itself. In predictive processing schemes the incoming sensory signal
is met by a flow of ‘guessing’ constructed using multiple layers of
downward and lateral influence, and residual mismatches get passed
forwards (and laterally) in the form of an error signal. At the core of
such proposals lies a deep functional asymmetry between forward
and backwards pathways—functionally speaking ‘between raw data
seeking an explanation (bottom-up) and hypotheses seeking confirma-
tion (topdown)’ (Shipp, 2005, p. 805). Each layer in such a multilevel
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FIGURE 1.2 The Basic Predictive Processing Schema

A highly schematized view of the predictive processing view of information
transfer in the brain. Bottom-up inputs are processed in the context of priors
(beliefs/hypotheses) from layers higher up in the hierarchy. The unpredicted
parts of the input (errors) travel up the hierarchy, leading to the adjustment of
subsequent predictions, and the cycle continues.

Source: Adapted from Lupyan & Clark, In Press

hierarchical system treats activity in the layer below as if it were sen-
sory input, and attempts to meet it with a flow of apt top-down predic-
tion (for this basic schema, see Figure 1.2). There are several worked
examples of this in the literature (see the review by Huang & Rao, 2011).

Rao and Ballard (1999) provide the seminal proof-of-concept. In this
work prediction-based learning targets image patches drawn from nat-
ural scenes using a multilayer artificial neural network. The network,
which had no pre-set task apart from that of using the downwards
and lateral connections to match input samples with successful predic-
tions, developed a nested structure of units with simple-celi-like recep-
tive fields and captured a variety of important, empirically observed
effects. At the lowest level, there is some pattern of energetic stimu-
lation, transduced (let’s suppose) by sensory receptors from ambient
light patterns produced by the current visual scene. These signals are
then processed via a multilevel cascade in which each level attempts
to predict the activity at the level below it via backward connections.
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The backward connections allow the activity at one stage of the pro-
cessing to return as another input at the previous stage. So long as this
successfully predicts the lower level activity, all is well, and no further
action needs to ensue. But where there is a mismatch, ‘prediction error’
occurs and the ensuing (error-indicating) activity is propagated later-
ally and to the higher level. This automatically recruits new probabilis-
tic representations at the higher level so that the top-down predictions
do better at cancelling the prediction errors at the lower level (yield-
ing rapid perceptual inference). At the same time, prediction error is
used to adjust the longer-term structure of the model so as to reduce
any discrepancy next time around (yielding slower timescale percep-
tual learning). Forward connections between levels thus carry only
the ‘residual errors’ (Rao & Ballard, 1999, p. 79) separating the predic-
tions from the actual lower level activity, while backward and lateral
connections (conveying the generative model) carry the predictions
themselves. Changing predictions corresponds to changing or tuning
your hypothesis about the hidden causes of the lower level activity. In
the context of an embodied active animal, this means it corresponds
to changing or tuning your grip on what to do about the world, given
the current sensory barrage. The concurrent running of this kind of
prediction error calculation within a bidirectional hierarchy of cortical
areas allows information pertaining to regularities at different spatial
and temporal scales to settle into a mutually consistent whole in which
each such ‘hypothesis’ is used to help tune the rest. As the authors put
it, ‘prediction and error-correction cycles occur concurrently through-
out the hierarchy, so top-down information influences lower-level esti-
mates, and bottom-up information influences higher-level estimates of
the input signal’ (Rao & Ballard, 1999, p. 80). In the visual cortex, such a
scheme suggests that backward connections from V2 to Vi would carry
a prediction of expected activity in Vi, while forward connections
from V1 to V2 would carry forward the error signal indicating residual
(unpredicted) activity. This kind of functional asymmetry in the role of
forward and backward connections is central to the PP vision.

To test these ideas, Rao and Ballard implemented a simple bidirec-
tional hierarchical network of such ‘predictive estimators’ and trained
it on image patches derived from five natural scenes (see Figure 13).
Using learning algorithms that progressively reduce prediction error
across the linked cascade and after exposure to thousands of image
patches, the system learned to use responses in the first-level net-
work to extract features such as oriented edges and bars, while the
second-level network came to capture combinations of such features
corresponding to patterns involving larger spatial configurations—for
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FIGURE 13 Five Natural Images Used for Training the Three-Level
Hierarchical Network Described in the Text

Source: Rao & Ballard, 1999.

example, the alternating stripes of a zebra. In this way the hierarchi-
cal predictive coding architecture, using only the statistical properties
of the signals derived from the natural images, was able to induce a
simple generative model of the structure of the input data. It learned
about the presence and importance of features such as lines, edges, and
bars, and about combinations of such features (such as stripes) in ways
that enable better predictions concerning what to expect next, in space
or in time. In Bayes-speak (see Appendix 1), the network maximized
the posterior probability of generating the observed states (the sensory
inputs) and, in so doing, induced a kind of internal model of structure
in the signal source.

The Rao and Ballard model also displayed a number of inter-
esting ‘non-classical receptive field’ effects, such as end-stopping.
End-stopping (see Rao & Sejnowski, 2002) occurs when a neuron
responds strongly to a short line falling within its classical recep-
tive field but (surprisingly) shows diminishing response as the line
gets longer. Such effects (and with them, a whole panoply of ‘context
effects” as we will later see) emerge naturally from the use of hierarchi-
cal prediction machinery. The response tails off as the line gets longer
because longer lines and edges were the statistical norm in the natural
scenes to which the network was exposed in training. After training,
longer lines are thus what is first predicted (and fed back, as a hypoth-
esis) by the level-two network. The strong firing of the level-1 ‘edge
cells” when they are driven by shorter lines thus reflects not successful
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feature detection by those cells but rather an earlier stage of error or
mismatch since the short segment was not initially predicted by the
higher level network.

This example neatly illustrates the dangers of thinking in terms
of a simple cumulative flow of feature detection and the advantages of
rethinking the flow of processing as a mixture of top-down expecta-
tion and bottom-up error correction. It also highlights the way these
learning routines latch on to the structure of the world as it is specified
by the training data. End-stopped cells are simply a response to the
statistics of the natural scenes used in training and reflect the typical
length of the lines and edges in those scenes. In a very different world
(such as the underwater world of some sea creatures) such cells would
have learnt very different responses.

Such approaches assume that the environment generates sensory
signals by means of nested interacting causes and that the task of the
perceptual system is to invert this structure by learning and applying
a hierarchical generative model so as to predict the unfolding sensory
stream. Learning routines of this broad kind have been successfully
applied in many domains, including speech perception, reading, and
recognizing the actions of oneself and of other agents (see Friston,
Mattout, & Kilner, 2011; Poeppel & Monahan, 2011; Price & Devlin,
2011). This is not surprising, since the underlying rationale is quite gen-
eral. If you want to predict the way some set of sensory signals will
change and evolve over time, a good thing to do is to learn how those
sensory signals are determined by interacting external causes. And a
good way to learn about those interacting causes is to try to predict
how the sensory signal will change and evolve over time.

1.10 Binocular Rivalry

So far, our examples of predictive processing have been restricted to
a few relatively low-level phenomena. As a final opening illustration,
however, and one that nicely brings together many of the key elements
introduced so far, consider Hohwy et al’s (2008) hierarchical predictive
coding model of binocular rivalry.

Binocular rivalry® (see Figure 1.4) is a striking form of visual expe-
rience that occurs when, using a special experimental set-up, each eye
is presented (simultaneously) with a different visual stimulus. This can
be achieved by using two superimposed images rendered using red
and cyan graphics, viewed using special glasses with one red and one
cyan lens (the same kind of set-up, known as anaglyph 3D, that was once
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FIGURE 1.4 Illustration of Binocular Rivalry

Different images are presented to the left and right eyes (‘stimulus’). The
subject experiences switches from perception of one image (face) to the other
(house). Note that ‘mixed percepts’ (composed of parts of both images) are
also temporarily experienced (‘piecemeal rivalry’).

Source: Schwartz et al,, 2012. By permission of The Royal Society.

used for viewing 3D comics or movies). Courtesy of these eye-specific
filters, the right eye might be presented with an image of a house
while the left receives an image of a face. Under these (extremely—and
importantly—artificial) conditions, subjective experience unfolds in a
surprising, ‘bi-stable’ manner. Instead of seeing (visually experiencing)
an ongoing merger of the house and face information, subjects report
a kind of perceptual alternation between seeing the house and seeing
the face. The transitions themselves are not always sharp, and subjects
often report a gradual breaking through (see, e.g., Lee et al.,, 2005) of
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elements of the other image before it dominates the previous one, after
which the cycle repeats.

Binocular rivalry, as Hohwy et al. remind us, has proven to be a
powerful tool for studying the neural correlates of conscious visual
experience, because the incoming signals remain constant while the
percept switches to and fro (Frith et al, 1999). Despite this attention,
however, the precise mechanisms at play here are not well understood.
Hohwy et al’s strategy is to take a step back and to attempt to explain
the phenomenon from first principles in a way that makes sense of
many apparently disparate findings. In particular, they pursue what
they dub an ‘epistemological’ approach: one whose goal is to reveal
binocular rivalry as a reasonable (knowledge-oriented) response to an
ecologically unusual stimulus condition.

The starting point for their story is, once again, the emerging uni-
fying vision of the brain as an organ of prediction using a hierarchical
generative model. Recall that, on these models, the task of the per-
ceiving brain is to account for (to accommodate or ‘explain away’) the
incoming or ‘driving” sensory signal by means of a matching top-down
prediction. The better the match, the less prediction error then propa-
gates up the hierarchy. The higher level guesses are thus acting as pri-
ors for the lower level processing, in the fashion (as remarked earlier) of
so-called ‘empirical Bayes”"

Within such a multilevel setting, a visual percept is determined
by a process of prediction operating across many levels of a (bidirec-
tional) processing hierarchy, each concerned with different types and
scales of perceptual detail. All the communicating areas are locked
into a mutually coherent predictive coding regime, and their interac-
tive equilibrium ultimately selects a best overall (multiscale) hypoth-
esis concerning the state of the visually presented world. This is the
hypothesis that ‘makes the best predictions and that, taking priors into
consideration, is consequently assigned the highest posterior prob-
ability’ (Hohwy et al., 2008, p. 690). Other overall hypotheses, at that
moment, are simply crowded out: they are effectively inhibited, having
lost the competition to best account for the driving signal.

Notice, though, what this means in the context of the predictive
processing cascade. Top-down signals will account for (by predicting)
only those elements of the driving signal that conform to (and hence
are predicted by) the current winning hypothesis. In the binocular
rivalry case, however (see Figure 1.4) the driving (bottom-up) signals
contain information that suggests two distinct, and incompatible, states
of the visually presented world, for example, face at time ¢ at location
x and house at time f at location x. When one of these is selected as the
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best overall hypothesis, it will account for all and only those elements
of the driving input that the hypothesis predicts. As a result, predic-
tion error for that hypothesis decreases. But prediction error associated
with the elements of the driving signal suggestive of the alternative
hypothesis is not thereby suppressed, so it is now propagated up the
hierarchy. To suppress those prediction errors, the system needs to find
another hypothesis. But having done so (and hence, having flipped
the dominant hypothesis to the other interpretation), there will again
emerge a large prediction error signal, this time deriving from those
elements of the driving signal not accounted for by the flipped inter-
pretation. In Bayesian terms (see Appendix 1) this is a scenario in
which no unique and stable hypothesis combines high prior and high
likelihood. No single hypothesis accounts for all the data, so the system
alternates between the two semi-stable states. It behaves as a bi-stable
system, minimizing prediction error in what Hohwy et al. describe as
an energy landscape containing a double well.

What makes this account different from its rivals (such as Lee et al.,
2005) is that where they posit a kind of direct, attention-mediated but
essentially feedforward, competition between the inputs, the predic-
tive processing account posits ‘top-down’ competition between linked
sets of hypotheses. The effect of this competition is to selectively sup-
press the prediction errors associated with the elements of the driving
(sensory) signals accommodated by the current winning hypothesis
(‘face’). But this top-down suppression leaves untouched the predic-
tion errors associated with the remaining (house-signifying) elements
of the driving signal. These errors are then propagated up the system.
To explain them away the overall interpretation must switch. This pat-
tern repeats, yielding the distinctive alternations experienced during
dichoptic viewing of inconsistent stimuli.

But why, under such circumstances, do we not simply experience
a combined or interwoven image: a kind of house/face mash-up, for
example? Although such partially combined percepts do occur, and
may persist for brief periods of time, they are never complete (bits of
each stimulus are missing) or stable. Such mash-ups do not constitute a
viable hypothesis given our more general knowledge about the visual
world. For it is part of that general knowledge that, for example, houses
and faces do not occupy the same place, at the same scale, at the same
time. This kind of general knowledge may itself be treated as a systemic
prior, albeit one pitched at a relatively high degree of abstraction (such
priors are sometimes referred to as ‘hyperpriors’ and we shall have
more to say about them in subsequent chapters). In the case at hand,
what is thereby captured is the fact that ‘the prior probability of both a
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house and face being co-localized in time and space is extremely small’
(Hohwy et al,, 2008, p. 691). This, indeed, may be the deep explanation
of the existence of competition between certain higher level hypotheses
in the first place—these hypotheses must compete because the system
has learned that ‘only one object can exist in the same place at the same
time’ (Hohwy et al., 2008, p. 691).

Despite these attractions, the binocular rivalry scenario presented
here is incomplete. In particular, it is clear that there are strong atten-
tional components here, whose treatment requires additional resources
{to be introduced in chapter 2). Moreover, the active visual exploration
of the presented scene—and in particular the fact that we can only
visually explore the scene in ways appropriate to one ‘reading’ at a
time—plausibly plays a major role in shaping our experiences.”” Such
augmentations would thus require the larger apparatus that we shall
later (Part II) dub ‘action-oriented predictive processing'

111 Suppression and Selective Enhancement

To successfully represent the world in perception, if these models
are correct, depends crucially on quashing sensory prediction error.
Perception thus involves accommodating the driving (incoming) sen-
sory signal by matching it with a cascade of predictions pitched at a
variety of spatial and temporal scales. To the extent that such matching
succeeds, well-predicted aspects of the driving sensory signal are sup-
pressed or dampened—those aspects of the signal, as it is sometimes
said, are ‘explained away’?

This kind of ‘explaining away’ is important and central, but it
needs very careful handling. It is important as it reflects one charac-
teristic property of predictive processing models. That feature lies at
the root of the encoding efficiencies that these models exhibit, since
all that then needs to be passed forward through the system is the
residual error signal (signifying as-yet-unexplained sensory informa-
tion) which is what remains once predictions and driving signals have
been matched.?? But there is more to the systemic unfolding that ensues
than suppression and dampening alone. For alongside suppression, PP
delivers sharpening and selective enhancement.

Fundamentally, this is because PP posits a kind of duplex archi-
tecture: one that at each level combines representations of inputs with
estimations of error and (see chapter 2) sensory uncertainty. According
to this proposal, what really gets suppressed, ‘explained away’ or can-
celled out is thus the error signal, which (in these models) is depicted
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as computed by dedicated ‘error units’. These are linked to, but dis-
tinct from, the so-called representation units that encode the causes
of sensory inputs. By cancelling out the activity of some of the error
units, activity in some of the laterally interacting ‘representation’ units
(which feed predictions laterally and downward) can actually end up
being selected and sharpened.

In this way, the predictive processing account avoids any direct
conflict with accounts (such as the biased-competition model of
Desimone & Duncan, 1995) that posit top-down enhancements of selected
aspects of the sensory signal. It avoids such conflict because:

High-level predictions explain away prediction error and tell
the error units to “shut up” [while] units encoding the causes of
sensory input are selected by lateral interactions, with the error
units, that mediate empirical priors. This selection . .. sharpens
responses among the laterally competing representations.
(Friston, 2005, p. 829)

Such effects are further facilitated by attentional (‘precision-weighting’)
mechanisms that we will meet in chapter 2. For the moment, the point
to notice is that the PP account is consistent with both the suppression
and the selective enhancement of (different aspects of) early cortical
response.”

What is most distinctive about the predictive processing proposal
(and where much of the break from tradition really occurs) is that
it depicts the forward flow of information as solely conveying error,
and the backward flow as solely conveying predictions. The PP archi-
tecture thus achieves a rather delicate balance between the famil-
iar and the novel. There is still a cascade of feature detection, with
potential for selective enhancement, and with increasingly complex
features dealt with by neural populations that are more distant from
the sensory peripheries. But the forward flow of sensory information
is now replaced by a forward flow of prediction error. This signi-
fies the sensory information that is as-yet-unexplained. In the more
action-oriented terms that will occupy us later (in Parts II and III), it
is sensory information that is not yet leveraged to guide apt engage-
ments with the world.

This balancing act between supression and selective enhance-
ment threatens to be quite architecturally demanding. In standard
implementations it requires positing the existence of ‘two functionally
distinct sub-populations, encoding the conditional expectations [repre-
sentations, predictions] of perceptual causes and the prediction error
respectively’ (Friston, 2005, p. 829). Functional distinctness need not,
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of course, imply full physical separation. But a common conjecture in
this literature depicts superficial pyramidal cells (a prime source of for-
ward neuro-anatomical connections) as playing the role of error units,
passing prediction errors laterally and forwards, while deep pyramidal
cells play the role of representation units, passing predictions (made on
the basis of a complex generative model) laterally and downward (see,
e.g., Friston, 2005, 2009; Mumford, 1992).

Itisimportant to remember that ‘error neurons’, despite the label, can
equally well be conceived as a variety of representation neurons—but
ones whose functional role is to encode as yet unexplained {or, more
broadly, unaccomodated) sensory information. What they encode is
thus specified only relative to a prediction. For example:

in the early visual cortex, predictor neurons code informa-
tion about the predicted orientation and contrast at a certain
point in the visual field, and error neurons signal mismatches
between the observed orientation and contrast and the pre-
dicted orientation and contrast. In IT [inferior temporal] cor-
tex, predictor neurons code information about object category;
error neurons signal mismatches in predicted and observed
object category (den Ouden et al., 2012; Peelen and Kastner,
2011). (Koster-Hale & Saxe, 2013, p. 838)

However it may (or may not) be realized—and for a useful run-down
of some key possibilities, see Koster-Hale and Saxe (2013)—predictive
processing demands some form of functional separation between
encodings of prediction and of prediction error.* Such separation con-
stitutes a central feature of the architecture, enabling it to combine the
suppressive elements resulting from predictive coding with multiple
routes to top-down signal enhancement.

112 Encoding, Inference, and the Bayesian Brain

Neural representations, should the hierarchical predictive process-
ing account prove correct, encode ‘probability density functions” in
the form of a probabilistic generative model, and the flow of inference
respects Bayesian principles (for a brief sketch, see Appendix 1) that bal-
ance prior expectations against new sensory evidence. This (Eliasmith,
2007) is a departure from traditional understandings of internal repre-
sentation, and one whose full implications have yet to be fully under-
stood. It means that the nervous system is fundamentally adapted to
deal with uncertainty, noise, and ambiguity, and that it requires some
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(perhaps several) concrete means of internally representing uncer-
tainty. Non-exclusive options here include the use of distinct popula-
tions of neurons, varieties of ‘probabilistic population codes’ (Pouget
et al,, 2003), and relative timing effects (Deneve, 2008) (for a very useful
review, see Vilares & Kording, 2011).

Predictive processing accounts thus share what Knill and Pouget
(2004, p. 713) describe as the ‘basic premise on which Bayesian theories
of cortical processing will succeed or fail, namely, that ‘the brain rep-
resents information probabilistically, by coding and computing with
probability density functions, or approximations to probability density
functions’ (p. 713). Such a mode of representation implies that when we
represent a state or feature of the world, such as the depth of a visible
object, we do so not using a single computed value but using a condi-
tional probability density function that encodes ‘the relative probabil-
ity that the object is at different depths Z, given the available sensory
information’ (p. 712).

In what sense are such systems truly Bayesian? According to
Knill and Pouget, ‘the real test of the Bayesian coding hypothesis is in
whether the neural computations that result in perceptual judgments
or motor behaviour take into account the uncertainty available at each
stage of the processing’ (2004, p. 713). That is to say, reasonable tests will
concern how well a system deals with the uncertainties that charac-
terize the information it actually manages to encode and process, and
(I would add) the general shape of the strategies it uses to do so.

There is increasing (though mostly indirect—see below) evidence
that biological systems approximate, in multiple domains, the Bayesian
profile thus understood. To take just one example, Weiss et al. (2002)—
in a paper revealingly titled ‘Motion illusions as optimal percepts'—
used an optimal Bayesian estimator (the ‘Bayesian ideal observer’) to
show that a wide variety of psychophysical results, including many
motion ‘illusions,’ (see 6.9 following) fall naturally out of the assump-
tion that human motion perception implements just such an estimator
mechanism.

Examples could be multiplied (for a balanced review, see Knill
& Pouget, 2004). At least in the realms of low-level, basic, and adap-
tively crucial, computations, biological processing may quite closely
approximate Bayes’s optimality. But what researchers find in general
is not that we humans are—rather astoundingly—'Bayes’ optimal’ in
some absolute sense (i.e., responding correctly relative to the absolute
uncertainties in the stimulus), but rather, that we are often optimal, or
near optimal, at taking into account the uncertainties that character-
ize the information that we actually command: the information that is
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made available by the forms of sensing and processing that we actu-
ally deploy (see Knill & Pouget, 2004, p. 713). That means taking into
account the uncertainty in our own sensory and motor signals and
adjusting the relative weight of different cues according to (often very
subtle) contextual clues. Recent work confirms and extends this assess-
ment, suggesting that humans act as rational Bayesian estimators, in
perception and in action, across a wide variety of domains (Berniker &
Kording, 2008; Kérding et al., 2007; Yu, 2007).

Of course, the mere fact that a system’s response profile takes this
kind of shape does not unequivocally demonstrate that the system is
implementing some form of Bayesian reasoning. In a limited domain,
even a look-up table that simply associates cues with responses could
(Maloney & Mamassian, 2009) yield the same behavioural repertoire as
a ‘Bayes’ optimal’ system. Nonetheless, the predictive processing story,
if correct, would rather directly underwrite the claim that the nervous
system approximates a genuine version of Bayesian inference.® Some
recent electophysiological studies lend strong support to this broad pos-
sibility, revealing distinctive cortical response signatures for Bayesian
updating and predictive surprise, and further suggesting that the brain
codes and computes weighted probabilities. Summing up these studies
the authors conclude:

Our electrophysiological findings suggest that the brain acts as
a Bayesian observer, i.e, that it might adjust probabilistic inter-
nal states, which entail beliefs about hidden states in the envi-
ronment, in a probabilistic generative model of sensory data.
(Kolossa, Kopp, and Fingscheidt, 2015, p. 233).

1.13  Getting the Gist

Instead of simply representing ‘CAT ON MAT’, the probabilistic
Bayesian brain will encode a conditional probability density func-
tion, reflecting the relative probability of this state of affairs (and any
somewhat-supported alternatives) given the available information.
This estimate reflects both bottom-up influences from multiple sensory
channels, and prior information of various kinds. It is worth pausing
to examine some of the many ways this delicate top-down/bottom-up
dance might unfold.

During the early stages of processing, a PP system will avoid
committing itself to any single interpretation, and so there will often
be an initial flurry of error signals. Such signals plausibly account for
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major components of early evoked responses (as measured by EEG
recordings using scalp electrodes) as competing ‘beliefs” propagate
up and down the system. This is typically followed by rapid conver-
gence upon a dominant theme (such as “animals in a natural scene”)
with further details (“several tigers sitting quietly under the shade
of a large tree”) subsequently negotiated. The set-up thus favours
a kind of recurrently negotiated ‘gist-at-a-glance’ model, where we
first identify the general scene followed by the details. This affords a
kind of ‘forest first, trees later” approach (Friston, 2005; Hochstein &
Ahissar, 2002). These early emerging gist elements may be identified
on the basis of rapidly processed (low spatial frequency) cues, as sug-
gested by Bar, Kassam, et al. (2006). Such coarse cues may indicate
whether we confront (for example) a cityscape, a natural scene, or
an underwater scene, and they may also be accompanied by early
emerging affective gist—do we like what we are seeing? See Barrett &
Bar, 2009 and discussion in 5.10 following.

Thus imagine you are kidnapped, blindfold, and taken to some
unknown location. As the blindfolds are removed, your brain’s first
attempts at predicting the scene will surely fail. But rapidly pro-
cessed, low spatial frequency cues soon get the predictive brain into
the right general ballpark. Framed by these early emerging gist ele-
ments (which might even be identified, in a trained-up system, using
an ultra-rapid purely feedforward sweep, see Potter et al., 2014%)
subsequent processing can be guided by specific mismatches with
early attempts to fill in the details of the scene. These allow the
system to progressively tune its top-down predictions, until it set-
tles on a coherent overall interpretation pinning down detail at
many scales of space and time.

This does not mean, however, that context effects will always
take time to emerge and propagate downwards. For in many (indeed,
most) real-life cases, substantial context information is already in
place when new sensory information arrives. An apt set of priors
is thus often already active, poised to impact processing without
further delay.

This is important. The brain, in ecologically normal circumstances,
is not just suddenly ‘turned on’ and some random or unexpected input
delivered for processing! So there is usually plenty of top-down influ-
ence (active prediction) in place even before a stimulus is presented.”
Over whatever timescale, though, the endpoint (assuming we form a
rich visual percept) is the same. The system will have settled into a
set of states that make mutually intertwined bets concerning many
aspects of the scene, from the general theme all the way down to more
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spatio-temporally precise information about parts, colours, textures,
and orientations.

1.14 Predictive Processing in the Brain

Section 1.9 already displayed a little indirect evidence for predictive
processing by the brain in the form of computational simulations
that reproduced and explained observed ‘non-classical receptive field
effects’ such as end-stopping. Another such effect (see Rao & Sejnowski,
2002) occurs when an oriented stimulus yields a strong response from
a cortical cell, but that response is suppressed when the surrounding
region is filled with a stimulus of identical orientation, yet enhanced
when the orientation of the central stimulus is orthogonal to those of
the surrounding region. A powerful explanation of this result, Rao
and Sejnowski (2002) suggest, is once again that the observed neural
response here signals error rather than well-guessed content. It is thus
smallest when the central stimulus is highly predictable from the sur-
rounding ones and largest when it is actively counter-predicted by the
surroundings. Similarly, Jehee and Ballard (2009) offer a predictive
processing account of ‘biphasic response dynamics’ in which the opti-
mal stimulus for driving a neuron (such as certain neurons in lateral
geniculate nucleus, LGN) can reverse (e.g., from preferring bright to
preferring dark) in a short (20 ms) space of time. Once again the switch
is very neatly explained as a reflection of a unit’s functional role as an
error or difference detector rather than a classical feature detector. In
such cases, the predictive coding strategy is in full evidence because:

Low-level visual input [is] replaced by the difference between
the input and a prediction from higher-level structures ...
higher-level receptive fields . . . represent the predictions of the
visual world while lower-level areas . . . signal the error between
predictions and the actual visual input. (Jehee & Ballard,

2009, p. 1)

More generally, consider the case of ‘repetition suppression’. Multiple
studies (for a recent review, see Grill-Spector et al., 2006) have shown
that stimulus-evoked neural activity is reduced by stimulus repeti-
tion.”® Summerfield et al. (2008) manipulated the local likelihood of
stimulus repetitions, showing that the repetition-suppression effect
is itself reduced when the repetition is improbable/unexpected. The
favoured explanation is (again) that repetition normally reduces
response because it increases predictability (the second instance was
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made likelier by the first) and thus reduces prediction error. Repetition
suppression thus also emerges as a direct effect of predictive process-
ing in the brain, and as such its severity may be expected to vary (just
as Summerfield et al. found) according to our local perceptual expecta-
tions. In general then, the predictive coding story offers a very neat and
unifying explanation of a wide variety of quite low-level contextual
effects.

There is an emerging body of supportive fMRI and EEG work dat-
ing back to a pioneering fMRI study by Murray et al. (2002) that also
reveals just the kinds of relationships posited by the predictive process-
ing story. Here, as higher level areas settled into an interpretation of
visual shape, activity in V1 was dampened, consistent with the success-
ful higher level predictions being used to explain away (cancel out) the
sensory data. Recent studies confirm this general profile. Alink et al.
(2010) found decreased responses for predictable stimuli using variants
on an apparent motion illusion, while den Ouden et al. (2010) report
similar results using arbitrary contingencies that were manipulated
rapidly during the course of their experiments.”? Adding fuel to these
fires, Kok, Brouwer, et al. (2013) experimentally manipulated subjects’
expectations about the probable direction of motion of a simple visual
stimulus. The studies, using auditory cues that stood in a predictive
relationship to moving dots, showed that subject’s implicit expectations
(as manipulated by the auditory cues) impacted neuronal activity at the
very earliest stages of sensory processing. The effects, moreover, went
beyond simple speeding up or sharpening of responses, altering what
was actually subjectively perceived. The authors concluded, exactly
in line (as they note) with predictive processing, that ‘our results sup-
port an account of perception as a process of probabilistic inference
... wherein integration of top-down and bottom-up information takes
place at every level of the cortical hierarchy’ (Kok, Brouwer, et al,, 2013,
p- 16283).

Next, consider the P300, an electrophysiological response that
has been linked to the occurrence of unexpected stimuli. In a recent
detailed model comparison, the varying amplitude of the P300 was
best explained (Kolossa et al., 2013) as an expression of the residual
errors between top-down expectation and incoming sensory evi-
dence. Relatedly, predictive processing provides a compelling account
of the ‘mismatch negativity’ (MMN)—a characteristic electrophysi-
ological brain response that is also evoked by the occurrence of an
unexpected (‘oddball’) stimulus, or by the total omission of some
expected stimulus, within a learnt sequence. Thus (citing Hughes et
al, 2001; Joutsiniemi & Hari, 1989; Raij et al., 1997; Todorovic et al., 2011;
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Wacongne et al,, 2011; and Yabe et al,, 1997), it was recently commented
that ‘one of the most remarkable properties of the auditory system
is that it can generate evoked responses to an absent but expected
stimulus’ (Wacongne et al., 2012, p. 3671). Omission-based responses
(and oddball responses more generally) thus provide further evi-
dence for a predictive-processing-style schema in which ‘the auditory
system [acquires] an internal model of regularities in auditory inputs,
including abstract ones, that are used to generate weighted predic-
tions about the incoming stimuli’ (Wacongne et al., 2012, p. 3671). Such
responses (which are by no means restricted to the auditory modal-
ity) fall neatly into place once we consider them as indexing tran-
sient bursts of prediction error signalling—signalling that occurs as
part of the normal process by which incoming signals are recognized
(see Friston, 2005; Wacongne et al., 2012). The PP account here makes
direct contact with striking features of normal human experience.
The experiential impact of an unexpected omission (as when a note
is missed out of a familiar sequence) can be very bit as perceptually
striking and salient as the inclusion of an unexpected note. This is
an otherwise puzzling effect that is neatly explained by assuming
that the construction of perceptual experience involves expectations
based upon our best model of what is likely to occur. We return to this
topic in 3.5 following.

At a more architectural level, the central role of generative model
based prediction makes sense both of the prevalence of backward
neural connectivity and of apparent functional differences between
the forward and backward connections—differences that reflect,
predictive processing suggests, the divergent functional roles of
prediction-error signalling and probabilistic prediction (for some
detailed discussion of these functional asymmetries, see Friston,
2002, 2003; and for some recent experimental work on this topic, see
Chen et al., 2009).

1.15 Is Silence Golden?

Early work in this broad area (such as the seminal work by Rao &
Ballard described above) met with some puzzlement. This is perhaps
unsurprising, since the basic story is radically different from the more
standard picture of a feedforward (even if attention-modulated) cascade
of simple-to-complex feature detection. The puzzlement was famously
captured in a commentary from Christoph Koch and Tomaso Poggio
bearing the subtitle ‘Silence is Golden’. The passage is so perfectly
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expressive of some quite common first impressions that I hope the
reader will forgive a long extract:

In predictive coding, the common-place view of sensory neu-
rons as detecting certain ‘trigger’ or ‘preferred’ features is
turned upside down in favor of a representation of objects by the
absence of firing activity. This appears to be at odds with [data
indicating that neurons] extending from V1 to inferior tempo-
ral cortex, respond with vigorous activity to ever more complex
objects, including individual faces or paperclips twisted in just
the right way and seen from a particular viewpoint.

In addition, what about all of the functional imaging data
from humans revealing that particular cortical areas respond
to specific image classes, such as faces or three-dimensional
spatial layout? Is it possible that this activity is dominated by
the firing of . .. cells actively expressing an error signal, a dis-
crepancy between the input expected by this brain area and
the actual image? (Both quotes from Koch & Poggio, 1999, p. 10)

There are two main worries being expressed here: first, a worry that
these accounts are abandoning representation in favour of silence, since
well-predicted elements of the signal are quashed or ‘explained away’;
second, a worry that the accounts thus seem in tension with strong
evidence of increasingly complex representations tokened by activity
in higher areas.

Neither worry is ultimately justified. To see why not, recall the
architectural story just outlined. Each layer, we saw, must now support
two functionally distinct kinds of processing. For simplicity, let’s fol-
low Friston (2005) and imagine this as each layer containing two func-
tionally distinct kinds of cell or unit®:

— ‘representation units’, that encode that layer’s current best
hypothesis (pitched at its preferred level of description) and
that feed that hypothesis down as prediction to the layer below.

— ‘error units, that pass activation forward when local
within-layer activity is not adequately accounted for by incom-
ing top-down prediction from the layer above.

That means that more and more complex representations are indeed
formed, and used in processing, as one moves up the hierarchy. It is just
that the flow of representational information (the predictions), at least in
the purest versions, is all downwards (and sideways). Nevertheless, the
upward flow of prediction error is itself a sensitive instrument, bearing
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fine-grained information about very specific failures of match. That is
why it is capable of inducing, in higher areas, complex hypotheses (con-
sistent sets of representations) that can then be tested against the lower
level states. As a result, neither of the two early worries raised by Koch
and Poggio gets a grip. There are representational populations ‘all the
way up’, and higher-level cells can still respond to ever-more-complex
objects and properties. But their activity is determined by the forwards
(and lateral) flow of error signals and the states that they select.

Koch and Poggio may, however, be hinting also at a different kind of
concern. This is the concern that the bedrock ‘predictive coding’ image
of the brain as ‘aiming at silence’ (by achieving perfect prediction of
sensory inputs) can seem out of kilter with the fundamental profile of
animal life itself! For that profile, surely, is to move and explore, forever
searching out new inputs demanding new bouts of neural activity. The
worry, baldly stated, is that the predictive coding strategy may seem
like a recipe for finding a dark corner and staying there, correctly pre-
dicting immobility and darkness until all bodily functions cease.

Fortunately (as we shall see in detail in chapters 8 and g) the threat
here is entirely superficial. For the role of perception, on the accounts
we shall explore, is simply to drive adaptively valuable action. Many
of our moment-by-moment predictions are thus actually predictions
(more on this in chapter 6) of restless sensorimotor trajectories, and
their job is to keep us moving us around the world in ways that keep us
fed and warm, and that serve our needs and projects. Among the most
prediction-error inducing states for creatures like us are thus states
in which all activity ceases and in which hunger and thirst begin to
predominate. By the end of the present treatment, we shall have seen
just how the bedrock strategy of prediction error minimization, as it
unfolds in active, evolved, information-hungry adaptive agents, itself
enforces all the restless, playful, searching, and exploratory forms of
behaviour that we know and love.

1.16 Expecting Faces

For the present, however, let’s return to the second (more concrete)
worry raised by Koch and Poggio—the worry that neural activity, as
processing proceeds, does not look to be dominated by the firing of
cells expressing error. Consider once again the standard model of per-
ception as the product of processing via a stream of increasingly com-
plex feature-detection, such that responses at the higher levels come to
reflect the presence of complex, invariant items such as faces, houses,



48 THE POWER OF PREDICTION

etc. What the predictive processing story suggests, we can now clar-
ify, is not that we abandon that model but that we enrich it, by adding
within each layer cells specialized for the encoding and transmission
of prediction error. Some cells at each level are thus responding to
states of the body and world while others are registering errors rela-
tive to predictions about those states: predictions flowing laterally and
downwards, from the level above. Is this correct?

The evidence here is only just appearing, but seems to fit the ‘pre-
dictive processing’ profile. Thus consider the well-established finding
(Kanwisher et al., 1997) of increased activity in fusiform face area (FFA)
when shown a face rather than (say) a house. Surely, a critic might say,
this is best explained by simply supposing that neurons in FFA have
learnt to be active complex feature detectors for faces? It is immediately
apparent that this is no longer straightforward, however, given that the
PP story allows that FFA may indeed harbour units that specialize in
the representation of faces, as well as ones that specialize in the detec-
tion of errors (mismatches between top-down predictions reaching
FFA and the bottom-up signal). Thus, the difference is that if the pre-
dictive coding story is correct, FFA should also harbour error units that
encode mismatches with expected (face) activity based upon lateral
and top-down predictions. The predicted presence of both represen-
tational and error units in FFA provided a nice opportunity for some
telling empirical tests.

Egner et al. (2010) compared simple feature detection (with and with-
out attention) and predictive processing models of recorded responses
in FFA. The simple feature detection model predicts, just as Koch and
Poggio suggested, that FFA response should simply scale with the pres-
ence of faces in the presented image. The predictive processing model,
however, predicts something rather more complex. It predicts that FFA
response should ‘Teflect a summation of activity related to prediction
(“face expectation”) and prediction error (“face surprise”) (Egner et al
2010, p. 1601). That is to say, it predicts that the (low temporal resolu-
tion) fMRI signal recorded from the FFA should reflect the activity of
both putative kinds of cell: those specializing in prediction (‘face expec-
tation’) and those specializing in detecting errors in prediction (face
surprise’). This was then tested by collecting fMRI data from area FFA
while independently varying both the presented features (face vs. house)
and manipulating subject’s unconscious degree of face expectation (low,
medium, high) and hence their proper degree of ‘face surprise” To do
this, the experimenters probabilistically paired presentations of face/
house with a 250 ms preceding colour frame cue giving 25% (low), 50%
(medium), or 75% (high) chance of the next image being a face.
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The results were clear. FFA activity showed a strong interaction
between stimulus and face expectation. FFA response was maximally
differentiated only under conditions of low face expectation. Indeed,
and quite surprisingly, FFA activity given either stimulus (face OR
house) was indistinguishable under conditions of high face expectation. There
is a very real sense then, in which FFA might (had it first been inves-
tigated using predictive processing paradigms) have been dubbed a
‘face-expectation area’.

The authors conclude that, contrary to any simple feature-detection
model, [FFA] responses appear to be determined by feature expecta-
tion and surprise rather than by stimulus features per se’ (Egner et al,
2010, p. 16601). The authors also controlled (by further model compari-
sons) for the possible role of attentional effects. But these could not,
in any case, have made much contribution since it was face surprise,
not face expectation, that accounted for the larger part of the BOLD
(fMRI)* signal. In fact, the best-fit predictive processing model used a
weighting in which face-surprise (error) units contributed about twice
as much® to the BOLD signal as did face-expectation (representation)
units, suggesting that much of the activity normally recorded using
fMRI may be signalling prediction error rather than detected features.
This is an important result. In the authors” own words:

the current study is to our knowledge the first investigation to
formally and explicitly demonstrate that population responses
in visual cortex are in fact better characterized as a sum of fea-
ture expectation and surprise responses than by bottom-up
feature detection (with or without attention). (Egner et al., 2010,
p. 16607)

1.17  When Prediction Misleads

There is, of course, a downside to all this efficient prediction-based
response, and it is nicely illustrated by familiar visual illusions, such
as the Hollow Face illusion. Here, the concave inner surface of a 3D
face-mask will look—under certain condition—like a normal face: con-
vex, with the nose extending outwards. To get a better sense of how this
looks, try the video clips embedded in the short review at http://www.
michaelbach.de/ot/fcs_hollow-face/.

Better yet, experience the illusion for yourself using a real
three-dimensional mask, of the kind you would use for Halloween.
Take the mask and reverse it, so you are looking at the hollow inside
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ther than the convex (face-shaped) side. If the viewing distance
rrect (don't get too close: it needs to be at least around 3 feet awa
1d the mask is gently illuminated from behind, it will appear as if tt
ask is not hollow. You will ‘see’ the nose sticking outwards, when i
ct, you are looking into the concave reverse-side of the face impre:
on. Figure 1.5 shows the appearance, under such conditions, of a rota
ig mask.

The hollow mask illusion, in neurotypical subjects, is powerft
1d persistent. It is, however, robustly reduced among schizophren:
ibjects—an effect that specific disturbances to the predictive proces:
\g apparatus may also (see chapter 7) help explain. The hollow mas
lusion was first used by the neuroscientist Richard Gregory (see, e.g
regory, 1980) to illustrate the power of ‘top-down’, knowledge-drive
ifluences on perception. Such will effects emerge directly from th
seration of the principles of prediction-based learning and process
ig discussed in previous sections. Our statistically salient experienc
ith endless hordes of convex faces in daily life installs a deep neure
xpectation’ of convexness: an expectation that here trumps the man
ther visual cues that ought to be telling us that what we are seeing i
concave mask.

IGURE 1.5 Hollow Mask Illusion

he leftmost and far right images show the hollow, concave side of a mask
stating on a stand. When viewed from a few feet away, and illuminated

:om the rear, the concave side appears convex. This demonstrates the power
f top-down predictions (we ‘expect’ faces to be convex) to impact perceptual

xperience.

ource: Gregory (2001), by permission of the Royal Society.
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You might reasonably suspect that the hollow mask illusion,
though striking, is really just some kind of psychological oddity. And
to be sure, our neural predictions concerning the probable convexity of
human faces seem especially strong and potent. But if predictive pro-
cessing approaches are on track, this general strategy actually pervades
human perception. Brains like ours are constantly trying to use what
they already know so as to predict the current sensory signal, using the
incoming signal to select and constrain those predictions, and some-
times using prior knowledge to ‘trump’ certain aspects of the incoming
sensory signal itself. Such trumping makes good adaptive sense, as the
capacity to use what you know to outweigh some of what the incoming
signal seems to be saying can be hugely beneficial when the sensory
data is noisy, ambiguous, or incomplete—situations that are, in fact,
pretty much the norm in daily life.

An interesting upshot of this is that many visual illusions, as men-
tioned in 1.12, may nonetheless be best understood as ‘optimal per-
cepts’. In other words, given the structure and statistics of the world
we inhabit, the optimal estimate of the worldly state (the estimate that
represents the best possible take on the incoming signal, given what
the system already knows) will be the one that, on some occasions, gets
things wrong. A few local failures, then, are just the price we pay for
being able to get things right, most of the time, in a world cloaked by
ambiguity and noise.

1.18 Mind Turned Upside Down

Predictive processing turns a traditional picture of perception on its
head. According to that once-standard picture (Marr, 1982) perceptual
processing is dominated by the forward flow of information transduced
from the world via various sensory receptors. Traditional perceptual
neuroscience followed suit, with visual cortex (the most-studied exam-
ple) being viewed as a hierarchy of neural feature detectors driven from
the bottom up. This was a view of the perceiving brain as passive and
stimulus-driven, taking energetic inputs from the senses and turning
them into a coherent percept by a kind of step-wise build-up, accumu-
lating structure and complexity along the way in a kind of Lego-block
fashion. Such views may be contrasted with the increasingly ‘active’
views that have been pursued over the past several decades of neuro-
scientific and computational research,* including the recent explosion
of work on intrinsic neural activity—the ceaseless buzz of spontane-
ous, correlated neuronal activation that takes place even in the absence
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of ongoing task-specific stimulation.* Much of the brain’s activity, all
this suggests, is both ongoing and endogenously generated.

Predictive processing plausibly represents the last step in this
retreat from a passive, input-dominated, view of the flow of neural pro-
cessing. According to this emerging class of models, naturally intelli-
gent systems do not passively await sensory stimulation. Instead, they
are constantly active, trying to predict (and actively elicit, see Part II)
the streams of sensory stimulation before they arrive. Before an ‘input’
arrives on the scene, these pro-active cognitive systems are already busy
predicting its most probable shape and implications. Systems like that
are already (pretty much constantly) poised to act, and all they need to
process are sensed deviations from the predicted state. It is these cal-
culated deviations from predicted states (‘prediction errors’) that thus
bear much of the information-processing burden, informing us of what
is salient and newsworthy within the dense sensory barrage.®

Action itself, as we shall see in Part II, then needs to be reconceived.
Action is not so much a ‘response to an input’ as a neat and efficient
way of selecting the next input, driving a rolling cycle. These hyper-
active systems are constantly predicting their own upcoming states
and actively moving about so as to bring some of them into being. We
thus act so as to bring forth the evolving streams of sensory informa-
tion that keep us viable and that serve our increasingly recondite ends.
With action incorporated, predictive processing implements a com-
prehensive reversal of the traditional (bottom-up, forward-flowing)
schema. The largest contributor to ongoing neural response is the
ceaseless anticipatory buzz of downwards-flowing neural prediction
that drives perception and action in a circular causal flow. Incoming
sensory information is just one further factor perturbing those restless
pro-active seas.

As ever-active prediction engines these kinds of brains are not,
fundamentally, in the business of ‘processing inputs’ at all. Rather, they
are in the business of predicting their inputs. This pro-active neural
strategy keeps us poised for action and (as we shall later see) allows
mobile, embodied agents to intervene on the world, bringing about the
kinds of sensory flow that keep them viable and fulfilled.

If these stories are on track, then just about every aspect of the
passive forward-flowing model is false. We are not cognitive couch
potatoes idly awaiting the next ‘input’, so much as proactive predic-
tavores—nature’s own guessing machines forever trying to stay one
step ahead by surfing the incoming waves of sensory stimulation.
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Adjusting the Volume
(Noise, Signal, Attention)

2.1 Signal Spotting

If we look for them, most of us can find shifting face-forms hidden
among the clouds. We can see the forms of insects hidden in the pat-
terned wallpaper or of snakes nestling among the colourful swirls of
a carpet. Such effects need not imply the ingestion of mind-altering
substances. Minds like ours are already experts at self-alteration. When
we look for our car keys on the cluttered desk, we somehow alter our
perceptual processing to help isolate the target item from the rest.
Indeed, spotting the (actual) car keys and ‘spotting’ the (non-existent)
faces, snakes, and insects are probably not all that different, at least as
far as the form of the underlying processing is concerned. Such spot-
tings reflect our abilities not just to alter our action routines (e.g., our
visual scan paths) but also to modify the details of our own percep-
tual processing so as better to extract signal from noise. Such modi-
fications look to play a truly major role in the tuning (both long- and
short-term) of the on-board probabilistic prediction machine that
underpins our contact with the world. The present chapter explores the
space and nature of such online modifications, discusses their relations
with familiar notions such as attention and expectation, and displays a

53
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possible mechanism (the ‘precision-weighting’ of prediction error) that
may be implicated in a wide range of signal-enhancement effects.

2.2 Hearing Bing

Hack number 48 in Tom Stafford and Matt Webb’s wonderfully
engaging book Mind Hacks is called ‘Detect Sounds on the Margins
of Certainty’. Based on previous experimental work by Merckelbach
and van de Ven (2001), the hack invites the reader first to listen to a
3o0-second soundfile. The reader is instructed that the soundfile con-
tains a hidden sample of Bing Crosby’s “White Christmas’, but that
the sample is very faint and may begin in the first, second, or third
ten-second segment of the soundfile. The intrepid reader might
like to try this before continuing, by clicking on Hack 48 at: http://
mindhacks.com/book/links/.

Merckelbach and van de Ven (2001) tried this experiment with
undergraduate students and found that almost one-third of the stu-
dents reported detecting the onset of the song. In fact, as you may have
guessed by now, there is no White Christmas hidden anywhere in the
noise. The ability of some folk to ‘detect’ the familiar song is just an
expression (in this case, a kind of over-extension) of an ability central
to perceptual search and perceptual awareness in general: the ability
to discount some aspects of a signal, treating them as ‘noise’, while
accentuating other aspects (thus treating them as ‘signal’). This abil-
ity, deployed under the influence of the strong expectation of a weak
‘hard-to-detect’ fragment of the familiar song, allows many perfectly
normal subjects to enjoy what is in effect an auditory hallucination. The
effect can even be amplified, it turns out, by combinations of stress and
caffeine (Crowe et al., 2011).

Now consider a second kind of case: sine-wave speech. Sine-wave
speech (Remez et al., 1981; Remez & Rubin, 1984) is a degraded replica
of recorded speech stripped of most of the normal speech attributes
and acoustics. The sine-wave replica preserves only a kind of skele-
tal outline in which the core (and rather coarse) pattern of dynamic
changes in the speech signal is coded as a set of pure tone whistles. You
can hear an example by clicking on the first loudspeaker icon at: http://
www.mrc-cbu.cam.ac.uk/people/matt.davis/sine- wave-speech/.

Chances are you will not make much of what you hear: to me it
sounded like a string of science-fiction beeps of the kind pioneered by
the BBC Radiophonic Workshop back in the early 1g60s. Others hear
something like the incomprehensible inflected whistlings of the moon
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mice characters from the cult UK children’s show The Clangers. But
now click on the next loudspeaker and listen to the original sentence,
then revisit the sine-wave replica. This time around, your experien-
tial world has altered. It has become (more on this in later chapters)
meaningful: a world of clearly intelligible speech. For a lovely selec-
tion of demos like this, try: http://www.lifesci.sussex.ac.uk/home/
Chris_Darwin/SWS/.

Remember to click the SWS (Sine-Wave Speech) versions first. Once
you know what the sentence is it becomes pretty much impossible to
‘rehear’ it in the original fashion. An apt comparison would be hearing
speech in a language you understand and in one you do not. It is almost
impossible to hear speech sounds in the former case simply as sounds.
Exposure to the original (non-sine-wave) spoken sentence helps pre-
pare you in a similar fashion. Over time, you may even become expert
enough at sine-wave speech perception to succeed without prior expo-
sure to the specific acoustically normal sentence. At that point, you
have become an expert with a more general skill (a ‘native hearer’ of
sine-wave speech).

Davis and Johnsrude (2007) describe the perception of sine-wave
speech as just one instance of the much more pervasive phenomenon
of top-down influence upon sensory processing. Such influence, if the
accounts sketched in chapter 1 are correct, is rooted in the creation and
deployment of probabilistic generative models busily trying to predict
the flow of sensory input. We see such influence in all modalities and
across modalities. A well-worn example is reproduced in Figure 2.1(a).
At first sight, all that most people can see is a pattern of light and shadow.
But once you have discovered the spotty, shadowed Dalmatian dog that
knowledge alters the way you see that picture for the rest of your life.
For a less familiar example, take a look at Figure 2.1(b). In such cases,'
our knowledge about the world (our “prior beliefs” as realized by genera-
tive models commanded by the brain) plays a major role in the construc-
tion of the percept. (It is perhaps worth repeating that the term ‘belief’ is
widely used (in this literature) to cover any of the contents of the genera-
tive models that guide perception and action. There is no requirement
that such beliefs be consciously accessible to the reflective agent. Indeed,
for the most part, they will comprise a variety of sub-personal states
whose best expressions are probabilistic rather than sentential?).

Other, less obvious, examples of cross-modal influence have been
mounting up in the literature. An especially striking example is the
finding that the perceived colour of a wine can have a large impact on
how people (including wine experts) describe the taste of that wine
(see Morrot et al.,, 2001; Parr et al., 2003; and Shankar et al., 2010—the
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FIGURE 2.1 Hidden Figures

(2) Hidden in the black and white noise is an image (clear enough, once you
spot it) of a Dalmatian dog. Clue: the head is near the centre of the image,
inspecting the ground.

(b) A less well-known example of the same phenomena. This time it is a cow.
Clue: the cow has a big head; it is facing you, with its nose at the bottom of
the picture and two black ears in the top left half.

Source: Hidden Cow by John McCrone, CC-BY-SA-3.0. http://creativecommons.org/
licenses/by-sa/3.0), via Wikimedia Commons.

latter bearing the rather wonderful title of ‘Grape Expectations’). In
these experiments, white wines that had been artificially coloured to
look red were described, even by experts, using red-wine descriptors
such as prune, chocolate, and tobacco. Nor does the influence of prior
expectations stop there. Oysters taste better, it seems, when eating is
accompanied (even deep inside a landlocked restaurant) by sounds of
the sea (Spence & Shankar, 2010).

Predictive processing offers a powerful framework within which to
approach and understand a whole pantheon of knowledge-based and
contextual effects upon perceptual inference, since it makes what we
know (both consciously and, more often, non-consciously) about the
world a prime player in the construction of perceptual experience itself.
We shall return to questions concerning the construction of conscious
experience in chapter 7. For the moment, I want to dwell on something
a little more abstract, but quite fundamental to the accounts on offer.
That something is crucial to perceptual success (such as spotting the
Dalmatian or hearing sine-wave speech), to perceptual play (such as
finding face-forms in the clouds) and to some perceptual failures (such
as hallucinating the sounds of ‘White Christmas’). It is the ability flex-
ibly to extract signal from noise by forming and deploying focused
and fine-grained estimates of our own perceptual uncertainty.> That
ability (the focus of the rest of the present chapter) lies at the heart of
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the predictive processing (PP) treatment of attention and plays a major
role in accounting for both normal and abnormal forms of contact with
the world.

2.3 The Delicate Dance between Top-Down and Bottom-Up

The perceptual problems that confront us in daily life vary greatly in the
demands they make upon us. For many tasks, it is best to deploy large
amounts of prior knowledge, using that knowledge to drive complex
proactive patterns of gaze fixation, while for others it may be better to sit
back and let the world do as much of the driving as possible. Which strat-
egy (more heavily input-driven or more heavily expectation-driven) is
best is also hostage to a multitude of contextual effects. Driving along a
very familiar road in heavy fog, it can sometimes be wise to let detailed
top-down knowledge play a substantial role. Driving fast along an unfa-
miliar winding mountain road, we need to let sensory input take the
lead. How is a probabilistic prediction machine to cope?

It copes, PP suggests, by continuously estimating and re-estimating
its own sensory uncertainty. Within the PP framework, these estima-
tions of sensory uncertainty modify the impact of sensory prediction
error. This, in essence, is the predictive processing model of attention.
Attention, thus construed, is a means of variably balancing the potent
interactions between top-down and bottom-up influences by factoring
in their so-called ‘precision’, where this is a measure of their estimated
certainty or reliability (inverse variance, for the statistically savvy).
This is achieved by altering the weighting (the gain or ‘volume’, to use
a common analogy) on the error units accordingly. The upshot of this is
to ‘control the relative influence of prior expectations at different levels’
(Friston, 2009, p. 299). Greater precision means less uncertainty and is
reflected in a higher gain on the relevant error units (see Friston, 2005,
2010; Friston et al.,, 2009). Attention, if this is correct, is simply a means
by which certain error unit responses are given increased weight, hence
becoming more apt to drive response, learning, and (as we shall later
see) action. More generally, this means the precise mix of top-down
and bottom-up influence is not static or fixed. Instead, the weight given
to sensory prediction error is varied according to how reliable (how
noisy, certain, or uncertain) the signal is taken to be.

We can illustrate this using our earlier example. Visual input, in
the fog, will be estimated to offer a noisy and unreliable guide to the
state of the distal realm. Other things being equal visual input should,
on a bright day, offer a much better signal, such that any residual error
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should be taken very seriously indeed. But the strategy clearly needs to
be much more finely tuned than that suggests. Thus suppose the fog
(as so often happens) briefly clears from one small patch of the visual
scene. Then we should be driven to sample preferentially from that
smaller zone, as that is now a source of high-precision prediction errors.
This is a complex business, since the evidence for the presence of that
small zone (right there!) comes only from the (initially low-weighted)
sensory input itself. There is no fatal problem here, but the case is worth
describing carefully. First, there is now some low-weighted surprise
emerging relative to my best current take on the the visual situation
(which was something like ‘in uniformly heavy fog’). Aspects of the
input (in the clear zone) are not unfolding as that take (that model)
predicted. However, my fog-model includes general expectations con-
cerning occasional clear patches. Under such conditions, I can fur-
ther reduce overall prediction error by swopping to the ‘fog plus clear
patch’” model. This model incorporates a new set of precision predic-
tions, allowing me to trust the fine-grained prediction errors computed
for the clear zone (only). That small zone is now the estimated source
of high-precision prediction errors of the kind the visual system can
trust to recruit clear reliable percepts. High-precision prediction errors
from the clear zone may then rapidly warrant the recruitment of a new
model capable of describing some salient aspects of the local environ-
ment (watch out for that tractor!).

Such, in microcosm, is the role PP assigns to sensory atten-
tion: ‘Attention can be viewed as a selective sampling of sensory data
that have high-precision (signal to noise) in relation to the model’s pre-
dictions” (Feldman & Friston, 2010, p. 17). This means that we are con-
stantly engaged in attempts to predict precision, that is, to predict the
context-varying reliability of our own sensory prediction error, and that
we probe the world accordingly. This kind of ‘predicted-precision based’
probing and sampling also underlies (as we will see in Part II) the PP
account of gross motor activity. For the present, the point to notice is that
in this noisy and ambiguous world, we need to know when and where to
take sensory prediction error seriously, and (more generally) how best to
balance top-down expectation and bottom-up sensory input. That means
knowing when, where, and how far, to trust specific prediction error sig-
nals to select and nuance the model that is guiding our behaviour.

An important upshot is that the knowledge that makes human
perception possible concerns not only the layered causal structure
of the (action-salient—more on that later) distal world but the nature
and context-varying reliability of our own sensory contact with that
world. Such knowledge must form part and parcel of the overall
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FIGURE 2.2 The Basic Predictive Processing Schema, This Time with
Precision-Weighting

This is the same highly schematized view of the PP architecture shown in
chapter 1, but with precision-weighting added to the mix. Now, the impact
of select prediction error signals is modulated by varying estimates of their
current reliability and salience

Source: Adapted from Lupyan & Clark, 2014.

generative model. For that model must come to predict both the shape
and multiscale dynamics of the impinging sensory signal and the
context-variable reliability of the signal itself (see Figure 2.2). The famil-
iar idea of ‘attention’ now falls into place as naming the various ways
in which predictions of precision tune and impact sensory sampling,
allowing us (when things are working as they should) to be driven by
the signal while ignoring the noise. By actively sampling where we
expect (relative to some task) the best signal to noise ratio, we ensure
that the information upon which we perceive and act is fit for purpose.

2.4 Attention, Biased Competition, and Signal Enhancement
Attention, if these stories are on track, names the means or process

by which an organism increases the gain (the weighting, hence the
forward-flowing impact) on those prediction error units estimated to
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provide the most reliable sensory information relative to some cur-
rent task, threat, or opportunity. More formally, the suggestion is that
‘attention is the process of optimizing synaptic gain to represent the
precision of sensory information (prediction error) during hierarchi-
cal inference’ (Feldman & Friston, 2010, p. 2). The general idea is thus
that patterns of neuronal activation (among the so-called ‘representa-
tion units’) encode systemic guesses concerning task-relevant states of
the world, while changes in the gain (i.e,, changes in the weighting or
‘volume’) on the associated error units® reflect the brain’s best estimate
of the relative precision of the top-down ‘guessing’ and the bottom-up
sensory information. Precision-weighting thus delivers the system’s
best estimate of the trustworthiness of the sensory information itself.
This means that ‘top-down predictions are not just about the content
of lower-level representations but also about our [the brain’s] confi-
dence in those representations’ (Friston, 2012, p. 238). It is thought that
these top-down estimates of precision alter the post-synaptic gain on
prediction error units (commonly identified with superficial pyrami-
dal cells; see, e.g.,, Mumford, 1992; Friston, 2008). Thus we read that:

Physiologically, precision corresponds to the postsynaptic gain
or sensitivity of cells reporting prediction errors (currently
thought to be large principal cells that send extrinsic efferents
of a forward type, such as superficial pyramidal cells in cortex).
(Friston, Bastos, et al.,, 2015, p.1)

In sum, these alterations in gain® track the estimated reliability (sta-
tistically, the inverse variance) of select prediction errors. Such errors
encode all the sensory information that remains to be explained (or
that has not yet been leveraged for the control of action). Precision thus
estimates the reliability of the signals that carry the news, to repeat the
handy metaphor used in chapter 1.

Estimating precision and altering the gain on prediction error
accordingly brings an immediate and hugely important benefit. It allows
the PP approach fluidly to combine the superficially contradictory
effects (see 1.11) of signal suppression and signal enhancement. Signal
suppression is, of course, the familiar effect of predictive coding meth-
ods of data compression. Lower-level activity that is well-predicted by
a winning higher-level model is quashed or ‘explained away’ (because
there is no news there), and so no signal propagates forward through
the system. The superficially contradictory effect is salience-based sig-
nal enhancement. Observed effects here include facilitation (speeding
up of evoked responses; see Henson, 2003) and sharpening (in which
some cells cease to be active, allowing others to dominate the response;
see Desimone, 1996). Precision-weighting allows PP to combine these
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effects in a very flexible manner, since increases in post-synaptic gain
implement a facilitation effect, which then ‘boosts prediction errors that
inform the best hypothesis about the cause of sensory input (Gregory,
1980) while suppressing alternative hypotheses; namely it sharpens
neuronal representations’ (Friston, 2012a, p. 238, italics in original). Kok,
Jehee, and de Lange (2012) find just such sharpening effects, reveal-
ing expectation-based enhancement in some aspects of early sensory
response paired (just as the PP model suggests) with overall reductions
in neural activity. Such expectation-induced sharpening was shown
to be behaviourally potent, yielding better performance on a simple
task involving the detection of subtle differences in the orientation of
a stimulus.

Such sharpening is the familiar mainstay of ‘biased competi-
tion” models (Desimone & Duncan, 1995). Such models posit—much
as the name suggests—a competition for upstream neuronal rep-
resentation in which only ‘winning’ lower level cells (with small
receptive fields) are allowed to drive higher level cells (with larger
receptive fields). Attention, the biased competition models suggests,
should be identified with this process of competition: a competi-
tion whose outcome is determined both by the nature of the task
and by the properties of the stimuli competing for the representa-
tional resources. Many observed effects (e.g., Reynolds et al.,, 1999;
Beck & Kastner, 2005, 2008) clearly conform to the biased competi-
tion model. Some electrophysiological (ERP) components, for exam-
ple (see Bowman et al, 2013) are increased when a target appears
repeatedly in the same location. Additionally (again, see Bowman
et al,, 2013), there are visual search experiments in which distractors,
despite their rarity, yield little evoked response yet pre-described,
frequently appearing, targets deliver large ones. Can such effects be
explained directly by the attention-modulated precision-weighting
of residual error?

An fMRI study by Kok et al. (2012) lends elegant support to the
predictive processing model of such effects by showing that these are
just the kinds of interaction between prediction and attention that the
model of precision-weighted prediction error suggests. In particu-
lar, Kok et al. show that predicted stimuli that are unattended and
task-irrelevant result in reduced activity in early visual cortex (the
'silencing’ of the predicted, as mandated by simple predictive coding)
but that ‘this pattern reversed when the stimuli were attended and
task-relevant” (Kok et al,, 2012, p. 2). The study manipulated spatial
attention and prediction by using independent prediction and spa-
tial cues (for further details, see the original paper by Kok et al) and
found that attention reversed the silencing effect of prediction upon
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the sensory signal, in just the way the precision-weighting account
would specify. Thus, when attention and prediction were congruent
(when the independent attention cue selected the spatial hemifield in
which the predicted stimulus did, in fact, occur), attention enhanced
neural response in Vi, V2, and V3 for the predicted over the unpre-
dicted stimuli. When they were incongruent (that is, the predicted
stimulus did not occur at the attended spatial location), no enhance-
ment occurred, and response to the predicted stimulus was reduced
in V1. In addition, the response to unpredicted stimuli was the same
whether they occurred on the attended or unattended side. Finally,
there was a large response in Vi, V2, and V3 for the unexpected
omission of a stimulus in the attended hemifield. This whole pat-
tern is best explained, the authors argue, by the attention-modulated
precision-weighting of prediction error in which attention increases
the downstream impact of selected prediction error units. Attention
and expectation thus look to operate as distinct elements within
the inferential cascade in the way PP suggests. Attention enhances
(increases the gain on) the neural responses associated with select
prediction errors, while expectation dampens those neural responses
that are in line with the expectation.

The ability of the PP account to encompass various forms of
attentional enhancement has also been demonstrated using com-
puter simulations of the Posner paradigm (Posner, 1980). In the
Posner paradigm (see Figure 2.3) subjects fixate a central point (so
the experiment probes so-called ‘covert attention’) and are pre-
sented with a visual cue that often (but not always) indicates the
location of a forthcoming target stimulus. For example, the cue
may be valid over 80% of trials. Trials with a valid cue are called
‘congruent trials’ and trials where this is not the case (where the
cue is invalid, and hence does not correctly predict the stimulus)
are called ‘incongruent trials’. The paradigm thus manipulates our
contextual expectations, since the cue creates a context in which
the appearance of the stimulus in the cues location becomes more
likely. The main finding, unsurprisingly, is one of facilitation: valid
cues speed up detection of the target stimulus while targets pre-
sented on incongruent trials are perceived more slowly, and with
less confidence. Feldman and Friston (2010) present a detailed,
simulation-based model in which precision-modulated prediction
error is used to optimize perceptual inference in a way that repro-
duces both the ERP and psychophysical responses found in human
subjects. Valid cues establish what was sometimes known as ‘atten-
tional set’ by increasing the gain on the prediction error units
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FIGURE 2.3 The Posner Paradigm

Source: Licensed under the Creative Commons Attribution 3.0 License en.wikipedia.
org/wiki/File:Posner_Paradigm_Figure.png.

associated with the cued spatial location. This then constitutes a
systemic ‘expectation’ of a good signal-to-noise ratio for informa-
tion from that spatial region and thus speeds up the process, once
the target appears, of recruiting the right hypothesis (roughly ‘tar-
get there’) thus recapitulating the facilitation effect. Invalidly cued
targets yield low-weighted early prediction error, hence take sig-
nificantly longer to recruit the right hypothesis (‘target over there’)
and are perceived with lower confidence.

This general take on attention is phenomenologically compelling.
Try to attend long and hard to a single word on this page. The expe-
rience, or so it seems to me, is initially one of increased local clarity,
closely followed by a state of decaying clarity while remaining alert.
There is at that point a tendency to entrain action, perhaps using shifts
of covert attending or micro-saccades to further explore the fixated
word. The longer all this goes on without the emergence of any new,
different, or clearer information the harder it becomes to sustain the
process of attending.® Attention thus presents itself as bound up, expe-
rientially, with both the expectation of and the search for new and bet-
ter information.
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2.5 Sensory Integration and Coupling

The precision-weighting of prediction error turns out to be a very
versatile tool, and one that will play a variety of roles as our story
unfolds. For the present I merely note, without much amplification,
two such additional roles. The first concerns sensory integration.
Often, when confronting the world, the brain receives sensory sig-
nals from a variety of sources. For example, we may see and hear an
approaching car. In such cases, the two sources of sensory input need
to play delicately balanced roles in determining our perceptual experi-
ence of salient (indeed, often survival-relevant!) environmental states
such as the car’s location and speed of approach. Automatic estima-
tions of the relative precision of the two sensory signals enable the
brain to integrate the two sources of information, using each source in
the best way given the larger context. Such integration depends both
upon specific (sub-personal) expectations concerning the sight and
sound of typical cars and also upon more general expectations such
as the expectation (a systemic ‘hyperprior’) that whenever auditory
and visual estimations of the spatial location of a signal source are
reasonably close, the best overall hypothesis is that there is a single
source—in this case, a rapidly moving car. Such hyperpriors can also
mislead, as demonstrated by the projection of sound onto a ventrilo-
quist’s dummy. But in ecologically central cases, they enable the opti-
mal combination of multiple sources of sensory data. There is thus a
potent interaction between the process of hypothesis selection and the
precision-weighting of various sources of sensory input.

Estimated precision also helps to determine the moment-by-
moment flow of information between neural areas (thus helping to
determine changing patterns of ‘effective connectivity’; see Friston,
1995, 2011¢). This second role will prove important when we later con-
sider the context-sensitive and task-specific recruitment of variable
mixes of neural (and indeed extra-neural, see Part IIl) resources. Thus,
to take a very simple example, it might sometimes be best to allow
visual information to dominate when selecting a behavioural response
(e.g., in the presence of known auditory distractors) and that can be
achieved by assigning low-precision to auditory prediction errors and
higher precision to visual ones.” For example, den Ouden et al. (2010)
offer an account of variations in the strength of coupling (i.e., influence)
between cortical areas that depicts variably precision-weighted predic-
tion error as the key tool controlling such couplings ‘on the fly” accord-
ing to (contextualized) task-demands. The same broad apparatus may
also adjudicate between multiple systems (such as the prefrontal cortex
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and the dorsolateral striatal system) capable of determining online
response. In just this vein Daw, Niv, and Dayan (2005, p. 1704) describe
those systems as subject to a ‘Bayesian principle of arbitration ...
according to uncertainty’ such that the sub-system currently estimated
to provide the most accurate predictions gets to drive behaviour and
choice. Such principles will loom large when we consider (in Part III)
possible relations between the predictive processing framework and
the shape and nature of the entire embodied, enculturated, and envi-
ronmentally embedded cognitive architecture that we call ‘mind’.

2.6 A Taste of Action

The full role of precision (and precision expectations) in the predictive
processing story cannot be appreciated, however, without at least pre-
viewing the treatment of action. This is unsurprising, since (as we shall
see) PP makes a strong proposal concerning the cognitive centralily
of a complex looping interplay between perception and action. In fact,
so complex, central, and looping is the interplay that perception will
emerge (Part 1) as inseparable from action, and the theoretical divi-
sions between sensory and motor processing will themselves be called
into question.

All that lies before us. For present purposes, it will suffice to intro-
duce one core element of that richer, more action-oriented story. That
element (already hinted at in the comments about selecting actions
above) concerns the role of action as a tool for precision-expectation-based
sensory sampling. That is hard to parse and a bit of a mouthful, but the
idea is both simple and astonishingly powerful. Consider a case in
which there are two models in close competition to account for the sen-
sory signal. One model reduces prediction error more than the other,
but the prediction error it reduces is estimated as unreliable. The other
model, though it reduces less absolute error, reduces error that is esti-
mated to be highly reliable. The ‘best bet’ in such circumstances is usu-
ally (though see Hohwy, 2012, for some important caveats) to endorse
the model that reduced the more reliable error signals. If the two com-
peting models were, simplistically, ‘cat in porch’ and ‘burglar in porch’?
this could be a matter of some practical import.

But how do we determine the reliability or otherwise of the sig-
nal? It is here that action (a special kind of action) plays a key cogni-
tive role. For part of the generative model that 1 have (very coarsely)
glossed as ‘burglar in porch’ includes expectations concerning the
best way to sample the environment so as to yield reliable information
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concerning that very possibility. It includes, for example, expecta-
tions concerning the best way to scan the scene, foveating first one
location then another, so as to reduce uncertainty concerning that very
hypothesis. Assuming the hypothesis is correct (there is a burglar
there) this process will yield a sequence of precise prediction errors
that both refine and confirm my dire suspicion, revealing perhaps
a glint of metal (a torch? a gun?) and the outline of a dark roll-neck
sweater. The process iterates, as the hypotheses ‘torch’” and ‘gun’ now
need to be assessed. There too, my generative model includes expec-
tations concerning the best way to engage (sample) the sensory scene
so as to reduce uncertainty. These expectations engage action in a
way that is perfectly continuous (as we will see in Part II) with the
PP account of perception. Perception and action here form a virtu-
ous, self-fuelling, circle in which action serves up reliable signals
that recruit percepts that both determine and become confirmed
(or disconfirmed) in action.

2.7 Gaze Allocation: Doing What Comes Naturally

There is a larger story here too, concerning the way attention is dis-
tributed during the performance of natural tasks. A natural task, as
I shall use the term, is pretty much any well-learned task that we
might perform during the course of our ordinary daily activities.
Natural tasks thus include boiling the kettle, walking the dog, shop-
ping, running, and eating lunch. What matters about such tasks
(and what distinguishes them from many laboratory-based experi-
mental paradigms) is that they provide the full, rich set of sensory
cues that we have come (during learning) to expect in those specific
situations. This matters, since it allows task-specific knowledge to
play a much more important role driving (for example) proactive
visual saccades in which our eyes move anticipatorily to the places
relevant information will next be found, and opening the door to
many other forms of active intervention whose common purpose
is to yield better information just-in-time to guide relevant actions.
Human performance on natural tasks cannot be explained, it now
seems clear, by simple bottom-up models in which gaze fixation (a
natural correlate of the sequential disposition of attention) is deter-
mined by low-level visual® salience. This is in opposition to early
suggestions that simple stimulus features, pre-attentively extracted,
might drive our gaze/attention around the scene. To be sure, such
features (a dot of red among a sea of green dots, a sudden flash, or
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a vertical line among a sea of horizontals) will capture attention.
But attempts to define so-called ‘salience maps’ in such essentially
bottom-up terms (e.g., Koch & Ullman, 1985) have provided scant
leverage for explaining the disposition of gaze and attention dur-
ing the performance of normal, everyday tasks. Using a mixture
of real-world walking and walking in virtual (but reasonably real-
istic) environments, Jovancevic et al. (2006) and Jovancevic-Misic
and Hayhoe (2009) showed that simple feature-based salience
maps failed to predict where and when gaze would shift around
the scene. Similar results were obtained by Rothkopf, Ballard, and
Hayhoe (2007), who showed that simple salience maps made false
predictions and failed to explain the observed patterns of fixation in
almost all cases. In fact:

Humans looked at mainly the objects with only 15% of fixa-
tions directed to the background. In contrast, the salience
model predicted that more than 70% of fixations should have
been directed to the background. (Tatler et al,, 2011, p. 4)

Tatler et al. drive the point home noting that:

In ball sports, the shortcomings of feature-based schemes
become even more obvious. Saccades are launched to regions
where the ball will arrive in the near future (Ballard & Hayhoe,
2009; Land & McLeod, 2000). Crucially, at the time that the
target location is fixated, there is nothing that visually distin-
guishes this location from the surrounding background of the
scene. Even without quantitative evaluation, it is clear that no
image-based model could predict this behavior. (Tatler et al.,

2011, p. 4)

Looking ahead, to currently empty (no relevant stimulus present) loca-
tions is a pervasive feature of gaze allocation during the performance of
natural tasks and has been experimentally confirmed for tasks includ-
ing tea-making (Land et al., 1999) and sandwich-making (Hayhoe et al,,
2003). In the sandwich case (check this next time you cut a sandwich!)
subjects look where the knife makes its first contact with the bread,
then keep looking just ahead of the current cutting point as the knife
moves forwards.

Faced with this endemic failure to account for the shape of daily
performance in natural tasks, one response, Tatler et al. note, is to keep
the low-level salience map but add some mechanism of top-down
modulation. Such hybrid approaches are suggested by Navalpakkam
and Itti (2005) and by Torralba et al. (2006). Other work seeks to
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replace the low-level salience map with other constructs such as the
so-called ‘priority map’ (Fecteau & Munoz, 2006) that fluidly inte-
grates low- and high-level cues in a task-specific (that is to say, prior
knowledge-dependent) way. Most promising of all, however (or so
I would suggest) are approaches that fundamentally reorient the discus-
sion, bringing perception and action into intimate coupling (Fernandes
et al,, 2014) and making uncertainty reduction the driving force behind
gaze allocation and attentional shift. Prime examples include Sprague
et al. (2007), Ballard and Hayhoe (2009), and Tatler et al. (2011) and the
growing corpus of work on attention and precision-weighting reviewed
in the present chapter!® At the heart of all these approaches lies the
simple but profound insight that:

Observers have learned models of the dynamic properties
of the world that can be used to position eye gaze in antic-
ipation of a predicted event [and that] action control must
proceed on the basis of predictions rather than perceptions.
(Tatler et al., 2011, p. 15)

Such models develop with experience. Learner drivers, Tatler et al.
note, allocate their gaze just in front of the car as they take a cor-
ner, while seasoned drivers look further ahead, fixating road loca-
tions up to 3 seconds ahead of their speed of travel (Land & Tatler,
2009). Cricketers likewise anticipate the bounce of the ball (Land
& Mcleod, 2000). All these cases of ‘pro-active saccades’ (saccades
that land on the right location in advance) depend on the agent com-
manding and deploying task-specific knowledge. Such bodies of
knowledge (which PP casts in the form of probabilistic generative
models) reflect, first and foremost, properties of the dynamic envi-
ronment itself. They also reflect the action capacities (including the
response speeds, etc.) of the individual agent. That properties of the
environment play a major role is demonstrated by the large degree of
overlap between the scan patterns of different individuals perform-
ing the same well-learnt tasks (Land et al., 1999). In addition, Hayhoe
et al. (2003) show that information is typically retrieved just-in-time
for action, in ways that leave information in the environment until
just the right moment (see also discussion in Clark, 2008, chapter 1,
and in chapter 8 following).

Precision-weighted PP accounts are ideally placed to bring all
these elements together in a single unifying story: one that places
neural prediction and the reduction of uncertainty centre-stage. This
is because PP treats action, perception, and attention as (in effect)
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forming a single mechanism for the context- and task-dependent
combination of bottom-up sensory cues with top-down expectations.
Crucially, these top-down expectations now include expectations of
precision, which drive the action system to sample the scene in ways
that reduce uncertainty where, and when, it matters. Gaze allocation
is thus driven by learnt generative models that combine expectations
about unfolding events with action-entraining expectations concern-
ing the best ways to sample the scene so as to reduce uncertainty at
task-critical junctures.

The PP account also unifies the treatment of exogenous and endog-
enous attention, revealing low-level ‘pop-out’ effects as conceptually
continuous with high-level inner model-based effects. In the former
case, attention is captured by stimuli that are strong, unusual (the red
spot among the sea of green ones), bright, sudden, etc. These are all
cases where an evolved system should ‘expect’ a good signal-to-noise
ratio. The effect of learning is conceptually similar. Learning delivers
a grip on how to sample the environment in task-specific ways that
yield high-quality sensory information. This reduces uncertainty and
streamlines performance of the task. It is this latter kind of knowledge
that is brought to bear in endogenous attention, perhaps (see Feldman
& Friston, 2010, pp. 17-18) by increasing the baseline firing rate of select
neuronal populations.

Before moving on, I should enter an important caveat concern-
ing ‘natural tasks’. For simplicity, [ have here concentrated on a few
well-learnt (possibly over-learnt) tasks such as driving and making a
sandwich. But the PP account also delivers fluent and rapid learning
about new situations when those situations are built from known ele-
ments and structures. That means that we can rapidly become ‘expert
observers’ of (modestly) brand new scenes. For example, when watch-
ing a theatre play we rapidly get to grips with the novel arrangements
of people and objects on stage, learning what is plot-salient and thus
where (and when) we most need to reduce uncertainty, pro-actively
allocating gaze and attention accordingly.

2.8 Circular Causation in the Perception-Attention-Action Loop

Animportant upshot of all this is that the generative model that under-
lies perception includes key action-driving expectations concerning
prospective confirmation. That is to say, it includes (sub-personal) expec-
tations concerning how things should unfold assuming some current



70 THE POWER OF PREDICTION

perceptual hypothesis (the one dictating our ongoing perceptual
awareness) is correct. Such expectations concern both what will hap-
pen (i.e, what perceptual inputs will resulf) if we sample the world in
line with the hypothesis and what signal-to-noise ratios will result. In
the latter case, the brain is betting on what might be dubbed prospective
precision, that is, the anticipated signal-to-noise ratio consequent upon
sampling the scene by moving our eyes, other sensory organs, or even
our whole body. Thus a sequence of saccades to locations expected to
deliver high-precision information of the kind predicted by some spe-
cific perceptual hypothesis (and not predicted by nearby rivals) pro-
vides excellent evidence that the hypothesis is correct and warrants
keeping it alive and ‘in the driving seat’. But should things fail to fall
into place (should the results of the perceptual ‘experiment’ appear
to falsify the hypothesis) those error signals can be used to recruit a
different hypothesis, in the manner described earlier.

This has an immediate and interesting consequence that will
continue to occupy us as the story unfolds. It means that percep-
tion, attention, and embodied action work together to drive the agent
in self-fuelling cycles of active perception in which we probe the
world according to systemic ‘beliefs’ concerning that which our own
actions are about to reveal. This leads to what Friston, Adams, et al.
(2012) describe as ‘the circular causality that lies behind perception’,
namely, that:

The only hypothesis that can endure over successive saccades
is the one that correctly predicts the salient features that are
sampled. ... This means that the hypothesis prescribes its own
verification and can only survive if it is a correct representation
of the world. If its salient features are not discovered, it will
be discarded in favor of a better hypothesis. (Friston, Adams,
et al, 2012, p. 16)

‘Salient features’ are features that, when sampled, minimize uncer-
tainty concerning the current perceptual hypothesis (they are the ones
that, when things unfold as expected, maximize our confidence in
the hypothesis). Active agents are thus driven to sample the world so
as to (attempt to) confirm their own perceptual hypotheses. The cur-
rent winning percept should then be able to ‘maintain itself by selec-
tively sampling evidence for its own existence [correctness]” (p. 17).
Such sampling indeed implies a kind of ‘saliency map” but it is not
a map determined by low-level, attention-grabbing visual features"
but by relatively high-level knowledge concerning the world and the
distribution of salient, precise, sensory information.
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Friston, Adams, et al. demonstrate this core effect using a simple
simulation (see Figure 2.4) in which an artificial agent samples a visual
scene in ways driven by various perceptual hy potheses. Here, the agent
commands three models that it tries to fit to the stimulus, settling upon
the model that correctly predicts the sensory data consequent upon
one pattern of saccade.!? After a few early probes, the simulated agent
sequentially fixates the points that confirm the hypothesis that the
source of the input is an upright face. Figure 2.5 shows the system’s
behaviour when presented with an image that fits none of its known
models. Under those conditions, no model (no hypothesis) prescribes
a pattern of fixations able to confirm itself, so sensory uncertainty can-
not be quashed and no model can be selected. No percept is then in a
position to ‘maintain itself by selectively sampling evidence for its own
existence [correctness]’ (Friston, Adams, et al., 2012, p. 17). Under such
unpromising conditions, the scene is sampled in a wandering fashion
and no clear stable percept is produced. Such failures, assuming the
brain believes it is getting high-quality (precise) sensory information
would, however, drive increased plasticity allowing a new model to be
acquired and applied (see section 2.12).

Summing up, PP posits core perception-attention-action loops
in which internal models of the world and their associated precision
expectations play key action-driving roles. Working together these
determine a (frequently self-fulfilling) process of exploratory, epis-
temically mandated, sensing and acting: a process in which a win-
ning hypothesis (a winning ‘take on the world’) causes us to sample
the scene in ways that reflect both the hypothesis itself and our own
context-varying states of sensory uncertainty.

2.9 Mutual Assured Misunderstanding

There is, however, a possible dark side to all this too. The dark side
emerges when subtly misguided estimations of precision lead us to
harvest sensory information in ways that work against the formation
of a good (veridical) picture of how things are. Siegel (2012) describes
just such a possible scenario. It is a scenario in which ‘Jill believes, with-
out justification, that Jack is angry at her ... When she sees Jack, her
belief makes him look angry to her’. In such cases, our active top-down
model causes us to discard some elements of the signal (treating them
as mere ‘noise’) and amplify others. Normally—as seen in the cases
above—this leads to more accurate perception, in noisy and ambiguous
circumstances. In the case of angry-looking Jack, however, our belief
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FIGURE 2.4 This figure shows the results of the first simulation by Friston,
Adams, et al. (2012), in which a face was presented to an agent, whose
responses were simulated using the PP schema described in the text. In this
simulation, the agent had three internal images or hypotheses about the
stimuli it might sample (an upright face, an inverted face, and a rotated face).
The agent was presented with an upright face and its conditional expectations
were evaluated over 16 (12 ms) time bins until the next saccade was emitted.
This was repeated for eight saccades. The ensuing eye movements are shown
as dots at the location (in extrinsic coordinates) at the end of each saccade in
the upper row. The corresponding sequence of eye movements is shown in the
insert on the upper left, where the circles correspond roughly to the propor-
tion of the image sampled. These saccades are driven by prior beliefs about
the direction of gaze based upon the saliency maps in the second row. Note
that these maps change with successive saccades as posterior beliefs about the
hidden states, including the stimulus, become progressively more confident.
Note also that salience is depleted in locations that were foveated in the previ-
ous saccade. These posterior beliefs provide both visual and proprioceptive
predictions that suppress visual prediction errors and drive eye movements,
respectively. Oculomotor responses are shown in the third row in terms of
the two hidden oculomotor states corresponding to vertical and horizontal

And corresponding percept
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primes us to deploy a model that (in part by altering the precision we
assign to various aspects of the prediction error signal) ‘discovers’
visual evidence for the—false and ungrounded—hypothesis that Jack
is angry. This is just like hearing the song ‘White Christmas’ ‘hidden’
in the noise. The upshot is that our visual experience itself (not some
add-on judgment) then represents Jack as looking angry, adding fuel to
the fire of our earlier suspicions.

Action and perception are here locked into a mutually misleading
cycle. This is because the primed ‘angry-Jack’ hypothesis gets to con-
trol (in ways we will explore in more detail in later chapters) the actions
that then probe the world for confirming evidence of Jack’s anger. We
saccade around Jack’s face looking for subtle evidence, we look for
tension in his limb movements, oddities in his choice of words, etc.
And since we have upped the precision on signals carrying informa-
tion about subtle ‘signs’ of anger and (thereby) reduced it on veridical
signs of normality, we may well find the very ‘evidence’ we were look-
ing for. In a real-world setting, Teufel, Fletcher, and Davis (2010) show
that our active top-down models of other people’s current mental states
and intentions do indeed influence how we physically perceive them
to be, affecting our base perception of their gaze direction, motion
onset, form of motion, etc. (for many more examples of the effects of
top-down knowledge upon perception, see Goldstone, 1994; Goldstone
& Hendrickson, 2010; Lupyan, 2012).

To cement the tragedy, the fact that Jack and Jill are both PP agents
(hence beings whose percepts are deeply prediction-penetrated) may
rapidly make things worse. For Jill's probes and suspicions are not
invisible to Jack himself, and her body language is a little tense. Jack
thinks (wrongly) ‘Perhaps Jill is angry with me?’. Now the scenario

-
<

displacements. The associated portions of the image sampled (at the end

of each saccade) are shown in the fourth row. The final two rows show the
posterior beliefs in terms of their sufficient statistics and the stimulus catego-
ries, respectively. The posterior beliefs are plotted here in terms of conditional
expectations and the go% confidence interval about the true stimulus. The key
thing to note here is that the expectation about the true stimulus supervenes
over its competing expectations and, as a result, conditional confidence about
the stimulus category increases (the confidence intervals shrink to the expec-
tation). This illustrates the nature of evidence accumulation when selecting a
hypothesis or percept that best explains sensory data. For full details of the
experiment and results, see the original paper by Friston, Adams, et al., 2012.

Source: From Friston, Adams, et al., 2012, by permission.
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FIGURE 2.5 This figure uses the same format as the previous figure, but
shows the result of presenting an unknown (unrecognizable) face—the image
of the ancient Egyptian queen Nefertiti. Because the simulated agent has no
internal image or hypothesis that can produce veridical predictions about
salient locations to foveate, it cannot resolve the causes of its sensory input
and is unable to assimilate visual information into a precise posterior belief
about the stimulus. Saccadic movements are generated by a saliency map
that represents the most salient locations based upon a mixture of all internal
hypotheses about the stimulus. Irrespective of where the agent looks, it can
find no posterior beliefs or hypothesis that can explain the sensory input.

As a result, there is a persistent posterior uncertainty about the states of the
world that fail to resolve themselves. The ensuing percepts are poorly formed
and change sporadically with successive saccades.

And corresponding percept .

Source: From Friston, Adams, et al., 2012, by permission.

repeats, To Jack, Jill now looks a little angry and sounds a little angry.
Jill then detects even more signs of tenseness (perhaps they are now
real) in Jack, and the cycle of mutual (originally misplaced) prediction
escalates. Mutual prediction, as we shall later see, can greatly enhance
interpersonal understanding. But when coupled with the profound
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effects of expectation upon perception and action, it can also provide
a worrying recipe for self-fulfilling psycho-social knots and tangles.

Nor is this dark side restricted to cases of multiple interacting
human agents. Increasingly, our best tools and technologies are in
the business of predicting our own needs, requests, and patterns of
use. Google anticipates search requests according to past patterns and
information about present location, and offers advice and options even
before we ask for them. Amazon uses powerful collaborative filtering
techniques to make suggestions based on past purchases. Such innova-
tions extend the realm of mutual prediction o include webs of humans
and machines, each of which are now busily anticipating the other.
Unless checked or controlled this could lead, as in the so-called ‘filter
bubble’ scenario described in Pariser (2011), to increasingly restricted
explorations of the space of opportunities.

2.720 Some Worries about Precision

A brief sketch of the basic PP account of attention appeared in Clark
(2013). This was a target article in the peer-review journal Behavioral
and Brain Sciences, and as such was accompanied by a variety of com-
mentaries from leading figures in the field. Bowman et al. (2013)
was one such commentary. In addition to some worries concerning
biased competition (see 2.4), Bowman et al. were concerned that the
precision-based account seemed best suited to explaining spatial,
rather than feature-based, attention. Feature-based attention, Bowman
et al. noted, allows us to enhance response to a given feature even when
it appears at an unpredicted location. Thus, to borrow their example,
the command to find an instance of bold type may result in attention
being captured by a nearby spatial location. If we then (as PP suggests)
increase the precision-weighting upon prediction error from that spa-
tial location, doesn’t that suggest that the precision-weighting of select
prediction error signals is a consequence of attending rather than its
causal mechanism?

This is a nice puzzle, and it reveals something important about the
apparatus on offer. For the resolution of the puzzle lies, I suggest, in
the manipulation of precision-weighting at different levels of the pro-
cessing regime. Feature-based attention corresponds, intuitively, to
increasing the gain on the prediction error units associated with the
identity or configuration of a stimulus (e.g., increasing the gain on units
reporting prediction errors pertaining to the distinctive geometric pat-
tern of a four-leaf clover). Boosting that response (by giving added
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weight to the relevant kind of sensory prediction error) should enhance
detection of that featural cue. Once the cue is provisionally detected,
the subject can fixate the right spatial region, now under conditions of
‘four-leaf-clover-there’ expectation. Residual error is then amplified for
that feature at that location, and high confidence in the presence of the
four-leaf clover can (if you are lucky!) be obtained. Note that attend-
ing to the wrong spatial region (e.g., due to incongruent spatial cueing)
will actually be counterproductive in such cases. Precision-weighted
prediction error is thus able to encompass both mere-spatial and
feature-based signal enhancement.

Additional worries were raised by Block and Siegel (2013) who
suggested that predictive processing is unable to offer any plausible
or distinctive account of very basic results such as the attentional
enhancement of perceived contrast (Carrasco, Ling, & Read, 2004). In
particular, Block and Siegel suggested that the PP model failed to cap-
ture changes due to attending that precede the calculation of error, and
that it falsely predicts a magnification of the changes that follow from
attending (consequent upon upping the gain on some of the prediction
error). It is worth looking at this case in a little detail.

Carrasco, Ling, and Read (2004) report experiments in which sub-
jects fixate a central spot with contrast gratings to the left and right. The
gratings differ in absolute (actual) contrast. But when subjects are cued
to attend (even covertly) to the lower contrast grating, their perception
of the contrast there is increased, yielding the (false) judgment that, for
example, an attended 70% (actual value) contrast grating is the same as
an unattended 82% grating. Block and Siegel suggest that the predic-
tive processing account cannot explain the initial effect here (the false
perception of an 82% contrast for the covertly attended 70% contrast
grating) as the only error signal—and this is where they misconstrue
the story—is the difference between the stable pre-attentive 70% reg-
istration and the post-attentive 82% one. But this difference was not
available until after attention had done its work! Worse still, once that
difference is available, shouldn't it be amplified once more, as gain on
the relevant error units is now increased?

This is an ingenious challenge, but it is based on a revealing mis-
construal of the precision-weighting proposal. It is not the case that PP
posits an error signal calculated on the basis of a difference between the
unattended contrast (registered as 70%) and the subsequently attended
contrast (now appearing to be 82%). Rather, what attention alters is the
expectation of precise sensory information from the attended spatial
location. Precision is the inverse of the variance, and it is our “precision
expectations’ that attention here alters. What seems to be happening,
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in the case at hand, is that the very fact that we covertly attend to the
grating on the left (say) increases our expectations of a precise sensory
signal. Under such conditions, the expectation of precise information
induces an inflated weighting for sensory error and our subjective esti-
mate of the contrast is distorted as a result."

The important point is that the error is not computed, as Block
and Siegel seem to suggest, as a difference between some prior (in this
case unattended) percept and some current (in this case attended) one.
Instead, it is computed directly for the present sensory signal itself, but
weighted in the light of our expectation of precise sensory information
from that location. Expectations of precision are what, according to PP,
is being manipulated by the contrast grating experiment, and PP thus
offers a satisfying (and distinctive) account of the effect itself. This same
mechanism explains the general effect of attention on spatial acuity.

Block and Siegel also argue that it ‘makes no sense to take the error
signal to be the sensory input’, at least once an agent is awake, alert, and
has a grip on what is around her. But the claim is not, of course, that
the agent perceives an error signal. (Similarly, no conventional theorist
should say that the agent typically perceives the flow of sensory infor-
mation itself, rather than the world that it makes available.) According
to PP, the agent perceives what is around her, but does so courtesy of the
forward (and lateral) flow of error and the downward (and lateral) flow
of prediction.

In sum, predictive processing depicts attention as increasing the
gain on select prediction errors. Attention thus forms an integral aspect
of the inferential cascade that constitutes the normal perceptual pro-
cess. Endogenous attention here corresponds to processes of volitional
control that impact the gain on prediction errors associated with some
task-relevant feature (e.g., the shape of the four-leaf clover) or some
selected spatial location. Exogenous attention corresponds to the more
automatic processing that ups the gain on select prediction errors dur-
ing the fluent performance of a well-learnt task, or in response to some
ecologically salient cue (such as a flash of light, a motion transient, or
a sudden noise). Such ecologically salient cues tend to produce strong
sensory signals, and such signals are implicitly ‘expected’ to display a
high signal-to-noise ratio. There is thus a kind of hyperprior in play: an
expectation of precision for stronger signals, that plausibly mandates
increasing the gain on associated prediction error (see Feldman &
Friston, 2010, p. 9; see also Hohwy, 2012, p. 6). Finally, expectations of
precision were also seen to guide exploratory actions, determining (for
example) patterns of saccade that track the regions of the scene where
more precise information is most likely to be found
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Uniting perception and action in a single self-fuelling loop, esti-
mates of precision thus enable the flexible task-varying combination
of bottom-up sensory information (conveyed by prediction error) and
top-down generative-model-based expectation.

2.11  The Unexpected Elephant

Understanding the role of precision and precision expectations may
be especially important for revealing the complex links between
non-conscious (‘sub-personal’) prediction and the shape and flow of
personal-level daily experience. For example, there seems to be an ini-
tial disconnect between neural-surprise (‘surprisal: the implausibility
of some sensory state given a model of the world) and agent surprise.
This is evident from the simple fact that the percept that, overall, best
minimizes surprisal (hence minimizes prediction errors) ‘for’ the brain
may well be, for me the agent, some highly surprising and unexpected
state of affairs—imagine, for example, the sudden unveiling of a large
and doleful elephant elegantly smuggled onto the stage by a profes-
sional magician. The appearance of a radical disconnect here is, how-
ever, illusory, as a slightly more detailed account reveals.

As the magician waves away the cover, coarse rapidly processed
visual cues recruit the hypothesis (elephant) best able to minimize
sensory prediction error. The perception/action loop is immediately
engaged, driving a series of visual saccades that sweep the scene in
elephant-specific ways (e.g., foveating where the trunk should be). That
visual search will, if the hypothesis is correct, yield high-precision con-
firmation of that very hypothesis."” Suppose the sweep fulfils all sys-
temic expectations. The agent now commands a reliable model that has
survived the acid test of high-precision prediction error. The elephant
percept is at that point the one that best respects what the cognitive sys-
tem knows and expects about the world, and what it knows and expects
about the results of its own interventions (here, visual saccades) upon
the world. The elephant-on-stage percept is thus the winning hypoth-
esis given the current combination of driving inputs, precision expecta-
tions, and assigned precision (reflecting, as we saw, the brain’s degree
of confidence in the sensory signal).

Given the right driving signal and a high enough assignment of
precision, top-level theories of an initially agent-unexpected kind
can thus win out so as to explain away that highly weighted tide of
incoming sensory evidence. The sight of the doleful elephant emerges
as the best (most likely, least ‘surprisal-ing”) percept available, given
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the inputs, the priors, and the estimated precision of sensory predic-
tion error. Nonetheless, systemic priors did not render that percept
very likely in advance, hence (perhaps) the value to the agent of the
actual feeling of surprise. The feeling of surprise, that is to say, might
be a way of preserving useful information that would otherwise be
thrown away—the information that, prior to the present evidence-led
bout of inference, the perceived state of affairs was estimated as highly
improbable.

This is all (usually) good news, as it means we are not slaves to
our expectations. Successful perception requires the brain to use stored
knowledge and expectations (Bayesian priors) to minimize predic-
tion error. But we remain able to see very (agent-) surprising things,
in conditions where the brain assigns high reliability to sensory pre-
diction error (hence high reliability to the driving sensory signal).
Importantly, that requires other high-level theories, though of an ini-
tially agent-unexpected kind, to win out so as to explain away the
highly weighted sensory evidence.

2.12  Some Pathologies of Precision

What happens, though, if this balancing act goes wrong? What hap-
pens if the mechanisms of precision-weighting develop a glitch and
the balance between top-down expectation and bottom-up sensing
becomes compromised? Here, it seems to me, the predictive processing
scenario suggests promising new ways of thinking about the large and
varied space of human mentality. We shall see more of this in subse-
quent chapters. But we can already glimpse the potential in an impres-
sive body of recent work addressing delusions and hallucination in
schizophrenia (Corlett, Frith, et al., 2009; Fletcher & Frith, 2009).

Recall the unexpected sighting of the elephant described in the pre-
vious section. Here, the system already commanded an apt model able
to ‘explain away’ the particular combination of driving inputs, expec-
tations, and precision (weighting on prediction error) that specified
the doleful, grey presence. But such is not always the case. Sometimes,
dealing with ongoing, highly weighted sensory prediction error may
require brand new generative models gradually to be formed (just as in
normal learning). This might hold the key, as Fletcher and Frith (2009)
suggest, to a better understanding of the origins of hallucinations
and delusion (the two so-called “positive symptoms’) in schizophre-
nia. These two symptoms are often thought to involve two mecha-
nisms and hence two breakdowns, one in ‘perception” (leading to the
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hallucinations) and one in ‘belief’ (allowing these abnormal percep-
tions to impact top-level belief). Thus Coltheart (2007) notes—correctly
and importantly—that perceptual anomalies alone will not typically
lead to the strange and exotic belief complexes found in delusional
subjects. But must we therefore think of the perceptual and doxastic
components as strictly independent?

A possible link emerges if perception and belief formation, as the
present story suggests, both involve the attempt to match unfolding
sensory signals with top-down predictions. Importantly, the impact
of such attempted matching is precision-mediated in that the sys-
temic effects of residual prediction error vary according to the brain’s
confidence in the signal. With this in mind, Fletcher and Frith (2009)
canvass the possible consequences of disturbances to a hierarchical
Bayesian system such that prediction error signals are falsely gener-
ated and—more important—highly weighted (hence accorded undue
salience for driving learning).

There are a number of potential mechanisms whose complex inter-
actions, once treated within the overarching framework of prediction
error minimization, might conspire to produce such disturbances.
Prominent contenders include the action of slow neuromodulators such
as dopamine, serotonin, and acetylcholine (Corlett, Frith, et al., 2009;
Corlett, Taylor, et al., 2010). In addition, Friston (2010, p. 132) speculates
that fast, synchronized activity between neural areas may also play a
role in increasing the gain on prediction error within the synchronized
populations.’ The key idea, however implemented, is that understand-
ing the positive symptoms of schizophrenia requires understanding
disturbances in the generation and (especially) the weighting of pre-
diction error. The suggestion is that malfunctions within that complex
economy (perhaps fundamentally rooted in abnormal dopaminergic
functioning) yield wave upon wave of persistent and highly weighted
‘false errors’ that then propagate all the way up the hierarchy forcing,
in severe cases (via the ensuing waves of neural plasticity) extremely
deep revisions in our model of the world. The improbable (telepa-
thy, conspiracy, persecution, etc,) then becomes the least surprising,
and—because perception is itself conditioned by the top-down flow of
prior expectations—the cascade of misinformation reaches back down,
allowing false perceptions and bizarre beliefs to solidify into a coher-
ent and mutually supportive cycle.

Such a process is self-entrenching. As new generative models take
hold, theirinfluence flowsback downso thatincoming datais sculpted by
the new (but now badly misinformed) priors so as to ‘conform to expec-
tancies’ (Fletcher & Frith, 2009, p. 348). False perceptions and bizarre
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beliefs thus form an epistemically insulated self-confirming cycle. This,
then, is the darker side of a highly potent cognitive strategy. The pre-
dictive processing model merges—usually productively—perception,
belief, and learning within a single overarching economy: one within
which dopamine along with other mechanisms and neurotransmit-
ters controls the “precision’ (the weighting, hence the impact on infer-
ence and on learning) of prediction error itself. But when things go
wrong, false inferences spiral and feed back on themselves. Delusion
and hallucination then become entrenched, being both co-determined
and co-determining. We see milder versions of this everywhere, both
in science (Maher, 1988) and in everyday life. We tend to see what we
expect, and we use that to confirm the model that is both generating
our expectations, and sculpting and filtering both our observations
and our estimates of their reliability.

The same broadly Bayesian framework can be used (Corlett,
Frith, et al,, 2009) to help make sense of the ways in which different
drugs, when given to healthy volunteers, can temporarily mimic vari-
ous forms of psychosis. Here, too, the key feature is the ability of the
predictive coding framework to account for complex alterations in
both learning and experience contingent upon the (pharmacologi-
cally modifiable) way driving sensory signals are meshed, courtesy
of precision-weighted prediction errors, with prior expectancies and
(hence) ongoing prediction. The psychotomimetic effects of ketamine,
for example, are said to be explicable in terms of a disturbance to the
prediction error signal (perhaps caused by AMPA upregulation) and
the flow of prediction (perhaps via NMDA interference). This leads
to a persistent prediction error and—crucially—an inflated sense
of the importance or salience of the associated events, which in turn
drives the formation of short-lived delusion-like beliefs (Corlett, Frith,
et al, 2009, pp. 6-7; see also Gerrans, 2007). The authors go on to offer
accounts of the varying psychotomimetic effects of other drugs (such
as LSD and other serotonergic hallucinogens, cannabis, and dopamine
agonists such as amphetamine) as reflecting other possible varieties of
disturbance within a hierarchical predictive processing framework.”

This fluid spanning of levels constitutes, it seems to me, one of the
key attractions of the present framework. We here move from consider-
ations of normal and altered states of human experience, via computa-
tional models (highlighting precision-weighted prediction-error-based
processing and the top-down deployment of generative models), to
the implementing networks of synaptic currents, neural synchronies,
and chemical balances in the brain. The hope is that by thus offering a
new, multilevel account of the complex, systematic interactions among
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inference, expectation, learning, and experience, these models may one
day deliver a better understanding even of our own agent-level experi-
ence than that afforded by the basic framework of “folk psychology”.
Such an outcome (see also chapter 7) would constitute a vindication
of the claim (P. M. Churchland, 1989, 2012, P. S. Churchland, 2013) that
adopting a ‘neurocomputational perspective’ might one day lead us to
a deeper understanding of our own lived experience.

2.13 Beyond the Spotlight

Attention has often been depicted as a kind of mental spotlight (see,
e.g., Crick, 1984) whose deployment reflects the competition (due to
limited resources) for high-quality neural processing. The predictive
processing model of attention shares some features with the spotlight
model, while departing from it in other ways. It shares the depiction of
attention as tied up with the search for precise (low-uncertainty) sen-
sory information. Pointing a spotlight creates (as noted by Feldman &
Friston, 2010) the very conditions under which high-quality sensory
information can be obtained from a spatial location. But attention is
not, PP suggests, itself a mechanism so much as a dimension of a much
more fundamental resource.”® It is a pervasive dimension of the gen-
erative models we (our brains) bring to bear to predict the flow of sen-
sory data. But it is a special dimension, since it concerns not simply the
nature of the external causes of the incoming sensory data (the sig-
nal) but the precision (statistically, the inverse variance) of the sensory
information itself.

The generative model, by including estimates of current precisions
and of the precisions that would result from visual saccades and other
actions, directly entrains swathes of information-gathering behav-
iours. It makes predictions concerning not just how the signal should
evolve (if the world is indeed thus-and-so) but also what incoming
signals should be actively solicited and given the greatest weight as
processing unfolds. It is by varying such weightings that we can bias
select sensory channels during multimodal processing, flexibly alter
the moment-to-moment flow of information between neural areas, and
(most generally) alter the balance of power between the bottom-up sen-
sory signal and top-down expectations. Such alterations accomplish
the various ‘special effects’ (seeing faces in clouds, hearing sine-wave
speech, or even hallucinating ‘White Christmas’) described in the early
sections of this chapter.
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Adding precision-encoded estimations of our own sensory
uncertainty to the emerging picture also allows us to combine, in
a fluent and flexible manner, the best of two superficially opposed
worlds. One is the world of signal-suppression, the core feature
of standard predictive coding. Here, expected signal elements are
‘explained away’ and stripped of forward-flowing causal efficacy.
The other is the world of signal enhancement and biased competi-
tion. This is a world in which ‘mission-critical’ signal elements are
amplified and enhanced, and their forward-flowing effects magni-
fied. By weighting forward-flowing prediction error signals accord-
ing to their expected precision the PP framework combines the best
of both these worlds, enhancing some responses while suppressing
others.

Attention, action, and perception are now joined in mutually sup-
portive, self-fuelling loops. Weighted prediction error signals drive us
to sample the world in ways that both reflect and test the hypotheses
that are generating the predictions that are driving the actions. The
resulting intimacy of perception, attention, and action forms one of the
core themes of the present treatment and offers our best hope yet of an
account of neural processing able to illuminate the profound cognitive
entanglement of brain, body, and world.



3

The Imaginarium

3.1 Construction Industries

Perception, our story suggests, is a process that is both constructive and
steeped in prediction. Perception of this stripe—the kind that reveals
a structured world of interacting distal causes—has an important
and (mostly) life-enhancing spin-off. For such perceivers are thereby
imaginers too: they are creatures poised to explore and experience
their worlds not just by perception and gross physical action but also
by means of imagery, dreams, and (in some cases) deliberate mental
simulations.

This is not to claim, of course, that every system that we might
intuitively think of as in some form of sensory contact with its world
is able to do these things. Doubtless there exist many simple systems
(such as light-following robots or bacteria that follow chemical gradi-
ents) that use sensory inputs to select apt responses without deploy-
ing internally represented models to predict the shape of the incoming
signal. Such systems would not, or so I shall argue, enjoy perceptual
experiences as of a richly structured external world, nor would they be
capable of mental states such as dreaming or imagining. But perceivers
like us, if PP is correct, can use stored knowledge to generate a kind of

84
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multilevel virtual analogue of the driving sensory signal as it unfolds
across multiple layers and types of processing.

The links to imagination and dreaming are then close at hand, for
such systems command a generative model capable of reconstructing
the sensory signal using knowledge about interacting causes in the
world. That process of reconstruction, tuned and deployed in the pres-
ence of the sensory signal, paves the way for processes of outright con-
struction, able to form and evolve in the absence of the usual sensory
flow. Nearby too are capacities to engage in what some theorists call
‘mental time-travel’: remembering (reconstructing) the past and pre-
dicting the possible shapes of the future. Working together, these vari-
ous ‘construction industries” allow us to make better choices and select
better actions. From the simple seeds of a generative-model-based
account of online perception, there thus emerges a striking (and strik-
ingly familiar) cognitive form. Itis a form in which perception, imagina-
tion, understanding, and memory come as a kind of cognitive package
deal—a package deal that locates the present where it experientially
belongs, at the productive meeting point between past influence and
informed future choice.

3.2 Simple Seeing

Consider the image in Figure 3.1. This is the so-called ‘Cornsweet
lusion’. To most people, the central paired tiles appear to be very dif-
ferent shades of grey—an appearance that, as the second picture reveals,
is illusory. The illusion occurs because (as we saw in chapters 1 and 2)
our visual experiences do not simply reflect the current inputs, but are
greatly informed by “priors’ (prior beliefs, usually taking the form of
nonconscious predictions or expectations) concerning the world. In
this case, the prior is that surfaces tend to be equally reflectant rather
than becoming gradually brighter or darker towards their own edges.
The brain’s best guess is thus that the central pairing involves two dif-
ferently reflective surfaces (two different shades of grey) illuminated
by differing amounts of light. The illusion occurs because the image
displays a highly atypical combination of illuminance and reflectance
properties and the brain uses what it has learnt about typical patterns
of illumination and reflectance to infer (falsely in this case) that the two
tiles must be different shades of grey. In the world we actually live in,
these particular prior beliefs or neural expectations are provably ‘Bayes
optimal’—that is, they represent the globally best method for inferring
the state of the world from the ambient sensory evidence (Brown &
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FIGURE 3.1 Cornsweet Illusion Set Up

The first image (left) depicts a typical Cornsweet illusion set up. The cen-

tres of the two tiles comprising the central pairing appear to be different
shades of grey. The second image (right) reveals that they are in fact the same
shade of grey.

Source: D. Purves, A. Shimpi, & R. B. Lotto (1999). An empirical explanation of the
Cornsweet effect. Journal of Neuroscience, 19(19), 8542-8551.

Friston, 2012). The brain thus generates our perceptual experiences by
combining prior knowledge (including, as we saw in chapter 2, knowl-
edge about context) with incoming sensory evidence.

3.3 Cross-Modal and Multimodal Effects

This basic effect explains a surprisingly wide variety of familiar percep-
tual phenomena. One such phenomenon is the widespread existence of
cross- and multimodal context effects on early ‘unimodal’ sensory pro-
cessing. The discovery of such effects constitutes one of the major find-
ings of contemporary sensory neuroscience (see, e.g., Hupe et al., 1998;
Murray et al., 2002; Smith & Muckli, 2010). Thus, Murray et al. (2002)
display the influence of high-level shape information on the responses
of cells in early visual area Vi, while Smith and Muckli (z010) show
similar effects (using as input partially occluded natural scenes) even
on wholly non-stimulated (that is to say, not directly stimulated via the
driving sensory signal) visual areas. In addition, Murray et al. (2004)
showed that activation in V1 is influenced by a top-down size illusion,
while Muckli et al. (2005) and Muckli (2010) report activity relating to
an apparent motion illusion in Vi. Even apparently ‘unimodal’ early
responses are influenced (Kriegstein & Giraud, 2006) by information
derived from other modalities and hence will commonly reflect a vari-
ety of multimodal associations. Strikingly, even the expectation that a
relevant input will turn out to be in one modality (e.g., auditory) rather
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than another (e.g,, visual) turns out to improve performance, presum-
ably by enhancing ‘the weight of bottom-up input for perceptual infer-
ence on a given sensory channel’ (Langner et al., 2011, p. 10).

This whole smorgasbord of context effects flows very naturally
from the PP model. If so-called visual, tactile, or auditory sensory
cortex is actually operating using a cascade of feedback from higher
levels to actively predict the unfolding sensory signals (the ones origi-
nally transduced using the various dedicated receptor banks of vision,
sound, touch, etc.), then we should not be in the least surprised to
find extensive multimodal and cross-modal effects (including these
kinds of ‘filling-in’) even on ‘early” sensory response. One reason this
will be so is that the notion of ‘early” sensory response is in one sense
now misleading, for expectation-induced context effects will simply
propagate all the way down the system, priming, generating, and
altering ‘early’ responses as far down as V1. Any statistically valid cor-
relations, registered within the ‘metamodal’ (or at least, increasingly
information-integrating) areas towards the top of the processing hier-
archy, can inform the predictions that then cascade down, through
what were previously thought of as much more unimodal areas, all
the way to the areas closer to the sensory peripheries. Such effects are
inconsistent with the idea of V1 as a site for simple, stimulus-driven,
bottom-up feature-detection using cells with fixed (context-inflexible)
receptive fields. But they are fully consistent with (indeed, mandated
by) models that depict V1 activity as constantly negotiated on the basis
of a flexible combination of top-down predictions and driving sensory
signal. Reflecting on this new vision of ‘early’ sensory processing, Lars
Muckli writes that

It is conceivable that Vi is, first of all, the target region for cor-
tical feedback and then, in a second instance, a region that
compares cortical feedback to incoming information. Sensory
stimulation might be the minor task of the cortex, whereas its
major task is to . . . predict upcoming stimulation as precisely as
possible. (Muckli, 2010, p. 137)

3.4 Meta-Modal Effects

The visual word form area (VWFA) is an area within the ventral
stream that responds to proper letter strings: the kind that might
reasonably form a word in a given language. Response in this brain
area was already known to be independent of surface details such as
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case, font, and spatial location. In an important neuroimaging (fMRI)
study, Reich et al. (2011) found evidence that VWFA is actually track-
ing something even more abstract than visual word form. It appears
to be tracking word form regardless of the modality of the trans-
ducing stream. Thus, the very same area is activated in congenitally
blind subjects during Braille reading. The fact that the early input
here is tactile rather than visual makes no difference to the recruit-
ment of VWFA. This supports the idea (Pascual-Leone & Hamilton,
2001) of such brain areas as ‘metamodal operators’ that are ‘defined
by a given computation that is applied regardless of the sensory
input received’.

This fits neatly, as Reich et al. (2011, p. 365) themselves note, with the
PP image in which higher levels of the cortical hierarchy learn to track
the ‘hidden causes’ that account for, and hence predict, the sensory
consequences of distal states of affairs. Reich et al. speculate that much
activity in VWEFA might thus reflect modality-transcending predictions
about the sensory consequences of words. VWFA, that is to say, seems
to be generating top-down predictions using modality-transcending
models of word-hood. The meta-modality of VWEA would then
‘explain its ability to apply top-down predictions to both visual and
tactile stimuli” (Reich et al., 2011, p. 365).

Another nice example, this time from the action domain, is pro-
vided by Wolpert, Miall, and Kawato (1998) who note that elements of
an individual’s hand-writing style are preserved even when different
effectors (such as the right or left hand, or even the toes) are used.
Abstract high-level motor commands must be unpacked in different
ways as cascading predictions get closer and closer to the effector sys-
tems themselves. But at the higher levels, it seems, there is substantial
motoric information encoded in effector-spanning forms.

In sum, the PP framework offers a powerful way of accommodat-
ing all manner of cross-, multi-, and meta-modal effects on percep-
tion. It depicts the senses as working together to provide feedback
to a linked set of prediction devices that are attempting to track
unfolding states of the world across multiple spatial and temporal
scales. This delivers a very natural account of efficient multimodal
cue integration and allows top-down effects to penetrate even the
lowest (earliest) elements of sensory processing. (If that sounds epis-
temically worrying to you—perhaps because you suspect that too
much top-down influence would make us see whatever we expect
to see, rather than what is ‘really there—never fear. What is actu-
ally on offer is a very delicate balancing act indeed, as we will see in
chapter 6.)
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3.5 Perceiving Omissions

A further advantage of the predictive processing story (as mentioned
in 1.14) is that it provides a powerful account of the full spectrum
of ‘omission-related responses’. The theoretical importance of such
responses was noticed long ago by the Soviet psychologist Eugene
Sokolov, in pioneering studies of the orienting reflex—the immediate
‘attending’ reaction typically provoked by unexpected changes in the
environment. Sokolov noted that repeated exposures led to reduced
response and dubbed this effect ‘habituation’. One might have thought
of this as some kind of brute physical effect due to some form of
low-level sensory adaptation. Sokolov noticed, however, that even a
reduction in the magnitude of some habituated stimulus could engage
‘dishabituation” and prompt a renewed response.? Sokolov concluded
that the nervous system must learn and deploy a ‘neuronal model’ that
is constantly matched to the incoming stimulus, since what is attracting
the animal’s attention is now a reduction in the physical signal itself.

An extreme version of such a scenario occurs when an expected
signal simply fails to materialize. For example, if we hear a regular
series of beats and then a beat is omitted, we are perceptually aware
(quite vividly aware) of its absence. Moreover, there is a familiar sensa-
tion of ‘almost experiencing’ the onset of the omitted item—as if we
started to hear (or see, or feel) the very thing that, an instant later, we
vividly notice has not occurred.

Accounts that posit the ‘top-down’ use of a generative model as a
means of meeting the incoming sensory signal with apt expectations
are ideally (perhaps uniquely) well-placed to explain both respon-
siveness to omission and the peculiar phenomenology of omission.
A compelling example is provided by Adams et al. (2013) using simu-
lation studies of the generation and recognition of birdsong. In these
experiments (see Figure 3.2), a hierarchical predictive processing net-
work responded to short sequences of simulated chirps (sequences
displaying characteristic frequencies and volumes) using the kind of
multilayer prediction machinery described in previous chapters. The
simulations were then repeated but omitting part (the last three chirps)
of the original signal. At the first missing chirp, the network responded
with a strong burst of prediction error. This strong burst of error, the
authors note, is generated in the complete absence of any guiding sen-
sory input, since ‘at this point there is no sensory input to predict and
the prediction error is generated entirely by top-down predictions’
(Adams et al., 2013, p. 10). Moreover, a closer analysis of the network’s
responses showed that, at the very moment where the first missing



Percept Response to violation

100
= <]
Z £
£ & 50 ¥
= &
-100
500 1000 1500 2000
Time (sec) Peristimulus time (ms)
Percept Attenuated mismatch negativity Red d .
educed precision
5000 100
at second level
4500 =
) = 30
Z 4000 g il
S o
2 3500 S0
1 €
& 3000 N *
= -50 :
= 2500 | s
2000 -100
500 1000 1500 2000
Time (sec) Peristimulus time (ms)

Hallucination

Percept 100 Reduced precision

5000
at second level

. 4500 =
N = 5
Z 4000 S 50 Compensatory
= g ] <reduction of
é 3500 § I ] - sensory precision
= £ .
S 3000 =
£ . & 50 :

2500 = -

2000 ~100

0.5 1 15 500 1000 1500 2000
Time (sec) Peristimulus time (ms}

FIGURE 3.2 Omission-Related Responses

The left-hand panels show the predicted sonograms based upon pos-

terior expectations, while the right-hand panels show the associated
(precision-weighted) prediction error at the sensory level. The top panels
show a normal omission-related response due to precise top-down pre-
dictions that are violated when the first missing chirp is not heard. This
response is attenuated, when the (log) precision of the second level is reduced
to two (middle row). This renders top-down predictions more sensitive to
bottom-up sensory evidence and sensory prediction errors are resolved
under reduced top-down constraints. At the same time, the third chirp—that
would have been predicted on the basis of top-down (empirical) prior
beliefs—is missed, leading to sensory prediction errors that nearly match

the amplitude of the prediction errors elicited by the omission. The lower
row shows predictions and prediction errors when there is a compensatory
decrease in sensory log precision from two to minus two. Here, there is a
failure of sensory prediction errors to entrain high-level expectations and
subsequent false inference that persists in the absence of any stimuli.

Source: From Adams, Stephan, et al, 2013, by permission.
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chirp should have occurred, the system generated a transient (illusory)
percept. This percept (the systemic best-guess at the state of the world)
was not strong, but the timing was correct with respect to the miss-
ing chirp. In other words, the network first dimly ‘perceived’ (imag-
ined) the missing chirp, before responding with a strong error signal
as soon as the actual absence of such a signal became apparent. Such
results nicely model (Adams et al., 2013, pp. 10-11) the so-called ‘mis-
match negativity—the P300° neuronal response found in EEG studies
using oddball or omitted stimuli—a result that also makes physiologi-
cal sense given that such studies are most sensitive to the responses of
the kinds of cell (superficial pyramidal cells) most plausibly implicated
as reporting prediction errors.

In a revealing further manipulation (again, see Figure 3.2), Adams
et al. reduced the precision of sensory prediction error at an upper
level (level 2) of the multilayer network. The effect of this, as we saw in
chapter 2, is to reduce the system’s confidence in its own top-down pre-
dictions. Under these conditions, the chirp that was previously hardest
to detect (the third chirp) is completely missed and a prediction error
generated. However, since the system (with reduced level 2 precision) is
now less confident in its predictions, this error is not as large as it would
have been under normal conditions. This may correspond, the authors
note, to the kind of reduced neuronal (and behavioural) responses to
oddballs and omissions found in schizophrenic subjects. This account
of such responses is interesting since it suggests that

attenuated mismatch or violation responses in chronic schizo-
phrenia may not reflect a failure to detect surprising events but
reflect a failure to detect unsurprising (predictable) events. In
other words, they may reflect the fact that every event is sur-
prising. (Adams et al,, 2013, p. 11)

One way a system might try to compensate for such pan-surprisingness
is to effectively downgrade its confidence in the sensory signal itself.
Reducing the estimated precision of the sensory signal has complex
effects that we will further explore in subsequent chapters. In the sim-
ple birdsong study, such a reduction resulted in the total abolition of
omission-related response and radical failures correctly to infer the
structure of the distal environment from the sensory signal. Under
such circumstances, auditorily encountered songs were tracked only
roughly, with distorted structure and frequency. This is inevitable
since under those conditions ‘sensory information is not afforded the
precision needed to constrain or entrain top-down predictions’ (Adams
et al., 2013, p. 12). This corresponds to the genesis of hallucinations,
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here emerging as quasi-perceptual states that are insufficiently con-
trolled by top-down prediction and apt estimations of our own sensory
uncertainty.

3.6 Expectations and Conscious Perception

The PP model has implications (more on which in chapter 7) for the
study of the neural underpinnings of conscious sensory awareness.

We can creep up on this with some mundane reflections. It is
intuitively obvious that, for example, a familiar song played using a
poor radio receiver will sound much clearer than an unfamiliar one.
Whereas we might have thought of this, within a simple feed-forward
feature-detection framework, as some kind of memory effect, it now
seems just as reasonable to think of it as a genuinely perceptual one. The
clear-sounding percept, after all, is constructed in just the same way
as the fuzzy-sounding percept, albeit using a better set of top-down
predictions (priors, in the Bayesian translation of the story). That is
to say—or so I would suggest—the familiar song really does sound
clearer. It is not that memory later does some filling-in that affects, in
a backward-looking way, how we judge the song to have sounded.
Rather, the top-down effects bite in the very earliest stages of process-
ing, leaving us little conceptual space (or so it seems to me) to depict the
effects as anything other than enhanced-but-genuine perception. Thus
imagine we discover a creature whose auditory apparatus is highly
tuned to the detection of some biologically relevant sound. Imagine too
that that tuning consists largely in a strong set of priors for that sound,
such that the creature can detect it despite considerable noise in the
ambient signal (a kind of cocktail party effect). Surely we would sim-
ply describe this as a case of acute perception? Then we must say the
same, it seems to me, of the music-lover hearing a familiar song from a
low-quality radio.

Can we avoid a slippery slope here, as we progressively degrade
the driving signal and up-regulate the expectations? The lucky imagi-
nar whose confabulations just happen perfectly to predict the external
world is not truly perceiving her world at all. She is just a lucky guesser.

Two factors conspire to save us from being forced to accept such
an agent into the ranks of the true perceivers. First, we should consider
the counterfactuals. If you were just lucky that the distal world is cur-
rently as predicted, then were the worldly states to be different, you
would fail to track them. This already distinguishes the lucky predictor
from the normal predictive processing agent. Second, we must add the
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availability of attention. Attention, as we saw in the previous chapter,
ups the gain on aspects of the error signal. That means we can indeed
focus (if we decide to do so) on the fuzziness of the sound of the bad
radio, upping the gain on select sensory prediction error to reveal the
finer form of the sound-stream. The PP agent may then agree that the
radio is past its prime and in dire need of replacement. Counterfactual
robustness plus the availability of attention-based gain on sensory pre-
diction error thus allows us to distinguish ‘lucky hallucinations’ from
veridical prediction-driven percepts.

The role of prediction in the construction of conscious perceptual
experience is nicely demonstrated in work by Melloni et al. (2011).
Melloni et al. show that the onset time required to form a reportable
conscious percept varies according to our expectations—they show,
in other words, that expectation can speed up conscious awareness.
Using electroencephalographic (EEG) signatures, it was calculated
that conscious perception could occur as rapidly as 10oms faster for a
well-predicted stimulus, and hence that ‘the signatures of visibility are
not bound to processes with a strict latency but depend on the pres-
ence of expectations’ (Melloni et al., 2011, p. 1395). Such a result is best
explained, Melloni et al. suggest, by appeal to a hierarchical predic-
tive coding framework in which ‘conscious perception is the result of
a hypothesis test that iterates until information is consistent across
higher and lower areas’ (p. 1394).

3.7 The Perceiver as Imaginer

Animals capable of forming rich, world-revealing percepts are, if the
predictive processing story is on track, animals that understand their
worlds and that are poised to imagine them too. The argument for this
is straightforward. An important feature of the internal models that
power such approaches is that they are generative in nature. That is to
say, the knowledge (model) encoded at an upper layer* must be such
as to render activity in that layer capable of predicting the response
profile at the layer below. That means that the model at layer N + 1
becomes capable, when operating within the context of the larger sys-
tem, of generating the sensory data (i.e., the input as it would there
be represented) at layer N (the layer below) for itself. Since this story
applies all the way down to layers that are attempting to predict
activity in early processing areas , that means that such systems are
fully capable of generating ‘virtual” versions of the sensory data for
themselves.
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This is, in one sense, unsurprising. As Hinton (and for similar com-
ments, see Mumford, 1992) notes, ‘vivid visual imagery, dreaming, and
the disambiguating effect of context on the interpretation of local image
regions ... suggests that the visual system can perform top-down gen-
eration’ (Hinton, 2007b, p. 428). In another sense, it is quite remarkable.
It means that perception—at least, as it occurs in creatures like us—is
co-emergent with something functionally akin to imagination. By ‘crea-
tures like us), I here mean creatures capable of rich, world-revealing
perception: creatures able to perceive a complex distal environment pop-
ulated by interacting hidden causes. In my own case, such hidden causes
include rainstorms, primroses, and poker hands. In the case of my two
cats (Bruno and Borat), they seem to include® cat-treats, mice, and moths.
Bruno, Borat, and Clark, I suggest, are all deploying generative models to
capture regularities in their sensory input at multiple spatial and tempo-
ral scales. Obviously, a simple robot that locomotes to a light source need
not, and probably should not, deploy a multilayered generative model
to do so. Instead, the need for generative models emerges most clearly
when systems must deal with complex structures of hidden causes in
domains characterized by noise, ambiguity, and uncertainty.

The claim I wish to defend, more carefully stated, is thus that ani-
mals® able to perceive a complex external world of interacting causes
using the characteristic resources of prediction-driven learning will be
animals capable of the endogenous generation of sensory-like states.
It does not seem far-fetched to suggest that dreaming, imagining,
and mental imagery thus became available as part and parcel of the
very same cognitive package that delivered our grip on a structured
(organism-salient) external world. This does not mean that every such
animal can, by some deliberate act of will, bring such imaginings
about. Indeed, it seems very likely that for most creatures acts of delib-
erate imagining (which I suspect may require the use of self-cueing via
language) are simply impossible. But creatures that are thus enabled
to perceive a structured world possess the neural resources to gener-
ate, from the top-down, approximations to those same sensory states.
There thus emerges a deep duality between online perception (as
enabled by the predictive processing architecture) and capacities for
the endogenous generation of quasi-sensory states.

3.8 ’Brain Reading’ During Imagery and Perception

Strong fMRI evidence for such a duality emerged in a study by Reddy
et al. (2010). The starting point for the study was a set of well-known
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results showing that mental imagery and online visual perception
activate many of the same early processing areas (e.g.,, Kosslyn et al,,
1995; Ganis et al.,, 2004). Such results have been replicated many times
and also extended to include areas such as Lateral Occipital Cortex
(LOC). This is an extra-striate area that responds strongly to shapes
and objects, including letter-forms such as ‘X’ and ‘O’, preferring them
to simple textures or scrambled objects. Stokes et al. (2009) showed LOC
to be active both when subjects perceived and when they imagined the
letters X" and ‘O".

Such results lend intuitive support to the idea of a deep computa-
tional duality between perception and imagination, but they are also
compatible with many weaker accounts. They speak to an overlap of
brute geographical location (many of the same areas ‘lighting up’ dur-
ing online perception and offline imagination and recall) but that does
not yet establish the kind of deeper functional overlap predicted by the
PP class of models.

The Reddy et al. study directly addresses this issue, building upon
recent successes in what is sometimes called ‘brain reading’. In brain
reading (e.g., Haxby et al., 2001; Kamitani & Tong, 2005; Norman et al,,
2006), investigators attempt to reconstruct properties of a stimulus from
fMRI data (the BOLD signal tracking hemodynamic response) concern-
ing the neural activity that the stimulus evokes. That means plotting
multivoxel” response patterns and using them to infer (to decode) prop-
erties of the stimulus that brought them about.

The experimenter is here in roughly the position of the biological
brain itself. Her task—made possible by powerful mathematical and
statistical tools—is to take patterns of neural activation® and, on that
basis alone, infer properties of the stimulus. Such properties range
from identifying the class to which the stimulus—which is typically
an image—belongs (e.g, is it a face, a fruit, a tool?), to selecting which
specific image from a predefined set evoked the response, to (most
recently, and most impressively) actually reconstructing, as far as pos-
sible, the presented image itself. We shall see an example of the first
type shortly. A nice example of the second type (fMRI-based image
selection) can be found in Kay et al. (2008) who were able to infer which
novel natural image (from a set of 120) a subject had been perceiving
while being scanned. An example of the third (active reconstruction)
type can be found in Miyawaki et al. (z008).

Interestingly, the tools and approaches used to perform the third
task—the image reconstruction task—increasingly look to recapitu-
late the kinds of strategies used by the biological brain itself. The most
promising approaches thus use a Bayesian method that combines
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information in the measured response with prior information concern-
ing the structure and even the semantic contents of natural images—for
an example, see Naselaris et al. (2009). The use of such prior informa-
tion (just as in predictive processing) turns out to have a large and ben-
eficial effect upon the quality of the image reconstruction. Taking this
one step further, van Gerven et al. (2010) use a version of the architec-
ture used in the digit recognition example discussed in chapter 1 (a
‘deep belief network’; see Hinton et al.,, 2006) to reconstruct perceived
handwritten greyscale digits from the fMRI data. The authors conclude
(p. 3139) that ‘hierarchical generative models can be used for neural
decoding and offer a new window into the brain’.

The Reddy et al. experiment did not, however, involve image selec-
tion or image reconstruction. It addressed instead the much simpler
problem of image classification. The first goal (in line with previous
work) was to use pattern-classification techniques to decode category
information concerning viewed images, determining whether the sub-
ject, when scanned, was perceiving images of tools, food, faces, or
buildings. The second goal was to use the same techniques to deter-
mine whether subjects, when scanned, were imagining tools, food, faces,
or buildings. Assuming this proved possible, the third and final goal
was to determine how the voxel-level ‘codes’ for the imagined objects
related to those for the ‘same’ object when it is actually perceived.
For the decoding, the experimenters used a well-understood method
(linear support vector machines) to learn the mappings between
voxel-patterns and the four categories (food, tools, faces, and build-
ings). This was done for both perceived and imagined objects, and
recordings were made both from early visual areas (V1, V2) and higher
ones (FFA, PPA, and some distributed recordings).

Both forms of decoding (decoding what was seen and what was
imagined) proved possible, though—and we shall return to this very
shortly—decoding from the earliest, retinotopically mapped areas
was possible only during actual viewing and not during imagery. In
ventral-temporal cortex, by contrast, decoding proved possible under
both conditions (actual viewing and imagery). Reddy et al. then
addressed the third (and for our purposes the most interesting) ques-
tion: what relation, if any, existed between the neural states implicated
in the imagery condition and those implicated in the perceptual condi-
tion. This question bears directly upon our earlier conjectures concern-
ing the deep duality of perception and imagination.

To address this question, Reddy et al. used an ingenious method.
They took the trained-up classifier for perception and used it as the
decoder under the imagery condition, and vice versa (taking the
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trained-up classifier for imagery and using it to decode online per-
ception). Remarkably, each classifier worked for the other condition.
In other words, it was possible to use the ‘imagery decoder’ to clas-
sify a currently viewed item, and the ‘percept decoder’ to classify a
merely imagined item. This suggests that the two tasks are not simply
sharing coarse neural resources, but are sharing the fine-grained use
of those resources too. More specifically, it shows the existence of sub-
stantial overlap between the fine-grained® multi-voxel activation pat-
terns (in ventral-temporal cortex) that encode the scenes when they are
perceived and when they are merely imagined. An additional analysis
showed that the role of the various voxels (their weighted contributions
to classification success within a given category) was similar, and that
the two conditions (imagery and online perception) shared key ‘diag-
nostic voxels’ (p. 6). The authors conclude that

The use of pattern classification techniques ... indicated that
actual viewing and mental imagery shared the same represen-
tations at the level of fine-grained multivoxel activation patterns
in object-responsive ventral-temporal cortex [thus demonstrat-
ing] a high level of similarity between the fine-grained rep-
resentations involved in perception and imagery of natural
object categories. (Reddy et al,, 2010, p. 7)

Such results lend strong support to the idea, central to predictive pro-
cessing, that perception depends heavily upon a top-down generative
capacity.

Nonetheless, there are clearly many differences, both experiential
and functional, between perception and processes (such as mental
imagery and perhaps dreaming) that are being driven purely from the
top-down. Another aspect of the Reddy et al. study, briefly mentioned
earlier, is revealing in this regard. For despite the demonstration of
overlapping coding for perception and imagery in ventral-temporal
cortex, decoding from earlier (V1 and V2) retinotopically mapped
populations, though possible under the perceptual condition, was not
possible under the imagery condition. Otherwise put, activity in those
early areas was fMRI-readable’ as belonging to one of the four image
classes only when the subject was actually engaged in online view-
ing and not when merely imagining. This may be linked (as Reddy
et al. themselves intimate) to the fact that, on the whole, mental imag-
ery seems less vivid and less detailed (less realistic) than online per-
ception. A possible explanation, consistent with a body of superficially
rather conflicting results concerning the ability of areas such as Vi1 to
participate in mental imagery (see, e.g., Cui et al.,, 2007; Wheeler et al,
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2000) is that it is possible to drive V1 from the top down, but that this
only occurs when the task itself demands a fine grain of imagined
detail.

Perhaps in the more typical run of things imagery (unlike rich
forms of hallucination) involves only the higher levels of the generative
model? A possible mechanism for modulating such effects is readily
available within PP in the form of the precision weighting of predic-
tion error (see chapter 2). Assigning a low precision to prediction errors
calculated for the early (high spatial and temporal resolution) stages of
processing means that no systemic effort is expended upon bringing
those states into line with downward-flowing predictions. Under such
conditions, it seems plausible that the system would generate a stable
percept that simply ignores lower-level details, entraining them (by
upping the relevant precision-weightings) only when the task demands.

Online perception may also have special features. Plausibly, we
can resolve prediction errors in online perception at a very high level
of detail (grain) as when we attend, say, to the fine details of the pat-
terning of a complex wallpaper or the bark of a tree.”® Such stable, rich
granularity may simply not be available in standard cases of mental
imagery.!

Other (‘blunter’) low-level responses may, however, be more easily
entrained. Laeng and Sulutvedt (2014) show, surprisingly, that the act of
imagining can even impact pupil dilation and shrinkage. In this work,
subjects were exposed to images of triangles of varying brightness.
During exposure, the subject’s pupils responded in the usual fashion,
by dilating (widening) when the images were darker, and shrinking
when they were lighter. When asked to imagine the same triangles,
the same pupillary responses of dilation and shrinkage occurred. This
result is striking since pupil size is something over which most subjects
cannot exercise any form of conscious control, leading the experiment-
ers to comment that ‘the observed pupillary adjustments to imaginary
light present a strong case for accounts of mental imagery as a process
based on brain states similar to those that arise in perception’ (p. 188).
Such responses might serve, the authors suggest, to prepare the eyes for
anticipated (perhaps potentially damaging or dangerously inadequate)
levels of light.

3.9 Inside the Dream Factory

Such intimate links binding perception and imagination are sug-
gestive with regard to dreaming too. They suggest, most obviously,
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that dream-states, like imagery, involve the top-down (generative-
model-based) activation of many of the same states as occur during
ordinary perception. Such a claim needs, however, to be handled with
care. For the neural system, operating in the absence of the availability
of ‘hypothesis-checking action’ and of ongoing driving external inputs,
will be unable to support the same kinds of stability and richness of
experienced detail that daily sensory engagements offer.

In the absence of the driving sensory signal, there is no stable ongo-
ing information (in the form of reliable, estimated-as-high-precision,
prediction error) about low-level perceptual detail available to con-
strain the system, and hence no pressure to create or maintain a stable
hypothesis at the lower levels of processing. In waking life, by contrast,
the persisting external scene is repeatedly sampled, according to preci-
sion expectations, in ways that provide vital stabilizing pressure and
that help create (as we saw in chapter 2) distinctive, self-sustaining per-
cepts. In the absence of reliable sensory input, the estimated precision for
such low-level states will be greatly reduced. Since precision-weighting
involves promoting some aspects of the processing cascade against oth-
ers, this implies an increase in the expected precision of other (higher
level) states. The overall effect is thus temporarily to insulate unfolding
internal predictions from reality testing against sensory states. In this
way ‘internal brain dynamics become sequestered from the sensorium’
(Hobson & Friston, 2012, p. 87).

During sleep, this process is accompanied by some dramatic altera-
tions in the chemical states of the brain. The three dominant states for
the human brain are waking, REM (Rapid Eye Movement) sleep, and
non-REM (NREM) sleep. Each state has clear physiological, pharma-
cological, and experiential correlates. In waking, we can occupy many
states, from eyes-closed imagistic musing to eyes-open, alert engage-
ment with the external environment. In REM sleep our dreams (at least
as evidenced by subsequent report) are vivid, but their logic is weak.
Here is a typical enough report:

I was at a conference and trying to get breakfast but the food
and the people in line kept changing. My legs didn’t work prop-
erly and I found it a great effort to hold my tray up. Then I real-
ized why. My body was rotting away and liquid was oozing
from it. I thought I might be completely rotted before the end
of the day, but I thought I should still get some coffee if I still
had the strength. (Excerpt quoted in Blackmore, 2004, p. 340)

Here is another description, this time from Helena Bonham-Carter,
while she was expecting a baby with movie director Tim Burton: ‘I
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dreamed I gave birth to a frozen chicken. In my dream, I was very
pleased with a frozen chicken’ (quote from Hirschberg, 2003). In NREM
sleep, if we dream at all, the dreams (again, as evidenced by waking
report) are more like faint and mundane thoughts or fuzzy remember-
ings. All these states (waking, REM-sleep, NREM sleep) are correlated
with specific patterns of neuro-chemical activity. A useful tool for dis-
playing the pattern is Hobson’s AIM model (Hobson, 2001). The AIM
model characterizes the different states as points in a three-dimensional
space, whose axes are:

1. Activation Energy
2. Input Source
3. Modulation

Normal wakefulness is characterized by high activation (as measured
by EEG for example) corresponding to fairly intense experience, exter-
nal input sources (the brain is receiving and processing a rich stream
of sensory signals from the world, rather than being shut down and
largely recycling its own activity), and a distinctive mode. Modulation
here names a balance between brain chemicals, especially amines and
cholines. Amines are neurotransmitters such as noradrenaline and
serotonin, whose action is known to be essential for normal waking
consciousness (they are essential to the processes that enable us direct
attention, reason things through, and decide to act). When these are
shut off, and other neurotransmitters (cholines, such as acetylcho-
line) dominate, we experience delusions and hallucinations (if we are
awake) and vivid, uncritical dreaming (if we are asleep). In this way
it is the amine/choline balance that mostly determines how signals
and information (whether externally or internally generated) will be
dealt with and processed. In REM sleep, the aminergic systems are
deactivated and the cholinergic hyperactive. This is a highly altered
cognitive state. Only extreme forms of psychosis or serious medical
or recreational drug use can induce this kind of state in non-sleeping
humans.?

This is not to suggest (far from it) that the best state for a human
mind would be one of almost-complete aminergic dominance. Indeed,
the power, subtlety, and beauty of wakeful human intelligence seem to
have much to do with the precise details of the ever-shifting balance
between the two systems. But in normal waking the mode (defined as
the ratio between the activity of the two systems) leans towards the
aminergic. In REM sleep, with acetycholine dominating, experience is
increasingly dissociative, unanchored by sensory input, and beyond
volitional control.
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From the predictive processing perspective, the role of such
changes in neuromodulatory balance is to gate (probably via shifts in
precision-weighting; see chapter 2) the internal flow of prediction error.
This rather neatly explains, in broad outline at least, the very different
flavours of waking and dreaming experience. Thus,

when we go to bed and close our eyes, the postsynaptic gain of
sensory prediction error units declines (through reduced amin-
ergic modulation) with a reciprocal increase in the precision
of error units in higher cortical areas (mediated by increased
cholinergic neurotransmission). ... The ensuing sleep state is
one in which internal predictions are sequestered from sen-
sory constraints. (Hobson & Friston, 2012, p. 92)

In a similar fashion, Fletcher and Frith suggest that

Perhaps the dream state arises from disruptions in hierarchi-
cal ... processing such that sensory firing is not constrained by
top-down prior information and inferences are accepted with-
out question owing to an attenuation of the prediction-error
signal from lower to higher levels. (Fletcher & Frith, 2009, p. 52)

Hobson and Friston (2009, section 4.2.1) further speculate that the sleep
state offers an opportunity for the brain to engage in ‘post-synaptic
pruning'—removing redundant or low-strength connections so as to
reduce the complexity of the generative model itself. The idea here
(more on this in chapters 8 and ¢) is that reducing prediction error
while awake and alert sometimes results in models that, although able
to capture the sensory patterns, are nevertheless overly complex. Such
models effectively treat too much of the signal as data and not enough
as noise. They thus ‘overfit’ the specific data and (thereby) fail to gener-
alize to new situations.

Sleep, thanks to the altered balances just described, provides an
opportunity to remedy this. During sleep, the brain’s model is insulated
from further sensory testing but can still be improved by simplification
and streamlining. This is because the quantity that is minimized by
the brain is actually (as we will see in chapter g) prediction error plus
model complexity. During sleep, precise prediction errors are not gen-
erated, so the balance shifts towards the reduction of model complex-
ity. Sleep may thus allow the brain to engage in synaptic pruning so
as to improve (make more powerful and generalizable) the knowledge
enshrined in the generative model (see Tononi & Cirelli, 2006; Gilestro,
Tononi, & Cirelli, 2009; Friston & Penny, 2011).® The resulting links
between sleep and good cognitive housekeeping are intuitive and may
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offer special comfort to those that feel 7 hours is simply not enough!
For if Hobson and Friston are right, then ‘taking the brain off-line to
prune exuberant associations established during wakefulness may be
a necessary price we pay for having a sophisticated cognitive system
that can distil complex and subtle associations from sensory samples’
(Hobson & Friston, 2012, p. 95).

3.20 PIMMS and the Past

The bulk of our story so far has focused upon the use of stored knowl-
edge to predict what might be thought of as a kind of ‘rolling pres-
ent’. Obviously, these processes of prediction depend heavily upon past
experiences. But that dependence does not (yet) involve the actual rec-
ollection of past experiences. Instead, the past there exists only as it is
crystallized into the agent-inaccessible form of altered probability den-
sity distributions used to meet and to organize the incoming sensory
flow. Creatures like us, however, appear to benefit from a further trick.
This is the trick of (from time to time) being able to recall specific con-
crete events that may be relevant to the task at hand. A crucial point of
contact here is the observation that such ‘episodic recall’ involves learnt
associations between items and spatio-temporal contexts. Constraints
and opportunities involved in predicting items from contexts, and con-
texts from items, then provide tools that might (when deployed in the
right admixtures) enable a kind of prediction-based reconstruction of
episodic memory itself.

Thus consider a recent predictive processing account of multiple
memory systems due to Henson and Gagnepain (2010). Henson and
Gagnepain’s concern is with the contrasting memory systems often
dubbed ‘recollection’ and ‘familiarity’. Recollection occurs when a
subject, presented with a test item, recalls the episodic context of their
past exposure to that item. Such a subject may report the occasion
and modality of the original encounter or other surrounding details.
Familiarity, by contrast, is present when a subject is unable to recall
such details but is nonetheless aware that they have encountered that
very item before. Familiarity and recollection are thus both different
from (though intertwined with) the kind of semantic memory present
simply in virtue of knowing what an object is (e.g., ‘it’s a clothes brush”).
Recollection and familiarity look (though see Johnson et al., 2009) to
implicate different neural sub-systems, with the hippocampus playing
a special role in the former, and perihinal cortex (in the medial tempo-
ral lobe) playing a key role in the latter (see, e.g., Diana et al., 2007).



THE IMAGINARIUM 103

Henson and Gagnepain’s central concern is, however, not with
these different roles per se but with patterns of between-area interac-
tion. Their suggestion is that different patterns of interaction (different
patterns of effective connectivity and hence of functional coupling)
between areas can help explain the varying behavioural and neuroim-
aging profiles associated with recollection and familiarity. With this
in mind, they formulate and defend PIMMS: a ‘predictive interactive
multiple-memory system’ model. The model posits three ‘memory
systems’ distinguished largely by the kinds of representational con-
tent in which they specialize. They are labelled (following Tulving
& Gazzaniga, 1995) ‘episodic’ (here associated with recollection, and
physiologically with the hippocampus), ‘semantic’ (here associated
with familiarity, and physiologically with perihinal cortex), and ‘per-
ceptual’ (associated with occipito-temporal cortex, hence specific sen-
sory modalities such as the visual ventral pathway). The key novelty in
the PIMMS model is that ongoing feedback links the three systems both
during encoding and retrieval, and that different patterns of recurrent
interaction at both points account for the observed differences in the
behavioural and physiological data.

PIMMS depicts the effects of recollection and familiarity as
explained by differing patterns of information flow within a predic-
tive processing hierarchy in which, in the now-familiar fashion ‘the
role of feedback from one system is to predict the activity in “lower”
systems in this hierarchy’ (Henson and Gagnepain, 2010, p. 1319). This
hierarchy has the hippocampus at the top, the perihinal cortex below,
and occipito-temporal cortex below that. Differing levels within the
predictive bi-directional hierarchy come to specialize (as we have seen)
in making predictions of different kinds, capturing regularities at dif-
ferent spatio-temporal scales. Within such an architecture, the PIMMS
model depicts the hippocampus as the top level, concerned to ‘opti-
mize the mutual predictability between items (represented in perihi-
nal cortex) and contexts (presumably represented in multiple regions
depending on the type of context)’ (p. 1321). Such optimization—and
this is the crucial move—renders items predictable from contexts and
contexts predictable from items. A familiar object in a novel context
would thus induce high prediction error, since the mutual predictabil-
ity would be low. Hippocampal prediction error, they suggest, drives
episodic encoding which is implemented by altering the synaptic
weights on connections between the hippocampus and the appropri-
ate (e.g., perihinal) cortical populations. Within the trained hierarchy,
backwards connections then allow specifics to be predicted from con-
texts, while forward flowing error drives both encoding and retrieval.
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Episodic and semantic memory systems, if this is correct, are
linked in a web of mutual internal prediction. Within this web,
context-specifying information encoded in the hippocampus
attempts to predict item-based representations in perihinal cortex
and more ‘perceptual’ representations in occipito-temporal cortex.
Differing patterns of prediction error and prediction error resolu-
tion then realize various flavours of familiarity and recollection.
Familiarity occurs when a presented item induces low prediction
error (hence high ‘processing fluency’, Jacoby and Dallas, 1981) in
areas specializing in item-recognition but—importantly, though this
is not explicitly modelled in PIMMS—where that fluency is accom-
panied by a kind of (statistically second-order) assessment that such
fluency is surprising.’® Recollection, by contrast, occurs when there
is high mutual predictability linking the jitem to a specific context. If
the function of the hippocampus is, as suggested, to optimize mutual
predictability between items and contexts, various bodies of fMRI
data (for the details, see Henson & Gagnepain, 2010, pp. 1320-1322)
also fall neatly into place.

The PIMMS model is both incomplete and speculative.’* I include
it here simply as an illustration of some rather more general ideas
and principles. Most important, it suggests that the surface appear-
ance of multiple, distinct neural systems subserving different func-
tions (here, different kinds of memory) may be subtly misleading.
Rather than a mere motley of different systems, we may confront a
web of statistically sensitive mutual influence that combines context
with content, and balances specialization against integration. Within
that web, moment-by-moment performance depends on the creation
and maintenance of task-specific patterns of effective connectivity
(here linking semantic, perceptual, and episodic sub-systems; see
Figure 3.3). Such patterns may themselves be consequent upon the
estimated (task-relevant) precision of various prediction errors. In
this way, the calculation and use of precision-weighted prediction
error may constitute a general principle of neural functioning, serv-
ing not merely to drive and nuance perceptual recognition but to
select and orchestrate whole ensembles of neural” (and sometimes
extra-neural; see Part III) resources.

3.11 Towards Mental Time Travel

Mental time-travel (Suddendorf & Corballis, 1997, 2007) occurs when
an agent recalls events from the past or imagines events in the future.
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------ » Feed-back predictions
——> Feed-forward prediction errors

FIGURE 3.3 PIMMS Model of Memory
Encoding, storage, and retrieval are parallel and interactive. Recollection and

familiarity entail interactions between these multiple memory systems.

Source: Henson & Gagnepain, 2010.

Such capacities may be based, Suddendorf and Corballis argue, in a
more general capacity to imagine experiences using what Hassabis
and Maguire (2009, p. 1263) describe as ‘the construction system of the
brain’. Such an approach is attractive and fits neatly with two converg-
ing themes in cognitive neuroscience. The first is the contemporary
view of memory as a reconstructive process in which current goals
and context, as well as previous episodes of recall, contribute greatly to
what is recalled. The second is the wealth of imaging data suggesting
substantial—though by no means total—overlap between the neural
machinery used to recall the past and to imagine the future (see Okuda
et al, 2003; Szpunar et al., 2007; Szpunar, 2010; Addis et al., 2007). Such
overlap is nicely dramatized by Ingvar (1985) whose talk of ‘remem-
bering the future’ highlights the role of neural structures implicated
in episodic memory for imagining possible future scenarios. Episodic
memory, as we just saw, is the kind of remembering that involves
in some sense ‘re-living’ a past experience (as when we remember
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a specific, perhaps painful, encounter with a neighbour’s dog). It is usu-
ally contrasted (Tulving, 1983) with ‘semantic memory’, which concerns
concepts, features, and properties (dogs usually have four legs, bark,
and come in a wide variety of shapes and forms). Semantic memory
is also rooted in our past experience, but it shapes our current grip on
the world rather than mentally transporting us backwards or forwards
in time.

Further evidence for shared neural substrates for mental time
travel into the past and into the future comes from work on mem-
ory impairments. Certain forms of amnesia are correlated with
problems in imagining the future. Hassabis et al. (2007) report that
four out of five hippocampal amnesics were impaired in imagining
novel events—asked to construct new versions of everyday scenes,
their efforts produced less detail, and that detail was less well orga-
nized into coherent spatial structure. Schacter et al. (2007) report
that a specific pattern of age-related deterioration in recall (sparse-
ness of episode-specific detail; see Addis et al., 2008) marches in step
with a similar pattern in age-related future thinking. Such evidence
leads them to defend a ‘constructive episodic simulation hypothesis’
implicating a shared neural system that supports the ‘flexible recom-
bination of details from past events into novel scenarios”. It is this
future-oriented system, rather than episodic memory per se that, they
suggest, is the true bearer of adaptive value. The brain, they conclude,
is ‘a fundamentally prospective organ that is designed to use informa-
tion from the past and the present to generate predictions about the
future’ (Schacter et al,, 2007, p. 660). This may be the deep reason why
episodic memory is fragile, patchy, and reconstructive since ‘a mem-
ory system that simply stored rote records would not be well-suited
to simulating future events’ (Schacter and Addis, 2007a, p. 27; see also
Schacter and Addis, 2007b).

Schacter and Addis, like Suddendorf and Corballis, are especially
interested in the relations between episodic memory and a certain
form of ‘personal, episodic” future thinking: one in which we mentally
project ourselves ahead in time by simulating our own possible future
experiences. I think we may now flag this as another important and
distinctive manifestation of what already looks, from the PP perspec-
tive, to be a quite fundamental alignment between perception, recall,
and imagination. Such alignment flows directly, or so I have been argu-
ing, from the basic prediction-and-generative-model-based perspective
on perception: a perspective that may thus offer an even broader frame-
work within which to conceptualize the relations between recall (of
various kinds) and imagination (of various kinds).
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More generally, what seems to be emerging is a view of memory
as intimately bound up with constructive processes of neural pre-
diction and (hence) imagination. As one leading theorist of memory
comments:

If memory is fallible and prone to reconstructive errors, that
may be because it is oriented towards the future at least as
much as towards the past. . . similar neural systems are involved
in both autobiographical memory and future thinking, and
both rely on a form of imagination. (Fernyhough, 2012, p. 20)

3.12 A Cognitive Package Deal

PP offers an attractive ‘cognitive package deal’ in which perception,
understanding, dreaming, memory, and imagination may all emerge as
variant expressions of the same underlying mechanistic ploy—the ploy
that meets incoming sensory data with matching top-down prediction.
At the heart of the package lies the ability to use downwards connec-
tions to self-generate perception-like states. The very same ‘perceptual’
machinery, driven from the top-down but insulated from entrainment
by the driving sensory signal, then accounts for imagery and dream-
ing, and may pave the way for ‘mental time-travel” as we assemble cues
and contexts able to reconstruct the past and preconstruct the future.
This also paves the way for more deliberate forms of reasoning, as we
shall later see.

The resulting intimacy among some of our core mental facul-
ties is striking. Perception (rich, world-revealing perception) occurs
when the probabilistic residue of past experience meets the incom-
ing sensory signal with matching prediction. Such prediction may
be thin and unidimensional, or richly structured—capturing multi-
modal regularities at many temporal and spatial scales. In its most
sophisticated expressions, it may involve the reconstruction (or
imaginative preconstruction) of rich webs of spatio-temporal con-
text. Local, parochial perception thus phases gently into richer and
richer forms of understanding, apt to support new forms of agency
and choice. In place of any sharp distinction between perception and
various forms of cognition, PP thus posits variations in the mixture
of top-down and bottom-up influence, and differences of tempo-
ral and spatial scale within the internal models that are structur-
ing the predictions.”® Creatures thus endowed have a structured grip
on their worlds: a grip that consists not in the symbolic encoding of
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quasi-linguistic ‘concepts” but in the entangled mass of multiscale
probabilistic expectations used to predict the incoming sensory
signal.

Such a picture is, however, radically incomplete. The crucial
task—to which we now turn—is to locate the neural engines of predic-
tion where they truly really belong: nested within the larger organiza-
tional forms of the active body, and enmeshed in the transformative
structures of our material, social, and technological worlds.



Part 11

EMBODYING PREDICTION



4

Prediction-Action Machines

Try to feel as if you were crooking your little finger, whilst keeping it
straight. In a minute it will fairly tingle with the imaginary change of
position; yet it will not sensibly move, because it’s not really moving
is also a part of what you have in mind. Drop this idea, think of the
movement purely and simply, with all brakes off, and presto! it takes
place with no effort at all.

—William James!

4.1 Staying Ahead of the Break

To surf the waves of sensory stimulation, predicting the present is sim-
ply not enough. Instead, we are built to engage the world. We are built
to act in ways that are sensitive to the contingencies of the past, and
that actively bring forth the futures that we need and desire. How does
a guessing engine (a hierarchical prediction machine) turn prediction
into accomplishment? The answer that we shall explore is: by predict-
ing the shape of its own motor trajectories. In accounting for action,
we thus move from predicting the rolling present to predicting the
near-future, in the form of the not-yet-actual trajectories of our own
limbs and bodies. These trajectories, predictive processing suggests,
are specified by their distinctive sensory (especially proprioceptive)
consequences. In ways that we are about to explore, predicting these
(non-actual) sensory states actually serves to bring them about.

Such predictions act as self-fulfilling prophecies. Expecting the
flow of sensation that would result were you to move your body so as
to keep the surfboard in that rolling sweet spot results (if you happen
to be an expert surfer) in that very flow, locating the surfboard right
where you want it. Expert prediction of the world (here, the dynamic
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ever-changing waves) combines with expert prediction of the sensory
flows that would, in that context, characterize the desired action, so as
to bring that action about. This is a neat trick. It intersects with power-
ful yet frugal computational models of motor control, and it has exten-
sions and implications that will occupy us for the next several chapters.
Those extensions and implications range all the way from accounts of
agency and experience to accounts of the disturbed or atypical states
found in schizophrenia and autism.

As these accounts of action and agency unfold, a curious thing
happens. Approaches that once looked like competitor-templates for
understanding mind and behaviour emerge as complementary aspects
of a single overarching cognitive ploy. Revisiting familiar themes
from this perspective, we discover that computationally frugal solu-
tions stressing embodiment, action, and the exploitation of bodily and
environmental opportunities emerge quite naturally from a predictive
processing (PP) framework involving cascading inference, internal
generative models, and ongoing estimations of our own uncertainty.
Such approaches are often presented? as deeply opposing visions of the
human (and animal) mind. But from the vantage point on offer they
are increasingly revealed as coordinated (and mutually coordinating)
elements in a single adaptive ensemble.

4.2 Ticklish Tales

Why can't you tickle yourself? That was the question famously asked
by Blakemore, Wolpert, and Frith (1998).> Their answer, drawing upon
a substantial body of previous work on sensorimotor learning and
control,* invoked two basic elements each of which appeared (in less
restricted forms) in the account of perception pursued in Part I.

The first basic element is the (now familiar) idea of a generative
model, here appearing as a ‘forward model of the motor system’ used
to predict the sensory consequences of seif-generated movement. The
second is a version of the ‘predictive coding’ proposal according to
which the systemic impact of well-predicted sensory inputs is reduced
or eliminated. Putting these together for the special case of attempted
self-tickling suggested a simple but compelling schema in which the
‘attenuation of self-produced tactile stimulation is due to the sensory
predictions made by an internal forward model of the motor system’
(Blakemore, Wolpert, and Frith (2000), p. R11).

The would-be self-tickler, Blakemore et al. argued, commands a
‘forward model’ of the likely sensory consequences of her own motor
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commands. When she sets out to self-tickle, a copy of the motor com-
mand (known as the ‘efference copy’; Von Holst, 1954) is processed
using the forward model. This model captures (or ‘emulates’; see
Grush, 2004) the relevant biodynamics of the motor plant, enabling a
rapid prediction of the likely feedback from the sensory peripheries. It
does this by encoding the relationship between motor commands and
predicted sensory outcomes. The motor command is captured using
the efference copy which, fed to the forward model, yields a prediction
of the sensory outcome (sometimes called the ‘corollary discharge’).
Comparisons between the actual and the predicted sensory input were
thus enabled, and these offered a potential source of useful information
for distinguishing self-induced motion (the sensory outcomes of which
would be very precisely predicted) from sensory effects rooted in the
operation of external factors and forces. Such comparisons would also
enable the nervous system to dampen or even remove the components
of sensory feedback attributable to our own self-induced movements,
as seems to occur when we perceive the visual scene as essentially
stable despite the rather large ongoing sensory fluctuations caused by
movements of the head and eyes (for a classic discussion, see Sperry,
1950).” If, as seems intuitive, the feeling of ticklishness requires a cer-
tain element of surprise (not concerning the mere fact of being tickled,
so much as the detailed ongoing shape of the stimulation), we now have
the bones of an explanation of the elusiveness of the self-induced tickle.

The barrier to self-tickling, this suggests, is akin to the barrier to
telling yourself a joke: funny as it may be, the punch-line is just never
going to be enough of a surprise. By deploying a precise model of the
mapping from our own motor commands to sensory (bodily) feedback,
we deprive ourselves of the ability to self-stimulate in a sufficiently
unpredictable fashion and we dampen our own sensory responses to
the ongoing stimulation.

Such dampening is indeed widely observed. Some fish, for exam-
ple, generate electrical fields and sense disturbances in those fields
indicating the presence of prey (Sawtell et al., 2005; Bell et al., 2008). To
do so, they need to discount the much larger disturbances created by
their own movements. The solution, once again, looks to involve the
use of a predictive forward model and some form of attendant sensory
attenuation.

The same pair of mechanisms (forward-model-based predic-
tion and the dampening of resulting well-predicted sensation) have
been invoked to explain the unsettling phenomenon of ‘force escala-
tion’ (Shergill, Bays, Frith, & Wolpert, 2003). In force escalation, physi-
cal exchanges (playground fights being the most common exemplar)
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mutually ramp up via a kind of step-ladder effect in which each person
believes the other one hit them harder. Shergill et al. describe experi-
ments that suggest that in such cases each person is truthfully report-
ing their own sensations, but that those sensations are skewed by the
attenuating effects of self-prediction. Thus, ‘self-generated forces are
perceived as weaker than externally generated forces of the same mag-
nitude’ (Shergill et al., 2003, p. 187). This was shown using experiments
in which an external device applied a force to a subject’s (left index)
fingertip, and the subject was then asked to match the force to which
they had just been exposed by using their right index finger to push on
their left one (via a force transducer allowing accurate measurement of
the force applied). Subjects repeatedly overestimated the force required
to obtain a match (hence the paper’s memorable title “Two Eyes for an
Eye’). The discrepancy was striking: ‘Despite the stimuli being identical
at the level of peripheral sensation, the perception of force is reduced
by about a half when the force is self-generated’ (Shergill et al., 2003,
p- 18y). It is easy to imagine the snowballing effects of such diminished
perception of self-generated forces when two agents engage in (what
they each believe to be) a tit-for-tat exchange of blows or, for that matter,
other kinds of physical interaction.

One way to improve accuracy in such cases is to require the sub-
ject to respond using a more indirect method, thus bracketing the
precise forward modelling (and attendant sensory dampening) that
accompanies normal bodily action. When asked to match the force
by using their finger to move a joystick controlling force output, sub-
jects were better able (Shergill et al., 2003, p. 187) to match the original
force. A similar manipulation is available for the would-be self-tickler.
Blakemore, Frith, and Wolpert (1999) used a robotic interface (as shown
in Figure 4.1) both to interpose time-delays and to vary the trajectory of
motion linking the subject’s own action to the resulting stimulation. As
these delays and variations increased, so too did the subjects’ ‘ticklish-
ness rating” for the resulting stimulation. Such manipulations attempt
to outwit the precise forward model, forcing the subject to react as if to
an unpredictable external stimulus.

Interestingly, the normal dampening of self-predicted sensations
is disturbed in schizophrenia. Schizophrenic subjects perform more
accurately than neurotypical ones on the force-matching task (Shergill
et al., 2005) and are also more capable of ‘self-tickling’ (Blakemore et al.,
2002). They are also, as we noted earlier, less susceptible to the Hollow
Face illusion described in 1.17. The reduction of sensory attenuation
in schizophrenia may help explain the emergence, in schizophrenic
subjects, of various delusions concerning agency, such as the feeling
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FIGURE 4.1 Diagram of Experimental Setup

A tactile stimulus constituting a piece of foam attached to the end of a robotic
manipulator was positioned above the subjects’ right palm. The subjects
gripped a cylindrical object with the thumb and index finger of their left
hand. This object was held directly above the tactile stimulus and was
attached to a second robotic device. In the externally produced tactile stimu-
lus condition, the right robot was programmed to produce the sinusoidal
(smooth, repetitive, oscillating) tactile stimulus movement on the subjects’
right hand. In all the self-produced tactile stimulus conditions, the subjects
were required to move the object held in their left hand sinusoidally which,
via two robots, produced the same movement of the tactile stimulus above
their right hand. Delays and trajectory perturbations could be introduced
between the movement made by the left hand and the resultant movement of
the right robot.

Source: From Blakemore, Frith, & Wolpert, 1999.

that your actions are under the control of another agent (Frith, 2005).
Under-attenuated sensations resulting from self-produced movements
will be unusually ‘surprising’, and hence may be misattributed to exter-
nal influences. More generally still, there is a negative correlation, in
normal subjects, between the amount of sensory attenuation and the
tendency to form delusional beliefs (Teufel et al., 2010).

4.3 Forward Models (Finessing Time)
Why bother to develop a forward model in the first place? Not, presum-

ably, as an evolved mechanism for force escalation or a defence against
the dubious practice of self-tickling. Instead, the use of a forward model
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turns out to be essential to overcome a variety of signalling delays that
would otherwise impede fluid motion. This is because:

Delays are present in all stages of sensorimotor system, from the
delay in receiving afferent sensory information, to the delay in
our muscles responding to efferent motor commands. Feedback
of sensory information (that we take to include information
about the state of the world and consequences of our own
actions) is subject to delays arising from receptor dynamics as
well as conduction delays along nerve fibers and synaptic relays.

The upshot, according to Franklin and Wolpert, is that:

we effectively live in the past, with the control systems only
having access to out-of-date information about the world and
our own bodies, and with the delays varying across different
sources of information. (Both quotes from Franklin & Wolpert,

2011, pp. 425—426)

Forward models provide a powerful and elegant solution to such prob-
lems, enabling us to live in the present and to control our bodies (and
well-practiced tools; see Kluzik et al,, 2008) without much sense of ongo-
ing struggle or effort. Such models, moreover, can be learnt and cali-
brated using the kinds of prediction-based learning scheme reviewed in
the opening chapters, since forward models can be trained and updated
using prediction errors, that is by comparing the predicted and actual
outcome of a motor command’ (Wolpert & Flanagan, 2001, p. 729).

Why, finally, should the sensations that succumb to fine-grained
prediction using such forward models be attenuated and those that
escape such prediction be enhanced? The standard answer (which we
touched on earlier) is that self-prediction enables us to filter the barrage
of sensory data, enhancing that which is externally generated, deliver-
ing stable percepts in the face of small motions of the head and eye,
and dampening responses to more predictable, and perhaps thus less
ecologically pressing, stimuli (see, e.g., Wolpert & Flanagan, 2001). Thus
Stafford and Webb (2005), summing up the evolutionary rationale for
the kinds of model-based dampening effect revealed by the tickling
and force escalation cases, comment that:

Our sensory systems are constantly bombarded with sensory
stimulation from the environment. It is therefore important to
filter out sensory stimulation that is uninteresting—such as
the results of our own movements—in order to pick out, and
attend to, sensory information that carries more evolutionary
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importance, such as someone touching us. ... The predictive
system protects us and tickling may just be an accidental con-
sequence. (Stafford & Webb, 2005, p. 214)

In a similar vein Blakemore, Frith, and Wolpert, summing up the
role of model-based dampening during self-produced movement
suggest that:

prediction-based modulation acts as a filter on incoming sen-
sory signals that can enhance the afference-to-reafference ratio
(akin to increasing the signal-to-noise ratio). This modulation
of incoming sensory input might have the effect of accentuat-
ing features of importance (for example, those due to external
events). (Blakemore, Frith, & Wolpert, 1999, pp. 555-556)

These are, of course, versions of the rationale that motivates the much
more general ‘predictive processing’ proposal itself. That proposal,
grounded in the bedrock of hierarchical generative models and made
flexible by the additional ploy (see chapter 2) of precision-weighting
prediction error, provides a larger framework able to absorb and repro-
duce many key insights from classical work on forward models and
motor control. More importantly, though, it reproduces them in a way
that reveals a much richer network of connections between perception
and action, and that (as we'll later see) repairs a revealing problem with
the accounts we have just been considering.

The problem with those accounts is that attenuating prediction
error using veridical predictions from the forward model does not
sufficiently explain the sensory attenuation itself. If prediction error is
attenuated by top-down predictions emanating from a forward model,
then, once these predictions are in place, the sensory stimulations
should still be registered perceptually. Successfully predicting, for
example, the flow of visual states as I saccade around a highly famil-
iar scene does not in any way render me experientially blind! A more
complete solution (as we will see in chapter 7) turns not solely upon the
role of the forward model but also upon another (less explored) effect
of variable precision weighting.® For the moment, however, our concern
is with some core issues concerning motor control itself.

4.4 Optimal Feedback Control

Motor control, at least in the dominant ‘internal model based’ formula-
tions, requires the development and use not simply of a forward model
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but also of a so-called inverse model (Kawato, 1999). Where the forward
mode]l maps current motor commands to predicted sensory effects,
the inverse model (also known as a controller) ‘performs the oppo-
site transformation ... determining the motor command required to
achieve some desired outcome’ (Wolpert, Doya, & Kawato, 2003, p. 595).
According to these ‘auxiliary forward model’ (Pickering & Clark, 2014)
accounts, the action command sends efference copy to a forward model
of the action. In such a model, action commands are given as input, and
the projected sensory consequences of those commands are generated
as output. This forward model could simply involve a look-up table,
but is more likely to involve calculations (e.g., approximations to the
laws of mechanics), which are in general computed before the action
is performed. As a simple analogy, I turn my radiator up from ‘off’ to
half-way. Well before the radiator heats up, I predict (based on repeated
experience with my central heating) that it will take 5 minutes to heat
by 10°C (using very simple equations, e.g., increase of 2°C per minute,
for each 30° turn). I can act upon the prediction right away (e.g., take
my coat off) or compare the prediction with the results, and learn from
any discrepancy via my inverse model (e.g., turn the knob further). Such
accounts (‘Auxiliary Forward Model’ architectures, see Figure 4.2) thus
posit two distinct models: an inverse model (or optimal control model)
that converts intentions into motor commands, and a forward model
that converts motor commands into sensory consequences (which
are compared with actual outcomes for online error correction and
learning).

Sensory Discrepancy/
Prediction error

F(nwn”" : )
2 Estimated
Sensory Feedback

Efference
Copy

Inverse Motor Plant

Model (implementer) l::>
Desnred Motor Motor Command Actual Motor
Trajectory Trajectory

FIGURE 4.2 Auxiliary Forward Model (AFM) Architecture
In this architecture, the output of the inverse model is a motor command,
copied to the forward model, which is used to estimate sensory feedback.

Source: From Pickering & Clark, 2014.
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Learning and deploying an inverse model appropriate to some task
is, however, generally much more demanding than learning the for-
ward model and requires solving a complex mapping problem (link-
ing the desired end-state to a nested cascade of non-linearly interacting
motor commands) while effecting transformations between varying
co-ordinate schemes (e.g., visual to muscular or proprioceptive, see,
e.g., Wolpert, Doya, & Kawato, 2003, pp. 594—596).

Recent work on ‘optimal feedback control’ (for a review, see
Franklin & Wolpert, 2011, pp. 428—429) represents a sophisticated and
successful development of this framework. It makes extensive use of
so-called ‘mixed cost-functions” as a means of selecting one trajec-
tory or movement from the many (indeed, infinitely many) that would
achieve a goal, and it combines feedforward and feedback control strat-
egies in an efficient way (for some nice examples, see Todorov, 2004;
Harris & Wolpert, 2006; Kuo, 2005). In particular, such strategies allow
the planning and the execution of movement to be accomplished at the
same time, since ‘a feedback control law is used to resolve moment-by-
moment uncertainties, allowing the system to best respond to the cur-
rent situation at each point in time’ (DeWolf & Eliasmith, 2011, p. 3).
This differs from more traditional approaches in which planning and
execution are distinct processes.

Another advantage of the feedback control strategy is that it identi-
fies a ‘redundant sub-space” within which variability does not affect
task completion. The feedback controller only bothers to correct devia-
tions that move the system outside this space of allowable variation.
This is the so-called ‘minimum intervention principle’ of Todorov
(2009). Such systems are also able to make maximal use of their own
intrinsic or ‘passive’ dynamics. We shall return to this topic in Part
III, but the key point is that they can compute the cost of an action
as the difference between what the system would do (how the motor
plant would behave) with and without the control signal. Completing
this list of virtues, extensions of the paradigm allow for the combina-
tion of pre-learnt control sequences to deal with novel circumstances
by ‘quickly and cheaply creating optimal control signals from previ-
ously learned optimal movements’ (DeWolf & Eliasmith, 2011, p. 4).
The upshot is a kind of compositional grammar for pre-learnt motor
commands. Operating in hjerarchical settings (in which higher levels
encode compressed representations of trajectories and possibilities)
such systems are able to control extremely complex behaviours using
efficient and recombinable neural resources. Formally, optimal feed-
back control theory (see especially Todorov & Jordan, 2002; Todorov,
2008) displays the motor control problem as mathematically equivalent
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to Bayesian inference (see Appendix 1). Very roughly—again, see
Todorov 2008 for a detailed account—you treat the desired (goal) state
as observed and perform Bayesian inference to find the actions that get
you there. For our purposes, all that matters about Bayesian inference
here is that it is a form of probabilistic reasoning that takes into account
the uncertainty of the data, combining that with prior beliefs about the
world and about the motor system (as encoded by a generative model)
in order to deliver (here, relative to some cost function) optimal control
(see, e.g., Franklin & Wolpert, 2011, pp. 427—429).

This mapping between perception and action emerges also in some
recent work on planning (e.g., Toussaint, 2009). The idea, closely related
to these approaches to simple movement control, is that in planning
we imagine a future goal state as actual then use Bayesian inference to
find the set of intermediate states (which can now themselves be whole
actions) that get us there. There is thus emerging a fundamentally uni-
fied set of computational models which, as Toussaint (2009, p. 28) com-
ments, ‘do not distinguish between the problems of sensor processing,
motor control, or planning’. Such theories suggest that perception and
action are in some deep sense computational siblings and that:

The best ways of interpreting incoming information via per-
ception, are deeply the same as the best ways of controlling
outgoing information via motor action ... so the notion that
there are a few specifiable computational principles governing
neural function seems plausible. (Eliasmith, 2007, p. 380)

4.5 Active Inference

The PP model introduced in Part I combines very naturally (while sug-
gesting some provocative twists) with these emerging approaches to
action and to motor control.? Work on optimal feedback control exploits
the fact that the motor system (like visual cortex) displays complex
hierarchical structure. Such structure allows complex behaviours to
be specified, at higher levels, in compact ways whose implications can
be progressively unpacked at the lower levels. The intuitive difference,
however, is that in the case of motor control we imagine a downwards
flow of information, whereas in the case of visual cortex, we imagine an
upwards flow. Vision, on that intuitive picture, takes complex energetic
stimuli and maps them onto increasingly compact encodings, whereas
motor control takes some compact encoding and progressively unpacks
it into a complex set of muscle commands. Descending pathways in
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motor cortex, this traditional picture suggests, should correspond func-
tionally to ascending pathways in visual cortex. This is not, however,
the case. Within motor cortex the downwards connections (descending
projections) are ‘anatomically and physiologically more like backwards
connections in the visual cortex than the corresponding forward con-
nections’ (Adams et al., 2012, p. 1). This is suggestive. Where we might
have imagined the functional anatomy of a hierarchical motor system
to be some kind of mirror-image of that of the perceptual system, the
two seem much more closely aligned.” The explanation, PP suggests,
is that the downwards connections are, in both cases, taking care of
essentially the same kind of business: the business of predicting sen-
sory stimulation.

PP, as we saw in Part ], already subverts the traditional picture with
respect to perception. The compact higher-level encodings are now part
of an apparatus trying to predict the plays of energy across the sensory
surfaces. The same story applies, PP suggests, to the motor case. The dif-
ference is that motor control is, in a certain sense, subjunctive. It involves
predicting the non-actual proprioceptive trajectories that would ensue
were we performing some desired action. Reducing prediction errors
calculated against these non-actual states then serves (in ways we are
about to explore) to make them actual. We predict the proprioceptive
consequences of our own action and this brings the action about.

The upshot is that the downwards (and lateral) connections, in
both motor and sensory cortex, are carrying complex predictions, and
the upwards connections carrying prediction errors. This explains the
otherwise ‘paradoxical’ (Adams, Shipp, & Friston, 2013, p.611) fact that
the functional circuitry of motor cortex does not seem to be inverted
with respect to that of sensory cortex. Instead, the very distinction
between motor and sensory cortex is eroded—both are in the business
of top-down prediction, though what kind of thing they are predicting
is (of course) different. Motor cortex here emerges, ultimately, as a mul-
timodal sensorimotor area issuing predictions in both proprioceptive
and other modalities.

The core idea (Friston, Daunizeau, et al., 2010) is thus that there
are two ways in which biological agents can reduce prediction error.
The first (as seen in Part I) involves finding the predictions that best
accommodate the current sensory inputs. The second is by performing
actions that make our predictions come true—for example, moving around
and sampling the world so as to generate or discover the very percep-
tual patterns that we predict. These two processes can be constructed
(we shall see) using the same computational resources. In the normal
course of events, they work seamlessly together, as seen in microcosm
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in the discussion of gaze allocation in chapter 2 (2.6 to 2.8). The upshot
is that:

the perceptual and motor systems should not be regarded as
separate but instead as a single active inference machine that
tries to predict its sensory input in all domains: visual, audi-
tory, somatosensory, interoceptive and, in the case of the motor
system, proprioceptive. (Adams, Shipp, & Friston, 2013, p. 614)

‘Active Inference’ (Friston, 2009; Friston, Daunizeau, et al.,, 2010) then
names the combined mechanism by which perceptual and motor
systems conspire to reduce prediction error using the twin strate-
gies of altering predictions to fit the world, and altering the world
to fit the predictions. This general schema may also—perhaps more
transparently—be labelled ‘action-oriented predictive processing’
(Clark, 2013). In the case of motor behaviours, the key driving predic-
tions now have a subjunctive flavour. They are, Friston and colleagues
suggest, predictions of the proprioceptive patterns that would ensue
were the action to be performed. ‘Proprioception’ names the inner
sense that informs us about the relative locations of our bodily parts
and the forces and efforts that are being applied. It is to be distin-
guished from exteroceptive (i.e, standard perceptual) channels, such
as vision and audition, and from interoceptive channels informing us
of hunger, thirst, and the states of the viscera. Predictions concerning
the latter will play a large role when we later consider the construc-
tion of feelings and emotions. For the moment, however, our concern is
with simple motor action. To make such action come about, the motor
plant behaves (Friston, Daunizeau, et al, 2010) in ways that cancel out
proprioceptive prediction errors. This works because the propriocep-
tive prediction errors signal the difference between how the bodily
plant is currently disposed and how it would be disposed were the
desired actions being performed. Proprioceptive prediction error will
thus persist until the actual disposition of the motor plant is such as to
yield (moment-by-moment) the projected proprioceptive inputs. In this
way, predictions of the unfolding proprioceptive patterns that would
be associated with the performance of some action actually bring that
action about. This kind of scenario is neatly captured by Hawkins and
Blakeslee (2004), who write that:

As strange as it sounds, when your own behaviour is
involved, your predictions not only precede sensation, they
determine sensation. Thinking of going to the next pattern in
a sequence causes a cascading prediction of what you should
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experience next. As the cascading prediction unfolds, it gen-
erates the motor commands necessary to fulfil the predic-
tion. Thinking, predicting, and doing are all part of the same
unfolding of sequences moving down the cortical hierarchy.
(Hawkins & Blakeslee, 2004, p. 158)

Friston and colleagues go further, however, by suggesting that (precise)
proprioceptive predictions directly elicit motor actions. This means
that motor commands have been replaced by (or as I would rather
say, implemented by) proprioceptive predictions. According to active
inference, the agent moves body and sensors in ways that amount to
actively seeking out the sensory consequences that their brains expect.
Perception, cognition, and action—if this unifying perspective proves
correct—work together to minimize sensory prediction errors by selec-
tively sampling and actively sculpting (by motion and by intervention)
the stimulus array.

This erases any fundamental computational line between percep-
tion and the control of action. There remains, to be sure, an obvious
(and important) difference in direction of fit. Perception here matches
neural; hypotheses; to sensory inputs, and involves ‘predicting the
present’, while action brings unfolding proprioceptive inputs into line
with neural predictions. The difference, as Anscombe (1957) famously
remarked,” is akin to that between consulting a shopping list to select
which items to purchase (thus letting the list determine the contents
of the shopping basket) and listing some actually purchased items
(thus letting the contents of the shopping basket determine the list).
But despite this difference in direction of fit, the underlying form of
the neural computations is now revealed as the same. Indeed, the main
difference between motor and visual cortex, on this account, lies more
in what kind of thing (for example, the proprioceptive consequences of
a trajectory of motion) is predicted rather than how it is predicted. The
upshot is that:

The primary motor cortex is no more or less a motor cortical
area than striate (visual) cortex. The only difference between
the motor cortex and visual cortex is that one predicts retino-
topic input while the other predicts proprioceptive input from
the motor plant. (Friston, Mattout, & Kilner, 2011, p. 138)

Perception and action here follow the same deep logic and are imple-
mented using versions of the same computational strategy. In each case,
the systemic imperative remains the same: the reduction of ongoing
prediction error. In perception, this occurs when a top-down cascade
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successfully matches the incoming sensory data. In action, it occurs
when physical motion cancels out prediction errors by producing the
trajectory that yields some predicted sequence of proprioceptive states.
Action thus emerges as a kind of self-fulfilling prophecy in which neu-
ral circuitry predicts the sensory consequences of the selected action.
Those consequences do not immediately obtain, however, so prediction
error ensues: error that is then quashed by moving the body so as to
bring about the predicted sequence of sensations.

These ways of putting things can, however, make it sound as if per-
ception and action are unfolding separately, each busily pursuing their
own direction of fit. This would be a mistake. Instead, PP agents are
constantly attempting to accommodate the sensory flux by recruiting
an interwoven mesh of percepts and apt world-engaging actions. Our
percepts, if this is correct, are not action-neutral ‘hypotheses’ about
the world so much as ongoing attempts to parse the world in ways apt
for the engagement of that world. To be sure, not all prediction errors
can be resolved by actions—some must be resolved by getting a bet-
ter grip on how things are. But the point of that exercise is to put us
in touch with the world in a way that will enable us to select better
actions. This means that even the perceptual side of things is deeply
‘action-oriented’. This is unsurprising since the only point of percep-
tual inference is to prescribe action (which changes sensory samples,
which entrain perception). What we thus encounter is a world built of
action-affordances. This will emerge more clearly in the remainder of
the text. For the moment, the point to notice is that prediction error,
even in the so-called ‘perceptual’ case, may best be seen as encoding
sensory information that has not yet been leveraged for the control of
apt world-enaging action.

4.6  Simplified Control

These prediction-based approaches to the control of action share many
key insights with the important work on forward models and optimal
feedback control described earlier. In common is the core emphasis on
the prediction-based learning of a forward (generative) model able to
anticipate the sensory consequences of action. In common too (as we
shall later see in more detail) is a distinctive angle upon the experience
of agency: one that traces that experience, just as the ‘tickling tales” had
already started to suggest, in part to the delicacy of the match between
prediction and the actual sensory flow. But active inference as it is
being developed by Friston and others (see, e.g., Friston, 2011a; Friston,
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Samothrakis, & Montague, 2012) differs from these approaches in two
key respects.

First, active inference dispenses with the inverse model or control-
ler and along with it the need for efference copy of the motor com-
mand. Second, it dispenses with the need for cost or value functions
as a means of enforcing speed, accuracy, energetic efficiency, and so
onM This all sounds quite dramatic, but in practice it amounts mostly
to a reallocation of existing duties: a reallocation in which cost or value
functions are ‘folded in’ to the context-sensitive generative models that
simultaneously prescribe recognition and action. Nonetheless this real-
location is conceptually attractive. It fits neatly with important insights
from real-world robotics and the study of situated action, and may help
us to think better about the space of solutions to complex problems of
action selection and motor control.

Action is here reconceived as a direct consequence of expecta-
tions (spanning multiple temporal and spatial scales) about trajecto-
ries of motion. The upshot is that ‘the environment causes prior beliefs
about motion ... while these beliefs cause the sampled environment’
(Friston & Ao, 2012, p. 10). Such approaches highlight a kind of circular
causality that binds what the agent knows (the probabilistic ‘beliefs™*
that figure in the generative model) to actions that select inputs that
confirm those very beliefs. Our expectations here ‘cause the sampled
environment’, as Friston and Ao put it, but only in the metaphysically
innocent sense of driving actions that selectively disclose predicted
sensory stimulations.

It is in this way that the agent by action calls forth the very world
that she knows . This, as we shall see in Part III, brings action-oriented
predictive processing into close and productive contact with work on
self-organizing dynamical systems, offering a new take on core elements
of the so-called ‘enactivist’ vision: a vision in which minds are active
constructors of the very worlds they reveal. At short timescales, this is
just the process of active sampling described earlier. We sample the scene
in ways that reflect and seek to confirm the grip upon the world that
structured the sampling. This is a process that only the ‘fit" hypotheses
(assuming that is understood in a suitably action-oriented manner) sur-
vive. At longer timescales (see Part III) this is the process by which we
build designer environments that install new predictions that determine
how we behave (how we sample that very environment). We thus build
worlds that build minds that expect to act in those kinds of worlds.

For the moment, however, the most important thing to notice is
that the forward-motor model is now simply part of a larger and more
complex generative model associating predictions with their sensory
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consequences. Motor cortex here specifies not motor commands, tra-
ditionally understood, but rather the sensory consequences of move-
ments. Of special importance here are predictions about proprioceptive
sensory consequences that implicitly minimize various energetic costs.
Subject to the full cascade of hierarchical top-down processing, a sim-
ple motor command then unfolds into a complex set of predictions
concerning proprioceptive effects. These drive behaviour, and they
cause us to sample the world in the ways that the current winning
‘hypothesis’ dictates. Such predictions can be couched, at the higher
levels, in terms of desired states or trajectories specified using extrinsic
(world-centred, limb-centred) coordinates. This is possible because the
required translation into intrinsic (muscle-based) coordinates is then
devolved to what are essentially classical reflex arcs set up to quash
proprioceptive prediction errors. Thus:

if motor neurons are wired to suppress proprioceptive predic-
tion errors in the dorsal horn of the spinal cord, they effectively
implement an inverse model, mapping from desired sensory
consequences to causes in intrinsic (muscle-based) coordinates.
In this simplification of conventional schemes, descending
motor commands become topdown predictions of propriocep-
tive sensations conveyed by primary and secondary sensory
afferents. (Friston, 2011a, p. 491)

The need for a distinct inverse model/optimal control calculation now
seems to have disappeared. In its place we find a more complex for-
ward model mapping prior beliefs about desired trajectories to sensory
consequences, some of which (the ‘bottom level proprioceptive ones)
are automatically fulfilled using classical reflex arcs. Nor, as mentioned
earlier, is there any need for efference copy in these schemes. This is
because descending signals are already (just as in the perceptual case)
in the business of predicting sensory consequences. So-called ‘corollary
discharge’ (encoding predicted sensory outcomes) is thus endemic and
pervades the downwards cascade since ‘every backward connection in
the brain (that conveys topdown predictions) can be regarded as cor-
ollary discharge, reporting the predictions of some sensorimotor con-
struct’ (Friston, 20112, p. 492).

4.7 Beyond Efference Copy

This proposal may, on first encounter, strike the reader as quite radical.
Isn't an appreciation of the functional significance of efference copy one
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of the major success stories of contemporary cognitive and computa-
tional neuroscience? In fact, most (perhaps all) of the evidence often
assumed to favour that account is, on closer examination, simply evi-
dence of the pervasive and crucial role of forward models and corol-
lary discharge—it is evidence, that is to say, for just those parts of the
traditional story that are preserved (and in fact are made even more
central) by PP

For example, Sommer and Wurtz’s influential (2008) review paper,
whose focus is on the mechanisms that allow us to distinguish the
sensory effects of our own movements from those due to environ-
mental change, makes very little mention of efference copy as such.
Instead, it makes widespread use of the more general concept of cor-
ollary discharge—though as those authors also note, the two terms
are often used interchangeably in the literature. A more recent paper,
Waurtz et al. (2011), mentions efference copy only once, and then does
so only to merge it with discussions of corollary discharge (which then
occurs 114 times in the text). Similarly, there is ample reason to believe
(just as the standard story suggests) that the cerebellum plays a special
role here, and that that role involves making or optimizing perceptual
predictions about upcoming sensory events (Bastian, 2006; Roth et al,
2013; Herzfeld & Shadmehr, 2014). But such a role is, of course, entirely
consistent with the PP picture. The moral, I suggest, is that it is the
general concept of forward models and corollary discharge, rather than
the more specific one of efference copy as we defined it earlier, that cur-
rently enjoys the clearest support from both experimental and cogni-
tive neuroscience.

Efference copy figures prominently, of course, in one particular set
of computational proposals. These proposals concern (in essence) the
positioning of forward models and corollary discharges within a puta-
tive larger cognitive architecture involving multiple paired forward
and inverse models. In these ‘paired forward-inverse model” architec-
tures (see, e.g., Wolpert & Kawato, 1998; Haruno, Wolpert, & Kawato,
2003) motor commands are copied to a stack of separate forward mod-
els used to predict the sensory consequences of actions. But acquir-
ing and deploying such an architecture, as even its strongest advocates
concede, poses a variety of extremely hard computational challenges
(see Franklin & Wolpert, 2011). The PP alternative neatly sidesteps
many of those costs.

The PP proposal is that a subset of predicted sensory consequences
(predicted proprioceptive trajectories) are acting as motor commands
already. As a result there are no distinct motor commands to copy,
and no efference copies as such. But one could, I suggest, equally well
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describe those forward-model-based predictions of proprioceptive tra-
jectories as ‘implicit motor commands” motor commands that operate
(in essence—more on this below) by specifying results rather than by
specifying fine-grained limb and joint control. These implicit motor
commands (proprioceptive predictions) also influence the even-wider
range of predictions concerning the exteroceptive sensory conse-
quences of upcoming actions.

Much of the functionality that is normally attributed to the action
of efference copy is thus preserved, including the forward-model-based
explanation of core phenomena such as the finessing of time delays
(Bastian, 2006) and the stability of the visual world despite eye move-
ments (Sommer & Wurtz, 2006, 2008). The difference is that the heavy
lifting that is usually done by the use of efference copy, inverse models,
and optimal controllers is now shifted to the acquisition and use of
the predictive (generative) model (i.e., the right set of prior probabi-
listic ‘beliefs’). This is potentially advantageous if (but only if) we can
reasonably assume that these beliefs ‘emerge naturally as top-down
or empirical priors during hierarchical perceptual inference’ (Friston,
20113, p. 492). The computational burden thus shifts to the acquisi-
tion of the right set of priors (here, priors over trajectories and state
transitions), that is, it shifts the burden to acquiring and tuning the
generative model itself.

4.8 Doing Without Cost Functions

The second important difference (from the ‘optimal feedback control’
schema) is that active inference sidesteps the need for cost or value
functions as a means of selecting and sculpting motor response. Once
again, it does this (Friston, 2011a; Friston, Samothrakis, & Montague,
2012) by, in essence, folding these into the generative model whose
probabilistic predictions combine with sensory inputs to yield
behaviours.

Simple examples of cost or value functions (that might be applied
to sculpt and select motor behaviours) include minimizing ‘jerk” (the
rate of change of acceleration of a limb during some behaviour) and
minimizing rate of change of torque (for these examples, see Flash &
Hogan, 1985, and Uno et al,, 1989, respectively). Recent work on optimal
feedback control, as noted earlier, minimizes more complex ‘mixed cost
functions’ that address not just bodily dynamics but also systemic noise
and the required accuracy of outcomes (see Todorov, 2004; Todorov &
Jordan, 2002).
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Such cost functions (as Friston, 2011a, p. 496, observes) help
resolve the many-one mapping problem that afflicts classical
approaches to motor control. There are many ways of using one’s
body to achieve a certain goal, but the action system has to choose
one way among the many. Such devices are not, however, needed
within the framework on offer, since ‘in active inference, these prob-
lems are resolved by prior beliefs about the trajectory (that may
include minimal jerk) that uniquely determine the (intrinsic) con-
sequences of (extrinsic) movements’ (Friston, 2011a, p. 496). Simple
cost functions are thus folded into the expectations that determine
trajectories of motion.

But the story does not stop there. For the very same strategy here
applies to the notion of desired consequences and rewards at all lev-
els. Thus we read that ‘crucially, active inference does not invoke any
“desired consequences”. It rests only on experience-dependent learn-
ing and inference: experience induces prior expectations, which guide
perceptual inference and action’ (Friston, Mattout, & Kilner, 2011,
p. 157). Apart from a certain efflorescence of corollary discharge, in
the form of downward-flowing predictions, we here seem to confront
something of a desert landscape: a world in which value functions,
costs, reward signals, and perhaps even desires have been replaced by
complex interacting expectations that inform perception and entrain
action.”” But we could equally say (and I think this is the better way
to express the point) that the functions of rewards and cost functions
are now simply absorbed into a more complex generative model. They
are implicit in our sensory (especially proprioceptive) expectations
and they constrain behaviour by prescribing their distinctive sensory
implications.

Intrinsically rewarding ‘appetitive’ stimuli (to take the most obvi-
ous example) are thus not to be eliminated from our ontology—instead,
they are simply reconceived as stimuli that, once identified, ‘elicit oblig-
atory volitional and autonomic responses’ (Friston, Shiner, et al,, 2012,
p- 17). Conceptually, what matters here is that behaviours are depicted
as brought about by the interaction of our beliefs (sub-personal webs of
probabilistic expectation) with the environment. Reward and pleasure
are then consequences of some of those interactions, but they are not (if
this—admittedly quite challenging—part of the story is correct) causes
of those interactions. Instead, it is the complex expectations that drive
behaviour, causing us to probe and sample the world in ways that may
often deliver reward or pleasure. In this way ‘reward is a perceptual
{hedonic) consequence of behavior, not a cause’ (Friston, Shiner, et al,
2012, p. 17).
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Notice that there is no overall computational advantage to be gained
by this reallocation of duties. Indeed, Friston himself is clear that:

there is no free lunch when replacing cost functions with prior
beliefs [since] it is well-known [Littman et al., 2001] that the
computational complexity of a problem is not reduced when
formulating it as an inference problem. (Friston, 2011a, p. 492)

Nonetheless it may well be that this reallocation (in which cost func-
tions are treated as priors) has conceptually and strategically impor-
tant consequences. It is easy, for example, to specify whole paths or
trajectories using prior beliefs about (you guessed it) paths and trajecto-
ries! Scalar reward functions, by contrast, specify points or peaks. The
upshot is that everything that can be specified by a cost function can
be specified by priors over trajectories, but not vice versa, and (more
generally) that cost functions can usefully be treated as consequences
rather than causes.

Related concerns have led many working roboticists to argue
that explicit cost-function-based solutions are inflexible and biologi-
cally unrealistic, and should be replaced by approaches that entrain
actions in ways that implicitly exploit the complex attractor dynamics
of embodied agents (see, e.g., Thelen & Smith, 1994; Mohan & Morasso,
2011; Feldman, 2009). One way very roughly to imagine this broad class
of solutions (and for a longer discussion, see Clark, 2008, chapter 1) is
by thinking of the way you might control a wooden marionette simply
by moving the strings attached to specific body parts. In such cases,
‘the distribution of motion among the joints is the “passive” conse-
quence of the ... forces applied to the end-effectors and the “compli-
ance” of different joints” (Mohan & Morasso, 2011, p. 5). Such solutions
aim (in line with PP) to ‘circumvent the need for kinematic inversions
and cost-function computations’ (Mohan, Morasso, et al, 2013, p. 14). As
proof of principle, Mohan, Morasso, et al. implemented and tested their
ideas in a series of robotic simulations using the humanoid iCub robot,
noting that in these experiments action itself is driven by a kind of
internal forward-model-based simulation. All this suggests a tempting
confluence between the PP approach and the pursuit of computation-
ally frugal means of motor control. We shall have more to say about this
kind of story in chapter 8.

Solutions that make maximal use of learnt or inbuilt ‘synergies’
and the complex biomechanics of the bodily plant can be very fluently
implemented (see Friston, 2011a; Yamashita & Tani, 2008) using the
resources of active inference and (attractor-based) generative models.
For example, Namikawa et al. (2011) show how a generative model with
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multi-timescale dynamics enables a fluent and decomposable (see also
Namikawa & Tani, 2010) set of motor behaviours. In these simulations:

Action per se, was a result of movements that conformed to
the proprioceptive predictions of ... joint angles [and] ... per-
ception and action were both trying to minimize prediction
errors throughout the hierarchy, where movement minimized
the prediction errors at the level of proprioceptive sensations.
(Namikawa et al., 2011, p. 4)

Another example (that we briefly met earlier) is the use of
downward-flowing prediction to avoid the need to transform desired
movement trajectories from extrinsic (task-centred) to intrinsic (e.g.,
muscle-centred) coordinates: an ‘inverse problem’ that is said to be
complex and ill-posed (Feldman, 2009; Adams, Shipp, & Friston,
2013, p. 8). In active inference the prior beliefs that guide motor action
already map predictions couched (at high levels) in extrinsic frames of
reference onto proprioceptive effects defined over muscles and effec-
tors, simply as part and parcel of ordinary online control. In this way:

Active inference dispenses with this hard [inverse] problem by
noting that a hierarchical generative model can map predic-
tions in extrinsic coordinates to an intrinsic (proprioceptive)
frame of reference. This means the inverse problem becomes
almost trivial—to elicit firing in a particular stretch receptor
one simply contracts the corresponding muscle fibre. In brief,
the inverse problem can be relegated to the spinal level, ren-
dering descending afferents from M1 [primary motor cortex]
predictions as opposed to commands— and rendering M1 part
of a hierarchical generative model, as opposed to an inverse
model. (Adams, Shipp, & Friston, 2013, p. 26)

Motor commands are thus replaced (see Figure 4.2) by descending pro-
prioceptive predictions, whose origins may lie at the highest (multi-
modal or meta-modal) levels but whose progressive (context-sensitive)
unpacking proceeds all the way to the spinal cord, where it is finally
cashed out via classical reflex arcs (see Shipp et al, 2013; Friston,
Daunizeau, et al., 2010).

By reconceiving cost functions as implicit in bodies of expectations
concerning trajectories of motion, such solutions avoid the need to solve
difficult (often intractable) optimality equations during online process-
ing.'® Moreover, courtesy of the more complex generative model, these
solutions fluidly accommodate signalling delays, sensory noise, and
the many-one mapping between goals and motor programs. Arguably,
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then, more traditional approaches that involve the explicit computation
of costs and values make unrealistic demands on online processing,
fail to exploit helpful (e.g. passive dynamic) characteristics of the physi-
cal plant, and lack biologically plausible implementations.

These various advantages come, however, at a familiar cost. For
here too the PP story shifts much of the burden onto the acquisition
of those prior ‘beliefs’—the multilevel, multimodal webs of probabi-
listic expectation that together drive perception and action. The PP
bet is, in effect, that this is a worthwhile trade-off since PP describes a
biologically plausible architecture maximally suited to installing and
subsequently tuning the requisite suites of generative-model based
prediction through embodied interactions with the world.

We can now summarize the main differences between these
approaches to motor control. PP posits a single integrated forward
model (see Figure 4.3) driving action, where more standard approaches
(Figure 4.2) depict the action-related forward model as a kind of addi-
tional resource. According to the more standard (‘auxiliary forward
model, see Pickering & Clark, 2014) account, the forward model is
quite distinct from the apparatus that actually drives online action. It
is a (simplified) model of some of the effects of that apparatus. Such a
model is free to depart considerably in form from whatever governs the
true kinematics of the agent. Furthermore, the outputs of the forward
model do not actually cause movements: they are just used to finesse
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FIGURE 4.3 Integral Forward Model (IFM) Architecture
In this architecture, predictions from the forward model] act as action com-
mands and there is no need for an efference copy as such.

Source: From Pickering & Clark, 2014.
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and predict outcomes, and in learning. According to the PP ('Integral
Forward Model, see Pickering & Clark, 2014) account, however, the
forward model itself controls our motor acts, via a web of descending
predictions that determine set points for reflexes.

4.9 Action-Oriented Predictions

Notice that many of the probabilistic representations inhering in the gen-
erative model will now be, in the terms of Clark (1997), ‘action-oriented’.
They will represent how things are in a way that, once suitably modu-
lated by the precision-weighting of prediction error, also prescribes (in
virtue of the flows of sensation they predict) how to act and respond.
They are thus representations (as we shall see in more detail in
chapters 8-10 following) of affordances—environmental opportunities
for organism-salient action and intervention. Action, within such a
schema, provides a powerful form of prediction-based structuring of
the information flow (Pfeifer et al., 2007; Clark, 2008). Action is also con-
ceptually primary, since it provides the only way (once a good world
model is in place and aptly activated) to actually alter the sensory signal
so as to reduce prediction error” An agent can reduce prediction error
without acting, by altering what she predicts. But only action can reduce
error by systematically changing the input itself. These two mechanisms
must work in delicate harmony to ensure behavioural success.

This very broad story about action, it is worth noticing, could be
accepted even by those who may wish to reject the rather particular
model in which proprioceptive predictions play the role of motor com-
mands—perhaps because they wish to retain the more familiar appa-
ratus of efference copy, cost functions, and paired forward and inverse
models. For all that the broader view of prediction and action here
asserts is that (i) action and perception each depend upon probabilis-
tic hierarchical generative models and (ii) perception and action work
together, in regimes characterized by complex circular causal flow, so
as to minimize sensory prediction errors. Action and perception, such
a view suggests, are similarly and continuously constructed around the
evolving flow of prediction error. This, I suggest, is the fundamental
insight about action suggested by work on the predictive brain. The
direct exploitation of proprioceptive predictions as motor commands
simply provides one possible neuronal implementation of this much
broader schema—albeit one that Friston and colleagues consider to be
highly plausible® given known facts concerning the physiology of the
motor system (Shipp et al,, 2013).
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4.170 Predictive Robotics

With this in mind, it is worth scouting some broader applications of
prediction-based processing routines as tools for the acquisition of
motor and cognitive skills by mobile robots. Much of this work has been
conducted within the paradigm of ‘cognitive developmental robotics’
(CDR)"” (see Asada et al., 2001, 2009). The core idea here is that the artifi-
cial control structure that acts as the agent’s ‘brain’ should develop by a
process of ongoing embodied interaction with the agent’s environment
(including other agents).” Thus, we read that:

The key aspect of CDR is its design principle. Existing
approaches often explicitly implement a control structure in
the robot’s ‘brain’ that was derived from a designer’s under-
standing of the robot’s physics. According to CDR, the struc-
ture should reflect the robot’s own process of understanding
through interactions with the environment. (Asada et al,
2001, p. 185)

Let’s take simple motor learning first. Park et al. (2012) describe
work using the humanoid robot AnNAO. In this work, simple motor
sequences are learnt using prediction error minimization within a
hierarchical (Bayesian) system. The robot begins by ‘experiencing’
random movements similar to so-called ‘motor babbling” (Meltzoff
& Moore, 1997) in human infants. In motor babbling, the infant
explores its personal space of action by, in effect, randomly issuing
motor commands and then sensing (seeing, feeling, sometimes tast-
ing) what happens. Such learning, as noted by Caligiore et al. (2008)
in another robotic study in this area, is an instance of what Piaget
(1952) called the ‘primary circular-reaction hypothesis” according
to which early random self-experimentation sets up associations
between goals, motor commands, and sensory states enabling the
later emergence of effective goal-directed action. Standard forms of
Hebbian learning (Hebb, 1949) can mediate the formation of such
links, resulting in the acquisition of a forward model associating
actions and their expected sensory consequences.” Park et al. (2012)
then piggy-backed upon such early learning, training their robot
to produce three target action sequences. These were trajectories
of motion defined using a sequence of desired action states plotted
as sequences of inner state-transitions. The robot was able to learn
and reproduce the target action sequences and did so despite the
presence of potentially confusing overlaps between sub-trajectories
within the trained sequences.
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In phase two of this experiment, the robot used a hierarchical
(multilayer) system in which higher layers end up learning about
longer sequences, and movements result from the combination of
top-down prediction and bottom-up sensing. The most probable
transition at a given level is thus impacted by top-down information
concerning the longer sequence of which the movement is a part.
Using this layered approach, the robot was able to learn a simpli-
fied version of ‘object permanence’, predicting the position of a visu-
ally presented object (a moving dot) even when it was temporarily
occluded by another object.

Phase three extended the story to encompass (a very simple ver-
sion of) learning by motor imitation. This is an extremely active area
in both robotics and cognitive computational neuroscience (for nice
introductions, see Rao, Schon, & Meltzoff, 2007; Demiris & Meltzoff,
2008). Park et al. used two identical humanoid robots (this time
built using the DARwin-OP? robotic platform) that were placed so
that each of their visual systems captured the actions of the other.
One robot acted as teacher, moving its arms so as to produce a
pre-programmed motor routine. The other robot (the ‘infant’) had
to learn this routine from observation alone. This proves possible
because the infant robot was trained to develop a ‘self-image” link-
ing visual images of its own gross motions to sequences of internal
action commands. Once this (thin) self-image is in place, observed
motions from the teacher robot can be matched to the memorized
self-image and thus linked to internal action commands (Figure 4.4).
This routine will only work, however, insofar as the target system
(the teacher) is sufficiently ‘like” the learner (the ‘infant’). This ‘like
me’ assumption (Meltzoff, 2007a, b) may later be relaxed as the
agent’s generative model increases in complexity and content, but it
may be necessary to get the imitation learning process going at the
outset (for some excellent discussion and a variety of further robotic
studies, see Kaipa, Bongard, & Meltzoff, 2010).

Prediction-based learning thus provides an especially potent
resource for bridging between simple sensorimotor skills and higher
cognitive achievements such as planning, imitation, and the offline
simulation of behaviour (see chapter 5).

4.11  Perception-Cognition-Action Engines

Readers familiar with the science-fiction book (or the movie) Ender’s
Game will recall how what at first seemed to be mere simulations were
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FIGURE 4.4 Structure of Imitation Learning

(@) The target system (left robot) produces image sequence (v*) from internal
state sequence (y). The agent system (right robot) follows by mapping the
image sequence (v*) to the memorized self-image of (vi) whose internal
action states x is known. The target’s visual sequence produces a sequence of
internal action states in agent. The agent trains this sequence to build action
sequences (z) and reproduces the action to real motor state u. (b) The agent
secs visual images of target robot (up), and the motor state of the agent is
derived from the image (down).

Source: From Park et al,, 2012.
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clandestinely being used to drive physical starships in a real battle situ-
ation. This, it seems to me, is one way to think of the core PP proposal
concerning action. For action, if this aspect of the story is on track,
comes about as a direct result of forward-model-based simulations.
Action-oriented extensions of the basic predictive processing story, as
the opening quote from William James suggests, thus have much in
common with what are sometimes known as ‘ideomotor’ accounts of
action. According to such accounts (Lotze, 1852; James, 1890) the very
idea of moving, when unimpeded by other factors, is what brings the
moving about. In other words:

In the ideomotor view, in a sense, causality, as present in the
real world, is reversed in the inner world. A mental represen-
tation of the intended effect of an action is the cause of the
action: here it is not the action that produces the effect, but the
(internal representation of the) effect that produces the action.
(Pezzulo et al.,, 2007, p. 75)

In the approach favoured by Friston and colleagues, this emerged as
the idea that we learn to associate our own movements with their dis-
tinctive proprioceptive consequences. Actions are thus controlled and
enabled by proprioceptive prediction, quashing proprioceptive predic-
tion error by moving the body to fit the predictions.

Such approaches make extensive use of the forward-model con-
struct from classical work on motor control, but now recast as part
and parcel of a more encompassing generative model. This repli-
cates the many benefits of the use of forward models while treat-
ing motor control using the very same apparatus that (in Part I) was
invoked to explain perception, understanding, and imagination. The
‘cognitive package deal’ announced at the end of chapter 3 is thus
enriched, with motor control flowing from the same core architecture
of generative-model-based sensory prediction. This hints at the pos-
sibility of shared computational machinery for action generation and
for reasoning about possible actions (either our own or those of other
agents)—a theme that will loom large in the next chapter.

This is an attractive package, but it brings with it a cost. It is now
our acquired expectations (the complexes of sub-personal prediction
implied by a generative model) that carry most of the explanatory, and
computational, burden. This may, however, turn out to be an empow-
ering rather than a limiting factor. For PP describes a biologically
plausible architecture just about maximally well-suited to installing
the requisite suites of prediction through embodied interactions with
the training environments that we encounter, perturb, and—at several
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slower timescales—actively construct. This is an especially potent rec-
ipe since much of “higher cognition’, or so I shall later (Part III) argue, is
made possible only by our history of encounters with the increasingly
exotic sensory flows created by our own culturally crafted ‘designer’
environments.

The emerging picture is one in which perception, cognition, and
action are manifesations of a single adaptive regime geared to the
reduction of organism-salient prediction error. Once-crisp boundaries
between sensory and motor processing now dissolve: actions flow from
percepts that predict sensory signals some of which entrain actions that
recruit new percepts. As we engage the world with our senses, percepts
and action recipes now co-emerge, combining motor prescriptions
with rolling efforts at knowing and understanding. Action, cognition,
and perception are thus continuously co-constructed, simultaneously
rooted in the cascading predictions that constitute, test, and maintain
our grip upon the world.



5

Precision Engineering:
Sculpting the Flow

5.1 Double Agents

The image of the brain as a probabilistic prediction machine places con-
text and action centre stage. It requires us to abandon the last vestiges
of the ‘input-output’ model according to which environmental stimuli
repeatedly impinge upon a richly organized but essentially passive sys-
tem. In its place we find a system that is constantly active, moving rest-
lessly from one state of expectation to another, matching sensory states
with predictions that harvest new sensory states in a rolling cycle.
Within this complex, shifting nexus, action leads a kind of double
life. Actions (like any other regularity in the world) need to be under-
stood. But our own actions are also consequences, if the story rehearsed
in chapter 4 is correct, of the sensory expectations encoded in the gen-
erative models we deploy. This yields an opportunity. Perhaps our pre-
dictions of other agents can be informed by the very same generative
model that structures our own patterns of action and response? We
may sometimes grasp the intentions of other agents, this suggests, by
deploying appropriately transformed versions of the multilayered sets
of expectations that underlie our own behaviour. Other agents are thus
treated as context-nuanced versions of ourselves.! This offers insight

139
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into the development and deployment of ‘mirror neurons” and (more
generally) ‘mirror systems” neural resources implicated both in the
performance of actions and in the observation of the ‘same’ actions
when performed by others.

The present chapter explores this strategy, using it as a core illustra-
tion of something much more general and powerful—the use, within
PP, of altered assignments of precision to reconfigure patterns of effec-
tive connectivity within the brain.

5.2 Towards Maximal Context-Sensitivity

We can start by considering familiar cases of context-sensitive response,
such as that illustrated in Figure 5.1.
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FIGURE 5.1 Schematic lllustrating the Role of Priors in Biasing toward
One Representation of an Input or Another

(Leff) The word ‘event’ is selected as the most likely cause of the visual input.
(Right) The word ‘went’ is selected as the most likely word that is (1) a reason-
able explanation for the sensory input and (2) conforms to prior expectations
based on semantic context.

Source: Friston, 2002.
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In Figure 5.1, we effortlessly read the top sentence as ‘Jack and Jill
went up the hill” despite the fact that the word ‘went’ is badly rendered.
It is, in fact, structurally identical with the better rendered word form
‘event’ in the second sentence. This fact is, however, only evident upon
quite close inspection. This is due to the strong influence of top-down
priors that are helping to determine the best overall ‘fit, reconciling
the sensory evidence with our probabilistic expectations. In ignoring
(courtesy of strong predictions from the level above) the structural
deformity of ‘went” in the top sentence, ‘'we tolerate a small error at the
lower level to minimize overall prediction error’ (Friston, 2002, p. 237).
For another example of such top-down influence on perceptual appear-
ances, see Figure 5.2.

Such effects are familiar enough. They are examples of the kind
of context-sensitivity displayed by early artificial neural networks
constructed using the connectionist ‘interactive activation” paradigm.?
Within the predictive processing paradigm, such context-sensitivity
becomes (in a sense to be pursued below) pervasive and ‘maximal’?

121314

FIGURE 5.2 Another Example in which Local Contextual Cues Set Up
Prior Expectations

In the context of reading the A, the B hypothesis makes the raw visual data
most probable. In the context of reading the 12, the 13 hypothesis makes the
very same raw visual data most probable. For some further discussion of this
example, see Lupyan & Clark, in press.
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This is due to the combination of hierarchical form with flexible
‘precision-weighting’, as introduced in chapter 2. That combination
renders context-sensitivity fundamental, systematic, and endemic in
ways that have major implications (see also Phillips & Singer (1997),
Phillips, Clark, & Silverstein (2015)) for neuroscience and for our under-
standing of the nature and origins of intelligent response. To creep
up on this, reflect that (in the simple example given above): ‘If we
recorded from the “went” unit under top-down expectation of “event”,
we might conclude it was now selective for “event””’ (Friston, 2002, p.
240). Downwards-flowing influence, in the PP setting, thus has a major
impact on the selectivity of lower level response (for some more exam-
ples, see Friston & Price, 2001). As a result, ‘the representational capacity
and inherent function of any neuron, neuronal population, or cortical
area is dynamic and context-sensitive [and] neuronal responses, in any
given cortical area, can represent different things at different times’
(Friston & Price, 2001, p. 275).

The PP architecture here combines, in a pervasive and fluent way,
two of the most striking characteristics of neural organization. The
two characteristics are functional differentiation (sometimes mislead-
ingly called ‘specialization’) and integration. Functional differentia-
tion means that local neural assemblies will come to exhibit different
‘response profiles” where these reflect ‘a combination of intrinsic local
cortical biases and extrinsic factors including experience and the
influence of functional interactions with other regions of the brain’
(Anderson, 2014, p. 52). These response profiles will help determine the
kinds of task for which the assembly might be recruited. But this, as
Anderson rightly stresses, need not imply specialization in the more
standard sense of (for example) there being regions that specialize in
fixed tasks such as face recognition or mind reading. Integration (of
the rather profound kind exhibited by the neural economy) means that
those functionally differentiated areas interact dynamically in ways
that allow transient task-specific processing regimes (involving tran-
sient coalitions of neural resources) to emerge as contextual effects
repeatedly reconfigure the flow of information and influence.

Such effects become pervasive and systematic as a direct result of
the hierarchical organization implied by the basic PP model. In that
model multiple functionally differentiated subpopulations exchange
signals to find a best overall hypothesis, with the signals from each
higher population providing rich contextualizing information for
the level or levels directly below, based on its own probabilistic pri-
ors (‘expectations’). This downwards (and lateral) flow of prediction
makes large differences, as we just saw, to the moment-by-moment
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responsiveness of the units that receive it. Moreover, as we saw in
chapter 2, the efficacy of specific top-down or bottom-up influences is
itself modifiable by systemic estimates of precision that raise or lower
the gain on specific prediction error signals. This means that the pat-
terns of downwards-flowing influence are (in ways we are about to
explore) themselves dynamically reconfigurable according to task and
context. The upshot is that flows of prediction and prediction error
signals implement a flexible, dynamically reconfigurable cascade in
which contextual information from every higher level can play a role in
sculpting selectivity and response ‘all the way down'.

5.3 Hierarchy Reconsidered

Recall that, in the standard implementation of PP* higher level ‘rep-
resentation units” send predictive signals laterally (within level) and
downwards (to the next level down) thus providing priors on activity
at the subordinate level. In this way backwards (top-down) and lat-
eral connections combine to ‘exert a modulatory influence on lower or
equivalent stages of cortical transformations and define a hierarchy of
cortical areas’ (Friston & Price, 2001, p. 279). This kind of cortical hier-
archy supports (as we saw in chapter 1) the bootstrapping-style learn-
ing that induces empirical priors.® Such a hierarchy is simply defined by
these patterns of interaction. The core requirement is only that there be
a reciprocally connected structure of feedback and feedforward con-
nections with asymmetric functional roles. In a little more detail, what
is required is that neuronal populations exchange signals using dis-
tinct feedforward, feedback, and lateral connections, and that within
those webs of influence functionally asymmetric resources handle
predictions and prediction error signals.

In a seminal study, Felleman and Van Essen (1991) describe an
anatomical hierarchy (for Macaque visual cortex) whose structure
and features map nicely onto those required by this broad schema
(for discussion, see Bastos et al., 2012, 2015). Such a hierarchy leaves
plenty of room for additional—and functionally salient—complexity.
For example, the notion of local recurrent signal exchange between
adjoining hierarchical levels is consistent with the existence of
multiple parallel streams delivering what Felleman and Van Essen
(1991) dubbed ‘distributed hierarchical processing’. In such schemes
multiple areas may coexist at a single ‘level’ of the hierarchy, and
there may also be long-range connections that entirely skip some
intervening levels.
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The ground-breaking studies by Felleman and Van Essen wert
mited, however, by the absence of a measure of hierarchical distance
his introduced substantial indeterminacy into the ordering of area:
\at emerged from the work (see Hilgetag et al.,, 1996, 2000), a shortfal
\at has since been remedied using new data on connectivity (Baron
‘al,, 2000). More recently, Markov et al. (2013, 2014) used neural tracing
ata and network models to explore the web of inter-area and feed
rward/feedback connections in Macaque visual cortex. Their studie:
1ggest that feedback and feedforward connections are indeed botl
1atomically and functionally distinct, and that feedforward and feed
ick pathways ‘obey well-defined distance rules’ (Markov et al., 2014

38), thus confirming the basic PP requirements of hierarchical struc
ire and feedback/feedforward functional asymmetry.

Nonetheless, these studies also introduce substantial complexi
es to any simple image of feedback and feedforward connections in
xed cortical hierarchy, revealing networks of connections that display
‘bow-tie’ structure combining high-density local communications (i
kind of ‘core’—the knot at the centre of the bow-tie shown in Figur
3) with sparser long-range connections to rest of the cortex. Thes
ng-range connections allow densely connected local processing
ackets (‘modules’) to enter into temporary task- and context-varying
»alitions (see Park & Friston, 2013; Sporns, 2010, Anderson, 2014)

Q Occipital Q Parietal @ Temporal Q Frontal . Prefrontal

‘GURE 5.3 Bow-Tie Representation of the High-Density Cortical Matrix

urce: Markov et al.,, 2013, by permission.
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Such organizational forms are also consistent with a higher level rich
club’ organization (Van den Heuvel & Sporns, 2011) in which certain
well-connected local ‘hubs’ are themselves heavily mutually intercon-
nected (rather like an exclusive country club for movers and shakers).
What emergesis a daunting picture of multiscale dynamical complexity.

This is important. The simple image of processing within a
cortical hierarchy may seem to imply a rigid, fixed, serial, flow of
information—a kind of neural stepladder with an inevitably problem-
atic ‘top level’ end point. The PP architecture, it is worth stressing, has
very different implications. Unlike traditional feedforward models (of
the kind rightly critiqued by Churchland et al,, 1994), the PP architec-
ture supports an ongoing, concurrent two-way flow of information.
This means that processing at any given higher level is not ‘waiting’
for processing at the level below to finish before beginning to exert its
influence. Moreover, the perceptual processing hierarchy is probably
best imagined (Mesulam, 1998; Penny, 2012) as a kind of sphere (see
Figure 5.4) rather than a stepladder. Sensory stimulations perturb the
sphere at the peripheries and are met by a constellation of predictions
whose recruitment is context- and task-dependent. Within the sphere,
there are structures and structures-of-structures. But the evolving flow

FIGURE 5.4 Cortical Architecture Depicting Multimodal Areas in the
Centre and Unimodal Sensory Processing Regions on the Periphery
Visual regions are shown at the bottom and auditory regions are on the right.

Source: Penny, 2012, and based upon Mesulam, 1998.
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of information and influence is not fixed. Instead, PP suggests (as we
shall shortly see) a variety of potent mechanisms for reconfiguring pat-
terns of moment-by-moment ‘effective connectivity’ according to task
and context. The PP use of hierarchy is thus highly consistent with a pic-
ture of the brain as a complex ever-active dynamical system: one whose
moment-by-moment signal-passing structure is context-sensitive, fluid,
multiply reconfigurable, and constantly changing at many interacting
structural and temporal scales (Singer, 2013; Bastos et al., 2012, 2015).
Flexible precision-weighting provides, as we shall soon see in more
detail, the key systemic tool that allows the combination of a bedrock
two-way hierarchical model with the context-sensitive generation of
‘hypotheses’, and with context-variable patterns of inter-level (and
inter-area) influence.

Within such a constantly active system, higher levels are often
depicted (see, e.g., Sherman & Guillery, 1998) as ‘modulating’ the activ-
ity at lower levels. It is increasingly unclear, however, if ‘modulation’
is really the best way of describing the many quite dramatic ways in
which ongoing probabilistic prediction here impacts the flow of pro-
cessing and response. Recent evidence suggests that when two areas
are hierarchically proximate (such as Vi/Vz) ‘feedback connections
can drive their targets just as strongly as feedforward connections’
(Bastos et al,, 2012, p. 698). Within the PP framework, this means that
top-down predictions are capable, under the right circumstances, of
forcing downstream response in ways that can radically revise, or even
undo, ‘driving’ feedforward influence. At the same time, the notion of
‘modulation’ remains in some ways apt, insofar as the functional role
of downwards (and laterally) flowing prediction is to provide essential
contextualizing information.

5.4 Sculpting Effective Connectivity

Basic context effects, within the PP framework, flow inevitably from
the use of higher level probabilistic expectations to guide and nuance
lower level response. This guidance involves expectations concern-
ing the most likely patterns of unfolding activity at the level below.
But such expectations, as we saw in chapter 2, are intertwined with
context-based assessments of the reliability and salience of different
aspects of the sensory information itself. These assessments of reliabil-
ity and salience determine the weighting (precision) given to different
aspects of the prediction error signal at different levels of processing.
This provides a powerful means of sculpting the larger patterns of
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‘effective connectivity’ that modify the internal flow of influence and
information according to task and context.

‘Effective connectivity® names ‘the influence one neural system
exerts over another’ (Friston, 1995, p. 57). It is to be distinguished from
both structural and functional connectivity. ‘Structural connectivity”
names the gross pattern of physical linkages (the web of fibres and syn-
apses) that—perhaps working in concert with more diffuse ‘volume
signalling’ mechanisms (Philipides et al.,, 2000, 2005)—allow neurons
to interact across space and time. ‘Functional connectivity’ describes
observed patterns of temporal correlation between neural events. The
closely related notion of ‘effective connectivity’ then aims to reflect
short-term patterns of causal influence between neural events, thus
taking us beyond simple observations of undirected—and sometimes
uninformative—correlation. One useful way to think about the relation
between functional and effective connectivity is thus to conceive of:

the [electrophysiological] notion of effective connectivity ... as
the experiment and time-dependent, simplest possible circuit
diagram that would replicate the observed timing relation-
ships between the recorded neurons. (Aertsen & Preissl, 1991,
quoted in Friston, 1995, p. 58)

Functional and effective connectivity patterns alter rapidly as we per-
form our cognitive tasks. Structural change, by contrast, is a slower’
process, since it is, in effect, reconfiguring the reconfigurable network
itself (by altering the underlying communicative skeleton that supports
other, more rapid, forms of momentary reconfiguration).

In recent years, the use of neuroimaging paired with new analytic
techniques has made the study of the patterns of effective connectiv-
ity increasingly viable. Such techniques include structural equation
modelling, applications of ‘Granger causality’, and Dynamic Causal
Modelling (DCM).® In a rather satisfying twist, DCM (Friston et al,
2003; Kiebel et al., 2009) takes the same core strategy used (if PP is cor-
rect) by the brain to model the world and applies it to the analysis of
the neuroimaging data itself. DCM relies upon a generative model to
estimate (infer) the neural sources given some set of imaging data,
and uses Bayesian estimation to reveal changing patterns of effective
connectivity. In this way DCM first esfimates intrinsic connections
between sources, then the changes in connections due to some form of
external (typically experimental) perturbation.

Nonlinear extensions of DCM (Stephan et al., 2008) allow the esti-
mation not just of how effective connectivity changes with experimen-
tal manipulations (alterations of task and context) but of how those new
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patterns of effective connectivity are brought about, that is, ‘how the
connection between two neuronal units is enabled or gated by activity
in other units’ (Stephan et al.,, 2008, p. 649). Such gating involves what
Clark (1997, p. 136) dubbed ‘neural control structures’, where these may
be defined as any neural circuits, structures, or processes whose role is
to control the shape of the inner economy rather than (directly) to track
external states of affairs or control bodily action. In just this vein, Van
Essen et al. (1994) suggest an analogy with the division of processes in a
modern factory, where much effort and energy must be spent to ensure
the proper internal trafficking of materials before the construction of
any actual products.

Neural gating hypotheses come in many forms, including the pos-
tulation of special populations of information-routing ‘control neu-
rons’ (Van Essen et al, 1994), the canny use of re-entrant processing
(Edelman, 1987; Edelman & Mountcastle, 1978), and the development
of ‘convergence zones’ (Damasio & Damasio, 1994). The latter are essen-
tially hubs in which many feedback and feedforward loops converge,
and which are thus able to ‘direct the simultaneous activation of ana-
tomically separate regions’ (p. 65). Such conjectures fit naturally with
an emerging body of work that demonstrates the surprising extent to
which ‘large-scale brain systems can reconfigure their functional archi-
tecture in a context-dependent manner’ (Cocchi et al., 2013, p. 493; see
also Cole et al,, 2011; Fornito et al., 2012).

Within the PP framework, gating is principally achieved by the
manipulation of the precision-weighting assigned to specific prediction
errors. The primary effect of this (as we saw in chapter 2 above) is to sys-
tematically vary the relative influence of top-down versus bottom-up
information by increasing the gain (‘'volume’) on selected error units.
This provides a way to implement a rich set of attentional mechanisms
whose role is to bias processing so as to reflect estimates of the reliabil-
ity and salience of (different aspects of) both the sensory signal and the
generative model itself’ But those same mechanisms offer a promising
means of implementing fluid and flexible forms of large-scale gating
among cortical populations. To see this, we need only note that very
low-precision prediction errors will have little or no influence upon
ongoing processing and will fail to recruit or nuance higher level rep-
resentations. Altering the distribution of precision-weightings thus
amounts, in effect, to altering the ‘simplest circuit diagram’ (Aertsen &
Preissl, 1991) for current processing. The neural mechanisms of atten-
tion are here identical with the neural mechanisms that alter patterns
of effective connectivity.
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This is an intuitive result (see also Van Essen et al., 1994), especially
if we consider that the specific means by which such alterations may
be effected are many, and that their detailed functional implications
may vary in different parts of the brain. Possible implementing mech-
anisms for the precision-weighting of prediction error (which, in PP,
amounts to the control of post-synaptic gain) include the action of vari-
ous ‘modulatory neurotransmitters’ such as dopamine, serotonin, ace-
tylcholine, and noradrenalin (Friston, 2009). Frequencies of oscillation
must also play a major role (see Engel et al., 2001; Hipp et al., 2011). For
example, synchronized pre-synaptic inputs look to result in increased
post-synaptic gain. In particular, it has been suggested that ‘Gamma
oscillations can control gain by affording synchronized neuronal dis-
charges a greater influence on the firing rate of downstream neurons’
(Feldman & Friston, 2010, p. 2). These mechanisms also interact, since
(to take just one example) gamma oscillations respond to acetylcho-
line. In general, it seems possible that bottom-up signalling (which in
predictive processing encodes prediction error and is hypothesized to
originate in superficial pyramidal cells) may be communicated using
gamma-range frequencies while top-down influence may be conveyed
by beta frequencies (see Bastos et al., 2012, 2015; Buffalo et al, 2011).
Thus, while the notion of sculpting patterns of effective connectivity
by means of ‘precision-weighted prediction error’ is simple enough, the
mechanisms that implement such effects may be multiple and complex,
and they may interact in important but as yet underappreciated ways.

Further support for this general idea (the idea of precision-based
reconfiguring of large-scale patterns of effective connectivity) was
recently provided by an fMRI study analyzed using nonlinear DCM.
In this study (den Ouden et al., 2010), specific prediction error signals in
one (striatal) neural area modified the coupling between other (visual
and motor) areas. In this experiment, auditory cues (high or low ‘beeps’)
differentially predicted visual targets in ways that altered over time.
The subjects’ task was rapidly to discriminate (with a motor response)
the visual stimuli predicted (in ways that varied over time) by the audi-
tory cues. Speed and accuracy increased (as one would expect) with
predictability. Using DCM (and assuming a Bayesian learning model
that provided the best fit, taking model complexity into account, to the
data; see den Ouden et al,, 2010, p. 3212), the experimenters found that
failures of prediction (caused by the changing contingencies) systemat-
ically altered the strength of the visuomotor coupling in a way that was
‘gated by the degree of prediction error encoded by the putamen” and
that “prediction error responses in the putamen [modulate] informa-
tion transfer from visual to motor areas ... consistent with . .. a gating
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role of the striatum’ (both quotes, p. 3217). The amount and precision
of prediction error computed by the striatum thus delicately controls
the strength (efficacy) of the visuomotor connection, orchestrating the
moment-by-moment interplay between visual and motor regions. This
is an important result, demonstrating that ‘trial-by-trial prediction
error responses in a specific region modulate the coupling among other
regions’ (den Ouden et al,, 2010, p. 3217).

The most important effect of ongoing activity within a predictive
hierarchy is thus that it supports a vision of the brain as restless: almost
constantly in some (changing) state of active expectation whose impli-
cations for the flow and processing of sensory input we are only just
beginning to appreciate.

5.5 Transient Assemblies

The PP architecture, we have seen, combines functional differen-
tiation with multiple (pervasive and flexible) forms of informational
integration. This suggests a new slant upon the vexed notion of cog-
nitive ‘modularity’ (see, e.g.,, Fodor, 1983, and for discussion, Barrett
& Kurzban, 2006; Colombo, 2013; Park & Friston, 2013; Sporns, 2010,
Anderson, 2014). Changing patterns of influence among neural pop-
ulations (and between larger scale regions) are here determined by
precision-weighted prediction error signals, hence by estimates of both
the salience and the relative uncertainty associated—for a given task
at a given time—with activity in different neural regions and different
neuronal populations. Such systems display great context-sensitivity
while benefiting from a kind of emergent ‘soft modularity’. Distinctive,
objectively identifiable,® local processing organizations now emerge
and operate within a larger, more integrative, framework in which func-
tionally differentiated populations and sub-populations are engaged
and nuanced in different ways so as to serve different tasks (for more
on this general multiuse picture, see Anderson, 2010, 2014).

PP thus implements an architecture ideally suited to support-
ing the formation and dissolution of what Anderson (2014) nicely
dubs TALoNS—Transiently Assembled Local Neural Subsystems.
TALoNS act in some ways like modules or components. But they are
formed and reformed ‘on the fly’, and their functional contributions
vary according to their location within larger webs of processing.
PP implements just such a fully flexible cognitive architecture and
offers a picture of neural dynamics that is highly sensitive, at mul-
tiple timescales, both to varying task-demands and to the estimated
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reliability (or otherwise) of specific bodies of top-down expectation
and bottom-up sensory input.”

Neural representations here ‘become a function of, and dependent
upon, input from distal cortical areas’ (Friston and Price, 2001, p. 280).
This is a potent source of flexibility, since the flow of input from such
areas is itself subject to rapid restructuring by prediction error signals
elsewhere in the brain. When these features combine, the result is an
architecture in which there are distinct, functionally differentiated,
components and circuits but whose constantly shifting dynamics are
(to borrow a phrase from Spivey, 2007) ‘interaction dominated’. The
highly negotiable flows of influence thus constructed are themselves
action-responsive (enforcing various forms of ‘circular causation’ link-
ing perception and action), and the space of dynamical possibilities is
further enriched (as we shall see in Part III) by all manner of bodily
and worldly tricks for structuring our own inputs and restructur-
ing problem spaces. The representational economy thus supported is
firmly grounded in sensorimotor experience yet benefits (as we shall
soon see) from various forms of abstraction consequent upon hierar-
chical learning. The result is a dauntingly complex system: one that
combines a deeply context-flexible processing regime with a rich web
of brain-body-world loops to yield negotiable and hugely (almost
unimaginably) plastic flows of information and influence.

5.6 Understanding Action

That burgeoning complexity is nowhere more evident, it seems to me,
than in our abilities to make sense of our own and others’ actions.
Human infants, around the age of 4, possess not only a sense of them-
selves as individual agents with specific needs, wants, and beliefs but
also a sense of others as distinct agents with their own needs, wants, and
beliefs. How might this be achieved? The discovery of ‘mirror neurons’
has seemed, to many, to deliver a substantial part of the answer. It may
be, however, that the existence of mirror neurons is more of a symptom
than an explanation, and that flexible, context-sensitive, predictive pro-
cessing provides a more fundamental mechanism. Understanding the
actions of others, if this is correct, is just one manifestation of a much
more general capacity for flexible, context-sensitive response.

Mirror neurons were first discovered in area F5 (a premotor area)
of the macaque monkey (Di Pellegrino et al,, 1992; Gallese et al.,, 1996;
Rizzolatti et al., 1988, 1996). These neurons responded vigorously when
the monkey performed a certain action (examples include taking an
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apple from a box, or picking up a raisin using a well-aimed precision
grip). The experimenters were surprised to see, however, that those
same neurons also responded vigorously when the monkey merely
observed the same kind of action being performed by another agent.
Neurons with this dual profile have also been found in monkey pari-
etal cortex (Fogassi et al,, 1998, 2005). In addition ‘mouth mirror neu-
rons’ (Ferrari et al., 2003) respond when a monkey sucks juice from a
dispenser (a syringe) and when the monkey sees a human perform-
ing the same action. At a larger scale, ‘mirror systems’ (overlapping
resources used for generating, observing, and imitating actions) have
been found in humans brains using neuroimaging techniques such
as fMRI (Fadiga et al.,, 2002; Gazzola & Keysers, 200g; Iacoboni, 2009;
Tacoboni et al., 1999; Iacoboni et al., 2005).

Mirror neurons (and the larger ‘mirror systems’ in which they par-
ticipate) captured the imagination of cognitive scientists because they
suggested a way to use knowledge of the ‘meaning’ of our own actions
as a kind of lever for understanding the actions of others. Thus, sup-
pose we grant that, when I reach for the raisin using a precision grip,
I know (in some simple, first-order way) that my action is all about
getting and ingesting the attractive morsel. Then, if the very same
sub-populations of mirror neurons fire when I see you reaching for
the raisin using just such a precision grip, perhaps I thereby become
informed about your goals and intentions—your desire, to be blunt, for
that raisin. Such a window into the minds of others agents would be
very useful, enabling me better to anticipate your next moves and per-
haps even to derail them, acquiring the raisin for myself by some rapid
intervention. In some such way, mirror neurons have been thought to
offer a ‘fundamental mechanism’ for explaining what Gallese, Keysers,
and Rizzolatti (2004) call our ‘experiential understanding of others’
actions’ and especially (see Rizzolatti & Sinigaglia, 2007) their goals
and intentions.

‘Experiential understanding’ here names some kind of deep,
primary, or ‘embodied” understanding that enables us to appreciate
the meaning of an observed action by a process of ‘direct matching’
(Rizzolatti & Sinigaglia, 2007) or ‘resonating’ (Rizzolatti et al,, 2001,
p. 661) involving my own motor representations of the same actions.
Observing your action leads me, if this is correct, to simulate or par-
tially activate the goal/motor act routine that (in me) would lead to the
observed activity. In this way, it is claimed, ‘we understand the actions
of others by means of our own “motor knowledge” [and] this knowl-
edge enables us immediately to attribute an intentional meaning to the
movements of others’ (Rizzolatti & Sinigaglia, 2007, p. 205).
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None of this, however, can be quite as simple as that makes it sound.
This is because performing that task involves solving an especially
complex version of the so-called ‘inverse problem’. This is the problem
(a simple version of which we already encountered in 4.4) of taking an
outcome-specifying input (here, the observation of a sequence of motor
movements made by another agent) and using it to find the commands
(here, the neural states specifying various high-level goals and inten-
tions) that gave rise to it. The problem, as usual, is the multiplicity of
possible mappings between observed movements and the high-level
states (encoding goals and intentions) that gave rise to them. Thus, ‘if
you see someone in the street raise their hand, they could be hailing a
taxi or swatting a wasp’ (Press, Heyes, & Kilner, 2011). Or, to repeat the
colourful example from Jacob and Jeannerod (2003), is the man in the
white coat holding the knife to a human chest intending to perform a
grisly murder or a life-saving operation—is it Dr Jekyll or Mr Hyde?
Such intentions are not transparently present in motor sequences alone,
since there is no unique mapping between such sequences and the
intentions behind them. Jacob and Jeannerod (see also Jeannerod, 2006,
P. 149) thus worry that simple movement-based matching mechanisms
must fail to get a grip on what they call ‘prior goals and intentions’.

What this suggests is that whatever mechanism might under-
lie the posited process of ‘direct matching’ or ‘resonating’, it can-
not be one that relies solely on the feedforward (‘bottom-up’) flow
of sensory information. Instead, the path from the basic observed
kinematics to the appreciation of the agent’s intention must be very
flexibly mediated by the prior state of the system. One way to achieve
this is by meeting the incoming stream of sensory information
using downwards-flowing activity that reflects what the observer
already knows about the larger context in which the other agent’s
movements are being produced. Now recall the picture (chapter 4)
of self-produced action. When we act, if that picture is correct, we
predict the flow of sensory data that will result. That prediction
involves a process of multilevel ‘settling” in which many neural areas
exchange signals until a kind of overall concord (minimizing error
at all levels) is achieved. Such concord is doubtless imperfect and
temporary, since error is never zero and the brain is constantly in
flux. But while it is (more or less) achieved, there is harmonization
between areas encoding information about basic movement com-
mands (low-level kinematics), resulting multimodal sensory inputs,
and our own ongoing goals and purposes. Those goals and purposes,
likewise, are encoded as a distributed pattern across many levels of
processing, and must encompass both ‘local’ goals such as turning
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a switch, and more distal ones such as illuminating the room, and
even more distal ones, such as lighting up the room. It is this whole
web of mutually supportive structure, distributed across many neu-
ral areas, whose probable configurations are specified by the learnt
generative model that enables us to predict the sensory consequences
of our own actions.

The PP take on mirror system activity should now be coming into
clearer view. For suppose we deploy that same generative model (but
see 5.8 for some tweaks and caveats) to meet the stream of sensory
information specifying another agent’s activity? Then here too, the
brain will be forced to find a set of mutually consistent activity, span-
ning many neural areas, accommodating both prior expectations and
the sensory evidence. Applying this picture to the puzzle case of Jekyll
and Hyde, Kilner et al. (2007) note that:

In this scheme, the intention that is inferred from the obser-
vation of the action now depends upon the prior information
received from a context level. In other words, if the action was
observed taking place in an operating theatre there would be
a large prediction error for the intention ‘to hurt” and a smaller
prediction error for the intention ‘to cure’. The prediction error
would be the same at all other levels of the hierarchy for the
two intentions. By minimising the overall prediction error the
MNS [Mirror Neuron System] would infer that the intention
of the observed movement was to cure. Therefore, the MNS is
capable of inferring a unique intention even if two intentions
result in identical movements. (Kilner et al., 2007, p. 164)

In the absence of all context-specifying information, no mechanism (of
course) can distinguish the intention of curing from that of hurting. PP
provides, however, a plausible mechanism (illustrated in Figure 5.5) for
allowing what we already know (enshrined in the generative model
used to predict the sensory consequences of our own actions) to make
context-reflecting inferences concerning the intentions behind the
actions of other (similar) agents.2

5.7 Making Mirrors

All this suggests a somewhat deflationary view of mirror neurons
themselves. The deflationary view (Heyes, 2001, 2005, 2010) depicts the
‘mirroring property’ of individual neurons as, in essence, a direct result
of processes of associative learning. According to this account, ‘each
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FIGURE 5.5 Examples of the Predictive Coding Account of the Mirror
Neuron System (MNS)

Here we consider four levels of attribution in an example hierarchy of the
MNS: kinematics, goal, intention, and context. In (a) an action-observation is
considered in the absence of a context, in (b) the identical action is observed
but now in the context of an operating theatre. The bars depict the level
degree of prediction error. In (a) both intentions predict identical goals and
kinematics and therefore the prediction error is identical in both schemes. In
this case, the model cannot differentiate between the intentions causing the
action. In (b) the context causes a large prediction error for the goal ‘to hurt’
and a small prediction error for the goal ‘to cure’. In this case, the model can
differentiate between the two intentions.

Source: Kilner et al., 2007, p. 164.

mirror neuron is forged through sensorimotor experience-—correlated
experience of observing and executing the same action’ (Heyes, 2010,
p- 576).

Such experience abounds, since we often observe an action which
we ourselves are executing. Thus:

whenever a monkey performs a grasping action with visual
guidance, the activation of motor neurons (involved in the
performance of grasping) and visual neurons (involved in the
visual guidance of grasping) is correlated. Through associative
learning, this correlated activation gives the grasping motor
neurons additional, matching properties; they become mirror
neurons, firing not only when grasping is executed, but also
when it is observed. (Heyes, 2010, p. 577)
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In the same way, we may reach for the cup and observe the hand shap-
ings that result, or blow the trumpet and hear the sound that emerges.
Under such conditions (see Figure 5.6), the correlated activity of
motor and sensory neurons causes some neurons to become multiply
tuned, responding both to execution and to passive observation. Such

Before learning

During learning

After learning

FIGURE 5.6 Associative Sequence Learning

Before learning, sensory neurons (51, S2, and Sn), which are responsive to
different high-level visual properties of an observed action, are weakly and
unsystematically connected (dashed arrows) to some motor neurons (M1,
M2, and Mn), which discharge during the execution of actions. The kind of
learning that produces mirror neurons occurs when there is correlated (i.e.,
contiguous and contingent) activation of sensory and motor neurons that are
each responsive to similar actions.

Source: Press, Heyes, & Kilner, 2011; photo of father and baby ©Photobac/Shutterstock.com.
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associations inform the generative model that we use to produce and
understand our own actions, and that is then available for use when we
observe the actions of other (sufficiently similar) agents.

This shows (see Press, Heyes, & Kilner, 2011) just how mirror neu-
rons and mirror systems may contribute to the flexible understanding
of the actions of other agents. They do so not by directly (but mysteri-
ously) specifying the goals or intentions of others but by participating
in the same bidirectional multilevel cascades that enable us to predict
the evolving sensory signal across many spatial and temporal scales.
When error is minimized at all levels, the system has settled on a com-
plex distributed encoding that encompasses low-level sensory data,
intermediate goals, and high-level goals: Jekyll is seen as wielding the
scalpel in such-and-such a manner, intending to cut, and hoping to
cure.

5.8 Whodunit?

There is, however, a complication (but within it hides an opportu-
nity). When I reach for the coffee cup, my cascading neural prediction
includes, as a major component, the multiple proprioceptive sensations
of strain and extension characteristic of that very reach. These pre-
dictions, as we saw in chapter 4, are (PP claims) what bring the reach
about. But such predictions should not be carried over, willy-nilly, to
the case where I am observing the motions of another agent.

There are two broad solutions to this kind of puzzle. The first
involves the creation of a brand-new model (generative model fragment)
dedicated to predicting the target events.”” This is an expensive solu-
tion, though it is one that may be forced upon us from time to time (e.g.,
if I am observing the behaviour of some hugely alien being or a bacte-
rium). It would be more efficient, however, to make maximal use of any
overlap between the generative model that constructs my own actions
and the one needed to make sense of the actions of others. This is not
(conceptually, at least) as hard as it sounds, for we have already secured
the main tool required. That tool is once again the precision-weighting
of aspects of the prediction error signal. Precision-weighting, we have
seen, implements a swathe of mechanisms for both automatic and
effortful attending, and for varying the balance between ‘top-down’
expectation and ‘bottom-up’ sensory evidence. But it also, as we saw in
5.4, provides a general and flexible means for contextual gating, allow-
ing different neuronal populations to form soft-assembled coalitions
(patterns of effective connectivity) responsive to current needs, goals,
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and circumstances. Given this tool, differences between the predic-
tions apt for the case of self-generated action and those apt for observ-
ing and understanding other agents can be systematically dealt with by
altering our precision expectations, and thus treating the various self/
other distinctions as just further layers of context.

The prime targets for such alteration are our own proprioceptive
predictions. Given some cues that inform me that I am watching another
agent, the precision-weighting (the gain) on proprioceptive prediction
error relative to those aspects of the observed scene should be set low."
For according to PP it is the minimization of proprioceptive prediction
error that directly drives our own actions, as those high-precision pre-
dictions become fulfilled by the motor plant. With the gain on proprio-
ceptive prediction error set low, we are free to deploy the generative
mode] geared to the production of our own actions as a means both
of predicting the visual consequences of another’s actions and under-
standing their intentions."” Under such conditions, the complex inter-
dependencies between other aspects of the generative model (those
relating high-level aims and intentions to proximal goals and to the
shape of the unfolding movements) remain active, allowing prediction
error minimization across the cortical hierarchy to settle on a best over-
all guess concerning the intentions ‘behind’ the observed behaviour.

The upshot is that ‘we can use the same generative model, under
action or observation, by selectively attending to visual or propriocep-
tive information (depending upon whether visual movement is caused
by ourselves or others)’ (Friston, Mattout, & Kilner, 2011, p. 156). By con-
trast, when engaged in self-generated action, the precision-weighting
on the relevant proprioceptive error must be set high. When proprio-
ceptive prediction error is highly weighted yet suitably resolved by a
stack of top-down predictions (some of which reflect our goals and
intentions), we feel that we are the agents of our own actions. Core
aspects of the much-discussed ‘sense of agency” (in normal subjects,
with well-functioning proprioceptive systems) depend upon this, and
mistakes in both the generation of prediction errors and the assign-
ment of precision-weighting to such errors are increasingly thought to
underlie many illusions of action and control, as we shall see in detail
in chapter 7.

More generally, the implication is that the neural representations
that underlie our own intentional motor actions and those that are
active when we model the motor behaviour of other agents are sub-
stantially the same, and that ‘exactly the same neuronal representation
can serve as a prescription for self-generated action, while, in another
context, it encodes a perceptual representation of the intentions of
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another’ (Friston, Mattout, & Kilner, 2011, p. 150). The clear differ-
ences in functionality are here traced not to the core representations
but to the estimations of precision that nuance their effects, reflect-
ing the different contexts in play. Mirroring properties may thus be
consequences of the operation of a hierarchical predictive processing
regime that posits shared representations for perception and action
and within which ‘the brain does not represent intended motor acts
or the perceptual consequences of those acts separately; the constructs
represented in the brain are both intentional and perceptual [having]
both sensory and motor correlates” (p. 156). Such representations are
essentially meta-modal high-level associative complexes linking goals
and intentions to sensory consequences. Those states have differing
constellations of modality-specific implications (some proprioceptive,
some visual, etc)) according to the context in which they occur: impli-
cations that are implemented by varying the precision-weighting of
different aspects of the prediction error signal.

5.9 Robot Futures

This same broad trick could be used to allow us—as in the mental
time-travel cases introduced in chapter 3—to imagine our own future
courses of action, in ways that might serve planning and reasoning. For
here too, a similar problem arises. Take some animal that commands a
rich and powerful generative model enabling it to predict the sensory
signal across many temporal and spatial scales. Such an animal already
seems well-placed to use that model ‘offline” (see Grush, 2004) so as to
engage in mental time-travel (see chapter 3) imagining possible future
unfoldings and selecting an action accordingly. But the deep intimacy
of perception and action here breeds a striking problem. For accord-
ing to the process model outlined earlier, predicting the propriocep-
tive consequences of a certain trajectory of arm motion (to take a very
simple example) is how we bring that trajectory about.

The solution, once again, may lie in the canny (learnt) deployment
of precision-weighting. Suppose we again lower the weighting on (select
aspects of) the proprioceptive error signal, while simultaneously enter-
ing a high-level neural state whose rough-and-ready folk-psychological
gloss might be something like ‘the cup is grasped’. Motor action is
entrained by high-precision proprioceptive expectations and cannot
here ensue. But here too, all the other intertwined elements in the gen-
erative model remain poised to act in the usual way. The result should
be a ‘mental simulation’ of the reach and an appreciation of its most
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FIGURE 5.7 Covert Loops

Covert loops allow for the running of imaginary actions that produce a
sequence of ‘fictive actions” and hence of predictions relative to future (rather
than present) states of affairs.

Source: Pezzulo, 2012.

likely consequences. Such mental simulations provide an appealing
way of smoothing the path from basic forms of embodied response to
abilities of planning, deliberation, and ‘offline reflection’’® Such simu-
lations constitute what Pezzulo (2012) describes as a ‘covert loop”. The
covert loop (see Figure 5.7):

works off-line via the suppression of overt sensory and motor
processes (in the active inference framework, this requires the
suppression of proprioception). This permits running imagi-
nary actions that produce a sequence of fictive actions and of
predictions relative to future (rather than present) states of
affairs. Fictive actions and predictions can be optimized via
free energy [prediction error] minimization but without overt
execution: they are not just “mind wandering” but are truly
controlled towards goals specified at higher hierarchical levels.
Prospection and planning are thus optimization processes that
support the generation of distal and abstract goals {and asso-
ciated plans), beyond current affordances. (Pezzulo, 2012, p. 1)

Here too, the core idea remains independent of the full process
model in which motor commands are implemented by proprioceptive
predictions. More fundamental than this is the notion that action pro-
duction, action understanding, and the capacity to simulate possible
actions might all be supported by context-nuanced tweaks to a single
generative model grounded in the agent’s own sensorimotor repertoire.

This idea has been studied, in microcosm, using a variety of sim-
ulations. Thus, Weber et al. (2006) describe a hybrid generative/pre-
dictive model of motor cortex that provides just this kind of multiple
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unctionality. In this work, a generative model that enables a robot
o perform actions doubles as a simulator enabling it to predict pos-
ible chains of perception and action. This simulation capacity is
hen used to enable a simple but challenging behaviour in which the
'obot must dock at a table in a way that enables it to grasp a visually
letected object. Since most modes of table docking are inappropriate
o the task, this provides a nice opportunity to base docking behav-
our upon the results of the robot’s own ‘mental simulations’ (see
figure 5.8).

Related ideas are pursued by Tani et al. (2004) and by Tani (2007).
fani and colleagues describe a set of robotic experiments using ‘recur-
ent neural networks with parametric biases’ (RNNPBs): a class of
ietworks that implement prediction-based hierarchical learning. The
suiding idea is that prediction-based hierarchical learning here solves a

IGURE 5.8 The Robot from Weber et al. (2006), Performing the

Jocking’ Action

[ote that it cannot reach the orange fruit if it approaches the table at an angle,
ecause of its short gripper and its side columns. This corresponds perhaps

y situations where fingers, arm, or hand are in an inappropriate position for
rasping.

»urce: Weber et al., 2006.
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crucial problem. It allows a system to combine a real sensorimotor grip
on dealing with its world with the emergence of higher level abstrac-
tions that (crucially) develop in tandem with that grip. This is because
learning here yields representational forms, at higher processing levels,
that allow the system to predict the regularities that are governing the
neural patterns (themselves responding to energetic stimulations at the
sensory peripheries) present at the lower levels.

These are all examples of ‘grounded abstractions’ (for this gen-
eral notion, see Barsalou, 2003; Pezzulo, Barsalou, et al., 2013) that
open the door to more compositional and strategic operations, such
as solving novel motor problems, mimicking the observed behaviour
of other agents, engaging in goal-directed planning, and pre-testing
behaviours in offline imagery. Such grounded abstractions do not
float free of their roots in embodied action. Instead, they constitute
what might be thought of as a kind of ‘dynamical programming
language’ for those interactions: a language in which, for example,
‘continuous sensory-motor sequences are automatically segmented
into a set of reusable behavior primitives’ (Tani, 2007, p. 2). Tani
et al. (2004) show that robots equipped (as a result of learning-driven
self-organization) with such primitives are able to deploy them so
as to imitate the observed behaviour of another. In another experi-
ment, they show that such primitives also facilitate the mapping of
behaviours onto simple linguistic forms, so that a robot can learn to
follow a command to, for example, point (using its body), push (using
its arm), or hit (with its arm) in ways that target designated objects
or spatial locations.

This set of studies is further extended in Ogata et al. (2009), who
tackle the important problem of viewpoint translation using an
RNNPB simulation in which one robot views and then imitates the
object-manipulation behaviour of another agent, applying a set of learnt
transformations to its own self-model. In this experiment in ‘cognitive
developmental robotics’, ‘the other individual is regarded as a dynamic
object that can be predicted by projecting/translating a self-model’
(Ogata et al., 2009, p. 4148)

Such demonstrations, though restricted in scope, are revealing.
The emergence of ‘reusable behaviour primitives’ shows that features
such as compositionality, reusability, and recombinability (features
once associated with the brittle, chunky symbol structures of classical
Artificial Intelligence) can arise quite naturally as a result of probabilis-
tic prediction-driven learning in hierarchical settings. But the resulting
abstractions are now richly grounded in the past experience and sen-
sorimotor dynamics of the agent.
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5.10 The Restless, Rapidly Responsive, Brain

Context, it seems, is everything. Not just ‘Jekyll versus Hyde’ but even
‘self versus other’ are here emerging as manifestations of a capacity
to reshape and nuance our own processing routines according to the
context in which we find ourselves. But context, of course, must itself
be recognized, and it is usually recognized in context!

There is no unfortunate regress here. In the typical case, we are pro-
vided with many reliable cues (both external and internal) that recruit
the correct subsets of neural resources for fine-tuning by means of the
residual prediction error signal. Clear external cues (the operating the-
atre cues, in the case of Jekyll versus Hyde) are the obvious example.
But my own ongoing neural state (encoding information about my
goals and intentions) provides another type of cue, already setting up
all manner of contextualizing influence, as will the many fine-grained
effects of my own bodily motion upon the play of sensory informa-
tion (see O'Regan & Noe, 2001). Two further ingredients complete the
picture. One is the availability of ultra-rapid forms of ‘gist processing’
able to deliver contextualizing cues within a few hundred milliseconds
of encountering a new scene. The other, which cannot really be over-
stressed, is the ongoing activity of the restless ever-expecting brain.

We saw, way back in chapter 1 (section 13), how the PP schema
favoured a recurrently negotiated ‘gist-at-a-glance’ model, where we
first identify the general scene followed by the details. We stressed too
that the guiding hand of context is (in ecologically normal cases) seldom
absent from our mindset. We are almost always in some more-or-less
apt state of sensory expectation. The brain thus construed is a restless,
pro-active (Bar, 2007) organ, constantly using its own recent and more
distant past history to organize and reorganize its internal milieu in
ways that set the scene for responses to incoming perturbations.

Moreover, even in the rare cases where we are forced (perhaps due
to some clever experimental design) to process a succession of unre-
lated sensory inputs, there are canny tricks and ploys that support
ultra-rapid extraction of the broad meaning or ‘gist’ of the scene. Such
ultra-rapid gist extraction can deliver, even in otherwise elusive cases,
the context relative to which apt precision expectations may be calcu-
lated: context that thus forges networks of effective connectivity able
to corral new, soft-assembled coalitions of neural resources that both
select and nuance the models used to meet the forward flow of sensory
information.

Ultra-rapid gist extraction is by no means the sole preserve of
the visual modality. But the mammalian visual system is especially
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well-understood, and here benefits from the combined resources of
two rather different processing streams: the fast magnocellular path-
way, whose projections from V1 constitute the so-called ‘dorsal visual
stream’, and the slower parvocellular pathway, whose projections from
V1 create the so-called ‘ventral visual stream’. These are the streams
made famous by Milner and Goodale (see, e.g, Milner & Goodale,
2006) in their ‘dual visual systems’ account. Within the context of a
prediction-driven neural economy, it is thought that these streams
provide, respectively:

A fast, coarse system that initiates top-down predictions based
on partially processed visual input, and a slower, finer sub-
system that is guided by the rapidly activated predictions and
refines them based on slower arriving detailed information.
(Kveraga et al.,, 2007, p. 146)

There is also a third, konicellular stream, though its role remains
unclear at the time of writing (see Kaplan, 2004). The magnocellu-
lar and parvocellular streams each display the kind of hierarchical
organization described earlier. But they are also densely and repeat-
edly cross-connected, creating a dazzling web of forward, backward,
and sideways influence (DeYoe & van Essen, 1988) whose combined
effect is (Kveraga et al. suggest) to allow the low-spatial frequency
information rapidly processed by the dorsal stream to provide
confext-suggesting information to guide object and scene recognition.

These early stages of rapid ‘guessing’ yield rough and ready ‘analo-
gies’ (in the vocabulary of Bar, 2009) for the present input. By this the
authors mean only that the rapidly processed cues support the retrieval,
based on past experience, of a kind of high-level skeleton: a skeleton
that can (in most cases) suggest just enough about the likely form and
content of the scene to allow the fluent use of residual error rapidly
to reveal whatever additional detail the task demands (see Figure 5.9).
Such skeleton contents are not restricted to simple facts concerning
the nature of the scene (city scene, office scene, animal-in-motion, etc.)
but will include (Barrett & Bar, 2009) rapidly retrieved elements of the
‘affective gist’ of the scene or event, based upon our previous affective
reactions. In this way:

When the brain detects visual sensations from the eye in the
present moment, and tries to interpret them by generating a
prediction about what those visual sensations refer to or stand
for in the world, it uses not only previously encountered pat-
terns of sound, touch, smell and tastes, as well as semantic
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FIGURE 5.9 Using Low Spatial Frequency Information for Rapid
Guessing
In parallel to the bottom-up systematic progression of the image details along
the visual pathways, there are quick projections of low spatial frequency
(LSF) information, possibly via the magnocellular pathway. This coarse but
rapid information is sufficient for generating an ‘initial guess’ about the
context and about objects in it. These context-based predictions are validated
and refined with the gradual arrival of higher spatial frequencies (HSFs) (Bar,
2004). MPFC, medial prefrontal cortex; OFC, orbital frontal cortex; RSC, retro-
splenial complex; PHC, parahippocampal cortex; IT, inferior temporal cortex.
The arrows are unidirectional in the figure to emphasize the flow during the
proposed analysis, but all these connections are bidirectional in nature.

Source: From Bar, 2009, by permission.

knowledge. It also uses affective representations—prior expe-
riences of how those external sensations have influenced inter-
nal sensations from the body. (Barrett & Bar, 2009, p. 1325)

As processing proceeds, affect and content are here co-computed: inter-
twined throughout the process of settling upon a coherent, temporarily
stable interpretation of the scene. To experience the world, this sug-
gests, is not merely to settle upon a coherent understanding span-
ning many spatial and temporal scales. It is to settle upon a coherent,
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multilevel, affectively rich understanding. Such understandings are
directly poised to entrain appropriate actions and responses. As we
pass from context to context, our brains are constantly active attempt-
ing to prepare us to process and respond to each situation. That means
activating a succession of ‘mindsets” (Bar, 2009, p. 1238) using coarser
cues to recruit more detailed guesses, and priming rich bodies of stored
knowledge concerning the nature and shape of the opportunities for
action and intervention that may be on offer.

The prediction-based account here makes contact, Bar (2009) notes,
with two other major research traditions in recent cognitive science.
The first concerns the automatic activation (by simple cues such as a
word or facial expression) of stereotypes that impact behaviour (see,
e.g., Bargh et al, 1996, and, for a rich retrospective, Bargh, 2006). Here,
the link is straightforward: the rapid and automatic activation of broad
sets of predictions provides a mechanism capable of subsuming these
effects, along (as we have seen) with many others.

The second, which is a little less straightforward, concerns the
so-called ‘default network’. This is a set of neural regions said to be
robustly active when we are not engaged in any specific task (when
we are allowing our minds to wander freely, as it were) and whose
activity is suppressed when attention is focused upon specific ele-
ments of the external environment (see Raichle & Snyder, 2007;
Raichle et al., 2001). One possible interpretation of this ‘resting state
activity” profile is that it reflects the ongoing process of building and
maintaining a kind of background, rolling ‘mindset” preparing us
for future bouts of action and choice. Such ongoing activity would
reflect our overall world model and include our agent-specific sets
of ‘needs, goals, desires, context-sensitive conventions and attitudes’
(Bar, 2009, p. 1239). This would provide the baseline sets of expecta-
tions that are themselves already active when we process even the
roughest, coarsest sets of sensory cues from the external (or indeed
the internal) environment. Such ongoing endogenous activity is func-
tionally potent and has been invoked (to take a different example) to
explain why subjects respond differently to the very same stimulus®
in ways that are systematically linked to spontaneous pre-stimulus
neuronal activity (Hesselmann et al., 2008). Putting all this together
we arrive at a picture in which the brain is never passive, not even
before the arrival of the coarse cues that drive ultra-rapid gist rec-
ognition. The ‘resting state’, thus construed, is anything but restful.
Instead, it too reflects the ceaseless activity of the neural machinery
whose compulsive prediction-mongering maintains us in constant
yet ever-changing states of expectation.?
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5.11  Celebrating Transience

PP depicts a complex but rapidly reconfigurable cognitive architecture
in which transient coalitions of inner (and outer, see Part 1II) resources
take shape and dissipate under the influence of multiple mechanisms
of neural gain control. Such mechanisms implement neural gating’
regimes in which the flow of influence between brain areas is dynami-
cally alterable, and in which the relative influence of top-down and
bottom-up information may be constantly varied according to esti-
mations of our own sensory uncertainty.? The result is an architec-
ture able to combine functionally differentiated circuits with highly
context-sensitive (and ‘interaction-dominated’) modes of processing
and response.

Underlying this potent combination are complex, acquired bodies
of ‘precision expectations” whose role is to alter the patterns of influ-
ence that obtain between various systemic elements. In the case of
observing and understanding other agents, the most important role of
these precision expectations is to down-weight proprioceptive predic-
tion error, allowing multilevel prediction to unfold without directly
entraining action. Such down-weighting may also provide a means of
‘virtual exploration’, allowing us to imagine non-actual scenarios as a
guide to reasoning and choice.

Most importantly (and most generally) variable precision-
weightings sculpt and shift the large-scale flow of information and
influence. They thus provide a means for repeatedly reconfiguring
patterns of effective connectivity, so that the ‘simplest circuit dia-
gram’ underlying neural response is itself a moving target, con-
stantly altering in response to rapidly processed cues, self-generated
action, changing task demands, and alterations in our own bodily
(e.g. interoceptive) states. The brain thus construed is a morphing,
buzzing, dynamical system forever reconfiguring itself so as better
to meet the incoming sensory barrage.



6

Beyond Fantasy

6.1 Expecting the World

If brains are probabilistic prediction machines, what does that sug-
gest about the mind—world relation? Would it mean, as some have sug-
gested, that we experience only a kind of ‘virtual reality’ or ‘controlled
hallucination’? Or are we, courtesy in part of all that prediction-heavy
machinery, put more directly in touch with what might (opaquely and
problematically) be called ‘the world itself’? What is the relation, more-
over, between what we seem to perceive, and the probabilistic inner
economy? We seem to perceive a world of determinate objects and
events, a world populated by dogs and dialogues, tables and tangos.
Yet underlying those perceptions (if our stories are on track) are encod-
ings of complex intertwined distributions of probabilities, including
estimations of our own sensory uncertainty.

Approaching such questions without due regard for the impor-
tance of action and our own action repertoires would lead us very
badly astray. For it is the guidance of world-engaging action, not the
production of ‘accurate’ internal representations, that is the real pur-
pose of the prediction error minimizing routine itself. This changes
the way in which we should think about both the mind-world relation

168
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znd the shape and reach of the probabilistic inner economy. Knowing
sur world must now fall into place as part of a larger systemic matrix
whose pivot and core is embodied action and the kinds of fast, fluent
response needed for adaptive success. Exploring PP in this larger set-
zing is the task of the rest of this book.

5.2 Controlled Hallucinations and Virtual Realities

Chris Frith, in his wonderful (2007) book on the predictive, Bayesian
brain, writes that:

Our brains build models of the world and continuously mod-
ify these models on the basis of the signals that reach our
senses. So, what we actually perceive are our brain’s models of
the world. They are not the world itself, but, for us, they are as
good as. You could say that our perceptions are fantasies that
coincide with reality. (Frith, 2007, p. 135)

This recalls the slogan that we met back in chapter 1, that ‘perception is
controlled hallucination’! It is controlled hallucination, so the thought
goes, because it involves using stored knowledge to generate a ‘best
multilevel top-down guess’. This is the guess, defined across multiple
spatial and temporal scales, that best accounts for the incoming sen-
sory signal. In just this vein, Jakob Hohwy writes that:

One important and, probably, unfashionable thing that this
theory tells us about the mind is that perception is indirect . ..
what we perceive is the brain’s best hypothesis, as embodied
in a high-level generative model, about the causes in the outer
world. (Hohwy, 2007a, p. 322)

In a later work, Hohwy describes this relationship using the notion of a
‘virtual reality’. Conscious experience, Hohwy suggests:

arises as the upshot of the brain’s appetite for making the best
sense it can of the current sensory input, even if that means
weighting prior beliefs very highly. This fits with the idea that
conscious experience is like a fantasy or virtual reality con-
structed to keep the sensory input at bay. It is different from
the conscious experience that is truly a fantasy or virtual real-
ity, which we enjoy in mental imagery or dreaming, because
such experiences are not intended to keep sensory input at bay.
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But it is nevertheless at one remove from the real world it is
representing. (Hohwy, 2013, pp. 137-138)

There is something right about all this and something (or so I shall
argue) profoundly wrong. What is right is that the accounts on offer
depict perception as in some sense an inferential process (as originally
proposed by Helmholtz, 1860; see also Rock, 1997): one that cannot help
but interpose something (the inference) between causes (such as sensory
stimulations or distal objects) and effects (percepts, experiences). Such
processes can go wrong, and the resulting states of fantasy, delusion,
and error have often be taken as compelling evidence for an ‘indirect’
view (see, e.g,, Jackson, 1977) of our perceptual contact with the world.

Moreover, the bulk of our normal, successful, daily perceptual
contact with the world—if the prediction machine models are on the
mark—is determined as much by our expectations concerning the
sensed scene as by the driving signals themselves. Even more strik-
ingly, the forward flow of sensory information? here consists only in the
propagation of error signals, while richly contentful predictions flow
downwards and sideways, interacting in complex non-linear fashions
via the web of reciprocal connections. A key result of this pattern of
influence, as noted back in chapter 1, is much greater efficiency in the
use of neural encodings, because: ‘An expected event does not need
to be explicitly represented or communicated to higher cortical areas
which have processed all of its relevant features prior to its occurrence’
(Bubic et al, 2010, p. 10). In ecologically normal circumstances, the
role of moment-by-moment perceptual contact with the world is thus
‘merely’ to check and when necessary correct the brain’s best guessing
concerning what is out there. This is a challenging vision. It depicts our
(mostly non-conscious) expectations as a major source® of the contents of
our perceptions: contents that are, however, constantly being checked,
nuanced, and selected by prediction error signals sensitive to the evolv-
ing sensory input.

Despite all this, I think we should resist the claim that what we
perceive is best understood as a kind of hypothesis, model, fantasy,
or virtual reality. The temptation to think so, it seems to me, rests on
two mistakes. The first mistake is to conceive of inference-based routes
to adaptive response as introducing a kind of representational veil
between agent and world. Instead, it is only the structured probabilis-
tic know-how distilled from prediction-driven learning that enables us
to see through the veil of surface statistics to the world of distal interacting
causes itself. The second mistake is a failure to take sufficient account
of the role of action, and of organism-specific action repertoires, in both
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selecting and constantly testing the ongoing stream of prediction itself.
Rather than aiming to reveal some kind of action-neutral image of an
objective realm, prediction-driven learning delivers a grip upon affor-
dances: the possibilities for action and intervention that the environment
makes available to a given agent.” Taken together, these points suggest
that the probabilistic inference engine in the brain does not constitute
a barrier between agent and world. Rather, it provides a unique tool for
encountering a world of significance, populated by human affordances.

6.3 The Surprising Scope of Structured Probabilistic Learning

It is a natural consequence of prediction-based learning that the learner
uncovers (when all is working correctly) the weave of interacting distal
causes that—given her action repertoire and interests—characterizes
the interact-able environment in which learning occurs. In this way
prediction—based learning brings into view a structured external world,
built of persisting (though often temporally evolving) objects, proper-
ties, and complex nested causal relations. As a result, ‘the recognition
system “inherits” the dynamics of the environment and can predict its
sensory products accurately’ (Kiebel, Daunizeau, & Friston, 2009, p. 7).

The full power and scope of hierarchical prediction-driven learn-
ing in active agents remains to be determined. It is limited by time,
by data, and—perhaps most important—by the nature of the neural
approximations involved. It is already clear, however, that tractable
forms of hierarchical prediction-driven inference are able to uncover
deep structure and even the kinds of abstract, high-level regularities
that once seemed to cry out for the provision of large quantities of innate
knowledge. The general principle at work here is by now familiar. We
assume that the environment generates sensory signals by means of
nested interacting (distal) causes and that the task of the perceptual
system is to invert this structure by learning and applying a hierarchi-
cal generative model so as to predict the unfolding sensory stream. The
flow of sensation (bound, as we saw, in constant circular causal com-
merce with the flow of action) is predictable just to the extent that there
is spatial and temporal pattern in that flow. But such pattern is a func-
tion of properties and features of the world and of the needs, form, and
activities of the agent. Thus, the pattern of sensory stimulation reach-
ing the eye from, say, an observed football game is a function of the
lighting conditions, the structured scene, and the head and eye move-
ments of the observer. It is also a function of a variety of more abstract
interacting features and forces, including the patterns of offense and
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defence characteristic of each team, the current state of play (there are
strategic alterations when one team is far behind, for example), and so
on. The beauty of the various waves of work in computational neurosci-
ence and machine learning described in previous chapters is that they
begin to show how to learn about such complex stacks of interacting
causes without requiring (though they may readily exploit) extensive
prior knowledge. This should fundamentally reconfigure our think-
ing about the debate between nativism and empiricism, and about the
nature and possibility of ‘carving nature at the joints’.

Thus consider Tenenbaum et al’s (2011) account of Hierarchical
Bayesian Models (HBMs).* An HBM is one in which multiple layers of
processing are interanimated in an especially potent way, with each
layer attempting to account for the patterns of activation (encoding
some probability distribution of variables) at the level below. This, of
course, is precisely the kind of architecture described, at the so-called
‘process’ level,” by hierarchical predictive coding. When such a system
is up and running, mini-hypotheses at all the multiple levels settle into
the mutually consistent set that best accounts for the incoming sensory
signal, taking into account what the system has learnt and the pres-
ent sensory evidence, including, we saw, the system’s best estimation
of the reliability of that evidence. In the Bayesian terms introduced in
chapter 1, each layer is learning ‘priors’ on the level below. This whole
multilayer process is tuned by the incoming sensory signals and imple-
ments the strategy known as ‘empirical Bayes’ allowing the system to
acquire its own priors from the data, as learning proceeds.

Such multilayer learning has an additional benefit, in that it lends
itself very naturally to the combination of data-driven statistical learn-
ing with the kinds of systematically productive knowledge representa-
tion long insisted upon by the opponents of early work in connectionism
and artificial neural networks.® HBMs (unlike those early forms of con-
nectionism) implement processing hierarchies suitable for represent-
ing complex, nested, structured relationships (for some nice discussion,
see Friston, Mattout, & Kilner, 2011; Tani, 2007; and the discussion in
5.9). To see this in microcosm, recall SLICE", the idealized stratiography
program described in the Introduction. SLICE* effectively embodied
a productive and systematic body of knowledge concerning geologi-
cal causes. For SLICE* can produce the full set of geological outcomes
allowed by the possible combinations and recombinations of hidden
causes represented in its generative model.

By combining the use of multilayer generative models with pow-
erful forms of statistical learning (indeed, using that learning to
induce those very models), we thus secure many of the benefits of both
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early connectionist (‘associationist’) and more classical (‘rule-based”)
approaches. Moreover, there is no need to fix on any single form of
knowledge representation. Instead, each layer is free to use whatever
form of representation best enables it to predict and (thus) account for
the activity at the level below.” In many cases, what seems to emerge
(as Tenenbaum et al. are at pains to stress) are structured, produc-
tive bodies of knowledge that are nonetheless acquired on the basis
of multistage learning driven by statistical regularities visible in the
raw training data. Early learning here induces overarching expecta-
tions (e.g., very broad expectations concerning what kind of things
matter most for successful categorization within a given domain).
Such broad expectations then constrain later learning, reducing the
hypothesis space and enabling effective learning of specific cases.

Using such routines, HBMs have recently been shown capable of
learning the deep organizing principles for many domains, on the basis
of essentially raw data. Such systems have learnt, for example, about the
so-called ‘shape bias’ according to which items that fall into the same
object-category (like cranes, balls, and toasters) tend to have the same
shape: a bias that does not apply to substance categories such as gold,
chocolate, or jelly (Kemp et al, 2007). They have also learnt about the
kind of grammar (context-free or regular) that will best account for
the patterns in a corpus of child-directed speech (Perfors et al., 2006),
about the correct parsing into words of an unsegmented speech stream
(Goldwater, Griffiths, & Johnson, 2009), and generally about the shape of
causal relations in many different domains (e.g,, diseases cause symp-
toms, and not vice versa, Mansinghka et al., 2006). Recent work has also
shown how brand new categories, defined by new causal schemas, can
be spawned when assimilation to an existing category would require an
overly complex—hence effectively ‘ad hoc'—mapping (Griffiths, Sanborn,
et al, 2008). Such approaches have also been shown (Goodman et al,
2011) to be capable of rapidly learning highly abstract domain-general
principles, such as a general understanding of causality, by pooling evi-
dence obtained across a wide range of cases. Taken together, this work
demonstrates the unexpected power of learning using HBMs. Such
approaches allow systems to infer the high-level structure specific to a
domain, and even the high-level structures governing multiple domains,
by exposing an apt multilevel system to raw data.

An important point to notice is that HBMs here allow the learner to
acquire the schematic relations characteristic of a domain before ‘filling
in’ the details concerning individual exemplars. In this way, for example:
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a hierarchical Bayesian model of grammar induction may be
able to explain how a child becomes confident about some
property of a grammar even though most of the individual
sentences that support this conclusion are poorly understood.
(Kemp et al., 2007, p. 318)

Similarly, the shape bias for objects may be learnt before learning
the names of any of the individual objects. The bias emerges early as
the best high-level schema, and once in place it enables rapid learn-
ing about specific exemplars falling into that group. This is possible in
cases where ‘a child has access to a large number of ... noisy observa-
tions [such that] any individual observation may be difficult to inter-
pret but taken together they may provide strong support for a general
conclusion’ (Kemp et al., 2007, p. 318). Thus, the authors continue, one
might have sufficient evidence to suggest that visual objects tend to
be ‘cohesive, bounded, and rigid (cf. Spelke, 1990)’ before forming any
ideas about individual concrete objects such as balls, discs, stuffed toys,
and so on.

This is, of course, precisely the kind of early learning pattern that is
easily mistaken as evidence of the influence of innate knowledge about
the world. The mistake is natural since the high-level knowledge is tai-
lored to the domain and allows subsequent learning to proceed much
more easily and fluently than might otherwise be expected. But instead
of thus relying on rich bodies of innate knowledge, HBM-style learners
are capable of inducing such abstract structuring knowledge from the
data. The central trick, as we have seen, is to use the data itself in a kind
of multistage manner. First, the data is used to learn priors that encode
expectations concerning the large-scale shape of the domain (what
Tenenbaum et al., 2011, call the ‘form of structure” within the domain).
Suitably scaffolded by this structure of large-scale (relatively abstract)
expectations, learning about more detailed regularities becomes pos-
sible. In this way, HBMs actively unearth the abstract structural expec-
tations that enable them to use raw data to learn finer and finer grained
models (supporting finer grained sets of expectations).

Such systems—like PP systems more generally—are also able to
induce their own so-called "hyperpriors’ from the data. Hyperpriors
(here used interchangeably with ‘overhypotheses’, see Kemp et al., 2007)
are essentially ‘priors upon priors’ embodying systemic expectations
concerning very abstract (at times almost ‘Kantian’) features of the
world. For example, one highly abstract hyperprior might demand that
each set of multimodal sensory inputs has a single best explanation.
This would enforce a single peak for the probabilistic distributions
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consequent upon sensory stimulation, so that we always saw the world
as being in one determinate state or another, rather than (say) as a
superposition of equiprobable states. Such a hugely abstract hyperprior
might be a good candidate for innate specification. But it might equally
well be left to early learning, since the need to use sensory input to
drive actions, and the physical impossibility of acting in two very dif-
ferent ways at once, could conceivably” drive an HBM to extract even
this as a general principle governing inference.

HBMs, and the various process models (including PP) that might
implement them, absolve the Bayesian theorist of the apparent sin
of needing to set the right priors in advance of successful learning.
Instead, in the manner of empirical Bayes, a multilayer system can
learn its own priors from the data. This also delivers maximal flex-
ibility. For although it is now easy to build abstract domain-structure
reflecting knowledge (in the form of various hyperpriors) into the sys-
tem, it is also possible for the system to acquire such knowledge, and to
acquire it in advance of the more detailed learning that it both stream-
lines and makes possible. Innate knowledge thus conceived remains
partially ‘developmentally open’ in that aspects of it can be smoothed
and refined, or even completely undone, by data-driven learning using
the same multilayer process (for some nice discussion, see Scholl, 2005).

Of course, as King Lear famously commented, ‘nothing will come
of nothing’, and, as hinted above, even the most slimline learning sys-
tem must always start with some set of biases.'> More important, our
basic evolved structure (gross neuroanatomy, bodily morphology,
etc.) may itself be regarded as a particularly concrete set of inbuilt
(embodied) biases that form part of our overall ‘model” of the world
(see Friston, 2011b, 2012¢, and discussion in 8.10). Nonetheless, mul-
tilayer Bayesian systems have proven capable of acquiring abstract,
domain-specific principles without building in many of the rather spe-
cific kinds of knowledge (e.g., about the importance of shape for learn-
ing about material objects) that were previously thought essential for
fluent learning in different domains. Such systems can acquire, some-
times from raw sensory data, knowledge of quite abstract organizing
principles—principles that then allow them to make increasingly sys-
tematic sense of that very data.

6.4 Ready for Action

The discussion in 63 is, however, radically incomplete. It is radically
incomplete because most current work on HBMs treats knowing the
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world on the model of passive perception. But perception and action, as
constructed using the PP schema, were seen to be both co-determined
and co-determining (see chapters 2, 4 and 5 above). In these broader
frameworks, what we do depends upon what we perceive, and what
we perceive is constantly conditioned by what we do. This results in
the rather specific forms of circular causality described in 2.6 and in
chapter 4. Here, high-level predictions entrain actions that both test
and confirm the predictions, and that help sculpt the sensory flows
that recruit new high-level predictions (and so on, in a rolling cycle of
expectation, sensory stimulation, and action).

How should we think of this rolling cycle? The wrong model, it
seems to me, would be to depict the rolling cycle as a slightly fancy
(because circular) version of the classical sense-think-act cycle in
which sensory stimulation must be fully processed, and a struc-
tured world of external objects revealed, before actions are selected,
planned, and (ultimately) executed. Such a ‘sense-think-act’ vision
has informed much work in cognitive psychology and cognitive sci-
ence. It is nicely described (and then roundly rejected) by Cisek (2007)
who notes that:

According to this view, the perceptual system first collects sen-
sory information to build an internal descriptive representation
of objects in the external world (Marr 1982). Next, this informa-
tion is used along with representations of current needs and
memories of past experience to make judgments and decide
upon a course of action (Newell & Simon 1972; Johnson-Laird
1988; Shafir & Tversky 1995). The resulting plan is then used
to generate a desired trajectory for movement, which is finally
realized through muscular contraction (Miller et al. 1960; Keele
1968). In other words, the brain first builds knowledge about the
world using representations which are independent of actions,
and this knowledge is later used to make decisions, compute
an action plan and finally execute a movement. (Cisek, 2007,

p- 1585)

There are many reasons to be wary of such a model (see Clark, 1997;
Pfeifer & Bongard, 2006, and further discussion in Part III following). But
among the most compelling is the need to be ready to respond fluently
to unfolding—and potentially rapidly changing—situations. Such readi-
ness seems ecologically mandated for creatures who must be poised to
grasp opportunities and avoid dangers at short notice, and who may be
acting in competition with others, including (at times) their own con-
specifics. Creatures equipped with ever-active, predictive brains are, of



BEYOND FANTASY 177

course, already (quite literally) ‘ahead of the game’, as brains like that
are—as we have seen—constantly guessing the ongoing stream of sen-
sory input, including the inputs that should result from their own next
actions and worldly interventions. But the story does not end there.

One powerful strategy, which combines very neatly (or so I shall
argue) with the image of the ever-active predictive brain, involves
rethinking the classical sense-think-act cycle as a kind of mosaic: a
mosaic in which each shard combines elements of (what might clas-
sically be thought of as) sensing and thinking with associated pre-
scriptions for action. At the heart of this mosaic vision (whose roots
lie in the active vision paradigm, see Ballard, 1991; Churchland et al.,
1994) lies the simultaneous computation of multiple probabilistically
infected ‘affordances” multiple possibilities for organism-salient action
and intervention.

The flagship statement of this view is the ‘affordance competition
hypothesis’ (Cisek, 2007; Cisek & Kalaska, 2010). Such a view is moti-
vated by a large set of otherwise anomalous neurophysiological data
(for a full review, see Cisek & Kalaska, 2010) including:

1. The chronic failure to find inner representations of the world of
the kind predicted by a full ‘passive reconstruction’ model in
which the goal of, for example, visual processing is to generate a
single rich, unified, action-neutral representation of the scene apt
for subsequent use in planning and decision-making.

2. The pervasive effects of attentional modulation, resulting in the
enhancement and suppression of different aspects of ongoing neu-
ral activity according to task and context (so that neural response
seems geared to current behavioural needs rather than to the con-
struction of an action-neutral encoding of the state of the external
world).

3. Increasing evidence that neural populations involved in ongoing
planning and decision-making are also involved in motor control,
and (more generally) that regional cortical responses fail to respect
the classical theoretical divisions between perception, cognition
(e.g., reasoning, planning, and deciding), and motor control.

Thus, large bodies of work in visual neuroscience suggest that multiple
different bodies of information are continuously computed in parallel
and partially integrated when (but only when and to whatever extent)
some current action or response demands. A familiar example here is
the separation of visual information into distinct (though overlapping)
ventral and dorsal streams: streams linked, it is increasingly clear, by
ongoing, task-sensitive, patterns of informational exchange (see, e.g.,
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Milner & Goodale, 1995, 2006; Schenk & Mcintosh, 2010; Ungerleider &
Mishkin, 1982). Within the neural economy, such fractionation and par-
tiality seems to be the rule, not the exception, characterizing processing
within each stream as well as between the streams, and in other parts
of the brain (see, e.g., Felleman & Van Essen, 1991; Stein, 1992).

There is also ample evidence for the pervasive effects of attention,
reflecting context and task, as well as internal context in the form of
interoceptive states such as hunger and boredom. Such effects have
been shown to modulate neural responses at every level of the cortical
hierarchy and in some sub-cortical (e.g., thalamic) areas too (Boynton,
2005; Ito & Gilbert, 1999; O'Connor et al., 2002; O'Craven et al., 1997;
Treue, 2001).

Finally, increasing and highly suggestive evidence challenges the
view of core cognitive capacities (such as planning and deciding) asneu-
rophysiologically distinct from the circuitry of sensorimotor control.
For example, decisions concerning eye movements and the execution of
eye movements recruit highly overlapping circuits in lateral intrapari-
etal area (LIP), frontal eye fields (FEF), and the superior colliculus—the
latter being, as Cisek and Kalaska (2011, p. 274) nicely note, ‘a brainstem
structure that is just two synapses away from the motor neurons that
move the eye’ (for these results, see Coe et al., 2002; Doris & Glimcher,
2004; and Thevarajah et al, 2009, respectively). In the same vein, a
perceptual decision task {one in which the decision is reported by an
arm movement) revealed marked responses within premotor cortex
corresponding to the process of deciding upon a response (Romo et
al,, 2004). Quite generally, wherever a decision is to be reported by (or
otherwise invokes) some motor action, there looks to be an entwin-
ing of perceptuo-motor processing and decision-making, leading Cisek
and Kalaska to suggest that ‘decisions, at least those reported through
actions, are made within the same sensorimotor circuits that are
responsible for planning and executing the associated action’ (Cisek &
Kalaska, 2011, p. 274). In cortical associative regions such as posterior
parietal cortex (PPC), Cisek and Kalaska go on to argue, activity does
not seem in any way to respect the traditional divisions between per-
ception, cognition, and action. Instead we find neuronal populations
that trade in shifting and context-responsive combinations of perceiv-
ing, deciding, and acting, and in which even single cells may partici-
pate in many such functions (Andersen & Buneo, 2003).

Further support for such a view is provided by Selen et al. (2012).
In this study subjects were shown a display of moving dots (a ‘dynamic
random dot display’) and asked to decide whether the dots were mostly
moving to the left or to the right. Such decisions are known to depend
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very sensitively upon both the coherence and the duration of the motion
of the dots, and the experimenters varied these parameters while prob-
ing the subjects’ decision states by requiring decisions at unpredictable
times after stimulus onset. The subjects’ task was to respond as soon as
the display stopped and to do so by means of a motor response (moving
a handle to a target). At that time, a small perturbation was applied to
the subject’s elbow, causing a stretch reflex response which was mea-
sured using electromyography (EMG), a technique that records the
electrical potentials associated with muscular activity. This provided
a quantifiable measure of the state of the motor response effector (the
arm) at the time of the probe. Importantly, the decision task itself here is
remarkably well-behaved, so that subjects’ choices are tightly linked to
the fine details of the evolving evidence (the precise mixes of coherence
and duration displayed by the moving dots). The experimenters showed
that the changing muscular reflex gains and the decision variable (rep-
resenting the integrated effects of coherence and duration) co-evolved
in a way quite incompatible with classical ‘sequential flow’ models. In
sequential flow models the motor action reporting a decision is taken
to be independent from, and computed subsequent upon, the decision
itself. By contrast, Selen et al. found that the reflex gains at each moment
reflected the evolving decision state itself. The results fitted very neatly
with the notion (more on which below) of an ‘affordance competition” in
which both possible motor responses are being simultaneously pre-
pared, and in which ‘the human brain does not wait for a decision to be
completed before recruiting the motor system but instead passes partial
information to prepare in a graded fashion for a probable action out-
come’ (Selen et al., 2012, p. 2277). The reflex gains, that is to say, ‘do not
simply reflect the outcome of the decision but instead are privy to the
brain’s deliberations as a decision is being formed’ (p. 2284).

The presence of continuous flow from the decision process to the
motor system makes sense if we assume that the overall goal is to be
as pro-actively ready as possible to perform whichever response the
evolving evidence suggests. Such pro-active readiness, to be genuinely
useful, must necessarily be multiple and graded. It must allow many
possible responses to be simultaneously partially prepared, to degrees
dependent upon the current balance of evidence—including estima-
tions of our own sensory uncertainty—as more and more informa-
tion is acquired (for a similar story applied to phonological choice, see
Spivey et al., 2005, see also Spivey et al., 2008).

In a revealing closing comment, Selen et al. speculate that this may
flow not simply from the pragmatic advantages of such action-readiness
but also from a ‘deeper connection between the brain’s apparatus for
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evaluating evidence and the control of motor functions’, adding that
‘the flow demonstrated in our experiment may be part of a larger bidi-
rectional interplay between the brain processes that underlie deci-
sion making and motor control’ (p. 2285). Similarly, Cisek and Kalaska
comment that:

The distinctions among perceptual, cognitive, and motor
systems may not reflect the natural categories of neural com-
putations that underlie sensory-guided behavior [and that]
the framework of serial information processing may not be
the optimal blueprint for the global functional architecture
of the brain. (Cisek & Kalaska, 2010, p. 275)

As an alternative blueprint, Cisek and Kalaska explore the ‘Affordance
Competition Hypothesis’ (introduced by Cisek, 2007) according
to which:

the brain processes sensory information to specify, in paral-
lel, several potential actions that are currently available. These
potential actions compete against each other for further pro-
cessing, while information is collected to bias this competition
until a single response is selected (Cisek, 2007, p. 1585)

The idea here is that the brain is constantly computing—partially and
in parallel—a large set of possible actions and that such partial, paral-
lel, ongoing computations involve neural encodings that fail to respect
familiar distinctions between perceiving, cognizing, and acting. The
reason for this is that the neural representations involved are, as Cisek
and Kalaska (2011, p. 279) put it, ‘pragmatic’ insofar as ‘they are adapted
to produce good control as opposed to producing accurate descriptions
of the sensory environment or a motor plan’. All this makes good eco-
logical sense, allowing time-pressed animals to partially “pre-compute’
multiple possible actions, any one of which can then be selected and
deployed at short notice and with minimal further processing.

Large bodies of neurophysiological data lend support to such a
view. For example, Hoshi and Tanji (2007) found activity in monkey
premotor cortex correlated with the potential movements of either
hand in a bimanual reaching response task in which the monkey had
to wait upon a cue signalling which hand to use (see also Cisek &
Kalaska, 2005). Similar results have been obtained for the preparation
of visual saccades (Powell & Goldberg, 2000) and using behavioural
and lesion studies of reaching behaviour in human subjects (Castiello,
1999; Humphreys & Riddoch, 2000). In addition, as we saw in the previ-
ous section, there is intriguing evidence that ‘decisions about actions
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emerge within the same populations of cells that define the physical
properties of those actions and guide their execution’ (Cisek & Kalaska,
2011, p. 282).

The picture that here emerges is one of neural encodings that are
fundamentally in the business of action control. Such encodings rep-
resent how the world is in ways that are entwined, at multiple lev-
els, with information about how to act upon the world. Many such
‘action-oriented” (see Clark, 1997) takes upon the world are being
prepared, the Affordance Competition hypothesis suggests, at every
moment, although only a few make it beyond the threshold for control
of actual motor response.®

6.5 Implementing Affordance Competition

All of these insights are neatly accommodated, or so I shall now sug-
gest, using the distinctive resources of the predictive processing model
of neural organization. To do so, we leverage three key properties of the
predictive processing framework. The first concerns the probabilistic
nature of the representations that support perception and action. The
second concerns the computational intimacy of perception, cognition,
and action. The third concerns the distinctive forms of circular causal
interaction between organism and environment that result. Affordance
competition then emerges as a natural consequence of probabilistic
action-oriented prediction.

Recall (1.12) that the probabilistic Bayesian brain encodes condi-
tional probability density functions, reflecting the relative probability
of some state of affairs given the available information. At every level,
then, the underlying form of representation remains thoroughly proba-
bilistic, encoding a series of deeply intertwined bets concerning what
is ‘out there” and (our current focus) how best to act. Multiple compet-
ing possibilities for action are thus constantly being computed, though
only winning (high precision) proprioceptive predictions get to act as
motor commands as such.

In the model of action suggested by Friston and colleagues (see
chapters 4 and 5), high precision proprioceptive prediction errors bring
about motor actions. The very same neural populations that would be
involved (when proprioceptive prediction error is given high preci-
sion) in the generation of action may thus be deployed ‘offline” (again,
see chapter 5) as a means of generating motor simulations suitable for
reasoning, choice, and planning. This provides a compelling account
of the many overlaps between the neural populations implicated in
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the control of action and those involved in reasoning, planning, and
imagination. In planning, however, we must attenuate or inhibit the
descending prediction errors that would normally (on the active infer-
ence model) drive our muscles. This effectively insulates us from the
world allowing us to use hierarchical generative models to predict in
a counterfactual (‘what if") mode. Issues concerning sensory attenua-
tion will also loom large (as we will see in chapter 7) in the context of
self-made acts and attributions of agency.

Finally, and perhaps most important, action (recall chapter 4) now
involves a potent form of circular causality in which the representa-
tions that are recruited to account for current sensory stimulations
simultaneously determine actions that result in new patterns of sensory
stimulation, that recruit new motor responses, and so on. This means
that we confront—exactly as the Affordance Competition hypothesis
suggests—an economy in which multiple competing probabilistic bets
are constantly being made, within what is essentially a circularly causal
perception-action machine.

PP thus implements the distinctive circular dynamics described by
Cisek and Kalaska using a famous quote from the American pragma-
tist John Dewey. Dewey rejects the ‘passive’ model of stimuli evoking
responses in favour of an active and circular model in which ‘the motor
response determines the stimulus, just as truly as sensory stimulus
determines movement’ (Dewey, 1896, p. 363). This idea is nicely clari-
fied in another quote from elsewhere in the same article, where Dewey
writes of seeing as an ‘unbroken act” which:

is as experienced no more mere sensation than it is mere motion
(though the onlooker or psychological observer can interpret it
into sensation and movement), it is in no sense the sensation
which stimulates the reaching; we have, as already sufficiently
indicated, only the serial steps in a coordination of acts. But
now take a child who, upon reaching for bright light (that is,
exercising the seeing-reaching coordination) has sometimes
had a delightful exercise, sometimes found something good to
eat and sometimes burned himself. Now the response is not only
uncertain, but the stimulus is equally uncertain; one is uncertain only
so far as the other is. The real problem may be equally well stated
as either to discover the right stimulus, to constitute the stimu-
lus, or to discover, to constitute, the response. (Dewey, 1896,
p- 367, emphasis in original)

Dewey’s descriptions elegantly prefigure the complex interplay, high-
lighted by predictive processing, between allering our predictions
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=0 fit the evidence (‘perception’) and seeking out the evidence to fit
our predictions (‘action’). But it also suggests (rightly, I think) that we
really ought not to conceive these, within the predictive processing
rramework, as competing strategies.* Rather, the two strands con-
stantly work hand in hand to reveal a world that is, in a certain sense,
constituted in action. For actions now disclose evidence that leads to
more actions, and our experience of the world is constituted by this
ongoing cycle.

These circular causal loops play two, often overlapping, roles.
One role is, of course, pragmatic. A high-level perceptual state as of
an oncoming vehicle on the wrong side of the road will recruit motor
commands that rapidly move the steering wheel, resulting in new
perceptual states that (according to their content) must fine-tune, or
atlempt to negate the selected course of action. The other role is epis-
temic. Movements of the head and eyes are rapidly deployed to test and
confirm the hypothesis (oncoming vehicle on collision course) itself.
Only hypotheses able to withstand such automatically generated tests
will be maintained and strengthened (see Friston, Adams, et al., 2012).
In this way we sample the world so as to minimize uncertainty about
our own predictions.

To see how this looks in practice, reflect that early, ambiguous
flurries of sensory stimulation will generate prediction errors that
recruit multiple competing perceptual hypotheses. These hypotheses
are not, however, action-neutral. Instead, each hypothesis already
speaks to the two forms of action just described. Each hypothesis,
that is to say, includes information about how to act upon the world
so as to confirm or disconfirm the hypothesis, and (courtesy of the
context-reflecting bodies of precision expectations) about how to
behave in the world supposing the hypothesis proves correct. Subject
to various constraints of task and timing, a good strategy will be to
allow the most promising hypothesis to launch some cheap epistemic
action (such as a rapid sequence of saccades) able to confirm or dis-
confirm the hypothesis. As such cycles unfold, perceiving will be inti-
mately bound up with various forms of motor planning and action
selection, resulting in the distinctive neurophysiological signatures
described earlier.

Spivey (2007) paints a rich picture of such continuous circular
causal webs and depicts their dynamics as one of constant journeying
towards ever-changing, never-quite reached stable end-points. By way
of illustration, Spivey asks us to consider the interactions between eye
movements (motor productions, albeit on a fast, small, scale) and the
cognitive processes that might be said—in some ways misleadingly,
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as we are about to see—to guide them. In real-world settings, Spivey
notes:

the brain does not achieve a stable percept, then make an eye
movement, then achieve another stable percept, then make
another eye movement, and so on. The eyes often move during
the process of attempting to achieve a stable percept. This means
that before perception can finish settling into a stable state, ocu-
lomotor output changes the perceptual input by placing new
and different information on the foveas. (Spivey, 2007, p. 137)

Visual perception is thus constantly conditioned by visuomotor action,
and visuomotor action is constantly conditioned by visual perception.
As far as successful behaviour is concerned, what counts are the per-
ceptuomotor trajectories that result. It is these trajectories, not the sta-
bility or even the veracity of the percepts spun off along the way, that
constitute agentive behaviour and that determine the success or failure
of our attempts to engage the world.

In sum, perceptuomotor trajectories emerge and are maintained
within circular causal webs. Within those webs, estimated uncertainty
and the demands of action mediate strong forms of affordance compe-
tition. This is because estimations of precision, and the pragmatic and
epistemic actions they imply, function (Cisek & Kalaska, 2011, p. 282)
to ‘enhance the most behaviorally salient information in the environ-
ment to bias sensorimotor systems towards the most behaviorally rel-
evant possible actions’. Precision estimations position a hypothesis to
gain control of behaviour, at which point it must become self-fuelling
(engaging confirmatory circular causal commerce) or perish. Precision
estimations, working in the context of lateral (within level) inhibition
among competing hypotheses, position a hypothesis to gain control of
behaviour, at which point it must become self-fuelling (engaging confir-
matory circular causal commerce) or perish. All this delivers, I suggest,
a particularly clear and vibrant sense in which many neural represen-
tations must be ‘pragmatic’, as well as establishing a larger framework
in which affordance competition emerges as a natural consequence of
probabilistic action-oriented prediction.

6.6 Interaction-Based Joints in Nature
All this has implications for the debates concerning the nature of our

perceptual contact with the world. Probabilistic prediction-driven
learning provides a mechanism able (when all is going well) to see past
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superficial noise and ambiguity in the sensory signal, revealing the
shape of the distal realm itself. In that (restricted) sense it provides a
powerful mechanism for ‘carving nature at the joints’. But many of those
joints, it now seems clear, are interaction-based: they are defined with
respect to an active organism characterized by specific needs and possi-
bilities for action and intervention. Our perceptual ‘take’ on the world is
thus constantly conditioned by our own ‘action repertoire’ (Konig et al.,
2013) in interaction with our needs, projects, and opportunities.

This simple (but profound) fact results in large reductions of com-
putational complexity by helping to select, at any given moment, what
features to process, and what things to try to predict. From the huge
space of possible ways of parsing the world given the impinging ener-
getic flux, our brains try to predict the patterns that serve our needs
and that fit our action repertoires. This may well result (as we will see
in detail in chapter 8) in the use of simple models whose power resides
precisely in their failing to encode every detail and nuance pres-
ent in the sensory array. This is not a barrier to true contact with the
world—rather, it is a prerequisite for it. For knowing the world, in the
only sense that can matter to an evolved organism, means being able to
act in that world: being able to respond quickly and efficiently to salient
environmental opportunities.

Among the many things that brains like ours need to predict,
an important subset concerns the sensory consequences of our own
actions. Once this is taken on board, the intimacy of sensory and motor
processing is, as Konig et al. (2013) note, unsurprising. Moreover, the
sensory consequences of our own actions are deeply informed by basic
facts about our embodiment, such as our size, the placement of sensors
and the reach of effectors, and so on. Such influence is dramatically dis-
played by an analysis (Betsch et al., 2004; Einhduser et al., 2009) of the
statistical structure of the visual inputs obtained (using a head-mounted
camera) from the perspective of a freely moving cat exploring some
outdoor environments. The same gross external realm, when explored
(see Figure 6.1) from the perspective of the cat, produced sequences of
natural images whose statistical structure included a predominance of
horizontal contours, altered spatial distribution of contrast, and various
effects attributable to the surprising speed of cat head movements.

The statistics of natural scenes, as those scenes are encountered in
action by a given type of animal, also become written in the patterns
of cortical activity (both spontaneous and evoked) that the animal
displays. This has been neatly demonstrated by Berkes et al. (2011) in
work on the V1 activity of awake ferrets. This activity was analyzed at
various stages during the development of the ferrets, and under three
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GURE 6.1 The World from a Cat’s Perspective

) The cat is exploring an outside park area on one of its walks. The cable,
7sisted with the leash, connects to the VCR in the backpack. (b—e) Four

pical pictures taken from the videos are shown. (b) The horizon divides

e image into a bright, low-contrast upper image region (sky) and a darker,
wer region of high contrast (stones). (c) The cat’s view of the pond shows
-hly detailed plant structures and low-contrast water regions. (d) On close
spection by the cat, blades of grass are evenly spread over the entire image.
) During a walk in the nearby forest the upper half is dominated by dark,
rtically oriented trees in front of the bright sky. The lower half of the image
presenting the forest floor consists of many objects (branches, leaves)
ranged in all possible orientations.

urce: Betsch et al. 2004.

mditions: viewing movies of natural scenes, in darkness, and view-
ig movies of unnatural scenes. The study found that the similarity
xlween spontaneous and evoked response increased dramatically
ith age, but only in respect of responses evoked by natural scenes.
his pattern of results is best explained, the authors argue, by a ‘pro-
ressive adaptation of internal models to the statistics of natural stimuli
‘the neural level” (Berkes et al., 2011, p. 83). In other words, the ferret’s
»ontaneous neural activity patterns slowly adapt, over developmental
me, to reflect the ‘prior expectations of [an] internal model” (p. 87).
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Adopting the Bayesian perspective, the authors suggest that spontane-
ous cortical activity reflects the multilevel structure of prior expecta-
tions that constitute the inner model, and stimulus-evoked activity the
posterior probability—the probability that some specific combination
of environmental causes gave rise to the sensory input, hence the ani-
mal’s ‘best guess’ at the current state of the world. This diagnosis was
reinforced by tests on mature ferrets exposed to movies of unnatural
scenes, where much greater divergences between spontaneous and
evoked activity were recorded. Spontaneous cortical activity, Berkes
et al. conclude, here shows all the hallmarks of a gradually adapting
internal model of the ferret’s world.

How might such a model be used to guide action? Within PP,
selection from within the action repertoire of a given agent is accom-
plished by context- and task-reflecting assignments of precision. Such
assignments control synaptic gain according to estimations of the
uncertainty of sensory signals. In particular (see Friston, Daunizeau,
Kilner, & Kiebel, 2010, and discussion in chapters 4 and 5) the precision
weighting of proprioceptive prediction error is thought to implement
a kind of ‘motor attention’ that is necessarily involved in the prepa-
ration of any motor action. Attention thus acts to ‘boost the gain of
proprioceptive channels during motor preparation’ (Brown, Friston, &
Bestmann, 2011, p. 2). At the same time, it is the precision-weighting
upon all aspects of sensory prediction error that together deter-
mines which sensorimotor loops win the competition for the con-
trol of behaviour. The upshot, exactly in line with the Affordance
Competition hypothesis, is to select one among the various behav-
ioural responses already suggested (hence partially activated) by cur-
rent context and organismic state. Mechanisms that implement the
precision-weighting of proprioceptive prediction error thus serve to
select ‘salient representations that have affordance [i.e.] sensorimotor
representations that predict both perceptual and behavioural conse-
quences’ (Friston, Shiner, et al., 2012, p. 2). What we do is determined,
this model suggests, by precise (highly weighted) prediction errors
that help select among (while simultaneously responding to) compet-
ing higher level hypotheses, each of which implies a whole swathe of
sensory and motor predictions. Such high-level hypotheses are intrin-
sically affordance-laden: they represent both how the world is and
how we might act in that very world (they are thus a species of what
Millikan (1996) has called ‘Pushmi-pullyu representations” states hav-
ing both descriptive and imperative contents). Perception, by recruit-
ing salient affordance-laden representations, puts us in touch with
a world already parsed for action and intervention.
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Plausibly, it is only because the world we encounter must be parsed
for action and intervention that we encounter, in experience, a relatively
unambiguous, determinate world at all. Subtract the need for action
and the broadly Bayesian framework can seem quite at odds with the
phenomenal facts about conscious perceptual experience: our world, it
might be said, does not look as if it is encoded as an intertwined set of
probability density distributions. Instead, it looks unitary and, on a clear
day, unambiguous. In the context of an active world-engaging system,
however, such an outcome makes adaptive sense. For the point of all
that probabilistic betting is to drive action and decision, and action and
decision lack the luxury of being able to keep all options indefinitely
alive. Instead, affordance competition must be repeatedly resolved
and actions selected. Precision-weighted prediction error provides a
tool for biasing processing by selecting the most salient sensorimotor
representations—the ones most apt to drive behaviour and response.

Biological systems, as mentioned earlier, may be informed by
a variety of learned or innate ‘hyperpriors’ concerning the general
nature of the world. One such hyperprior might be that the world is
usually in one determinate state or another. To implement this, the
brain might use a form of probabilistic representation in which, despite
the presence of continual competition, each distribution has a single
peak (meaning that each overall sensory state has a single best expla-
nation). One fundamental reason that our brains appear only to enter-
tain unimodal (single peak) posterior beliefs may thus be that—at the
end of the day—these beliefs are in the game of informing action and
behaviour, and we can only do one thing at one time. The use of such a
representational form would amount to the deployment of an implicit
formal hyperprior® (formal because it concerns the form of the proba-
bilistic representation itself) to the effect that our uncertainty can be
described using such a unimodal probability distribution. Such a prior
makes adaptive sense, given the kinds of brute fact about action men-
tioned above (e.g., we can only perform one action at a time, choosing to
grasp the pen for writing or for throwing, but not both at once).

6.7 Evidentiary Boundaries and the Ambiguous Appeal to Inference

Prediction error minimization takes place behind what Hohwy (2013,
2014) describes as an ‘evidentiary boundary.” Our agentive access to
the world, he argues, is bounded by the prediction error minimizing
routine as it is applied to the flow of interoceptive, exteroceptive, and
proprioceptive signals. Such consdierations lead Hohwy to depict PP as
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imposing a firm and neurocentric boundary upon the cognizing mind.
Thus we read that:

PEM should make us resist conceptions of [the mind-world]
relation on which the mind is in some fundamental way
porous to the world, or viewed as embodied, extended or enac-
tive. Instead, the mind appears to be secluded from the world,
it seems to be more neurocentrically skull-bound than embod-
ied or extended, and action itself is more an inferential process
on sensory input than enactive coupling with the body and
environment. (Hohwy 2014, p.1)

Howhy (2013, pp. 219221, 2014) offers a variety of interlocking con-
siderations meant to support this vision of the secluded, neurocentric
mind. At the heart of them all lies the observation that prediction error
minimizing routines are defined over sensory signals so that “from
inside the skull the brain has to infer the hidden causes of its sensory
input” (Hohwy 2013, p.220). The guiding theme is thus one of inferen-
tial seclusion—the mind, it is argued, is that which operates behind
the veil of transduced sensory information, inferring complex ‘hidden
causes’ as the best explanation of changing (and partially self-induced)
patterns of sensory stimulation. By contrast, Hohwy suggests:

Views of mind and cognition that emphasize openness,
embodiment, and active extension into the environment seem
to be biased against this inferential conception of the mind.
(Hohwy 2014, p.5)

But embodied views are not, of course, biased against the (surely
unassailable) claim that something important is being done by the brain
when agents engage their worlds in the kinds of ways distinctive of
flexible, adaptive, intelligent response. So where might the putative ten-
sion lie? It lies principally in the notion, repeatedly stressed by Hohwy,
that what the brain does is best construed as a form of inference. But
here we need to be very careful indeed. For the notion of inference in
play here is actually far less demanding than it initially appears.

To see this, consider what was at issue in early debates concern-
ing vision and the embodied mind. Here, according to a typical review
paper published in the mid-1990's:

The key insight ... is that the task of vision is not to build rich
inner models of a surrounding 3-D reality, but rather to use
visual information efficiently and cheaply in the service of
real-world, real-time action. (Clark 1999, p. 345)
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One alternative—mostly pursued by research programs in ‘ecolog-
ical psychology’—is to use sensing as a channel allowing us to lock-on
to simple invarijants in the sensory flow.* Used in this way, sensing
delivers an action-based grip upon the world, rather than an action-
neutral reconstruction apt for detached reasoning. Such a grip may
intrinsically involve organismic action as when—to take the famous
example from McBeath and Shaffer (1995)—the baseball outfielder runs
so as to keep the image of the ball stationary on the retina. By thus act-
ing in ways that continuously cancel out any apparent optical accelera-
tion, the outfielder ensures (see Fink, Foo, and Warren 2009} that she
will meet the ball where it descends to the pitch. In such cases, behav-
ioural success is not the outcome of reasoning defined over a kind of
inner replica of the external world. Rather, it is the outcome of percep-
tion/action cycles that operate by keeping sensory stimulations within
certain bounds.

Such cases will occupy us further in chapter 8. What mat-
ters for present purposes is that these kinds of strategy are radically
non-reconstructive. They do not use sensing, moment-by-moment, to
build an inner model that recapitulates the structure and richness of
the real-world, and that is thus able to stand-in for that world for the
purposes of planning, reasoning, and the guidance of action. Instead,
here-and-now behaviour is enabled by using sensing in the special way
described above—as a channel to enable the organism to co-ordinate
its behaviours with select aspects of the distal environment.

Such non-reconstructive roles for perception are often cast in bald
opposition to the inferential, secluded vision. Thus Anderson (2014)
describes non-reconstructive approaches as an alternative to main-
stream (inferential, reconstructive) approaches in which perception is
cast as analogous to scientific inference and in which:

from incomplete and fragmentary data, one generates hypoth-
eses (or models) for the true nature of the world, which are
then tested against and modified in light of further incoming
sensory stimulation. (Anderson 2014, p. 164)

Such traditional approaches, Anderson continues, depict cognition
as “post-perceptual. . . . representation-rich, and deeply decoupled from
the environment”.

Non-reconstructive accounts of the role of sensing suggest a viable
alternative and one that, Anderson suggests, significantly alters our
understanding of our own epistemic situation. Instead of engaging the
world on the basis of a rich inner model constructed behind the closed
doors of sensing, non-reconstructive solutions show how to achieve
behavioural goals by maintaining a delicate dance between sensing
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and action. One signature of this kind of grip-based non-reconstructive
dance is that it suggests a potent reversal of our ordinary way of think-
ing about the relations between perception and action. Instead of see-
ing perception as the control of action, it becomes fruitful to think of
action as the control of perception (Powers 1973, Powers et al,, 2011).
Thus (re)-conceived, the problem becomes “not ... choosing the right
response in light of a given stimulus but . . . choosing the right stimulus
in light of a given goal” (Anderson, 2014, p. 182-3).

But, as Hohwy himself correctly notes, there is absolutely nothing
in the PP vision that conflicts either with this vision of actions whose
role is to harvest perceptions or (more generally) with the idea of
non-reconstructive strategies as one means of promoting behavioural
success. Such strategies are, in fact, quite naturally accommodated
since the best ways to minimize long-term prediction error will often
be both frugal and action-involving. Thus we read that:

It is a mistake to think that just because the brain only does
inference, it must build up its internal model like it was a fol-
lowing a sober physics textbook. As long as prediction error is
minimized on average and over the long run, it doesn’t matter
which model is doing it. For this reason a model that predicts
linear optical trajectories is entirely feasible and can easily
be preferable to a more cumbersome series of computations.
This is particularly so if it is a less complex model, with fewer
parameters, since prediction error in the long run is helped by
minimal complexity. (Hohwy, 2014, p. 20)

This is revealing. Hohwy here (and elsewhere") recognizes that often,
the PP framework will stand opposed to more ‘intellectualist” stories that
depict moment-by-moment behavioural success as the product of infer-
ences defined over rich internal models whose role is to allow the cognizer
to ‘throw away the world'. Instead, the role of the inner model is, in many
cases, to spot the contexts in which some more frugal, action-involving,
procedure will work (for lots more on this hybrid picture, see chapter 8).
This means that ‘inference’, as it functions in the PP story, is not com-
pelled to deliver internal states that bear richly reconstructive contents.
It is not there to construct an inner realm able to to stand in for the full
richness of the external world. Instead, it may deliver efficient, low-cost
strategies whose unfolding and success depend delicately and continu-
ously upon the structure and ongoing contributions of the external realm
itself, as exploited by various forms of action and intervention.

Relatedly, Hohwy frequently speaks of PP-style systems as seek-
ing out the hypotheses that best explain the sensory information. Heard
in one way, this is again correct. The prediction error minimizing
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system must find the multilevel set of neuronal states that best accom-
modate (as I will now put it) the current sensory barrage. But this,
I suggest, is far preferable to talk of ‘finding the right hypothesis” as
such talk again invites unwanted and potentially misleading baggage.
Accommodating the current sensory barrage may take many forms,
some of which involve low-cost methods of selecting actions that
re-shape the sensory signal or function to maintain it within pre-set
bounds. Accommodating the incoming signal thus need not imply
anything like settling upon a description of the external situation, or
finding a proposition or set of propositions that best describes or pre-
dicts that incoming signals. Indeed, at the most fundamental level, the
task of PP systems is not to retrieve apt descriptions. The fundamental
task, using prediction errors as the lever, is to find the neural activity
patterns that most successfully accommodate current sensory states by
means of world-enaging action.

6.8 Don't Fear the Demon

Why does Hohwy, despite often stressing the importance of a
‘non-intellectualist” reading of PP, insist that it promotes a neurocen-
tric, secluded vision of the mind? The reason seems to be that he links
the secluded, inferential vision to something quite different and (I shall
argue) rather alien to much of the discussion in hands-on embodied
cognitive science. He links it to the mere possibility of evil-demon style
global skepticsm—the possibility that we might be fooled into believ-
ing we are embodied agents acting in a real world, when ‘really” we
are merely brains being fed whatever sequence of sensory signals
is needed to maintain the illusion. It is this mere possibility that, in
Hohwy’s treatment, suffices to establish a robust ‘veil of tranduction’
which positions the world as we know it on the far side of an important,
agent-impermeable, evidentiary boundary.

Thus, in response to the suggestion that PP is consistent with (and
indeed actively predicts) the use of fast and frugal strategies that use
sensing in the special way described above, Hohwy writes that

the incoming visual signal drives action but ... this driving in
fact does rely on a veil of transduction, namely the evidentiary
boundary within which there is ample inference, and beyond
which lies nothing but inferred causes. (2014, p. 21).

To demonstrate this, Hohwy invokes the spectre of Cartesian (evil
demon-style) skepticism. But this, it seems to me, is something of a red
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herring. The skeptical claim is simply the claim that, were the play of
sensory stimulations being received and (apparently) harvested by the
brain to remain fixed, so too would our experience of the world. For
all we know, then, our physical bodies might be hanging immobile
in some Matrix-like energy web, kept alive and fed whatever sensory
stimulations are required to make it seem as if we are running to catch
flyballs and arguing about the powers of evil demons. But this mere
possibility (even if it is accepted) in no way casts doubt upon the key
claims associated with work in embodied cognitive science. Consider
running to catch that flyball. This (in the Matrix/vat) would involve
feeding the brain the complex, action-sensitive unfolding sensory
streams that would normally ensue were an embodied agent actually
running so as to cancel the optical acceleration of the ball. The mere fact
that this is what would be required supports what really matters here,
which is the non-reconstructive account of fly-ball interception.

What the skeptical challenges suggest is thus a very different sense of
‘inferential seclusion’ from the one at issue in debates between reconstruc-
tive and non-reconstructive approaches to perception and action. For those
debates (the ones about the shape of the perception-action nexus) were
not about whether we might be fooled, by some clever manipulation, into
misconstruing our own worldly situation. Instead, they were about how
best to understand, from within our current scientific perspective, the role
of the sensory stream in enabling apt forms of world-engaging action. At
issue was the question whether apt actions are always and everywhere
computed by using sensing to get enough information into the system
to allow it to plot its response by exploring a rich, internally represented
recapitulation of the distal world. Non-reconstructive approaches (much
more on which in chapter 8) demonstrate the viability of alternative, more
computationally frugal, behaviourally interactive, solutions. They do not
imply—nor do they seek to imply—the falsity of the skeptical hypothesis.
That is an orthogonal question that would demand a full philosophical
treatment in its own right.®

The image of the mind as secluded behind an inferential cur-
tain is thus importantly ambiguous. If it means only that the world,
insofar as we know and experience it, is that which is both experien-
tially specified and actively engaged by the ongoing flow of (partially
self-induced) sensory stimulations, then PP indeed mandates a certain
kind of seclusion. But seclusion, in this rather limited sense, does not
imply the richly reconstructive model of perception according to which
our actions are selected by processes of reasoning defined over the con-
tents of rich inner models whose role is to replace the external world
with a kind of inner simulacrum.”
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The mere fact that neural processing is organized around predic-
tion error minimization routines thus puts no real pressure upon the
claim that lies at the heart of recent work on the embodied mind. For
what that work most fundamentally rejects is the richly reconstructive
model of perception. The appearance of conflict arises from an ambi-
guity in the notions of inference and seclusion themselves. For these
notions may seem to imply the presence of a rich inner recapitulation
of the distal environment, with a consequent downgrading of the role
of action and upgrading of the role of reasoning defined over that inner
model. Nothing in PP, however, mandates this. Instead, PP strongly
suggests that brains like ours will, wherever possible, exploit simple
strategies that rely heavily on world-engaging action, delivering new
sensory stimulations just-in-time to support behavioral success. Such
strategies are the focus of chapter 8.

6.9 Hello World

The PP schema does not merely fail to impose any worrisome bar-
rier® between the agent and the world. It also provides the necessary
means to bring a structured world into view in the first place. Thus
consider the perception of sentence structure during speech process-
ing. Here too (see, e.g., Poeppel & Monahan, 2011) we may rely upon
stored knowledge to guide a set of guesses about the shape and content
of the present sound stream: guesses that are constantly compared to
the incoming signal, allowing residual errors to decide between com-
peting guesses and (Where necessary) to reject one set of guesses and
replace it with another. Such extensive use of existing knowledge (driv-
ing the guessing) has, as we have seen, many advantages. It enables us
to hear what is said despite noisy surroundings, to adjudicate between
alternate possibilities each consistent with the bare sound stream, and
so on. It is plausibly only due to the deployment of a rich probabilis-
tic generative model that a hearer can recover semantic and syntac-
tic constituents from the impinging sound stream. Would that mean
that perceived sentence structure is ‘an inferred fantasy about what lies
behind the veil of input’? Surely not. In recovering the right set of inter-
acting distal causes (subjects, objects, meanings, verb-clauses, etc.) we
see through the brute sound stream to the multilayered structure and
complex purposes of the linguistic environment itself.

We must tread carefully though. When we (as native speakers)
encounter such a sound stream, we hear a sequence of words, separated
by gaps. The sound stream itself, however, is perfectly continuous, as a
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spectrogram quite dramatically reveals. Those gaps are added by the lis-
tener. What we encounter in perception is in that sense a construct. But it
is a construct that tracks real structure in the signal source (other agents
producing strings of distinct meaningful words). The predictive brain
here lets us see through the noisy, sensory signal to uncover the humanly
relevant aspects of the world giving rise to the waves of sensory stimu-
lation. This may be a rather good picture of what perception, on the PP
model, quite generally does. If so, then the world we encounter in percep-
tion is no more (and no less) a virtual reality or fantasy than the structures
of words we hear in an uttered sentence spoken in our native tongue.

Predictive processing here allows us to see through the sensory
signal to the human-relevant aspects of the distal world. Seen in this
light, the predictive processing story shares much (or so it seems to
me) with so-called ‘direct’ {e.g., Gibson, 1979) views of perception. For
it delivers a genuine form—perhaps the only genuine form that is
naturally possible—of ‘Openness to the world”. Against this, however,
it must be conceded that extensive reliance on the top-down cascade
sometimes makes veridical perception quite heavily dependent upon
prior knowledge.

I'shall not attempt further to adjudicate this delicate issue here (see
Crane, 2005). But if a label is required, it has been suggested that the
implied metaphysical perspective may most safely be dubbed ‘not-indi-
rect perception’.? Perception of this stripe is ‘not-indirect’ since what we
perceive is not itself a hypothesis (or model, or fantasy, or virtual real-
ity). Instead, what we perceive is (when all is going well) the structured
external world itself. But this is not the world ‘as it is’, where that implies
the problematic notion (see also 9.10) of a world represented indepen-
dent of human concerns and human action repertoires. Rather, it is a
world parsed according to our organism-specific needs and action rep-
ertoire. The world thus revealed may be populated with items such as
hidden but tasty prey, poker hands, handwritten digits, and structured,
meaningful, sentences.

Nor is there any sense in which the objects of perception are here
being treated as anything like ‘sense data’ (Moore, 1913/1922), where
these were conceived as proxies intervening between the perceiver and
the world. The internal representations at issue function within us and
are not encountered by us. They make it possible for us to encounter the
organism-salient world under the ecologically common conditions of
noise, uncertainty, and ambiguity. We encounter our world in percep-
tion, all this suggests, because brains like ours are statistical engines
able to lock on to non-linearly interacting causes whose signatures may
sometimes be deeply buried among the sensory noise and energetic
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flux. The result is that the agent-salient structure of the distal realm
becomes reflected in both the large-scale shape and (see chapter 9) the
spontaneous activity patterns of the neural architecture itself.”? What
is thus revealed is not, however, a distal realm of some action-neutral
kind. Instead, it is a world distilled from the statistics of the sensory bar-
rages induced by specifically human (and individual, see Harmelech &
Malach, 2013) forms of action and intervention.

6.10 Hallucination as Uncontrolled Perception

Content fixation in these accounts is (epistemically) externalist in
nature. Perceptual states function to estimate organism-salient proper-
ties and features of the distal environment (including, for these pur-
poses, states of our own bodies and the mental states of other agents).
But such states are individuated by reference to the world actually sam-
pled. To see this, consider the case (Hinton, 2005) of a trained-up neural
network whose high-level internal states are ‘clamped’, that is, forced by
the experimenter into some specific configuration. Activity then flows
downwards in a generative cascade, resulting in a state of (if you will)
experimenter-induced hallucination. But what is the content of that
state? What is represented, Hinton argues, is best captured by asking
how the world would have to be were such a cascade to constitute veridi-
cal perception. A perceptual state, as here depicted, is thus nothing but
‘the state of a hypothetical world in which a high-level internal repre-
sentation would constitute veridical perception’ (Hinton, 2005, p. 1765).

These considerations suggest a twist upon the notion of percep-
tion as ‘controlled hallucination’. For it would be better, I suggest, to
describe hallucination as a kind of “uncontrolled (hence mock) percep-
tion’. In hallucination, all the machinery of perception is brought to
bear, but either without the guidance of sensory prediction error at all,
or (see 2.12 and chapter 7) with malfunctioning prediction error cir-
cuitry. In such cases the agent really does enter a state of what Smith
(2002, p. 224) calls ‘mock sensory awareness’.

Finally, notice that perceptual content, as delivered by active,
affordance-sensitive prediction, is now inherently organized and
outward-looking. By this I mean that it reveals—and cannot help but
reveal—a structured (and thus in some weak sense ‘conceptualized’®)
external world. It is an external arena populated by the distal, caus-
ally interacting items and forces whose joint action best explains (given
prior knowledge) the current suite of sensory stimulation. This delivers
just the kind of grip on the world that an intelligent agent must possess
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if she is to act appropriately. When such an agent sees the world, they
see a determinate structure of distal, interacting causes apt for action
and intervention by the kind of creature that they are. The so-called
‘transparency’ of perceptual experience*—the fact that, in normal
daily perception, we seem to see tables, chairs, and bananas rather than
proximal excitations of our sensory surfaces such as the play of light
on the retina—falls quite naturally out of such models. We seem to
see dogs, cats, goals, tackles, and winning poker hands, because these
feature among the interacting, nested, structures of distal causes that
matter for human choice and action.

6.11  Optimal Illusions

Of course, things can (and do) sometimes go wrong. The human mind,
as Paton et al. (2013, p. 222) eloquently argue, is ‘always precariously
hostage to the urge to rid itself of prediction error [and this] forces
very improbable and fantastical perceptions upon us when the world
does not collaborate in its usual, uniform way’. It is surprisingly easy,
for example, to induce (even in fully alert, normal adults) the illusion
that a rubber hand, placed on the table in front of you, is your own.
The illusion is created by ensuring that the subject can see someone
tapping the realistic rubber hand, while (just out of sight) their own
hand is being tapped in exact synchrony (Botvinick & Cohen, 1998).
Ramachandran and Blakeslee (1998) describe a similar illusion, in
which a blindfold subject’s arm is extended and their finger made to
tap the nose of another subject seated just in front of them, while their
own nose is tapped in perfect synchrony, using an intermittent rhythm,
by the experimenter. Here too, the predictive, Bayesian brain may be
fooled into generating a false percept—in this case, that you have a two
foot long nose! There are many ways in which such mistakes may come
about, involving differing balances between prior expectations and
the driving sensory signal (for some nice discussion, see Hohwy, 2013,
chapters 1 and 7). But for present purposes, all that matters is that a
key role is played (as the experimental manipulations clearly reveal) by
the facts concerning temporal synchrony. To ‘explain away’ prediction
error when the sensory signal starts to reveal such unexpected (ecolog-
ically rare, hence usually highly informative) synchronies, strange and
implausible percepts are generated. What, then, does this tell us about
our ordinary, daily, perceptual contact with the world?

In one sense it seems to suggest (as Paton et al. argue), a certain fra-
gility in the routines that the brain uses to track and engage the external
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world. Those routines can indeed be hijacked and coerced in ways that
mislead.”” A good question to ask, however, is: ‘What would be the cost,
for some given perceptual error, of avoiding that error?’ For it may be
that the cost, in many cases, would be vast swathes of error elsewhere
in our perceptual (or more generally, in our mental) lives.” Weiss et al.
(2002), as we noted back in chapter 1, used an optimal Bayesian estima-
tor to show that a wide variety of motion ‘illusions’ are directly implied
by the assumption that human motion perception implements an opti-
mal estimator. They conclude that ‘many motion “illusions” are not
the result of sloppy computation by various components in the visual
system, but rather a result of a coherent computational strategy that is
optimal under reasonable assumptions’ (Weiss et al., 2002, p. 603). This
suggests that sometimes, at least, even ‘illusory’ perceptual experiences
constitute an accurate estimation of the most likely real-world source or
property, given noisy sensory evidence and the statistical distribution,
within some relevant sample, of real-world causes. A few local anoma-
lies may thus be the price we pay for globally optimized performance
(Lupyan, in press).

This is an important finding that has now been repeated in many
domains, including the sound-induced flash illusion (Shams et al,
2005), ventriloquism effects (Alais & Burr, 2004), and the impact of
figure-ground convexity cues in depth perception (Burge et al,, 2010).
Additionally, Weiss et al’s (2002) Bayes-optimal account of a class of
static (fixation-dependent) motion illusions has now been extended
to account for a much wider set of motion illusions generated in the
presence of active eye movements during smooth pursuit (see Freeman
et al,, 2010, and discussion in Ernst, 2010). Perceptual experience, even
in these illusory cases, thus looks to be veridically tracking statistical
relations between the sensory data and its most probable real-world
sources. This again suggests that the intervening mechanisms intro-
duce no worrisome barrier between mind and world. Going slightly
off the rails every now and then is simply the price we pay for mostly
getting things right.

Or consider, to take one last, and rather more contentious, case, the
‘size-weight illusion’. This has been invoked (Buckingham & Goodale,
2013) as a challenge to the supposed generality of optimal cue integration
in human psychophysics. In the size-weight illusion, similar-looking
objects appear weight-adjusted so that we judge the smaller one to feel
heavier than the larger despite their identical objective weights (a pound
of lead feels heavier, indeed, than a pound of feathers). Buckingham
and Goodale survey recent work on the size-weight illusion noting that
although Bayesian treatments do manage to get a grip on the lifting
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behaviour itself, they fail to explain the subjective comparison effect
which some describe as ‘anti-Bayesian’ since prior expectancies and
sensory information there seem contrasted rather than integrated
(Brayanov & Smith, 2010). This provides evidence, they suggest, for
a more fractured and firewalled cognitive economy: one displaying
‘independent sets of priors for motor control and perceptual/cognitive
judgments, which ultimately serve quite different functions’ (p. 209).

There is, however, an intriguing (though still highly specula-
tive) alternative. Zhu and Bingham (2011) show that the perception of
relative heaviness marches delicately in step with the affordance of
maximum-distance throwability. Perhaps, then, what we have simply
labelled as the experience of ‘heaviness’ is, in some deeper ecological
sense, the experience of optimal weight-for-size to afford long-distance
throwability? If that were true, then the experiences that Buckingham
and Goodale describe re-emerge as optimal percepts for throwabil-
ity, albeit ones that we routinely misconceive as simple but erroneous
perceptions of relative object weight. What looks from one perspective
to be a fragmented, fragile, and disconnected cognitive economy may
thus, on deeper examination, turn out to be a robust, well-integrated
(though by no means homogeneous) mechanism adapted not to deliver
simple action-neutral descriptions of the world but to put us in contact
with action-relevant structure in the environment.

6.12 Safer Penetration

Such considerations also help reveal why the rampant ‘penetration’
of lower level processing by higher level predictions and expectations
presents no deep threat to our epistemic situation. The worry here (see
Fodor, 1983, 1988) is that what we (think we) perceive may—courtesy
of all that top-down influence—become too easily infected by what we
expect to perceive, and that this would undermine the basis of scientific
investigation itself. We want our observations to be positioned to test
our theories and expectations, not to simply fall into line with them!
Fortunately for us, Fodor argues, perception is not thus penetrable, as
evidenced (Fodor claims) by the persistence of visual illusions even
after we learn of their illusory status. For example, the equal lines of the
classic version of the Muller-Lyer illusion? still look unequal in length,
even once we have measured them for ourselves. Fodor takes this as
evidence that perception in general is ‘cognitively impenetrable’, that is,
not directly affected by higher level knowledge of any kind (Pylyshyn,

1999).
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The correct diagnosis, we can now see, is actually rather different.
What we ought to be saying is that perception is penetrable by
top-down influence when (and only when) such penetration has earned
its keep over a sufficiently wide range of training instances. The deep
reason that many illusions persist despite countervailing linguaform
knowledge is because the task of the perceptual system is to minimize
what Lupyan (in press) usefully describes as ‘global prediction erroxr”.
Relative to the full set of circumstances that the perceptual system has
needed to deal with, the hypothesis that the lines are of unequal length
is the best hypothesis (Howe & Purves, 2005). From that more global
perspective, our susceptibility to the illusion is not really a cognitive
failure at all. For were the system to overturn the many delicately inter-
laced layers of intermediate-level processing that deliver this verdict,
the result would be failures of veridical perception in many other (more
ecologically normal) circumstances.

Thereis no threat here to our epistemic situation. In general, our per-
ceptual systems are well-calibrated as devices for mediating between
sensory stimulation and action, and their deliverances (though subject
to alteration by extensive re-training) are not simply overthrown by
our endorsement of sentences such as ‘yes, the two lines are indeed of
equal length’. Endorsing such a sentence (see Hohwy, 2013) does not
adequately account for the full spectrum of lower level predictions
and prediction error signals that construct that particular percept, so
it is unable to overturn the long-term learning of the system. Where
simple exposure to sentences will most plausibly make a difference to
perceptual experience is rather in cases where the sensory evidence
is ambiguous. In such cases (and see 9.8) hearing a sentence might tip
the system into an interpretation of the scene—an interpretation that
genuinely affects how the scene appears to the agent (for an example of
this kind, see Siegel, 2012, and discussion in 2.9).

In sum, top-down influences of various kinds may impact process-
ing at every lower level, but only when those patterns of impact are
globally (not merely locally) productive. The upshot is that:

Perceptual systems are penetrable to the extent that such
penetration minimizes global prediction error. If allowing
information from another modality, prior experience, expecta-
tions, knowledge, beliefs, etc., lowers global prediction error,
then such information will be used to guide processing at the
lower levels. For example, if hearing a sound can disambigu-
ate an otherwise ambiguous visual input. ... then we should
expect sound to influence vision. If knowledge that a particular
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collection of lines can be interpreted as a meaningful symbol
can improve visual processing, then such knowledge will be
brought to bear on lower-level visual processes. (Lupyan, in
press, p. 8)

This is good news for science. It enables us to be open to the sensory
evidence that might discredit our own theory, while also enabling us
to become expert perceivers, able to spot the faint trace that signifies
the action of a Higgs boson against a daunting backdrop of noise and
ambiguity.

6.13 Who Estimates the Estimators?

Finally, what about severe forms of mental disruption, such as the delu-
sions and hallucinations characteristic of schizophrenia and various
other forms of psychosis? In cases such as these, the delicately balanced
mechanisms that normally serve to balance sensory input, top-down
expectation, and neural plasticity have gone badly awry. If the hypoth-
eses scouted in 2.12 are on track, systemic malfunctions (perhaps
rooted in abnormal dopaminergic signalling) here disrupt the pro-
duction and weighting of the prediction error signal itself. This is an
especially challenging form of disruption, since (as we saw) persistent,
highly weighted prediction error will appear to signal salient exter-
nal structure, threats, and opportunities. Unresolved, it will thus drive
the system to alter and adapt the generative model, initiating a vicious
cycle in which false percepts and false beliefs co-emerge, lending each
other spurious support.

Worse still, there is no easy way (as Hohwy 2013, p. 47 rightly
notes) for the system itself to assess the reliability of its own pre-
cision assignments. For precision-weighting on prediction error
already reflects systemic estimations of the reliability or otherwise of
signals at every level of processing. Obviously, no system can afford
to engage in endless spirals of ‘computational self-doubt’ in which it
attempts to estimate its confidence in its own assignments of confi-
dence, the reliability of its own assessments of reliability, and so on.
Moreover, it is unclear what types of evidence a system would need
to use to compute such meta-meta-measures, given that what is at
issue is now the reliability of both the evidence and of measures of
confidence in that evidence.?

Problems with precision, we may conclude, will be unusually
resistant to any form of rational self-correction. This is, of course,
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exactly the (otherwise rather baffling) profile found in many forms
of psychosis. Disruptions of precision estimation render probabilistic
predictive contact with the world both unreliable and extremely hard
to correct. Such complex disturbances are the subject matter of the
next chapter.

6.14 Gripping Tales

Perception, if the probabilistic prediction machine vision is correct, is
an active process involving the rolling (sub-personal) prediction of our
own evolving neural states. Such a thoroughly inward-looking process
of self-prediction may have seemed initially unpromising as a model
of how perception reaches out to the world. If the arguments scouted
in the present chapter are correct, however, it is the pressure actively to
accommodate our own changing sensory states that delivers our grip
upon a structured, organism-salient, external world.

In active animals, that grip is not rooted in some kind of
action-neutral image of an objective external reality. Instead, to
minimize prediction error is to minimize failures to identify the
affordances for action that the world presents. Here, a good strat-
egy is to deliver (at every moment) a partial grip upon a number of
competing affordances: an ‘affordance competition’ that is plausibly
resolved only as and when action requires. As this process unfolds,
processes of decision and action-preparation are continuously inter-
twined, as multiple responses are prepared in ways graded by the
changing probabilities of their expression. Our perceptual grip on
the world, all this suggests, is fundamentally interaction-based: it
is a grip forged in the presence of, and dedicated to the service of,
world-engaging action.

Such a grip is not perfect. It leaves us vulnerable to illusions,
mistakes, and even wholesale disruptions of the kinds characteristic
of schizophrenia and other forms of psychosis. Does this mean that
even the properly functioning system affords contact with merely a
‘virtual reality’? In the end, we should probably not worry too much
about the words we use here. But the implication of deep and abid-
ing disconnection is misleading. Rather than spawning some kind of
virtual reality rudely interposed between the mind and the world, the
well-functioning perceptual system disperses the fog of surface sta-
tistics and partial information. What is revealed is a world of salient,
meaningful patterns shaped by human needs and possibilities.
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Expecting Ourselves
(Creeping Up On Consciousness)

7.1 The Space of Human Experience

We have covered a large and varied territory. Our story began with
the neat trick of learning about the world by trying to predict our own
changing sensory states. We went on to explore the use of that trick
(in a multilevel setting) to inform perception, imagination, action, and
simulation-based reasoning about the world and about other agents.
We saw how ongoing estimations of the relative uncertainty associated
with activity in different neural populations could further transform
the power and scope of such a story, rendering the flow of process-
ing dynamically reconfigurable and delivering context-sensitivity on a
truly grand scale. And we have begun the crucial and continuing task
of understanding how active, embodied agents put such resources to
use by creating and maintaining perception-action cycles that reflect
organismic needs and environmental opportunities. Thus enhanced
our story has, I believe, the resources required to illuminate the full
spectrum of human thoughts, experiences, and actions.

To make good on such a claim—or perhaps even to make such a
claim genuinely intelligible—we now need to bring this quite theoreti-
cal, large-scale picture into closer contact with the shape and nature of

203
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human experience. We need, if you will, to begin to recognize ourselves
in the swirl of ongoing, multilevel prediction. At that point, many of
the more practical—and humanly significant—aspects of our picture
begin to emerge, revealing something of the complex space of human
minds. Within that space, a few key principles and balances (involving
prediction error and its delicate role in the unfolding of action) may
determine the shape and nature of both normal and atypical forms of
human experience.

There is no way, of course, that I can fully deliver on this. Sadly, but
unsurprisingly, a convincing account of the full spread of human expe-
rience and its mechanistic (and sociocultural) roots lies significantly
out of reach. But an emerging literature offers some promising hints, a
few simplified models, and a smattering of intriguing (but speculative)
proposals. What, then, can predictive processing hope to tell us about
consciousness, emotion, and the varieties of human experience?

7.2 Warning Lights

As this chapter unfolds, the spotlight falls upon a wide range of cases
in which human experience becomes structured, disturbed, or subtly
inflected in ways that can be illuminated (or so I shall suggest) by appeal
to the distinctive apparatus of predictive processing. In each case, one
aspect of the PP apparatus plays a central role. That aspect, once again,
is the precision of specific prediction error signals, and hence the esti-
mated reliability of different bodies of evidence: evidence that includes
exteroceptive sensory signals, interoceptive and proprioceptive sen-
sory signals, and the whole multilevel spectrum of prior beliefs. Such
estimates of reliability (equivalently, of uncertainty) provide, as we
have repeatedly seen in previous chapters, a crucial added dimension-
ality to these accounts, enabling the impact of specific prediction error
signals to be altered according to task, context, and background infor-
mation. More generally still, these estimates of precision constitute a
fundamentally metacognitive ploy. Such estimates are metacognitive,'
since they involve estimates (mostly non-conscious and sub-personal)
of the certainty or reliability of our own mental states and processes.
But this is a metacognitive ploy that is arguably a fundamental part
of the basic apparatus of perception and action rather than something
emerging only with advanced, ‘high-level’, reasoning.

Estimating the reliability (or otherwise) of our own prediction error
signals is clearly a delicate and tricky business. For it is the prediction
error signal that, as we have frequently noted, gets to ‘carry the news”.
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Here, however, the brain’s task is to settle upon the correct weighting
of the prediction error signal itself. Estimating the reliability of some
(putative) item of news is never easy, as anyone who has encountered
widely differing reports of the same event in different media knows!
A common strategy, when confronted with this familiar difficulty, is
to privilege some specific news source, such as your favourite paper,
channel, or blog. But suppose that, unbeknownst to you, ownership
of the source changed hands overnight. Streams of information that
you are pre-inclined to take very seriously indeed are now (let’s imag-
ine) seriously misleading. That feed from your chosen reliable source
is now seriously tainted, and in ways you have never expected. Rather
than believe this, you may now choose to explore many otherwise
unlikely options (‘Martians really have landed: The White House press
office says so’) that you would otherwise have ignored or immediately
rejected. Such, in broad outline, is the distinctive shape of an emerg-
ing class of accounts of a variety of atypical mental states, as we shall
shortly see. These accounts locate the crucial failures as failures of
precision-estimation, hence as failures of the very mechanisms whose
task is to estimate the reliability of our own information sources. Such
failures (as we shall see) can have very complex and varying effects
according to which aspects of the complex economy of priors and sen-
sory evidence are most affected.

To get the general flavour, consider the ‘warning lights” scenario?
described in Adams et al. (2013). I quote the case in full, as it neatly
captures several factors that will prove important for our subsequent
discussion:

Imagine the temperature warning light in your car is too sen-
sitive (precise), reporting the slightest fluctuations (prediction
errors) above some temperature. You naturally infer that there
is something wrong with your car and take it to the garage.
However, they find no fault—and yet the warning light con-
tinues to flash. Your first instinct may be to suspect the garage
has failed to identify the fault—and even to start to question
the Good Garage Guide that recommended it. From your point
of view, these are all plausible hypotheses that accommodate
the evidence available to you. However, from the perspective
of somebody who has never seen your warning light, your
suspicions would have an irrational and slightly paranoid
flavor. This anecdote illustrates how delusional systems may
be elaborated as a consequence of imbuing sensory evidence
with too much precision. (Adams et al., 2013, p. 2)
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Adams et al. add then that:

The primary pathology here is quintessentially metacognitive
in nature: in the sense that it rests on a belief (the warning light
reports precise information) about a belief (the engine is over-
heating). Crucially, there is no necessary impairment in form-
ing predictions or prediction errors—the problem lies in the
way they are used to inform inference or hypotheses.

Two brief comments upon all this, before proceeding to some actual
cases. First, it will do no obvious good to add layers upon layers of com-
plexity here. Suppose we fitted the car with a further device: a warn-
ing light malfunction warning light! All we have done is pushed the
problem further back. If both lights flash, we now have to determine
which one carries the most reliable news. If just one flashes, the infor-
mation it conveys may still be reliable or not, for all we know. At some
point (though not necessarily the same point for all tasks and at all
times) the regress of trusting has to stop. And wherever that is, it may
form the starting point for self-reinforcing spirals of false or mislead-
ing inference. Second, notice that what precision-weighting provides
is essentially a means of sculpting patterns of inference and action,
and as such it is strangely neutral concerning the intuitive difference
between increasing the precision upon (say) a prior belief or decreasing
the precision upon the sensory evidence. What matters is just the rela-
tive balance of influence, however that is achieved. For it is that relative
balance that determines agentive response.

7.3 The Spiral of Inference and Experience

Recall the PP account (Fletcher & Frith, 2009) of the emergence of delu-
sions and hallucination (the so-called “positive symptoms’) in schizo-
phrenia sketched in 2.12. The basic idea was that both these symptoms
might flow from a single underlying cause: falsely generated and highly
weighted (high-precision) waves of prediction error. The key distur-
bance is thus a disturbance in metacognition—for it is the weighting
(precision) assigned to these error signals that makes them so function-
ally potent, positioning them to drive the system into plasticity and
learning, forming and recruiting increasingly bizarre hypotheses so
as to accommodate the unrelenting waves of (apparently) reliable and
salient yet persistently unexplained information. The resulting higher
level hypotheses (such as telepathy and alien control) appear bizarre
and unfounded to the external observer, yet from within now constitute
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the best, because the only, explanation available—much like suspicions
about the Good Garage Guide in the warning light example rehearsed
above. Once such higher level stories take hold, new low-level sensory
stimulation may be interpreted falsely. When these new priors domi-
nate, we may thus experience hallucinations that appear to confirm or
consolidate them. This is no stranger, at root, than prior expectations
making a hollow mask look solidly convex (see 1.17) or white noise
sound like ‘White Christmas’ (see 2.2). At that point (Fletcher & Frith,
2009, p. 348), false inferences supply false percepts that lend spurious
support to the theories that gave rise to them, and the whole cycle
becomes perniciously self-confirming.

What about the ‘obvious” higher level explanation, which a friend
or doctor might even suggest to an affected agent, namely, that the agent
herself is cognitively compromised? This should indeed constitute an
acceptable high-level explanation, yet it is one that severely affected
subjects find unconvincing. In this context, it is worth noting that pre-
diction error signals are not objects of (or realizers of) experience. The
‘red warning light” in the analogy is thus not an experience of a predic-
tion error signal. The PP suggestion is not that we experience our own
prediction error signals (or their associated precisions) as such. Instead,
those signals act within us to recruit the apt flows of prediction that
reveal a world of distal objects and causes. Persistent unresolved pre-
diction error signals may, however, yield amorphous feelings of ‘salient
strangeness’, in which subjects find themselves powerfully affected by
what (to others) seem like mere accidental coincidences, and so forth.
Within a hierarchical setting, this amounts (Frith & Friston, 2012) to
an ongoing disturbance at the lower levels whose only resolution lies
in bizarre, counter-evidence resistant, top-level theorizing. This fits,
Frith and Friston suggest, with first-person reports such as those of
Chadwick (1993), a trained psychologist who suffered an episode of
paranoid schizophrenia. Chadwick recalls that he ‘had to make sense,
any sense, out of all these uncanny coincidences’ and that he ‘did it
by radically changing [his] conception of reality’. Commenting on this,
Frith and Friston write that:

In our terminology, these uncanny coincidences were false
hypotheses engendered by prediction errors with inappro-
priately high precision or salience. To explain them away
Chadwick had to conclude that other people, including radio
and television presenters, could see into his mind. This was
the radical change he had to make in his conception of reality.
(Frith & Friston, 2012, section 8)
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7.4 Schizophrenia and Smooth Pursuit Eye Movements

Such conjectures are both interesting and plausible. But a major attrac-
tion of the PP account is that it also provides a compelling account of
a variety of other, less dramatic but equally diagnostic, features. One
such feature concerns some anomalies in the ‘smooth pursuit eye
movements’ displayed by schizophrenic subjects. The background to
this work is a robust pattern of differences between normal and schizo-
phrenic subjects during the smooth pursuit of temporarily visually
occluded targets.

Smooth pursuit eye movements® may be contrasted with saccadic
eye movements. Human eyes are able to saccade around a visual scene,
jumping from target to target in quick bursts. But when a moving object
is present, the eyes can ‘lock on’ to the object, smoothly tracking it
through space (unless it is moving too quickly, in which case so-called
‘catch-up saccades’ are initiated). Smooth pursuit eye movements are
able to track slowly moving objects, keeping their image upon the high
resolution fovea. In smooth pursuit (see Levy et al., 2010), the eyes move
at less than 100 degrees per second and (within those bounds) eye
velocity closely matches the velocity of the target. A common example,
still in use as a handy neurological indicator during physical examina-
tions, is following the doctor’s moving finger with your eyes, without
moving your head or body, as she moves it to and fro in front of you.
(You can perform the same routine on your own, holding your hand
out at arm’s length and tracking the tip of your forefinger as you move
your hand left and right. If your eyes are jerky under such conditions,
you would score low on a ‘field sobriety test” and might be suspected
of being under the influence of alcohol or, for that matter, ketamine.)

Smooth pursuit eye movements involve two phases: an initiation
phase and a maintenance phase (distinguished by open and closed
loop feedback, respectively). During the maintenance phase, the quan-
tity known as ‘pursuit gain’ (or equivalently, as ‘maintenance gain’)
measures the ratio of the eye velocity to the target velocity. The closer
to 1.0 this is, the greater the correspondence between the velocity of
the target and that of the eye. Under such conditions, the image of the
target remains stable on the fovea. When the two diverge, catch-up (or
back-up) saccades may occur, bringing the two back into line.

Schizophrenic subjects robustly display a variety of impairments
to smooth pursuit (also known as ‘eye tracking dysfunctions’) espe-
cially when the pursued target becomes occluded from view or changes
direction. According to the authoritative review by Levy et al. (2010),
‘eye tracking dysfunction (ETD) is one of the most widely replicated
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behavioral deficits in schizophrenia and is over-represented in clini-
cally unaffected first-degree relatives of schizophrenia patients’ (Levy
et al, 2010, p. 311).

In particular, we will focus (following Adams et al., 2012) on three
differences that robustly distinguish the performance of normal and
schizophrenic subjects. They are:

1. Impaired tracking during visual occlusion. Schizophrenic sub-
jects produce slower tracking and this is especially marked when
the tracked item becomes occluded (obscured from view). Thus,
whereas the pursuit gain of a neurotypical subject is around 85%, it
averages around 75% in the schizophrenic population. More strik-
ingly still, when a moving target becomes temporarily occluded
from view, neurotypical subjects are able to track with a gain of
60-70%, while schizophrenic subjects track at 45-55% (see Hong
et al.,, 2008; Thaker et al,, 1999, 2003).

2. Paradoxical improvement. When a target unexpectedly changes
direction, schizophrenic subjects briefly outperform neurotypical
ones, producing a better matching target/eye velocity for the first
30 ms of the new trajectory (see Hong et al., 2005).

3. Impaired repetition learning. When a target trajectory is repeated
several times, neurotypical subjects achieve optimal performance,
whereas schizophrenic subjects do not (see Avila et al., 2006).

This whole complex of otherwise puzzling effects (the paradoxical
improvement as well as the twin deficits) emerge simultaneously as a
result of a single disturbance to an economy of hierarchical prediction
and precision-weighted prediction error, as we shall next see.

7.5 Simulating Smooth Pursuit

Adams etal. (2012) review a large swathe of evidence suggesting that the
predictive components of smooth pursuit eye movements are the most
sensitive to schizotypal disturbance, and hence provide greater insight
(and diagnostic potential) than simple measures of maintenance gain
per se. For example (Nkam et al., 2010), smooth pursuit of a randomly
moving stimulus is indistinguishable between schizotypal and neuro-
typical subjects. Once motion becomes to some degree predictable, dif-
ferences begin to appear. But they become increasingly marked as the
predictive component increases. When the moving object is temporar-
ily occluded from view, the predictive component is large, and the dif-
ferences between the two populations are (as we saw earlier) greatest.
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To highlight the predictive component, a measure known as ‘mean
predictive gain” was introduced (Thaker et al,, 1999). Mean predictive
gain is the average gain during periods of occlusion. Occlusion also
results, in all subjects, in a period of deceleration of the eye followed by
an increase back towards the target velocity. To allow for this, ‘residual
predictive gain” measures the mean predictive gain minus that period
of general deceleration. In a large sample, spanning both severe and
less severe sub-types of schizotypal subjects, all showed diminished
residual predictive gain, as did symptom-free schizotypal relatives. By
contrast, only severely affected individuals showed diminished main-
tenance gain in general.

Such evidence reveals strong links between the most distinctive
patterns of effect upon schizotypal smooth pursuit and the predictabil-
ity of the moving stimulus. The more predictively demanding the task,
the greater the divergence from neurotypical patterns of response and
tracking. In this respect, the evidence concerning smooth pursuit falls
neatly into place as part of a larger mosaic of results and conjectures
concerning schizotypal responses to certain illusions, the well-known
work on ‘self-tickling’ (chapter 4), and delusions of control. We shall
return to all of these topics in subsequent sections.

To explore the possible effects of disturbance to a predictive pro-
cessing system on smooth pursuit eye movements, Adams et al. (2012)
deployed a simplified hierarchical generative model involving linked
equations for sensing and the control of motion. Heuristically,* the
model ‘believes’ that its gaze and the target object are both attracted
to a common point defined in extrinsic coordinates lying on a single
(horizontal) dimension. Thus, ‘the generative model ... is based upon
the prior belief that the centre of gaze and target are attracted to a com-
mon (fictive) attractor in visual space’ (Adams et al, 2012, p. 8). Such
simple heuristics can support surprisingly complex forms of adaptive
response. In the case at hand, the simulated agent, operating under the
influence of that heuristic ‘belief’, displays smooth pursuit even in the
presence of occluding objects. Pursuit continues despite the interven-
ing occluding object because the network now acts as if a single hidden
cause is simultaneously attracting both eye and target. Importantly,
however, the generative model also includes sufficient hierarchical
structure to allow the network to represent target motion involving
periodic trajectories (i.e., the frequency of periodic motion of the tar-
get). Finally (and crucially) each aspect and leve] of processing involves
associated precision expectations encoding the simulated agent’s con-
fidence about that element of the evolving signal: either the sensory
input itself, or expectations concerning the evolution of the sensory
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‘nput over time—in this case, expectations concerning periodic motion
of the target.

This model, simplified though it is, captures many key aspects of
normal smooth pursuit eye movements. In the continued presence of
the moving target, the eye tracks smoothly after a short delay. When
a target is occluded for the first time, the system loses its grip on the
hidden motion after about 100 ms, and must produce a catch-up sac-
cade (which is only approximately modelled) when the target emerges.
But when the same sequence is repeated, tracking notably improves. At
that point, the second level of the network can anticipate the periodic
dynamics of the motion and is able to use that knowledge to provide
apt context-fixing information to the level below, in effect making the
lack of ongoing sensory stimulation (while the target is occluded) less
surprising. These results provide a good qualitative fit with data from
human subjects (e.g., Barnes & Bennett, 2003, 2004).

7.6 Disturbing the Network (Smooth Pursuit)

Recall the three distinctive features (7.4) of smooth pursuit eye move-
ments in schizophrenic subjects. These were impaired tracking during
visual occlusion, paradoxical improvement with unexpected changes
of trajectory, and impaired repetition learning. Each of these effects,
Adams et al. (2012) argue, can be traced to a single underlying deficit in
a prediction-based inner economy: the same deficit, in fact, that (see 4.2)
was invoked to explain schizophrenic performance on force-matching
tasks, and the much-remarked improvement in the ability to self-tickle
(see, e.g., Blakemore et al., 1999; Frith, 2005; Shergill et al., 2005; and dis-
cussion in chapter 4).

Thus suppose that schizophrenia, somewhere near the beginning
of a Jong and complex causal chain, actually involves a weakening (see
Adams, Stephan, et al., 2013) of the influence of prior expectations rela-
tive to the current sensory evidence. This may strike the reader as odd.
Surely, I hear you say, the opposite must be the case, for these subjects
appear to allow bizarre high-level beliefs to trump the evidence of their
senses! It seems increasingly possible, however, that the arrows of cau-
sality move in the other direction. A weakened influence of prior expec-
tations relative to the sensory input may result, as we shall later see, in
anomalous sensory experiences in which (for example) self-generated
action appears (to the agent) to have been externally caused. This in
turn may lead to the formation of increasingly strange higher level the-
ories and explanations (see Adams, Stephan, et al., 2013).
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An important factor impacting the crucial balance between sen-
sory evidence and higher level beliefs is an agent’s capacities to reduce
(attenuate) the precision of sensory evidence during self-produced
movements. Such a capacity is (for reasons we shall explore shortly)
functionally crucial. Weakening of this capacity (i.e., reduced sensory
attenuation®) would explain, as remarked in chapter 4, schizophrenic
subjects’ better-than-normal® abilities to self-tickle and to accurately
match an experienced force with a self-generated one. In exploring
these issues, it is important to bear in mind that it is the balance between
the precision of lower and higher levels states that is functionally sig-
nificant, so increasing the precision (hence increasing the influence)
of low-level sensory prediction errors and decreasing the precision
(hence decreasing the influence) of errors associated with higher level
predictions will amount—at least as far as the inferential process is
concerned—to the same thing.

In the case of smooth pursuit eye movements, reducing the preci-
sion on prediction errors at higher levels (specifically, at the second
level in the simple simulation of Adams et al., 2012) of the process-
ing hierarchy results in the specific constellation of effects described
earlier. To show this, Adams et al. lowered the precision upon pre-
diction error at the second level of the simulated smooth pursuit net-
work sketched in 7.5. The immediate effect of this was to reduce the
impact of prediction errors concerning the periodic motion of the
target. At lower speeds, while the moving object is in sight, the two
networks show the same behaviour, since the reduced higher level
precision” network (RHLP-net for short) then relies upon the sensory
input to guide the behaviour. But when the object is occluded, such
reliance is impossible and the RHLP network is impaired relative
to its ‘neurotypical’ cousin. As the number of cycles increases, this
effect becomes increasingly pronounced. This is because impaired
precision at the second level results not just in a reduction in the
immediate influence of expectations concerning motion relative to
that of the sensory input but also in an impaired ability to learn—in
this case, an inability to learn, from continued exposure, about the
frequency of periodic motion (see Adams et al,, 2012, p. 12). Finally,
the RHLP net also showed a subtle pattern of ‘paradoxical improve-
ment’, outperforming the neurotypical net when an unoccluded tar-
get unexpectedly changes direction. This whole pattern of effects
flows very naturally from the presence of reduced higher level
precision, since under such conditions the net will do worse when
well-constructed predictions improve performance (e.g., behind the
occluder and at higher speeds), better when predictions mislead
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.e.g., when an expected trajectory is suddenly altered), and will be
impaired in learning from experience.

The kind of disturbance modelled here is physiologically (Seamans
& Yang, 2004) and pharmacologically (Corlett et al., 2010) plausible. If
precision is indeed encoded by mechanisms that affect the gain on
error reporting superficial pyramidal cells, and if higher level (visual
or ocular) error reporting cells are found especially (as it seems likely)
in the frontal eye fields of the prefrontal cortex, then the kinds of dopa-
minergic, NMDA, and GABAergic receptor abnormalities reported in
the literature provide a clear route by which higher level precision,
implemented as synaptic gain in PFC, might become impaired.” Such
abnormalities would selectively impair the acquisition and use of
higher level expectations, reducing both the benefits and (under rare
conditions) costs associated with the use of contextual information to
anticipate sensory input.

7.7 Tickling Redux

The explanatory apparatus that so neatly accounts for the disturbances
to smooth pursuit eye movements also suggests important amend-
ments to the standard account of enhanced schizophrenic capacities for
self-tickling sketched in chapter 4. The most revealing aspect of these
amendments, as we shall see, is that they better connect the sensory
effects to both motor impairments and the emergence of delusional
beliefs, thus explaining a complex constellation of observed effects
using a single mechanism.

Schizophrenic subjects, recall, show enhanced capacities for
self-tickling when compared with neurotypical controls. Self-produced
tickles, that is to say, are rated as more genuinely ticklish by the schizo-
phrenic subjects than by neurotypical controls (Blakemore et al., 2000).
This effect is genuinely at the level of the sensations involved and is
not merely some anomaly of verbal reporting, as evidenced by schizo-
phrenic performance on the force-matching task (see 4.2) in which ver-
bal report is replaced by attempting to match a reference force. Here,
neurotypical agents, as remarked earlier, ‘over-match’ the reference
force, delivering greater self-generated forces in ways that lead (in
multiagent scenarios) to ongoing escalations of applied pressure. This
effect is reduced in schizophrenic subjects who perform the task more
accurately (Shergill et al., 2005). Here too, then, there is a kind of “para-
doxical improvement” in which the schizotypal percept is more accu-
rate than that of a neurotypical subject. Neurotypical subjects display
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sensory attenuation for many forms of self-generated stimuli includ-
ing the pleasantness and intensity of self-generated touch (rated as less
pleasant and less intense than the same stimulation when provided
by alternative means) and even for self-generated visual and auditory
stimuli (Cardoso-Leite et al,, 2010; Desantis et al., 2012). Quite gener-
ally, then, self-produced sensation is attenuated (reduced) in the neu-
rotypical case, and this attenuation is ifself reduced in schizophrenic
subjects.

A possible explanation, and one that simultaneously accounts
for the emergence of characteristic delusional beliefs about agency, is
offered by Brown et al. (2013) (see also Adams et al., 2013; Edwards et al.,
2012). The more standard explanation (the one we met in chapter 4) is
that an accurate forward model normally allows us to anticipate our
own self-applied forces, which seem weaker (attenuated) as a result.
Should such a model be compromised, the effects of our own actions
will (the standard model suggests) seem more surprising, hence more
likely to be attributed to external causes leading to the emergence
of delusions concerning agency and control. Brown et al. note three
important shortfalls of this standard account:

1. The link between successful prediction and reduced intensity of
a percept (e.g, in the force-matching or tickling tasks) is unclear.
Well-predicted elements of a signal, as we saw in chapters 1-3, are
‘explained away’ and hence exert no pressure to select a new or
different hypothesis. But this says nothing about the intensity or
otherwise of the perceptual experience that the current winning
hypothesis delivers.

2. Manijpulating the predictability of a self-generated sensation
does not seem to impact the degree of sensory attenuation expe-
rienced (Baess et al., 2008). In other words, the magnitude of pre-
diction error looks unrelated to the degree of sensory attenuation
experienced.

3. Most significantly, sensory attenuation occurs even for stimuli that
are externally generated (e.g., by the experimenter) as long as they
are applied to a body-part that is either undergoing self-generated
motion or that the agent expects to move (Voss et al., 2008). Such
attenuation in respect of externally applied stimulations cannot
be explained, Voss et al. note, by the normal apparatus of forward
models and efference copy. Instead, they provide ‘evidence for
predictive sensory attenuation based on higher-level motor prepa-
ration alone, excluding explanations based on both motor com-
mand and (re-)afferent mechanisms’ (Voss et al., 2008, p. 4).
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~0 accommodate these findings , Brown et al. first draw our attention
20 a somewhat perplexing complication for the PP account of action
Jescribed in chapter 4. Movement ensues, if that story is correct, when
:he sensory (proprioceptive) consequences of an action are strongly
credicted. Since those consequences (specified as a temporal trajectory
of proprioceptive sensations) are not yet actual, prediction error occurs,
which is then quashed by the unfolding of the action. This is ‘active
‘nference’ in the sense of Friston (2009) and Friston, Daunizeau, et al.
2010). But notice that movement will only occur if the body alters in
‘ine with the proprioceptive predictions rather than allowing the brain
w0 alter its predictions to conform to the current proprioceptive state
which might signal e.g that the arm is currently resting on the table). In
such cases there is an apparent tension between the recipe for percep-
zion (alter sensory predictions to match signals from the world) and the
recipe for action (alter the body/world to match sensory predictions)

This may seem surprising, given that PP claimed to offer an attrac-
tively unified account of perception and action. But, in fact, it is this
very unity that now makes trouble. For action, this account suggests, is
under the control of perception, at least insofar as bodily movements
are specified not by distinct high-level ‘motor commands’ but implic-
itly—Dby the trajectory of proprioceptive signals that would characterize
some desired action. The shape of our movements is thus determined,
PP here suggests, by predictions concerning the flow of proprioceptive
sensations as movements unfold (see Friston, Daunizeau, et al., 2010;
Edwards et al, 2012). Those predicted proprioceptive consequences
are then brought about by a nested series of unpackings culminating
in simple reflex arcs—fluid routines that progressively resolve the
high-level specification into apt muscle commands.

The tension between action and perception is now revealed. For
another way to quash proprioceptive prediction error is by altering the
predictions to conform to the actual sensory input (input that is cur-
rently specifying ‘hand resting on table’) rather than by bringing the
predicted proprioceptive flow into being by moving the body. To avoid
immobility, the agent needs to ensure that action, contingent upon the
predicted proprioceptive states associated with (say) reaching for the
beer mug, wins out over veridical perception (signalling that the hand
is currently immobile).

There are two (functionally equivalent) ways this might be
achieved. Either the precision associated with the current sensory input
(specifying that the hand is immobile on table) needs to be reduced, or
the precision associated with the higher level representation (specify-
ing the trajectory to the beer mug) needs to be increased. As long as the
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balance between these is correct, movement (and mug grasping) will
ensue. In the next two sections, we consider what happens if that bal-
ance is altered or disturbed.

7.8 Less Sense, More Action?

Brown, Adams, et al. (2013) offer a series of simulations that (just as in
the experiments reported in 7.6) explore the consequences of altering
the precision-modulated balance between sensory input and higher
level prediction. The basic scenario here is one in which a given somato-
sensory input (e.g., one involving a sensation of touch) is generated
ambiguously and could be the result of a self-generated force, an exter-
nally imposed force, or some mixture of the two. To identify the origin
of the somatosensory stimulation, the system (in this simplified model)
must use proprioceptive information (information about muscle ten-
sions, joint pressures, and so on) to distinguish between self-generated
and externally generated inputs. Proprioceptive predictions origi-
nating from higher levels of processing are (in the usual manner of
active inference) positioned to bring about movement. Finally, variable
precision-weighting of sensory prediction error enables the system to
attend to current sensory input to a greater or lesser degree, flexibly
balancing reliance upon (or confidence in) the input with reliance upon
(or confidence in) its own higher level predictions.

Such a system (for the full implementation, see Brown, Adams,
et al, 2013) is able to generate a bodily movement when (but only when)
the balance between reliance upon current sensory input and reliance
upon higher level predictions is correct. At the limit, errors associ-
ated with the higher level proprioceptive predictions (specifying the
desired trajectory) would be accorded a very high weighting, while
those associated with current proprioceptive input (specifying the
current position of the limb or effector) would be low-weighted. This
would deliver extreme attenuation of the current sensory information,
allowing errors concerning the predicted proprioceptive signals to
enjoy functional primacy, becoming a self-fulfilling prophecy as the
system moves so as to quash those highly weighted errors.

As sensory attenuation is reduced, however, the situation
changes dramatically. At the opposite extreme, when sensory preci-
sion is much higher than that associated with higher level prediction,
there is no attenuation of the current sensory input and no movement
can ensue. Brown et al. explored this balance using many different
runs of the simulation, showing (as would now be expected) that ‘as
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*he prior precision increases in relation to sensory precision, prior
beliefs are gradually able to incite more confident movement’ (p. 11).
In the active inference setting, then, ‘sensory attenuation is neces-
sary if prior beliefs are to supervene over sensory evidence, during
self-generated behavior” (p. 11). This is already an interesting result,
since it provides a fundamental reason for the kinds of sensory
attenuation noted in 7.7, including attenuation, during self-generated
movement, in respect even of externally generated inputs (the case
most resistant to explanation by the standard forward-model-based
account).

Importantly, less confidence in sensory prediction error means less
confidence in beliefs about the causes of such error. Brown, Adams,
et al. (2013, p. 11) describe this state as one of ‘transient uncertainty’
due to a ‘temporary suspension of attention [recall that attention, in PP
is implemented by increased precision-weighting of prediction error]
to sensory input’. The upshot is that externally generated sensations
will in general be registered much more forcefully than internally gen-
erated ones. In the context of self-generated movements, higher level
predictions are able to entrain movements only courtesy of the attenu-
ation (reduced precision) of current sensory inputs. A somatosensory
state, when externally produced, will thus appear more intense (less
attenuated) than the very same state when produced by means of
self-generated action (see Cardoso-Leite et al., 2010). If a subject is then
asked to match an externally generated force with an internally gener-
ated one (as in the force-matching task rehearsed earlier), force escala-
tion will immediately follow (for some compelling simulation studies
of this effect, using the apparatus of active inference described above,
see Adams, Stephan et al., 2013).

In sum, action (under active inference) requires a kind of targeted
dis-attention in which current sensory input is attenuated so as to allow
predicted sensory (proprioceptive) states to entrain movement. At first
sight, this is a rather baroque (Heath Robinson / Rube Goldberg —like)
mechanism?® involving an implausible kind of self-deception. According
to this story, it is only by downplaying genuine sensory information
specifying how our bodily parts are actually currently arrayed in space
that the brain can ‘take seriously” the predicted proprioceptive infor-
mation that determines movement, allowing those predictions to act
(as we saw in chapter 4) directly as motor commands. Whether this
part of the PP story is correct, it seems to me, is one of the larger open
questions hereabouts. On the plus side, however, such a model helps
make sense of familiar (but otherwise puzzling) phenomena, such as
the impairment of fluent motor action by deliberate acts of attention
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(choking’), and a variety of somatic delusions and disorders of move-
ment, as we shall now see.

7.9 Disturbing the Network (Sensory Attenuation)

Assuming (for the sake of argument) that the story just rehearsed is
correct, we can now ask ourselves what would happen if this capac-
ity for targeted dis-attention is impaired or damaged? Such a system
would be unable to attenuate the impact of ascending sensory predic-
tion errors. Impaired capacities for attenuation will tend (we saw) to
prevent self-generated movement. The situation is nicely summarized
by Edwards et al. who note that:

If the precision of high-level representations supervenes, then
proprioceptive prediction errors will be resolved through clas-
sical reflex arcs and movement will ensue. However, if pro-
prioceptive precision is higher, then proprioceptive prediction
errors may well be resolved by changing top-down predic-
tions to accommodate the fact that no movement is sensed. In
short, not only does precision determine the delicate balance
between sensory evidence and prior beliefs in perception,
through exactly the same mechanisms, it can also determine
whether we act or not. (Edwards et al., 2012, p. 4)

If sensory attenuation is impaired, the higher level predictions that
would normally result in movement may indeed be formed, but will
now enjoy reduced precision relative to the sensory input, rendering
them functionally inert or (at the very least) severely compromised.’

This pattern of effects, Brown, Adams, et al. (2013, p. 11) argue,
might also underlie the everyday experience of ‘choking’ while
engaged in some sport or delicate (but well-practiced) physical activity
(see Maxwell et al., 2006). In such cases, the deployment of deliberate
attention to the movement seems to interfere with our own capacities
to produce it with fluency and ease. The problem may be that attending
to the movement increases the precision of current sensory information
with a consequent decrease in the influence of the higher level proprio-
ceptive predictions that would otherwise entrain fluid movement.

At high levels of impairment (of the normal process of sensory
attenuation), movement becomes impossible and the system—although
biomechanically sound—is incapable of movement. This was demon-
strated by Brown et al. using a simple simulation in which systemic
confidence or certainty about sensory prediction error was varied.
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Movement required the precision of higher level proprioceptive pre-
dictions to be high relative to that of the sensory evidence. When the
reverse was the case, movement was blocked. Under such conditions,
the only way to restore movement is to artificially inflate the precision
of the higher level states (i.e., to increase the precision of prediction
errors at the higher level). Weakened sensory attenuation is now over-
come and movement enabled. This is because the higher level predic-
tions (that unpack into a trajectory of proprioceptive states implied by
some target action) now enjoy increased precision relative to that of
the (still unattenuated) current sensory states. At a certain point (as
demonstrated in the simulation studies by Adams, Stephan, et al,
2013) this will allow movement to occur yet abolish the force-matching
illusion (and presumably enable self-tickling, were that part of the
simulation!)—the combination characteristic of schizophrenic subjects.

This remedy, however, brings with it a cost. For the system, though
now able to self-generate movements, becomes prone to a variety of
‘somatic delusions”. This is because those over-precise (unattenuated)
sensory prediction errors still need to be explained. To do so, the simu-
lated agents studied by Adams, Stephan, et al. (2013; and by Brown,
Adams, et al,, 2013) infer an additional external force—a ‘hidden exter-
nal cause’ for what is, in fact, a purely self-generated pattern of sen-
sory stimulation. This agent ‘believes that when it presses its finger on
its hand, something also pushes its hand against its finger’ (Brown,
Adams, et al,, 2013, p. 14). We ‘expect’ the sensed consequences of our
own actions to be attenuated relative to similar sensory consequences
when induced by external forces. But now (despite being, in fact, the
originator of the action) the simulated agent fails to attenuate those sen-
sory consequences, unleashing a flow of prediction error that recruits a
new—but delusional—hypothesis. This establishes a fundamental link
between the observed failures of sensory attenuation in schizophrenia
and the emergence of false beliefs concerning agency.

7.10 ‘Psychogenic Disorders” and Placebo Effects

A very similar pattern of disturbed inference, again consequent upon
alterations to the delicate economy of precision-weighting, may explain
certain forms of ‘functional motor and sensory symptoms’. This names
a constellation of so-called ‘psychogenic’ disorders in which there are
abnormal movements or sensations, yet no apparent ‘organic’ or physi-
ological cause. Following Edwards et al. (2012), I use the term ‘func-
tional motor and sensory symptoms’ to cover such cases: cases that are
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sometimes described as ‘psychogenic’, ‘non-organic’, ‘unexplained’, or
even (in older parlance) ‘hysterical’? The suggestions that follow are
equally applicable (though they are there associated with more positive
outcomes) to an understanding of the potency and scope of ‘placebo
effects’ (see Biichel et al., 2014; Atlas & Wager 2012; Anchisi and Zanon
2015).

Functional motor and sensory symptoms are surprisingly common
and are diagnosed in around 16% of neurological patients (Stone et al.,
2005). Examples included organically unexplained cases of ‘anaesthe-
sia, blindness, deafness, pain, sensorimotor aspects of fatigue, weak-
ness, aphonia, abnormal gait, tremor, dystonia and seizures” (Edwards
et al,, 2012, p. 2). Strikingly, the contours of the problems that afflict
these patients often follow ‘folk” notions of the demarcation of bodily
parts (e.g., where a paralysed hand stops and an unparalysed arm
begins') or of the visual field. Another example is:

‘tubular’ visual field defect, where patients with a functional
loss of their central visual field report a defect of the same
diameter, whether it is mapped close to them or far away. This
defies the laws of optics, but may fit with (lay) beliefs about the
nature of vision. (Edwards et al,, 2012, p. 5)

Similarly, so-called ‘whiplash injury’ following motor accidents
turns out to be very rare in countries where the general population is
unaware of the anticipated ‘shape’ of this injury (Ferrari et al., 2001).
But where the injury is well-publicized, Edwards et al. (2012, p. 6)
note ‘the expectation in population surveys of the medical conse-
quences of minor traffic accidents mirrors the incidence of whiplash
symptoms”.

The role of expectations and prior beliefs in the etiology of such
(genuinely physically experienced) effects is further evidenced by their
manipulability. Thus:

In a related study of low back pain after minor injury in
Australia, a state-wide campaign to change expectations
regarding the consequences of such injury led to a sustained
and significant reduction in the incidence and severity of
chronic back pain (Buchbinder and Jolley, 2005). (Edwards
et al, 2012, p. 6)

One route by which prior beliefs might impact both sensory and motor
performances is via the distribution of attention. Functional motor and
sensory symptoms are already associated, in a long and compelling lit-
erature, with alterations in the flow and distribution of bodily attention
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and more specifically with introspective tendencies and a kind of
‘body-focused attentional bias’ (see Robbins & Kirmayer, 1991, and
reviews by Brown, 2004, and Kirmayer & Tailefer, 1997). Attempting to
tie this large literature together, Brown identifies, as a leading thread,
‘the repetitive reallocation of high-level attention on to symptoms’”. It is
natural to suppose that the allocation of attention, in such cases, is an
effect rather than a cause. However, both the tendency to ‘track’ folk
notions of sensory and motor physiology and the diagnostic signs used
to identify cases of functional motor and sensory symptoms speak
against this. For example, ‘if a patient with functional leg weakness
is asked to flex their unaffected hip, their unattended “paralysed” hip
will automatically extend; this is known as Hoover’s sign (Ziv et al.,
1998)" (Edwards et al,, 2012, p. 6). In a wide range of cases, functional
sensory and motor symptoms are thus ‘masked” when subjects are not
attending to the affected element.

Such linkages between functional motor and sensory symptoms
and abnormalities in the allocation of attention are especially sugges-
tive when considered within the predictive processing framework.
Within that framework, attention corresponds, as we have noted on
many occasions, to the weighting of prediction error signals at vari-
ous processing levels according to their estimated precision (inverse
variance). This weighting determines the balance between top-down
expectation and bottom-up sensory evidence. That same balance, if the
class of models we have been pursuing is on track, determines what is
perceived and how we act. This opens up a space in which to explore a
unified model of the etiology of functional symptoms in both the sen-
sory and motor domain.

7.11  Disturbing the Network (‘Psychogenic” Effects)

The fundamental problem leading to functional motor and sensory
symptoms, Edward et al. suggest, may be a disturbance to the mecha-
nisms of precision-weighting at (in the first instance) intermediate’ lev-
els of sensorimotor processing. Such a disturbance (itself as ultimately
biological as any other physiological malfunction) would consist in the
overweighting of prediction error at that intermediate level, leading to
a kind of systemic overconfidence in that specific set of probabilistic
expectations, and hence in any bottom-up sensory inputs that seem to
conform to them.

Suppose this were to occur against the backdrop of some salient
physical event, such as an injury or a viral infection. Such events
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frequently (but not always, see below) precede the onset of functional
motor or sensory symptoms (Stone et al., 2012). Under such conditions:

salient sensory data arising from these precipitating events
are afforded excessive precision (weight) . . . this instantiates an
abnormal prior belief atanintermediate level in the cortical hier-
archy trying to explain or predict those sensations—and that
abnormal belief or expectation is rendered resistant to extinc-
tion through the unusually high levels of precision (synaptic
gain) enjoyed during its formation. (Edwards et al., 2012, p. 6)

Precipitating events are not, however, a necessary condition (given
the model) for functional motor and sensory symptoms. Thus sup-
pose that, for whatever reason, some sub-personal, intermediate-level
expectation of a sensation or bodily movement (or equally, some
expectation of a lack of sensation or bodily movement) is formed.
That intermediate-level prediction now enjoys enhanced status, due
to the disturbed (inflated) precision of prediction error reporting
at that level. Now, even random noise (fluctuations within normal
bounds) may be interpreted as signal, and the stimulus (or lack of
stimulus) ‘detected’. This is simply the ‘White Christmas’ effect that
we have now encountered many times in the text. In other words,
from the predictive processing perspective ‘there might only be a
quantitative—not qualitative—difference between “somatic amplifi-
cation” and the generation of completely false perceptions’ (Edwards
et al, 2012, p. 7).

To complete the picture, notice that the precise prediction errors
that select and ‘confirm’ the intermediate-level hypotheses serve to
reinforce the intermediate-level prior, hence self-stabilizing the mis-
leading pattern of somatic inference. At the same time, higher level
networks must try to make sense of these apparently confirmed, but
actually pathologically self-produced, patterns of stimulation (or lack
of stimulation). No higher level explanation, in terms of, for example,
some expected percept or sensation, or a systemic decision to move or
to not move, is available. The higher levels, one might say, were not pre-
dicting the movement or sensation, even though it originated from the
system itself. To make sense of this, new causes—such as basic illness or
neurological injury—are inferred. In short, there occurs what Edwards
et al. (2012, p. 14) describe as a ‘misattribution of agency, where experi-
ences that are usually generated in a voluntary way are perceived as
involuntary”. The self-produced sensations are now classed as symp-
toms of some elusive biological dysfunction. And indeed they are: but
the dysfunction might also, and perhaps more properly, be thought of



EXPECTING OURSELVES 223

as cybernetic: as an imbalance in the complex inner economy of evi-
dence, inference, and control.®

The same broad story applies, as mentioned earlier, to so-called
‘placebo effects’. Recent decades have seen an increasing apprecia-
tion of the power and scope of such effects (for reviews, see Benedetti,
2013; Tracey, 2010). Expectancy, quite general, demonstrably affects the
behavioural, physiological, and neural outcomes of treatment and does
so both in the context of inert (classic placebo) treatments and in the
context of real treatments (Bingel et al,, 2011; Schenk et al, 2014). In a
recent review article on ‘placebo analgesia’ (though the authors prefer
to speak of ‘placebo hypoalgesia’, thus stressing expectancy-based pain
reduction rather than pain elimination), it is suggested that:

the ascending and descending pain system resembles a recur-
rent system that allows for the implementation of predictive
coding—meaning that the brain is not passively waiting for
nociceptive [painful] stimuli to impinge upon it but is actively
making inferences based on prior experience and expectations.
(Buchel et al,, 2014, p. 1223)

The suggestion is that top-down predictions of pain relief are com-
bined, at multiple levels of the neural hierarchy, with bottom-up sig-
nals, in a way modulated (as always) by their estimated precision—the
certainty or reliability assigned to the predictions. This provides a very
natural account of the documented impact of complex rituals, visibly
sophisticated interventions, and patient confidence in doctors, practi-
tioners, and treatments.*

7.12  Autism, Noise, and Signal

Disturbances to that same complex economy of evidence, inference, and
expectation might (Pellicano & Burr, 2012) help explain the origination of
the so-called ‘non-social symptoms’ of autism. These are symptoms man-
ifest in the sensory rather than the social domain. The social symptoms
include the well-known difficulties in the recognition of other agents’
emotions and intentions and aversion to many forms of social interaction.
Non-social symptoms include hypersensitivity to sensory—especially
unexpected sensory—stimulation, repetitive behaviours and highly
regimented, restricted interests and activities. For a sketch of the whole
constellation of social and non-social elements, see Frith (2008).

A key finding in the perceptual domain (Shah & Frith, 1983) was
the enhanced capacity of autistic subjects to find an element (such as a
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triangle) when it occurs ‘hidden” within the context of a larger mean-
ingful figure (e.g., a picture of a pram). The capacity consistently to out-
perform neurotypical subjects on this ‘embedded figures’ task led to
the suggestion (Frith, 1989; Happé & Frith, 2006) that autistic subjects
display ‘weak central coherence’, that is, a processing style that fore-
grounds parts and detail at the expense of an easy grip upon the larger
context in which they occur. The hypothesis of a significant perceptual
processing difference between autistic and neurotypical populations is
further supported, Pellicano and Burr note, by studies showing autistic
subjects to be less susceptible to some visual illusions (e.g., the Kanizsa
triangle illusion, the hollow mask illusion, which we met in chapter 1,
and the tabletop illusion, see Figure 7.1). Autistic subjects are also more
likely to possess absolute pitch, are better at many forms of visual dis-
crimination (see Happé, 1996; Joseph et al., 2009; Miller, 1999; Plaisted
et al, 1998a,b), and are less susceptible to the hollow mask illusion
(Dima et al., 2009).

Given this body of evidence, some authors (Mottron et al., 2006;
Plaisted, 2001) have explored the idea that autism involves abnormally
strengthened or enhanced sensory experience. Such accounts have
been presented as alternatives to the notion of weak central coher-
ence, or weakened influence of top-down expectations. Notice however
that from a broadly Bayesian perspective, this apparent opposition

(©

FIGURE 7.1 Autistic Subjects Are Less Susceptible to Illusions in Which
Prior Knowledge is Used to Interpret Ambiguous Sensory Information
Examples of such illusions include (a) the Kanizsa triangle. The edges of the
triangle are not really there, but would be for the most probable physical
structure: a white triangle overlaying three regular circles. (b) The hollow-face
illusion. A strong bias (or ‘prior’) for natural concave faces offsets competing
information (such as shadows) and causes one to perceive a concave, hollow
mask (right) as a normal convex face (left). (c) Shepard’s table illusion. The 2D
images of the parallelograms are in fact identical. However, the image is consis-
tent with many 3D shapes, the most probable being real tables slanting at about
458: to be consistent with the identical 2D images, the table-tops need to be of
very different dimensions.

Source: Pellicano & Burr, 2012.
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loses some of its force since what really matters (see Brock, 2012) is
the achieved balance between top-down and bottom-up modes of
influence.

Taking the Bayesian perspective, Pellicano and Burr depict autistic
perception as involving a disturbance to systemic abilities to deal with
sensory uncertainty due to an attenuated influence of prior knowl-
edge.® The upshot of such weakened influence is a positive capacity
to treat more incoming stuff as signal and less as noise (leading to
the enhanced capacities to spot hidden figures and to recognize the
true contours of the sensory data). But this means, in turn, that huge
amounts of incoming information are treated as salient and worthy of
attention, thus increasing effortful processing and incurring signifi-
cant emotional costs. For example, where a neurotypical child learns
to recognize objects under a wide variety of lighting conditions and
can use the shadows cast by objects as a source of useful informa-
tion, such situations prove challenging to autistic subjects (Becchio
et al, 2010). Instead of falling into place as a predictable pattern of
sensory stimulation associated, in current context, with the presence
of a certain object, shadows may be treated as sensory data in need of
further explanation. In other words, the influence of top-down predic-
tions (priors) may usually serve—exactly as the predictive processing
model suggests—to strip the sensory signal of much of its newswor-
thiness’. Weakened influence of this kind (described by Pellicano and
Burr as ‘hypo-priors™) would result in a constant barrage of infor-
mation demanding further processing and might plausibly engender
severe emotional costs and contribute to the emergence of a variety
of self-protective strategies involving repetition, insulation, and
narrowing of focus.

Such an account, it seems to me, holds out promise not just as a
means of accommodating the ‘non-social symptoms’ of autism but also
as a potential bridge between those symptoms and disturbances to
fluid social engagement and interpersonal understanding. The more
complex the domain, one might reasonably suspect, the greater the
impact of attenuated priors upon inference and (hence) upon perfor-
mance and response. The social domain is highly complex (frequently
involving the appreciation of perspectives upon perspectives, as when
we know that John suspects that Mary is not telling the truth). It is,
moreover, a domain in which context (as every soap opera fan knows)
is everything and in which the meaning of small verbal and non-verbal
signs must be interpreted against a rich backdrop of prior knowledge.
The kind of signal/noise imbalance described earlier might thus result
in especially marked difficulties with both social interaction and (as a
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result) social learning. In just this vein, Van de Cruys et al. (2013) sug-
gest that:

The taxing experience in autism (cf. sensory overload) may
result from a perceptual system that continuously signals pre-
diction errors, indicating that there always remains something
to be learnt still and that attentional resources are needed. The
accompanying negative feelings could cause these patients
to avoid the most variable or unpredictable situations where
context-dependent high-level predictions are more important
than concrete perceptual details. This may be the case for
social interaction in particular. The overwhelming prediction
errors cause these patients (or their caregivers) to externalize
and enforce predictability through exact routines and patterns
in their daily activities. (Van de Cruys et al,, 2013, p. 96)

Van de Cruys et al. suggest, however, that rather than simply think-
ing in terms of attenuated priors, it might be fruitful to focus upon
the mechanisms by which the impact of priors at different levels are
modulated. This corresponds, within the predictive processing frame-
work, to the modulation of precision according to the demands of task
and context. In support of this proposal, the authors cite various evi-
dence showing that autistic subjects can construct and deploy strong
priors but may have difficulties applying them. This might follow if
those priors were constructed to fit a signal that, from a neurotypical
perspective at least, actually includes a lot of noise but is being treated
as precise. There is, however, no deep conflict between this account and
the more general sketch by Pellicano and Burr, since the assignment
of precision to prediction errors at various levels of processing itself
requires estimations of precision. It is the weakened influence of these
estimations (technically, these are hyperpriors) that then explains the
gamut of effects rehearsed above (see Friston, Lawson, & Frith, 2013).
Both autism and schizophrenia may thus involve (different but related)
disturbances to this complex neuromodulatory economy, impacting
experience, learning, and affective response.

In sum, variations in the (precision-modulated) tendency to treat
more or less of the incoming sensory information as ‘news’, and more
generally in the ability flexibly to modify the balance between top-down
and bottom-up information at various stages of processing, will play a
major role in determining the nature and contents of perceptual expe-
rience. Some variation along these dimensions may also be expected
in the general population also and might contribute to differences of
learning style and of preferred environment. We thus glimpse a rich,
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multidimensional space in which to begin to capture both the wide
variation seen amongst autistic subjects and within the neurotypical
population.

7.13 Conscious Presence

The accounts of schizophrenia, autism, and functional motor and
sensory symptoms just rehearsed move seamlessly between compu-
tational, neuroscientific, and phenomenological description. This fluid
spanning of levels is, we have seen, one of the hallmarks of the predic-
tive processing stable of models. Can we use this apparatus to shed
light on other aspects of human experience?

One such aspect is the feeling of ‘conscious presence’’® Using hier-
archical predictive processing as a theoretical framework, Seth et al.
(2011) sketch a preliminary theoretical account of this feeling, which
may be glossed as the feeling of being truly present in some real-world
setting. The account, though speculative, is consistent with a wide
variety of pre-existing theory and evidence (for a summary, see Seth
et al,, 2011; for some important developments, see Seth, 2014; and for a
review, Seth, 2013).

Alteration or loss of the sense of reality of the world is known as
‘derealization” and of the self, ‘depersonalization’, and the occurrence
of either or both symptoms is labelled Depersonalization Disorder
(DPD) (see Phillips et al,, 2001; Sierra & David, 2011). DPD patients may
describe the world as seeming to be cut off from them, as if they were
seeing it in a mirror or behind glass, and symptoms of DPD often occur
during the early (prodromal) stages of psychoses such as schizophre-
nia, where a general feeling of ‘strangeness or unreality’ may precede
the onset of positive symptoms such as delusions or hallucinations
(Moller & Husby, 2000).

The feeling of presence results, Seth et al. suggest, from the suc-
cessful suppression (by successful top-down prediction) of intero-
ceptive sensory signals. Interoceptive sensory signals are signals (as
the name suggests) concerning the current inner state and condition
of the body—they thus constitute a form of ‘inner sensing” whose
targets include states of the viscera, the vasomotor system, muscular
and air-supply systems, and many more. From a subjective viewpoint,
interoceptive awareness manifests as a differentiated array of feel-
ings including those of ‘pain, temperature, itch, sensual touch, muscu-
lar and visceral sensations ... hunger, thirst, and “air hunger”” (Craig,
2003, p. 500). The interoceptive system is thus mostly concerned with
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pain, hunger, and the states of various inner organs, and is distinct
from both the exteroceptive system which includes vision, touch, and
audition, and from the proprioceptive system" that carries information
about relative limb positions, effort, and force. Finally, it is thought that
anterior insular cortex (AIC) plays a special role in the integration and
use of interoceptive information, and (more generally) in the construc-
tion of emotional awareness—perhaps by encoding what Craig (2003,
p- 500) describes as ‘a meta-representation of the primary interoceptive
activity’.

Seth et al. invoke two interacting sub-mechanisms, one concerned
with ‘agency’ and implicating the sensorimotor system, and the other
with ‘presence” and implicating autonomic and motivational systems
(see Figure 7.2). The agency component here will be familiar from some
of our earlier discussions as it is based upon the original (Blakemore et
al., 2000; see also Fletcher & Frith, 2009) model of the disturbed sense
of agency in schizophrenia. That account (see 4.2) invoked a weakened
capacity to predict (with sufficient precision) the sensory consequences
of our actions as a prime component in the origination of feelings of
alien control and so on. But the account is compatible with the recent
refinements (7.7-7.9) suggesting that the primary pathology may actu-
ally be a failure to attenuate the impact of ascending sensory prediction
errors. The compatibility (for present purposes) is assured since what
matters functionally speaking is the balance between the precision
assigned to downwards-flowing prediction and to upward-flowing
sensory information—a balance that could be disturbed either by over-
estimating the precision of certain lower level signals (hence failing to
attenuate the impact of the current sensory state), or by underestimat-
ing the precision of relevant higher level predictions.

The sense of presence arises, Seth et al. suggest, from the inter-
action of the systems involved in explaining away exteroceptive and
proprioceptive error and systems involved in another type of predic-
tion: prediction of our own complex interoceptive states. A key site here,
Seth et al. speculate, may be the AIC since this area (as noted above)
is thought to integrate various bodies of interoceptive and exterocep-
tive information (see Craig, 2002; Critchley et al.,, 2004; Gu et al., 2013).
The AIC is also known to participate in the prediction of painful or
affect-laden stimulations (see Lovero et al., 2009; Seymour et al., 2004;
and recall the discussion in 7.9). AIC is also activated by seeing mov-
ies of people scratching, and its level of activation correlates with the
extent of ‘itch contagion’ experienced by the viewers (Holle et al., 2012),
suggesting that interoceptive inference can be socially as well as physi-
ologically driven (see Frith & Frith, 2012).
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FIGURE 7.2 Seth’s Model of Interoceptive Inference

In the model, emotional responses depend on continually updated predic-
tions of the causes of interoceptive input. Starting with a desired or inferred
physiological state (which is itself subject to update based on higher level
motivational and goal-directed factors), generative models are engaged which
predict interoceptive (and exteroceptive) signals via corollary discharge.
Applying active inference, prediction errors (PEs) are transcribed into actions
via engagement of classical reflex arcs (motor control) and autonomic reflexes
(autonomic control). The resulting prediction error signals are used to update
the (functionally coupled) generative models and the inferred/desired state
of the organism. (At high hierarchical levels these generative models merge
into a single multimodal model.) Interoceptive predictions are proposed to
be generated, compared, and updated within a ‘salience network’ (shaded)
anchored on the anterior insular and anterior cingulate cortices (AIC, ACC)
that engage brainstem regions as targets for visceromotor control and relays
of afferent interoceptive signals. Sympathetic and parasympathetic outflow
from the AIC and ACC are in the form of interoceptive predictions that
enslave autonomic reflexes (e.g., heart/respiratory rate, smooth muscle behav-
iour), just as proprioceptive predictions enslave classical motor reflexes in PP
formulations of motor control This process depends on the transient attenua-
tion of the precision of interoceptive (and proprioceptive) PE signals. Lightly/
darkly shaded arrows signify top-down/bottom-up connections.

Source: Seth, 2013.

The suppression of AIC activity by successful top-down predic-
tions of the ebb and flow of interoceptive states results, Seth et al. sug-
gest, in the sense of presence (or at least, in the absence of a sense
of non-presence, see note 18). Whereas DPD results, they argue, from
pathologically imprecise interoceptive predictions. Such imprecise
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(hence functionally emaciated) downward-flowing predictions will
fail to explain away the incoming streams of interoceptive informa-
tion, leading to the generation of persistent (but ill-founded) flurries of
prediction error. This may manifest subjectively as a hard-to-explain
sense of strangeness arising at the meeting point between exterocep-
tive and interoceptive expectations. Eventually, in severe cases, the
ongoing attempt to explain away such persistent error signals may
lead to the emergence of new but bizarre explanatory schemas (delu-
sional beliefs concerning our own embodiment and agency). The Seth
et al. account is thus structurally isomorphic to the account of Fletcher
and Frith (2009), as described in chapter 2.

There is increasing evidence, moreover, for an interoceptive-
inference-based account of the more general experience of body owner-
ship (EBO), where this just means the experience of ‘owning and identi-
fying with a particular body’ (Seth, 2013, p. 565). Here too, the suggestion
is that EBO may be the result of an inferential process involving ‘mul-
tisensory integration of self-related signals across interoceptive and
exteroceptive domains’ (Seth, 2013, pp. 565-566). Clearly, our own body
is a hugely important part of the world upon which we must maintain
some kind of grip if we are to survive and flourish. We must build
and maintain a grip upon our own bodily position (where we are), our
bodily morphology (current shape and composition), and our internal
physiological condition (as indexed by states of hunger, thirst, pain,
and arousal). To do so, Seth (2013) argues, we must learn and deploy a
generative model that isolates ‘the causes of those signals “most likely
to be me” across interoceptive and exteroceptive domains”. This is not
as hard as it sounds, for our own body is uniquely positioned to gener-
ate a variety of time-locked multimodal signals as we move, sense, and
act in the world. These include both exteroceptive and interoceptive
signals, which alter together in ways that are closely determined by our
own movements. Thus:

Among all physical objects in the world, it is only our body
that will evoke (i.e, predicts) this kind of multisensory
sensation—[a] congruence of multisensory input that has ...
been called ‘self-specifying’ (Botvinick, 2004). (Limanowski &
Blankenburg, 2013, p. 4)

The importance of bodily sensations in this constructive process is evi-
denced in a number of well-known studies involving the so-called ‘rub-
ber hand illusion’ (Botvinick & Cohen, 1998) mentioned in 6.11. Recall
that in these studies a visible artificial hand is stroked in time with a
subject’s real hand. Attending to the visually presented artificial hand
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induces a transient sense of ownership of the hand—one that translates
into genuine fear when the hand is suddenly menaced with a ham-
mer. Our experience of our own body, all this suggests, is the ongoing
product of a generative model that infers bodily location and compo-
sition from the time-locked barrage of multimodal sensory informa-
tion. Given the ecological implausibility of feeling a delicately timed
sequence of touches on a visible but non-owned hand, we downgrade
some elements of the signal (those specifying the precise spatial location
of the actual hand) so as to arrive at a best overall hypothesis—one that
now incorporates the rubber hand as a bodily part. Such effects, Seth
notes, are remarkably robust and have since been extended into face
perception and whole-body ownership (Ehrsson, 2007; Lenggenhager
et al,, 2007; Sforza et al., 2010).

Extending these studies to incorporate interoceptive (rather than
simply tactile) sensory evidence, Suzuki et al. (2013) used a virtual
reality headset to make a displayed rubber hand ‘pulse’ (by changing
colour) in time or out-of-time with subjects’ own heartbeats. Synchrony
between the interocepted cardiac rhythm and the visual pulseincreased
the sense of rubber-hand ownership (see Figure 7.3). This exciting result
provides the first clear-cut evidence that:

statistical correlations between interoceptive (e.g., cardiac) and
exteroceptive (e.g., visual) signals can lead to updating of pre-
dictive models of self-related signals through minimization
of prediction error, just as may happen for purely exterocep-
tive multisensory conflicts in the classic RHI [Rubber Hand
INlusion]. (Seth, 2013, p. 6)

Our ongoing sense of our own embodiment, all this suggests,
depends upon accommodating the full (interoceptive and exterocep-
tive) sensory barrage using a generative model whose dimensions cru-
cially track aspects of ourselves—our bodily array, our spatial location,
and our own internal physiological condition.

7.14 Emotion

These same resources may be deployed as the starting point for a
promising account of emotion. At this point, the proposal draws
(with a twist) upon the well-known James-Lange model of emotional
states as arising from the perception of our own bodily responses to
external stimuli and events (James, 1884; Lange, 1885). The idea there,
in a nutshell, was that our emotional ‘feelings’ are nothing but the
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(a) Participants sat facing a desk so that their physical (left) hand was out

of sight. A 3D model of the real hand was captured by Microsoft Kinect

and used to generate a real-time virtual hand that was projected into the
head-mounted display (HMD) at the location of the augmented-reality (AR)
marker. Subjects wore a front-facing camera connected to the HMD, so they
saw the camera image superimposed with the virtual hand. They also wore a
pulse-oximeter to measure heartbeat timings and they used their right hand
to make behavioural responses. (b) Cardio-visual feedback (left) was imple-
mented by changing the colour of the virtual hand from its natural colour
towards red and back, over 500 ms either synchronously or asynchronously
with the heartbeat. Tactile feedback (middle) was given by a paintbrush,
which was rendered into the AR environment. A ‘proprioceptive drift’ (PD)
test (right), adapted for the AR environment, objectively measured perceived
virtual hand position by implementing a virtual measure and cursor.

The PD test measures the perceived position of the real (hidden) hand by ask-
ing the participant to move a cursor to its estimated location (c) The experi-
ment consisted of three blocks of four trials each. Each trial consisted of two
PD tests flanking an induction period, during which either cardio-visual or
tactile-visual feedback was provided (12¢ s). Each trial ended with a question-
naire presented in the HMD. (D) PD differences (PDD, post-induction minus
pre-induction) were significantly larger for synchronous versus asynchro-
nous cardio-visual feedback in the ‘cardiac still’ (without finger movements),
but not the ‘cardiac move’ condition (with finger movements). PDDs were
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perceptions of our own varying physiological responses. According
to James:

the bodily changes follow directly the perception of the exciting fact,
and ... our feeling of the same changes as they occur is the emo-
tion. Common sense says, we lose our fortune, are sorry and
weep; we meet a bear, are frightened and run; we are insulted
by a rival, become angry and strike. The hypothesis here to be
defended says that this order of sequence is incorrect ... and
that the more rational statement is that we feel sorry because
we cry, angry because we strike, afraid because we tremble . ..
Without the bodily states following on the perception, the lat-
ter would be purely cognitive in form, pale, colorless, destitute
of emotional warmth. We might then see the bear, and judge
it best to run, receive the insult and deem it right to strike, but
we should not actually feel afraid or angry. (James, 1890/1950,

P- 449)

In other words, it is our interoceptive perception of the bodily changes
characteristic of fear (sweating, trembling, etc.) that, for James, consti-
tutes the very feeling of fear, giving it its distinctive psychological fla-
vour. The feeling of fear, if James is right, is essentially the detection of
a physiological signature that has already been induced by exposure to
the threatening situation.

Such an account is promising, but far from adequate as it stands.
For it seems to require a one-to-one mapping between distinct emo-
tional states and distinctive ‘brute-physiological’ signatures, and it
seems to suggest that whenever the physiological state is induced and
detected, the same emotional feeling should arise. Neither of these
implications (see Critchley, 2005) is borne out by observation and exper-
iment. The basic James-Lange story has, however, been extended and
refined in important work such as Critchley (2005), Craig (2002, 2009),
Damasio (1999, 2010), and Prinz (2005). Recent work by Seth (2013) and
by Pezzulo (2013) continues this trajectory of improvement, adding an
important ‘predictive twist. A neglected core component, Seth and

also significantly larger for synchronous versus asynchronous tactile-visual
feedback (‘tactile’ condition), replicating the classical RHI. Each bar shows the
across-participant average and standard error. (E) Subjective questionnaire
responses that probed experience of ownership showed the same pattern

as PDDs, whereas control questions showed no effect of cardio-visual or
tactile-visual synchrony.

Source: Adapted from Seth (2013) by permission.
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Pezzulo each suggest, is the match (or mismatch) between a cascad-
ing series of top-down predictions of our own interoceptive states, and
the forward-flowing information contained in (interoceptive) sensory
prediction error. Such interoceptive predictions, this story suggests
‘arise from multiple hierarchical levels, with higher levels integrating
interoceptive, proprioceptive, and exteroceptive cues in formulating
descending predictions’ (Seth 2013, p. 567).

These interoceptive, proprioceptive, and exteroceptive predictions
are constructed differently in different contexts, and each provides ongo-
ing guidance to the other. A single inferential process here integrates all
these sources of information, generating a context-reflecting amalgam
that is experienced as emotion. Felt emotions thus integrate basic infor-
mation (e.g, about bodily arousal) with higher-level predictions of prob-
able causes and preparations for possible actions. In this way: “the close
interplay between interoceptive and exteroceptive inference implies that
emotional responses are inevitably shaped by cognitive and exterocep-
tive context, and that perceptual scenes that evoke interoceptive predic-
tions will always be affectively coloured” (Seth 2013, p. 563).

The Anterior Insular Cortex is—as remarked earlier—remarkably
well-positioned to play a major role in such a process. Emotion and sub-
jective feeling states arise, this story suggests, as the result of multilevel
inferences that combine sensory (interoceptive, proprioceptive, and
exteroceptive) signals with top-down predictions to generate a sense
of how things are for us and of what we might be about to do. Such a
sense of ‘action-ready being’ encompasses our background physiologi-
cal condition, estimations of current potentials for action, and the per-
ceived state of the wider world.

This provides a new and natural way of accommodating large
bodies of experimental results suggesting that the character of our
emotional experience depends both on the interoception of brute
bodily signals and higher level ‘cognitive appraisals’ (see Critchley &
Harrison, 2013; Dolan, 2002; Gendron & Barrett, 2009; Prinz, 2004). An
example of a brute bodily signal is generic arousal as induced by—to
take the classic example from Schachter and Singer (1962)—an injection
of adrenaline. Such brute signals combine with contextually induced
‘cognitive appraisals’ leading us to interpret the very same bodily ‘evi-
dence’ as either elation, anger, or lust according to our framing expecta-
tions. Those experiments proved hard to replicate,” but better evidence
comes from recent studies that subtly manipulate interoceptive feed-
back—for example, studies showing that false cardiac feedback can
enhance subjective ratings of emotional stimuli (see Valins 1966; Gray
et al., 2007; and discussion in Seth 2013).
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The ‘predictive twist” thus allows us to combine a core insight of the
James-Lange theory (the idea that interoceptive self-monitoring is a key
component in the construction of emotional experience) with a fully
integrated account of the role of other factors, such as context and expec-
tation. Previous attempts to combine these insights have taken the form
of so-called ‘two-factor” theories, where these depict subjective feeling
states as essentially hybrid states involving two components—a bodily
feeling and a ‘cognitive’ interpretation. It is worth stressing that the
emerging predictive processing account of emotion is not a ‘two-factor’
theory as such. Instead, the claim is that a single, highly flexible process
fluidly combines top-down predictions with all manner of bottom-up
sensory information, and that subjective feeling states (along with the
full range of exteroceptive perceptual experiences) are determined by
the ongoing unfolding of this single process.”

Such a process will involve distributed patterns of neural activity
across multiple regions. Those patterns will themselves change and
alter according to task and context, along with the relative balances
between top-down and bottom-up influence (see especially chapters
2 and 5). Importantly, that same process determines not just the flow
of perception and emotion, but the flow of action too (chapters 4-6).
PP thus posits a single, distributed, constantly self-reconfiguring,
prediction-driven regime as the common basis for perception, emo-
tion, reason, choice, and action. The PP account of emotion thus
belongs, it seems to me, in the same broad camp as so-called ‘enactiv-
ist” accounts (see Colombetti, 2014; Colombetti & Thompson, 2008; and
discussion in chapter g) that reject any fundamental cognition/emo-
tion divide and that stress continuous reciprocal interactions between
brain, body, and world.

7.15  Fear in the Night

Pezzulo (2013) develops an account that is in many ways complemen-
tary to those of Seth (2013), and Seth et al. (2011). Pezzulo’s target is
the apparently irrational experience of ‘fear in the night’. Here is the
vignette with which Pezzulo opens his treatment:

It’s a windy night. You go to sleep a bit shocked because, say,
you had a small car accident or just watched a shark attack
horror movie. During the night, you hear a window squeak-
ing. In normal conditions, you would attribute this noise to the
windy night. But this night the idea that a thief or even a killer
is entering your house jumps into your mind. Normally you
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would have immediately dismissed this hypothesis, but now it
seems quite believable despite the fact that there have been no
thefts in your town in the last few years; and you suddenly find
yourself expecting a thief coming out from the shadows. How
is this possible? (Pezzulo, 2013, p. 902)

The explanation, Pezzulo argues, once again involves interoceptive
prediction. Thus suppose we consider only the exteroceptive sensory
evidence. Given our priors, the wind hypothesis then provides the best
way of ‘explaining away’ the sensory data. And even if we add some
small biasing or priming effects stemming from seeing the accident
or from viewing the movie, this alone seems unlikely to alter that out-
come. The sounds of creaking doors and the sight of moving shadows
are surely still best accommodated by the simple hypothesis of a windy
but otherwise safe and normal situation.

Things alter, however, once we add the effects of interoceptive pre-
diction to the mix. For now we have two sets of sensory evidence in
need of explanation. One set comprises the current sights and sounds
just mentioned. Another set, however, comprises the kinds of complex
multidimensional interoceptive information (including motivational
information, in the form of interoceptive states registering hunger,
thirst, etc) described in 7.13. Let’s assume that viewing the accident
or horror movie—and perhaps recalling it just before bed—results in
altered bodily states such as increased heart rate and galvanic skin
response, and other internal signs of generalized arousal. There are
now two co-occurring streams of sensory evidence to be ‘explained
away’. Furthermore (and this, it seems to me, is the crucial move in
Pezzulo’s account), one of those streams of evidence—the interocep-
tive stream—is typically known with great certainty. The streams of
interoceptive evidence that reveal our own bodily states (such as hun-
ger, thirst, and generalized arousal) are normally accorded high reli-
ability, so prediction errors associated with those states will enjoy high
precision and great functional efficacy.” At this point, the Bayesian bal-
ance tilts, Pezzulo argues, more strongly towards the alternative (ini-
tially seemingly implausible) hypothesis of a thief in the night. For this
hypothesis explains both sets of data and is highly influenced by the
interoceptive data—the data that is estimated as highly reliable.”

This account thus offers—like that of Seth (2013)—a kind of Bayesian
gloss on the James-Lange model according to which aspects of felt emo-
tion involve the perception of our own bodily (visceral, interoceptive)
states. Adding the predictive dimension now allows us to link this
independently attractive proposal to the full explanatory apparatus of
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~ierarchical predictive processing. The relevant aspects of felt emotion,
seth and Pezzulo each suggest, depend upon the combination of our own
nteroceptive and exteroceptive expectations and the incoming interocep-
-ive and exteroceptive sensory streams. The various checks and balances
‘hat this involves are, moreover, themselves determined by ongoing esti-
mations of (1) the relative reliability of the various types of sensory signal,
and (2) the relative reliability of top-down expectations and bottom-up
sensory information. All this is occurring (if the account in chapter 6 is
on the mark) within an economy that is fundamentally action-oriented,
involving estimations of multiple probabilistic affordances—multiple
graded potentials for action and intervention. Such affordances, we may
now speculate, will be selected and nuanced in part by interoceptive
signals, enabling what Lowe and Ziemke (2011) call ‘action-tendency
prediction-feedback loops” looping interactions in which emotional
responses reflect, select, and regulate bodily states and actions. The
upshot is a hugely complex cognitive-emotional-action-oriented econ-
omy whose fundamental guiding principles are simple and consis-
tent: the multilevel, multi-area, flow of prediction, inflected at every
stage by changing estimations of our own uncertainty.

7.16 A Nip of the Hard Stuff

Reflections upon uncertainty, prediction, and action are essential,
I believe, if we are to begin to bridge the daunting gap between the
world of lived human experience and a cognitive scientific under-
standing of the inner (and outer) machinery of mind and reason. To
be sure, the uncertainty-based discussions of schizophrenia, autism,
functional sensory and motor systems, DPD, emotion, and ‘fear in the
night” reported in the present chapter are at best tentative and pre-
liminary. But they begin to suggest, in broad outline, ways to connect
our neurophysiological understandings, via computational and ‘sys-
tems level” theorizing, to the shape and nature of human experience.
Perhaps most significantly of all, they do all this in a way that begins to
bring together (perhaps for the very first time) an understanding of the
perceptual, motoric, emotional, and cognitive dimensions of various
neuropsychological disturbances—superficially distinct elements that
are now bound together in a single regime.

The picture that emerges is one that sits extremely well with lived
human experience. It does so, I suggest, precisely because it binds
together many of the elements (perceptual, cognitive, emotional, and
motoric) that previous cognitive scientific theorizing has tended to
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pull apart. In our lived experience what we encounter is first and fore-
most a world worth acting in: a world of objects, events, and persons,
presented as apt for engagement, permeated by affect, desire, and the
rich web of conscious and non-conscious expectations.” To understand
how this complex economy actually operates, how it responds to vari-
ous disturbances, and how it supports large individual variations even
within neurotypical” experience, a key tool is the realization that this
complex flow is tempered at every level by estimated uncertainty. Here,
PP suggests, systems encoding the estimated precision or reliability of
prediction error signals play a crucial, and surprisingly unified, role.”

Such models leave many important questions unresolved. For
example, is the primary pathology in the case of schizophrenic subjects
really a failure to attenuate the impact of sensory prediction error, or
is it some causally antecedent weakening of the influence of top-down
expectations? From a Bayesian perspective, the results are indistin-
guishable since what matters (as we have now frequently remarked)
is rather the balance between top-down expectation and bottom-up
sensing. But from a clinical perspective, such options are importantly
distinct, implicating different aspects of the neural implementation.
Moreover, it was also suggested that one result of failures of low-level
sensory attenuation might actually be artificially inflated precision at
higher levels, so as to enable movement (but at the cost of increased
exposure to various delusions of agency and control). The delicate sys-
tem of uncertainty-based checks and balances may thus be disturbed
in many different ways, some of them hard to associate with distinct
behavioural outcomes.

Exploring the many ways to alter or disturb that delicate system of
check and balances offers, however, a golden opportunity to account
for a wide variety of conditions (including the large variation in ‘neu-
rotypical’ response) using a single theoretical apparatus and a single
bridging notion: hierarchical action-oriented predictive processing
with disturbances to estimations of uncertainty. We may thus be enter-
ing (or at least spotting on the not-too-distant horizon) a golden age
of ‘computational psychiatry” (Montague et al., 2012) in which superfi-
cially different sets of symptoms may be explained by subtly different
disturbances to core mechanisms implicated in perception, emotion,
inference, and action. Such disturbances, PP suggests, are mostly dis-
turbances of (multiple and varied) mechanisms of attention and tar-
geted dis-attention. Foregrounding attention in all its varieties hints at
future bridges with many existing forms of therapy and intervention,
ranging from Cognitive Behavioural Therapy, to meditation, and the
surprisingly potent role of patients’ own outcome expectations.
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Using this integrated apparatus might we, inch-by-inch and
phenomenon-by-phenomenon, begin to solve the so-called ‘hard
problem’ of conscious experience itself—the mystery (Chalmers,
1996; Levine, 1983; Nagel, 1974) of why it feels like this (or indeed,
like anything at all) to be a human agent immersed in a world of
sights, sounds, and feelings? It is far too early to say, but it feels like
progress.”® Much of that progress, we saw, depends upon a swathe
of recent empirically informed conjecture concerning the role of
‘interoceptive inference’—roughly, the prediction and accommoda-
tion of our own internal bodily states. Taken together, and mixed
liberally with the rich PP account of prediction, action, and imagi-
nation, these deliver a startlingly familiar vision: the vision of a
creature whose own bodily needs, condition, and sense of physical
presence forms the pivot-point for knowing, active encounters with a
structured and inherently meaningful external world. This multilay-
ered texture, in which a world of external causes and opportunities
for organism-salient action is presented to a creature in a way con-
stantly intermingled with a grip upon its own bodily condition may
lie at the very heart of that ever-elusive, and ever-familiar, beast that
we call ‘conscious experience’.

The world thus revealed is a world tailored for action, structured
by complex, multilevel patterns of interoceptive, proprioceptive, and
exteroceptive expectation, and nuanced by targeted attention and esti-
mated uncertainty. This is a world in which unexpected absences are
every bit as salient (as newsworthy relative to our best multilevel pre-
diction) as that which is real and present. It is a world of structure and
opportunity, constantly inflected by external and internal (bodily) con-
text. By bringing this familiar world back into view, PP offers a unique
and promising approach to understanding agency, experience, and
human mattering.
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The Lazy Predictive Brain

8.1 Surface Tensions

‘Fast, Cheap, and Out of Control” was the name of a 1997 documentary
by Errol Morris, part of which was devoted to work in what was (at
that time) the fairly new discipline of behaviour-based robotics. The
movie took its name from the title of a famous 1989 paper' in which
Rodney Brooks and Anita Flynn reviewed many of the emerging
principles of work in this field: work that aimed to address the thorny
problems confronting mobile autonomous (or semi-autonomous)
robots. What was most striking about this new body of work was its
radical departure from many deeply entrenched assumptions about
the inner roots of adaptive response. In particular, Brooks and oth-
ers were attacking what might be dubbed ‘symbolic, model-heavy’
approaches in which successful behaviour depends upon the acquisi-
tion and deployment of large bodies of symbolically coded knowledge
concerning the nature of the operating environment. Instead, Brooks’
robots got by using a number of simpler tricks, ploys, and stratagems
whose combined effect (in the environments in which they were to
operate) was to support fast, robust, computationally inexpensive
forms of online response.

243



244 SCAFFOLDING PREDICTION

The most extreme versions of Brooks” approach proved intrinsi-
cally limited and did not (perhaps unsurprisingly) scale up well to
confront truly complex, multidimensional problem spaces (for some
discussion, see Pfeifer & Scheier, 1999, chapter 7). Nonetheless, Brooks’
work was part of the vanguard of hugely productive and important
waves of work addressing the many ways in which intelligent agents
might make the most of the many opportunities made available by
their own bodily forms, actions, and the persisting, manipulable struc-
ture of the environment itself (see Clark, 1997; Clark, 2008; Pfeifer &
Bongard, 2008).

This poses something of a puzzle. For on first encounter, work
on hierarchical predictive processing can look rather different—it can
seem to be stressing the burgeoning multilevel complexity of stored
knowledge rather than the delicate, opportunistic dance of brain, body,
and world. Such a diagnosis would be deeply misguided. It would
be misguided because what is on offer is, first and foremost, a story
about efficient, self-organizing routes to adaptive success. It is a story,
moreover, in which those efficient routes may—and frequently do—
involve complex patterns of body- and world-exploiting action and
intervention. Properly viewed, PP thus emerges as a new and pow-
erful tool for making organized (and neurocomputationally sound)
sense of the ubiquity and power of the efficient problem-solving ploys
celebrated by work on the embodied mind. Strikingly, PP offers a sys-
tematic means of combining those fast, cheap modes of response with
more costly, effortful strategies, revealing these as simply extreme
poles on a continuum of self-organizing dynamics. As a kind of
happy side-effect, attention to the many ways PP embeds and illumi-
nates the full spectrum of embodied response also helps expose the
fundamental flaw in some common worries (the ominous-sounding
‘darkened room’ objections) concerning the overarching vision of a
prediction-driven brain.

8.2 Productive Laziness

A recurrent theme in work on the embodied, environmentally situ-
ated mind has been the value of ‘productive laziness’. I owe this phrase
to Aaron Sloman, but the general idea goes back at least to Herbert
Simon's (1956) explorations of economical but effective strategies and
heuristics: problem-solving recipes that are not (in any absolute sense)
optimal or guaranteed to work under all conditions, but that are
‘good enough’ to meet a need while respecting limitations of time and
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processing power. For example, rather than attempt a full examination
of reviews and menus for every restaurant within a five-mile radius,
we might very well choose one that a trustworthy friend mentioned
yesterday instead. We do so reasonably confident that it will be good
enough, and thereby save the temporal and energetic costs of taking
further information into account.

The associated notion of adaptive organisms as ‘satisficers’
rather than absolute optimizers led to important work in the area of
‘bounded rationality’ (Gigerenzer & Selton, 2002; Gigerenzer et al.,
1999), exploring the unexpected potency of simple heuristics that may
lead us astray at times but that also deliver quick verdicts using mini-
mal processing resources.? The undoubted role of simple heuristics in
the genesis of many human judgments and responses has also been
amply demonstrated in large bodies of work displaying the some-
times distortive role of stereotypic scenarios and associated biases in
human reasoning (e.g., Tversky & Kahneman, 1973, and for a lovely
integrative treatment, Kahneman, 2011). Nonetheless, we humans are
also clearly capable of slower, more careful modes of reasoning that
can, for limited periods at least, keep some of the errors at bay. To
accommodate this, some theorists (see e.g., Stanovich & West, 2000)
have suggested a ‘two systems’ view that posits two different cogni-
tive modes, one (‘system 1) associated with fast, automatic, ‘habitual’
response, and the other (‘system 2’) with slow, effortful, deliberative
reasoning. The PP perspective offers, as we shall see, a flexible means
of accommodating such multiple modes and the context-dependent
use of fast, heuristic strategies within a single overarching processing
regime.

8.3 Ecological Balance and Baseball

Fast, heuristically governed strategies for reasoning are, however, only
one part of the rich mosaic of ‘productive laziness’ Another part (the
focus of much of my own previous work in this area, see Clark, 1997,
2008) involves what might be thought of as ecologically efficient uses of
sensing, and the distribution of labour between brain, body, and world.
For example, there are circumstances, as Sloman (2013) points out, in
which the best way to get through an open door is to rely upon a simple
servo-control, or bump-and-swerve, mechanism.

Or consider the task of two-legged locomotion. Some bipedal
robots (Honda’s flagship ‘Asimo’ is perhaps the best-known exam-
ple) walk by means of very precise, and energy-intensive, joint-angle



246 SCAFFOLDING PREDICTION

control systems. Biological walking agents, by contrast, make maximal
use of the mass properties and biomechanical couplings present in the
overall musculoskeletal system and walking apparatus itself. Nature’s
own bipedal walkers thus make extensive use of so-called ‘passive
dynamics’, the kinematics and organization inhering in the physical
device alone (McGeer, 1990). It is such passive dynamics that enable
some quite simple toys, that have no on-board power source, to stroll
fluently down a gentle incline. Such toys have minimal actuation and
no control system. Their walking is a consequence not of complex joint
movement planning and actuating, but of their basic morphology (the
shape of the body, the distribution of linkages and weights of compo-
nents, etc.). Locomotion, as nicely noted by Collins et al. (2001, p. 608),
is thus ‘a natural motion of legged mechanisms, just as swinging is a
natural motion of pendulums”.

Passive walkers (and their elegant powered counterparts, see
Collins et al,, 2001) conform to what Pfeifer and Bongard (2006) describe
as a ‘Principle of Ecological Balance’. This principle states:

first . .. that given a certain task environment there has to be a
match between the complexities of the agent’s sensory, motor,
and neural systems . .. second. . .. that there is a certain balance
or task-distribution between morphology, materials, control,
and environment. (Pfeifer & Bongard, 2006, p. 123)

This principle reflects one of the big lessons of contemporary robot-
ics, which is that the co-evolution of morphology (which can include
sensor placement, body-plan, and even the choice of basic building
materials, etc.) and control yields a golden opportunity to spread the
problem-solving load between brain, body, and world. Robotics thus
rediscovers many ideas explicit in the continuing tradition of J. J. Gibson
and of ‘ecological psychology’ (see Gibson, 1979; Turvey & Carello, 1986;
Warren, 2006). Thus William Warren, commenting on a quote from
Gibson (1979), suggests that:

biology capitalizes on the regularities of the entire system as
a means of ordering behavior. Specifically, the structure and
physics of the environment, the biomechanics of the body, per-
ceptual information about the state of the agent-environment
system, and the demands of the task all serve to constrain the
behavioral outcome. (Warren, 2006, p. 358)

Another Gibsonian theme concerns the role of sensing in action.
According to a familiar (more classical) vision, the role of sensing is
to get as much information into the system as is needed to solve the
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problem. These are the ‘re-constructive” approaches that we met back
in chapter 6. For example, a planning agent might scan the environ-
ment so as to build up a problem-sufficient model of what is out there
and where it is located, at which point the reasoning engine can effec-
tively throw away the world and operate instead upon the inner model,
planning and then executing a response (perhaps checking now and
then during execution to be sure that nothing has changed). Alternative
approaches (see, e.g., Beer, 2000, 2003; Chemero, 2009; Gibson, 1979; Lee
& Reddish, 1981; Warren, 2005) depict sensing as a channel produc-
tively coupling agent and environment, sidestepping where possible
the need to convert world-originating signals into a persisting inner
model of the external scene.

Thus consider once again the ‘outfielder’s problem” as described
in chapter 6. This was the problem of running so as to catch a ‘fly
ball’ in baseball. Giving perception its standard role, we might have
assumed that the job of the visual system is to transduce information
about the current position of the ball so as to allow a distinct ‘reason-
ing system’ to project its future trajectory. Nature, however, looks
to have found a more elegant and efficient solution. The solution,
a version of which was first proposed in Chapman (1968), involves
running in a way that seems to keep the ball moving at a constant
speed through the visual field. As long as the fielder’s own move-
ments cancel any apparent changes in the ball’s optical accelera-
tion, she will end up in the location where the ball is going to hit
the ground. This solution, Optical Acceleration Cancellation (OAC),
explains why fielders, when asked to stand still and simply predict
where the ball will land, typically do rather badly. They are unable
to predict the landing spot because OAC is a strategy that works by
means of moment-by-moment self-corrections that crucially involve
the agent’s own movements. The suggestion that we rely on such a
strategy is also confirmed by some interesting virtual reality experi-
ments in which the ball’s trajectory is suddenly altered in flight,
in ways that could not happen in the real world (see Fink, Foo, &
Warren, 2009). OAC is a nice case of fast, economical problem-solving,.
The canny use of data freely available in the optic flow enables the
catcher to sidestep the need to deploy a rich inner model to calculate
the forward trajectory of the ball.?

Such strategies are suggestive, as we also noted in chapter 6 (see
also Maturana, 1980) of a rather different role for the perceptual cou-
pling itself. Instead of using sensing to get enough information inside,
past the visual bottleneck, so as to allow the reasoning system to ‘throw
away the world” and solve the problem wholly internally, they use the
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sensor as an open conduit allowing environmental magnitudes to exert a
constant influence on behaviour. Sensing is thus depicted as the opening
of a channel, with successful whole-system behaviour emerging when
activity in this channel is kept within a certain range. In such cases, as
Randall Beer puts it, ‘the focus shifts from accurately representing an
environment to continuously engaging that environment with a body
so as to stabilize appropriate co-ordinated patterns of behavior” (Beer,
2000, p. 97)-

Finally, embodied agents are also able to act on their worlds in
ways that actively generate cognitively and computationally potent
time-locked patterns of sensory stimulation. For example (and for a
fuller discussion, see Clark, 2008), Fitzpatrick et al. (2003) (see also Metta
& Fitzpatrick, 2003) show how active object manipulation (pushing and
touching objects in view) can help generate information about object
boundaries. Their ‘baby robot’ learns about the boundaries by poking
and shoving. It uses motion detection to see its own hand/arm moving,
but when the hand encounters (and pushes) an object there is a sud-
den spread of motion activity. This cheap signature picks out the object
from the rest of the environment. In human infants, grasping, poking,
pulling, sucking, and shoving creates a rich flow of time-locked mul-
timodal sensory stimulation. Such multimodal input streams have been
shown (Lungarella & Sporns, 2005) to aid category learning and con-
cept formation. The key to all such capabilities is the robot or infant’s
capacity to maintain coordinated sensorimotor engagement with its
environment. Self-generated motor activity, such work suggests, acts
as a ‘complement to neural information-processing’ (Lungarella &
Sporns, 2005, p. 25) in that:

The agent’s control architecture (e.g. nervous system) attends to
and processes streams of sensory stimulation, and ultimately
generates sequences of motor actions which in turn guide
the further production and selection of sensory information.
[In this way] ‘information structuring’ by motor activity and
‘information processing’ by the neural system are continuously
linked to each other through sensorimotor loops. (Lungarella
& Sporns, 2005, p. 25)

One major strand of work in robotics and artificial life thus stresses
the importance of the distribution of the problem-solving load across
the brain, the active body, and the manipulable structures of the local
environment. This distribution allows the productively lazy brain to
do as little as possible while still solving (or rather, while the whole
embodied, environmentally located system solves) the problem.
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8.4 Embodied Flow

Work on embodied cognition also calls into question the idea that there
is a sequential flow of processing whose stages neatly correspond to
perceiving, thinking, and acting. When we engage the world in daily
behaviour, we often do not do it by first passively taking in lots of infor-
mation, then making a full plan, then implementing the plan courtesy
of some sequence of motor commands. Instead, sensing, thinking,
and acting conspire, overlap, and start to merge together as whole
perceptuo-motor systems engage the world.

Examples of such merging and interweaving include work on inter-
active vision (Churchland et al., 1994), dynamic field theory (Thelen et
al., 2001), and ‘deictic pointers’ (Ballard et al, 1997) (for some reviews,
see Clark, 1997, 2008). By way of illustration, consider the task studied
by Ballard et al. (1997). In this task, a subject is given a model pattern
of coloured blocks and asked to copy the pattern by moving similar
blocks, one at a time, from a reserve area to a new workspace. The task
is performed by drag and drop using a mouse and monitor, and as you
perform, eye tracker technology monitors exactly where and when you
are looking as you tackle the problem. What subjects did ot do, Ballard
et al. discovered, was to look at the target, decide on the colour and
position of the next block to be added, then execute their mini-plan by
moving a block from the reserve area. Instead, repeated rapid saccades
to the model were used during the performance of the task—many
more saccades than you might expect. For example, the model is con-
sulted both before and after picking up a block, suggesting that when
glancing at the model, the subject stores only one small piece of infor-
mation: either the colour or the position of the next block to be copied,
but not both. Even when repeated saccades are made to the same site,
very minimal information looked to be retained. Instead, repeated fixa-
tions seem to be providing specific items of information ‘just in time’
for use.* Repeated saccades to the physical model thus allowed the sub-
jects to deploy what Ballard et al. dub ‘minimal memory strategies’ to
solve the problem. The idea is that the brain creates its programs so
as to minimize the amount of working memory that is required, and
that eye motions are here recruited to place a new piece of information
into memory. By altering the task demands, Ballard et al. were also
able to systematically alter the particular mixes of biological memory
and active, embodied retrieval recruited to solve different versions of
the problem, concluding that in this task ‘eye movements, head move-
ments, and memory load trade off against each other in a flexible way’
(p. 732). This is another now-familiar (but still important) lesson from
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embodied cognition. Eye movements here allow the subject to use the
external world itself, where appropriate, as a kind of storage buffer (for
lots more on this kind of strategy, see Clark, 2008; Wilson, 2004).

Putting all this together already suggests a much more integrated
model of perception, cognition, and action. Perception is here tangled
up with possibilities for action and is continuously influenced by cog-
nitive, contextual, and motor factors. This is also the picture suggested
earlier by Pfeifer et al’s (2007) notion of the ‘self-structuring of infor-
mation flows’ (83). Action serves to deliver fragments of information
‘just in time’ for use, and that information guides action, in an ongoing
circular causal embrace. Perception thus construed need not yield a
rich, detailed, and action-neutral inner model awaiting the services of
‘central cognition’ to deduce appropriate actions. In fact, these distinc-
tions (between perception, cognition, and action) now seem to obscure,
rather than illuminate, the true flow of effect. In a certain sense, the
brain is revealed not as (primarily) an engine of reason or quiet deliber-
ation, but as an organ for the environmentally situated control of action.
Cheap, fast, world-exploiting action, rather than the pursuit of truth,
optimality, or deductive inference, is now the key organizing principle.
Embodied, situated agents, all this suggests, are masters of ‘soft assem-
bly’, building, dissolving, and rebuilding temporary ensembles that
exploit whatever is available, creating shifting problem-solving wholes
that effortlessly span brain, body, and world.

85 Frugal Action-Oriented Prediction Machines

Superficially, these ‘lessons from embodiment’ can seem to point in
a rather different direction to work on prediction-driven process-
ing. Prediction-driven processing is often described as combin-
ing evidence (the sensory input), prior knowledge (the generative
model yielding the predictions), and estimations of uncertainty (via
the precision-weighting upon prediction error) to generate a mul-
tiscale best guess at how the world is. But this, as we have previously
remarked, is subtly misleading. For what real-world prediction is all
about is the selection and control of world-engaging action. Insofar
as such agents do try to ‘guess the world’, that guessing is always
and everywhere inflected in ways apt to support cycles of action and
intervention. At the most fundamental level, this is simply because
the whole apparatus (of prediction-based processing) exists only in
order to help animals achieve their goals while avoiding fatally sur-
prising encounters with the world. Action, we might say, is where the
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predictive rubber meets the adaptive road. And once we consider the
role of prediction in the genesis and unfolding of action, the picture
alters dramatically.

The shape of the new picture was visible in our earlier discus-
sion (6.5) of Cisek’s Affordance Competition hypothesis. Predictive
processing was there shown to implement a strong version of “affor-
dance competition’ in which the brain continuously computes multiple
probabilistically inflected possibilities for action, and does so using an
architecture in which perception, planning, and action are continu-
ously intermingled, supported by highly overlapping resources, and
executed using the same basic computational strategy. PP here results
in the creation and deployment of what Cisek and Kalaska (2011) called
‘pragmatic’ representations: representations tailored to the produc-
tion of good online control rather than aiming for rich mirroring of
an action-independent world. Those representations simultaneously
serve epistemic functions, sampling the world in ways designed to
test our hypotheses and to yield better information for the control of
action itself. The upshot was a picture of neural processing as funda-
mentally action-oriented, representing the world as an evolving matrix
of parallel, partially computed possibilities for action and intervention.
The picture of embodied flow presented in the previous section is thus
echoed, almost point-for-point, by work on action-oriented predictive
processing,.

To complete the reconciliation, however, we must leverage one
final ingredient. That ingredient is the capacity to use prediction error
minimization and variable precision-weighting to sculpt patterns of
connectivity within the brain selecting, at various timescales, the sim-
plest circuits that can reliably drive a target behaviour. This too is a
feature that we have encountered earlier (see chapter 5). But the result-
ing circuits, as we shall now see, neatly encompass the simple, frugal,
‘sensing-for-coupling’ solutions suggested by Gibson, Beer, Warren,
and others. Better yet, they accommodate those ‘model-sparse’ solu-
tions within the larger context of a fluid, reconfigurable inner economy
in which richly knowledge-based strategies and fast, frugal solu-
tions are merely different points on a single scale. Such points reflect
the recruitment of different ensembles of inner and outer resources:
ensembles that form and dissolve in ways determined by external
context, current needs and bodily state, and ongoing estimations of
our own uncertainty. This process of recruitment is itself constantly
modulated, courtesy of the circular causal dance of perceptuo-motor
response, by the evolving state of the external environment. At that
point (I shall argue) all the key insights from work on embodiment and
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situated, world-exploiting action are fully realized using the distinctive
apparatus of action-oriented predictive processing.

8.6 Mix 'n’ Match Strategy Selection

To see how this might work in practice, it helps to start with some exam-
ples from a different (but in fact quite closely related) literature. This is
the extensive literature concerning choice and decision-making. Within
that literature, it is common to distinguish between ‘model-based’
and ‘model-free” approaches (see, e.g., Dayan, 2012; Dayan & Daw,
2008; Wolpert, Doya, & Kawato, 2003). Model-based strategies rely, as
the name suggests, on a model of the domain that includes informa-
tion about how various states (worldly situations) are connected, thus
allowing a kind of principled estimation (given some cost function) of
the value of a putative action. Such approaches involve the acquisition
and the (computationally challenging) deployment of fairly rich bodies
of information concerning the structure of the task-domain. Model-free
strategies, by contrast, are said to ‘learn action values directly, by trial
and error, without building an explicit model of the environment, and
thus retain no explicit estimate of the probabilities that govern state
transitions’ (Gldscher et al,, 2010, p. 585). Such approaches implement
pre-computed ‘policies’ that associate actions directly with rewards,
and that typically exploit simple cues and regularities while nonethe-
less delivering fluent, often rapid, response.

Model-free learning has been associated with a “habitual’ system
for the automatic control of choice and action, whose neural underpin-
nings include the midbrain dopamine system and its projections to the
striatum, while model-based learning has been more closely associated
with the action of cortical (parietal and frontal) regions (see Gldscher
et al, 2010). Learning in these systems has been thought to be driven by
different forms of prediction error signal—affectively salient reward
prediction error’ (see, e.g., Hollerman & Schultz, 1998; Montague et al.,
1996; Schultz, 1999; Schulitz et al., 1997) for the model-free case, and more
affectively neutral ‘state prediction error’ (e.g., in ventromedial prefron-
tal cortex) for the model-based case. These relatively crude distinctions
are, however, now giving way to a much more integrated story (see, e.g,,
Daw et al., 2011; Gershman & Daw, 2012) as we shall see.

How should we conceive the relations between PP and such
‘model-free’ learning? One interesting possibility is that an onboard
process of reliability estimation might select strategies according to
context. If we suppose that there exist multiple, competing neural
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-esources capable of addressing some current problem, there needs to
2e some mechanism that arbitrates between them. With this in mind,
Daw et al. (2005) describe a broadly Bayesian ‘principle of arbitration’
whereby estimations of the relative uncertainty associated with distinct
‘neural controllers’ (e.g., ‘model-based’ versus ‘model-free’ controllers)
allows the most accurate controller, in the current circumstances, to
determine action and choice. Within the PP framework this would be
implemented using the familiar mechanisms of precision estimation
and precision-weighting. Each resource would compute a course of
action, but only the most reliable resource (the one associated with the
least uncertainty when deployed in the current context) would get to
determine high-precision prediction errors of the kind needed to drive
action and choice. In other words, a kind of meta-model (one rich in
precision expectations) would be used to determine and deploy what-
ever resource is best in the current situation, toggling between them
when the need arises.

Such a story is, however, almost certainly over-simplistic. Granted,
the ‘model-based / model-free’ distinction is intuitive and resonates
with old (but increasingly discredited) dichotomies between habit and
reason, and between emotion and analytic evaluation. But it seems
likely that the image of parallel, functionally independent, neural
sub-systems will not stand the test of time. For example, a recent fMRI
study (Daw, Gershman, et al., 2011) suggests that rather than thinking
in terms of distinct (functionally isolated) model-based and model-free
learning systems, we may need to posit a single ‘more integrated com-
putational architecture’ (p. 1204) in which the different brain areas
most commonly associated with model-based and model-free learn-
ing (pre-frontal cortex and dorsolateral striatum, respectively) each
trade in both model-free and model-based modes of evaluations and
do so ‘in proportions matching those that determine choice behavior’
(p. 1209). One way to think about this, from within the PP perspective,
is by associating ‘model-free’ responses with processing dominated
(‘bottom-up’) by the sensory flow, while ‘model-based’ responses are
those that involve greater and more widespread kinds of ‘top-down’
influence.> The context-dependent balancing between these two
sources of information, achieved by adjusting the precision-weighting
of prediction error, then allows for whatever admixtures of strategv
task and circumstances dictate.

Support for this notion of a more integrated inner economy was
provided by a decision task (Daw, Gershman et al., 2011) in which exper-
imenters were able to distinguish between apparently model-based
and apparently model-free influences on subsequent choice and
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action. This is possible because model-free response is inherently
backwards-looking, associating specific actions with previouslyv
encountered rewards. Animals exhibiting only model-free responses
are, in that sense, condemned to repeat the past, releasing previ-
ously reinforced actions when circumstances dictate. A model-based
system, by contrast, is able to evaluate potential actions using (as the
name suggests) some kind of inner surrogate of the external arena in
which actions are to be performed and choices made—such systems
may, for example, deploy mental simulations to determine whether or
not one action is to be preferred over another. Animals that deploy a
model-based system are thus able, in the terms of Seligman et al. (2013),
to ‘navigate into the future’ rather than remaining ‘driven by the past’.

Most animals, it now seems clear, are capable of both forms of
response and combine dense enabling webs of habit with sporadic
bursts of genuine prospection. According to the standard picture, recall,
there exist distinct neural valuation systems and distinct forms of pre-
diction error signal supporting each type of learning and response.
Using a sequential choice task, Daw et al. were able to create conditions
under which the computations of one or other of these neural valua-
tion systems should dissociate from behaviour, revealing the presence
of independent computations (in different, previously identified, brain
areas) of value by a model-free and a model-based system. Instead
they found neural correlates of apparently model-free and apparently
model-based responses in both areas. Strikingly, this means that even
striatally computed ‘reward prediction errors” do not simply reflect
learning using a truly model-free system. Instead, recorded activity
in the striatum ‘reflected a mixture of model-free and model-based
evaluations’ (Daw et al,, 2011, p. 1209) and ‘even the signal most asso-
ciated with model-free RL [reinforcement learning], the striatal RPE
[reward prediction error], reflects both types of valuation, combined
in a way that matches their observed contributions to choice behavior’
(Daw et al., 2011, p. 1210). Top-down information, Daw et al. (2011) sug-
gest, might here control the way different strategies are combined in
differing contexts for action and choice. Greater integration between
model-based and model-free valuations might also, they speculate,
flow from the action of some kind of hybrid learning routine in which
a model-based resource may train and tune the responses of a (quicker,
in context more efficient) model-free resource.®

At a more general level, such results add to a growing literature (for
a review, see Gershman & Daw, 2012) that suggests the need for a deep
reworking of the standard decision-theoretic model. Where that model
posits distinct representations of utility and probability, associated
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with the activity of more-or-less independent neural sub-systems, we
may actually confront a more deeply integrated architecture in which
‘perception, action, and utility are ensnared in a tangled skein [involv-
ing] a richer ensemble of dynamical interactions between perceptual
and motivational systems’ (Gershman & Daw, 2012, p. 308). The larger
picture scouted in this section here makes good functional sense,
allowing ‘model-free’ modes to use model-based schemes to teach them
how to respond. Within the PP framework, this results in a hierarchi-
cal embedding of the (shallow) ‘model-free’ responses in a (deeper)
model-based economy. This has many advantages, since model-based
schemes are (chapter 5 above) profoundly context-sensitive, whereas
model-free or habitual schemes—once in place—are fixed, bound
to the details of previous contexts of successful action. By delicately
combining the two modes within an overarching economy, adaptive
agents may identify the appropriate contexts in which to deploy the
model-free (‘habitual’) schemes. ‘Model-based’ and ‘model-free’ modes
of valuation and response, if this is correct, simply name extremes
along a single continuum and may appear in many mixtures and com-
binations determined by the task at hand.

8.7 Balancing Accuracy and Complexity

We can now locate these insights within a larger probabilistic frame-
work. Fitzgerald, Dolan, and Friston (2014, p. 1) note that ‘Bayes opti-
mal agents seek both to maximize the accuracy of their predictions and
to minimize the complexity of the models they use to generate those
predictions’. Maximizing accuracy corresponds to maximizing how
well the model predicts the observed data. Minimizing complexity, on
the other hand, requires reducing computational costs as far as pos-
sible, consistent with performing the task at hand. Formally, this can be
achieved by incorporating a complexity-penalizing factor—sometimes
called an Occam factor, after the thirteenth-century philosopher
William of Occam who famously cautioned us not to ‘multiply entities
beyond necessity’. Overall ‘model evidence’ is then a kind of composite
quantity reflecting a delicate (and context-variable) accuracy/complex-
ity trade-off. Fitzgerald, Dolan, and Friston go on to outline a specific
scheme (involving ‘Bayesian model averaging’) in which ‘models are
weighted or chosen according to their evidence [i.e., their overall model
evidence as just defined] rather than simply their accuracy’ (Fitzgerald
etal, 2014, p. 7). Within PP, variations in the precision-weighting of select
prediction errors provide one mechanism capable of implementing just
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such task- and context-sensitive competition between different mode_=
while synaptic pruning (see 3.9 and 93) serves complexity reduction ¢
longer timescales.

All this suggests a possible reworking of the popular suggestic.
(8.2) that human reasoning involves the operation of two functional =
distinct systems, one for fast, automatic, ‘habitual’ response and tr.:
other dedicated to slow, effortful, deliberative reasoning. Instead of =
truly dichotomous inner organization, we may benefit from a riche-
form of organization in which fast, habitual, or heuristically based
modes of response are often the default, but within which a large
variety of possible strategies may be available. The balance betweer.
these strategies is then determined by variable precision-weightings.
hence (in effect) by various forms of endogenous and exogenous atten-
tion (Carrasco, 2011). Humans and other animals would thus deplov
multiple—rich, frugal, and all points in between—strategies defined
across a fundamentally unified web of neural resources (for some pre-
liminary exploration of this kind of more integrated space, see Pezzulo
et al., 2013, and 8.8).

Nor, finally, is there any fixed limit to the complexities of the pos-
sible strategic embeddings that might occur even within a single more
integrated system. We might, for example, use some quick-and-dirty
heuristic strategy to identify a context in which to use a richer one,
or use intensive model-exploring strategies to identify a context in
which a simpler one will do. The most efficient strategy is simply the
(active) inference that minimizes overall complexity costs. From this
emerging vantage point the very distinction between model-based and
model-free response (and indeed between system 1 and system 2, inso-
far as these are conceived as distinct systems rather than modes?®) looks
increasingly shallow. These are now just convenient labels for different
admixtures of resource and influence, each of which is recruited in the
same general way as circumstances dictate.

8.8 Back to Baseball

Now let’s return to the outfielder’s problem described earlier. Here
too, already-active neural predictions and simple, rapidly-processed
perceptual cues must work together (if PP is correct) to determine a
pattern of precision-weightings for different prediction error signals.
This creates (recall chapter 5) a transient web of effective connectiv-
ity (a temporary distributed circuit) and, within that circuit, it sets the
balance between top-down and bottom-up modes of influence. In the
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case at hand, however, efficiency demands selecting a circuit in which
sensing plays the non-reconstructive role described in chapter 6 and
83. The temporary task of visual sensing, in this context, becomes that
of cancelling the optical acceleration of the fly ball. That means giv-
ing high weighting to the prediction errors associated with cancelling
the vertical acceleration of the ball’s optical projection, and (to put it
bluntly) not attending very much to anything else.

Apt precision weightings thus select a pre-learnt, fast, low-cost
strategy for solving the problem. Contextually recruited patterns of
precision weighting here accomplish a form of set-selection or strategy
switching® This assumes that slower processes of learning and adap-
tive plasticity have already sculpted patterns of neural connectivity
in ways that make the low-cost strategy available. But this is unprob-
lematic. It can be motivated in general terms by the drive towards
minimizing complexity (which is indistinguishable, under plausible
constraints, from the drive towards ‘satisficing’). The required learning
can thus be accomplished using prediction error minimization operat-
ing at many timescales. Such processes range all the way from the slow
learning of the child baseball player, to the faster online adaptation of
the pro-player factoring in (during a match) changing specifics of the
wind conditions and the play of opposing batters.

The upshot is a complex but rewarding picture in which bedrock
processes of predictive learning slowly install models that include
precision expectations allowing patterns of effective connectivity to
be built and re-built ‘on the fly’. This enables fast, knowledge-sparse
modes of response to be recruited and nuanced according to cur-
rent context. The resulting compatibility of ‘productively lazy’ and
model-based approaches should come as no surprise. To see this, we
need only reflect that the model or model fragment that underlies any
given behaviour can be a simple, easily computed, heuristic (a simpli-
fied ‘rule-of-thumb’) just as easily as something with a more complex
causal structure. Such low-cost models will in many cases rely upon
action, exploiting patterns of circular causal commerce (between per-
ceptual inputs and motor actions) to deliver task-relevant information
‘just in time’ for use.

Fast, automatic, over-learnt behaviours are especially good candi-
dates for control by models taking a more heuristic form. The role of
context-reflecting precision assignments is then to select and enable
the low-cost procedural model that has proven able to support the tar-
get behaviour. Such low-cost models—OAC is a nice example—will
in many cases rely upon the self-structuring of our own informa-
tion flows, exploiting patterns of circular causal commerce (between
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perceptual inputs and motor actions) to deliver task-relevant informa-
tion ‘just in time’ for use.

More complex (intuitively more ‘model-rich’ though this is now just
another location along a continuum) strategies may also involve simpli-
fications and approximations. A nice example is work by Battaglia et al.
(2013) on “intuitive physics’. Human agents are able to make rapid infer-
ences about the physical behaviour of ordinary objects. Such inferences
might include spotting that the pile of books or washing-up is unstable
and at risk of toppling over, or that a lightly brushed object is going
to fall and hit some other object. Underlying that capacity, Battaglia
et al. suggest, may be a probabilistic scene simulator (a probabilistic
generative model) able to deliver rapid verdicts on the basis of partial,
noisy information. Such a simulator does not rely upon propositional
rules but rather upon ‘quantitative aspects and uncertainties of object’s
geometry, motions, and force dynamics’ (p. 18327). Battaglia et al.
describe and test just such a model, showing that it fits data from many
different psychophysical tasks. Importantly, the Battaglia et al. model
delivers robustness and speed by simulating the physical world using
approximations to the behaviour of real objects. In this way it ‘trades
precision and veridicality for speed, generality, and the ability to make
predictions that are good enough for the purposes of everyday activi-
ties” (Battaglia et al., 2013, p. 18328).

The ‘intuitive physics engine’—or generative model by any other
name—here produces simplified probabilistic simulations that are
nonetheless able to predict key aspects of the ebb and flow of the physi-
cal world. Such an ‘intuitive physics engine’ is able to infer key facts
about the likely behaviours of objects in the kinds of scene shown in
Figure 8.1—facts such as which object in fix 1C, will fall first, in what
direction, and with what kinds of knock-on effect. Reliance upon
approximations and the estimation of uncertainty also explains the
existence of illusions (such as the stability illusion in Figure 8.1F) and
errors in reasoning about the physical world. Our daily approxima-
tions, that is to say, may not readily ‘comprehend’ the delicate struc-
ture of balances that makes the tower of rocks stable. A model that
was able to do so would in some circumstances be more accurate, but
at some temporal cost (so perhaps we would not spot the instability of
the washing-up pile in time to prevent a catastrophic state-transition).

Approximate solutions such as these reflect what Gershman and
Daw (2012, p. 307) describe as a kind of ‘meta-optimization over the
costs (e.g., extra computation) of maintaining [a] full representation
relative to its benefits’. The deepest explanation for the neural inter-
mingling of perception, action, and utility may, Gershman and Daw
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emerge, dissolve, and interact. Within the PP framework, strategies of
many different stripes may be selected moment-by-moment by chang-
ing estimations of precision. Such estimations alter patterns of effective
connectivity, enabling different webs of inner (and outer, see below)
circuitry to control behaviour at different times.?

8.9 Extended Predictive Minds

All this suggests a very natural model of ‘extended cognition” (Clark,
2008; Clark & Chalmers, 1998), where this is simply the idea that
bio-external structures and operations may sometimes form integral
parts of an agent’s cognitive routines. Nothing in the PP framework
materially alters, as far as I can tell, the arguments previously presented,
both pro and con, regarding the possibility of genuinely extended cog-
nitive systems." What PP does offer, however, is a specific, and highly
‘extension-friendly’, proposal concerning the shape of the specifically
neural contribution to cognitive success.

To see this, reflect that known external (e.g, environmental) opera-
tions provide—by partly constituting—additional strategies apt for the
kind of ‘meta-model-based’ selection described in the previous sec-
tions. This is because actions that engage and exploit specific external
resources will now be selected in just the same manner as the inner
coalitions of neural resources themselves. For example, when per-
forming the block-placing task (Ballard et al, 1997) described in 8.4,
the brain must assign high precision to the predictions that underlie
the various actions that are allowing us to ‘use the world as its own
best model” while performing the task. Such world-engaging actions
are determined, in turn, by the acquired estimation that reliable,
salient (task-relevant) information is available at such-and-such a loca-
tion and at such-and-such a time. Or consider the case where salient
high-precision information is available by the use of some bio-external
device, such as a laptop or smartphone. The core routine that selects
actions to reduce prediction error will now select actions that invoke
the bio-external resource. Invoking a bio-external resource, and mov-
ing our own effectors and sensors to yield high-quality task-relevant
information are here expressions of the same underlying strategy,
reflecting our brain’s best estimates of where and when reliable,
task-relevant information is available. The strategies thus selected are
typically, just as Ballard et al. suggested, minimal-internal-memory
strategies whose success conditions require both organismic action
and the cooperation of the external environment. Such strategies again
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highlight the importance of distributed resource-webs spanning brain,
body, and world.

As a simple illustration, consider work by Pezzulo, Rigoli, and
Chersi, (2013). Here, a so-called ‘Mixed Instrumental Controller’
determines whether to choose an action based upon a set of simple,
pre-computed (‘cached’) values, or by running a mental simulation
enabling a more flexible, model-based assessment of the desirability,
or otherwise, of actually performing the action. The mixed controller
computes the ‘value of information’ selecting the more informative
(but costly) model-based option only when that value is sufficiently
high. Mental simulation, in those cases, then produces new reward
expectancies that can determine current action by updating the values
used to determine choice. We can think of this as a mechanism that,
moment-by-moment, determines (as discussed in previous sections)
whether to exploit simple, already-cached routines or to explore a richer
set of possibilities using some form of mental simulation. It is easy to
imagine a version of the mixed controller that determines (on the basis
of past experience) the value of the information that it believes would
be made available by means of some kind of bio-external apparatus,
such as the manipulation of an abacus, an iPhone, or a physical model.
Deploying a simple cached strategy, a more costly mental simulation,
or exploiting the environment itself as a cognitive resource are thus all
strategies apt for context-sensitive recruitment using the PP apparatus.

Seen from this perspective, the recruitment of task-specific
inner neural coalitions within an interaction-dominated PP econ-
omy is entirely on a par with the recruitment of task-specific
neural-bodily-worldly ensembles. The formation and dissolution of
extended (brain-body-world) problem-solving ensembles here obeys
many of the same basic rules and principles (balancing efficacy and
efficiency, and reflecting complex ongoing estimations of uncer-
tainty) as does the recruitment of temporary inner coalitions bound
by effective connectivity. In each case, what is selected is a tempo-
rary problem-solving ensemble (a ‘temporary task-specific device’, see
Anderson, Richardson, & Chemero, 2012) recruited as a function of
context-varying estimations of uncertainty. This is simply the embod-
ied, environmentally embedded version of the emergence of ‘tran-
siently assembled local neural subsystems” described in 5.5.

Such temporary ensembles emerge and are deployed within the
empowering contexts that we have described (8.4) as ‘embodied flow".
Within such flows, perceptuo-motor routines deliver new inputs that
recruit new transient ensembles of resources. It is these rolling cycles
that most clearly characterize human cognition in the wild. Within
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these rolling cycles, arbitrarily complex amounts of ‘leaning on the
world” may become progressively folded in, expanding our practical
cognitive capacities by offloading work from brain to (non-neural)
body, and from organism to (physical, social, and technological) world.
What PP makes unusually clear is that it is these rolling cycles that the
neural economy constantly (and not just in the special cases involv-
ing mind-extending tools and technologies) serves. As such cycles
unfold, no inner homunculus oversees the repeated soft-assembly of
the distributed problem-solving ensembles that result. Instead, such
ensembles emerge and dissolve in ways determined by the progressive
reduction, in environmental context, of precise, high-quality, predic-
tion error. Organismically salient (high precision) prediction error may
thus be the all-purpose adhesive that, via its expressions in action, binds
elements from brain, body, and world into temporary problem-solving
wholes.

8.10 Escape from the Darkened Room

Prediction error minimization is consistent, then, with a very large
range of strategies for adaptive response. But there is one vibrant
thread in the tapestry of such responses that can seem especially resis-
tant to reconstruction using the resources on offer. That vibrant thread
concerns play, exploration, and the attractions of novelty. The cognitive
imperative of prediction error minimization, it is sometimes feared, is
congenitally unable to accommodate such phenomena, offering instead
a prescription for quietism, deliberate cognitive diminishment, and
(perhaps) even fatal inactivity! The hapless prediction-driven organism,
the worry goes, should simply seek out states that are easily predicted,
such as an empty darkened room in which to spend the remainder of its
increasingly hungry, thirsty, and depressing days. This is the so-called
‘Darkened Room Puzzle’ (Friston, Thornton, & Clark, 2012).

This worry (though important) is multiply misguided. It is mis-
guided at the most basic biological level, where it is presented as a
threat to the integrity and persistence of the organism. And it is mis-
guided at the more rarefied level of ‘human flourishing’, where it is
seen (see, e.g., Froese & Tkegami, 2013) as militating against play, explo-
ration, and the deliberate search for novelty and new experiences. In
each of these cases the solution to the puzzle is to notice the important
role of the evolutionary and cultural backdrops against which pro-
cesses of moment-by-moment prediction error minimization emerge
and unfold.
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Prediction-error-based neural processing is, we have seen, part
of a potent recipe for multiscale self-organization. Such multiscale
self-organization does not occur in a vacuum. Instead, it operates only
against thebackdrop of an evolved organismic (neural and gross-bodily)
form, and (as we will see in chapter 9) an equally transformative back-
drop of slowly accumulated material structure and cultural practices:
the socio-technological legacy of generation upon generation of human
learning and experience.

To start to bring this larger picture into focus, the first point to notice
is that explicit, fast timescale processes of prediction error minimization
must answer to the needs and projects of evolved, embodied, and envi-
ronmentally embedded agents. The very existence of such agents (see
Friston, 2011b, 2012¢) thus already implies a huge range of structurally
implicit creature-specific ‘expectations’. Such creatures are built to seek
mates, to avoid hunger and thirst, and to engage (even when not hun-
gry or thirsty) in the kinds of sporadic environmental exploration that
will help prepare them for unexpected environmental shifts, resource
scarcities, new competitors, and so on. On a moment-by-moment basis,
then, prediction error is minimized only against the backdrop of this
complex set of creature-defining ‘expectations’.

The scare quotes flag what seems to me to be an important differ-
ence between expectations that are acquired on the basis of lifetime
experience and those that are, one way or another, structurally implicit.
We are built to breathe air through our lungs, hence we embody a kind
of structural ‘expectation’ of staying (mostly) above water—unlike (say)
an octopus. Some of our action tendencies are likewise built-in. The
reflexive response to touching a hot plate is to draw away. This reflex
amounts to a kind of bedrock ‘expectation’ of avoiding tissue damage.
In this attenuated sense every embodied agent (even a bacterium) is,
just as Friston (2012¢) claims, already a kind of surprise-minimizing
mode] of its environment. Thus we read that:

biological systems can distil structural regularities from envi-
ronmental fluctuations (like changing concentrations of chem-
ical attractants or sensory signals) and embody them in their
form and internal dynamics. In essence, they become models
of causal structure in their local environment, enabling them
to predict what will happen next and counter surprising viola-
tions of those predictions. (Friston, 2012c, p. 2101)

Another simple example is the information made available by our
species-specific array of sensory receptors, and their placement at spe-
cific bodily locations. This (at least until the invention of night-vision
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aids and other sensory augmentations) selects and constrains the space
within which sensory prediction error can be actively minimized. But
there is more to it than this. As evolved creatures we also ‘expect” (still
with my scare quotes) to remain warm, well-fed, and healthy, and sensed
deviations from these ingrained norms will yield prediction errors capa-
ble of driving short-term response and adaptation. Such agents (when
normally functioning) simply do not feel the pull of the darkened room.
Creature-defining ‘expectations’ of this kind are not subject to revision
even by long-term life experiences (such as enduring a famine).

The first thing to do when confronting the Darkened Room puz-
zle is thus to view things from a rather more cosmic (long timescale)
perspective. At such timescales, ‘surprisal’ (see 1) is reduced by any
form of adaptation or change whose effect is to help the organism to
resist dissolution and disorder, minimizing ‘free energy’ (Appendix
2) in its exchanges with the environment. Considered over these longer
timescales, we may say that this amounts to providing them with a
kind of overarching set of structurally implicit ‘beliefs” or ‘expecta-
tions'—still with those important scare quotes—that condition and
constrain our moment-by-moment processes of explicit prediction error
minimization. Relative to the full set of ‘expectations’ that in this way
define an evolved agent, a darkened room usually'? holds no lure at
all. Typical evolved agents strongly ‘expect’, as Friston (2012¢) suggests,
not to spend very long at all in such unrewarding environments. This
means that the Darkened Room holds no allure for creatures like us.

Friston’s way of expressing this important fact is, however, poten-
tially problematic—hence my use of all those scare quotes. For it
threatens to conflate the various ways in which surprisal may be
minimized—for example, by details of gross bodily form and neuro-
anatomy, and by the more explicit, generative-model-based issuing
of top-down probabilistic predictions to meet the incoming sensory
stream. If my skin heals after a cut, it would be misleading to say that
in some structural, embodied fashion I ‘predict’” an unbroken mem-
brane. Yet it is only in this strained sense that, to take another example,
the shape of the fish could be said to embody expectations concern-
ing the hydrodynamics of seawater.® Perhaps we should allow that
in some very broad sense, fish-y ‘surprisal’ is indeed partially deter-
mined by such morphological factors. Our focus, however, has been on
suites of entwined predictions issued by a neurally encoded generative
model—the kind of process implemented, if PP is correct, by iterated
exchanges of prediction and prediction error signaling in asymmet-
ric bidirectional cascades of neuronal processing. Consequently, I do
not think we ought properly (without scare quotes) to speak of all
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these bedrock adaptive states and responses as themselves amount-
ing to structurally sedimented (Friston says ‘embodied’) predictions or
expectations. Better, I think, to say that healing (along with a swathe of
other neural and bodily mechanisms ensuring survival and success)
sets the scene against which our predictive models of the world can take
shape. Prediction error minimization here emerges as just one process
among many—but one that (I have argued) plays a very special role in
allowing agents like us to encounter, in perception and action, a struc-
tured world of interacting distal causes, rather than simply (like plants
or very simple life-forms) running routines that keep us viable.

The ‘creature-defining backdrop’ is thus best understood—at least
for our purposes—as setting the scene for the deployment (sometimes,
in some animals) of more explicit prediction error minimizing strat-
egies of learning and response. Nonetheless, the creature-defining
backdrop is hugely important and influences both what we (in the rich
sense) predict and, crucially, what we do not need, in that full sense, to
predict—because, for example, it is already taken care of by basic bio-
mechanical features, such as passive dynamics and the inbuilt syner-
gies of muscles and tendons. It is only against that hugely empowering
backdrop that online computations of prediction error can explain our
complex, fluid forms of behavioural success.

8.11  Play, Novelty, and Self-Organized Instability

The Darkened Room Puzzle has another—slightly more subtle—
dimension, nicely captured in the following passage:

If our main objective is to minimize surprise over the states
and outcomes we encounter, how can this explain complex
human behavior such as novelty seeking, exploration, and, fur-
thermore, higher level aspirations such as art, music, poetry, or
humor? Should we not, in accordance with the principle, prefer
living in a highly predictable and un-stimulating environment
where we could minimize our long-term surprise? Shouldn’t
we be aversive to novel stimuli? As it stands, this seems highly
implausible; novel stimuli are sometimes aversive, but often
quite the opposite. The challenge here is to reconcile the fun-
damental imperative that underlies self-organized behavior
with the fact that we avoid monotonous environments and
actively explore in order to seek novel and stimulating inputs.
(Schwartenbeck et al., 2013, p. 2)
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In just this vein Froese and Ikegami (2013) suggest that good ways of
minimizing surprisal will include ‘stereotypic self-stimulation, cata-
tonic withdrawal from the world, and autistic withdrawal from others’.
The worry here is not (quite) that we will seek out some darkened room
death trap. That worry was already dealt with by the observations con-
cerning bedrock structure and native ‘expectations’. The worry, rather,
is that the PP story can seem strangely silent with respect to the more
positive attractions of novelty and exploration. It seems strangely silent,
that is to say, regarding ‘why we actively aspire (to a certain extent)
to novel, complex states’ (Schwartenbeck et al, 2013). It is thus silent
about, for example, much of the huge industry of entertainment, art,
and culture.

This is a large and challenging topic that I cannot hope to address
in a few short comments. But part of the solution may itself involve
(in a kind of bootstrapping way) forms of culturally-mediated lifetime
learning that install global policies that actively favour increasingly
complex forms of novelty-seeking and exploration. A global policy, in
this sense, is just a rather general action selection rule—one that entails
whole varieties of actions rather than a single act. The simplest such
policy relevant to play and exploration is one that reduces the value
of a state the longer that state is occupied. In worlds where resources
are unevenly distributed in space and time, this may be an adaptively
valuable policy.

It may be useful to give this kind of policy a dynamical spin. As our
trajectories though space and time unfold, potentially stable stopping
points (attractors, in the language of dynamical systems) constantly
arise and dissolve, often under the influence of our own evolving inner
states and actions. Some systems, however, have a tendency to destroy
their own fixed points, actively inducing instabilities in ways that result
in what Friston, Breakspear, & Deco (2012) call ‘peripatetic or itinerant
(wandering) dynamics’. Such systems would appear to pursue change
and novelty ‘for their own sake”.

An entertaining illustration involves what may well be the first
‘urban myth’ of developmental robotics. According to this story, a robot
had been set up to minimize prediction error in a toy environment. But
having done that, instead of simply ceasing to behave, the robot began
to spin around and around, creating a variety of optical artefacts that
it then proceeded to model and predict. The story (which I heard in
connection with work by Meeden et al., 2009) turns out to be not quite
true, though it is based upon some interesting robot behaviour that
was indeed actually exhibited.* But a creature genuinely disposed to
destroy its own fixed points, finding itself trapped in a highly restricted
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environment, might indeed be driven to seek out new horizons by any
means available. In a similar vein, Lauwereyns (2012) reports a study*®
showing that:

Human beings confined in a dark room with a minimum of
stimulation will press buttons to make patterns of colored
spots of light appear, preferring those sequences of pattern
that offer the most variety and unpredictability. (Berlyne, 1966,
p- 32, quoted in Lauwereyns, 2012, p. 28)

More recently, Kidd et al. (2012) conducted a series of experiments
with 7- and 8-month-old infants measuring attention to sequences
of events of varying (and well-controlled) complexity. Infant atten-
tion, they found, was characterized by what they dub a ‘Goldilocks
Effect’, focusing upon events presenting an intermediate degree of
predictability—neither too easily predictable, nor too hard to predict.
The probability of an infant looking away was thus greatest when com-
plexity (calculated as negative log probability) was either very high or
very low. The functional upshot, Kidd et al. suggest, is that ‘infants
implicitly seek to maintain intermediate rates of information absorp-
tion and avoid wasting cognitive resources on overly simple or overly
complex events’ (Kidd et al,, 2012, p. 1).

Such tendencies to seek out ‘just-novel-enough’ situations are a
good candidate for some form of innate specification, since they would
cause active agents to self-structure the flow of information in ways
ideally suited to the incremental acquisition and tuning of an infor-
mative generative model of their environment. More generally still,
agents that inhabit complex, changing worlds would be well-served
by a variety of policies that drive them to explore those worlds, even
when no immediate gains or rewards are visible. Such agents would
actively perturb their own trajectories through space and time in ways
that enforce a certain amount of exploration.'* The resulting ‘itinerant’
trajectories (Friston, 2010; Friston et al., 2009) provide adaptively valu-
able gateways to new learning and discovery."”

Extending this perspective, Schwartenbeck et al. (2013) suggest that
certain agents may acquire policies that positively value the opportu-
nity to visit many new states. For such agents, the value of some current
state is partially determined by the number of possible other states that
it allows them to visit. The complex human-built environments of art,
literature, and science look like nice examples of domains structured
to support and encourage just such open-ended forms of exploration
and novelty-seeking. Predictive agents immersed in these kinds of
designer environment will learn to expect (hence demand and actively
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seek out) those characteristic kinds of novelty and change. In structur-
ing our cultural and social worlds we may thus be structuring ourselve:
in ways that promote increasingly rarefied patterns of exploration and
novelty-seeking. This incremental cultural self-scaffolding (the culmi-
nation of humanity’s escape from the darkened room) is the topic of the
next, and final, chapter.

8.12 Fast, Cheap, and Flexible Too

We live in changing and challenging worlds. Such worlds demand
the use of many strategies, including fast, efficient modes of
perception-action coupling and slower, effortful processes of reasoning
and mental simulation. To stay ahead of such worlds, we must use what
we know both to anticipate, and actively to sculpt, the sensory bar-
rage. In so doing, we do not simply engage the world. Instead we select,
moment-by-moment, the very strategies (the neural and extra-neural
circuits and activities) by which we will do so. Those strategies range
from the quick and dirty to the slow and accurate, from those domi-
nated by bottom-up sensory flow to those more reliant upon top-down
contextual modulation, and all points and admixtures in between.
They range too from the highly exploratory to the deeply conservative,
enabling fluent switching whenever the value of gaining information
and experience starts to be outweighed by the costs and risks involved
in obtaining it. These strategic switches balance expected temporal,
energetic, and computational costs against possible benefits.

Creatures like us are thus built to be persistently active, produc-
tively lazy, and occasionally exploratory and playful. We are built to
maximize success while minimizing effort, both intellectual and physi-
cal. We do this, in large part, by deploying strategies that are funda-
mentally action-oriented. Minds like ours are not in the business of
representing the world in some passive, descriptive manner. Instead,
they engage it in complex rolling cycles in which actions determine
percepts that select actions, evoking and exploiting all manner of envi-
ronmental structures and opportunities along the way.

The worry that predictive processing organizations might over-
emphasize computationally expensive, representation-heavy strategies
over other (quicker, dirtier, more ‘embodied’) ones is thus fully and sat-
isfyingly resolved. The ever-active predictive brain is now revealed as
a lazy brain: a brain vigilant for any opportunity to achieve more by
doing less.
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Being Human

9.1 Putting Prediction in Its Place

Our neural economy exists to serve the needs of embodied action.
It does so, we saw, by initiating and sustaining complex circular
causal flows in which actions and perceptions are co-determined and
co-determining. These circular causal flows enact structural couplings
that keep the organism within its own window of viability. In this way,
the vision of the ever-active predictive brain dovetails elegantly with
work on the embodied and situated mind. We have seen evidence of
this already, as we explored the circular causal webs uniting percep-
tion and action, the use of low-cost strategies making the most of body
and world, and the complex continuous interweaving of perceiving,
deciding, and acting. To complete the picture, however, we must now
explore the many ways in which nested webs of social and environmen-
tal structure inform, and are informed by, these unfolding processes of
embodied neural prediction.

At the core lie multi-timescale processes of self-organization.
Prediction error minimization provides a plausible and powerful
mechanism for self-organization—a mechanism capable of yielding
nested dynamical regimes of great complexity. But that complexity,
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in the rather special case of human agents, now involves a potent and
labile sociocultural envelope. We humans—uniquely in the terrestrial
natural order—build, and repeatedly rebuild, the social, linguistic,
and technological worlds whose regularities then become reflected in
the generative models making the predictions. It is because the brain
itself is such a potent organ of unsupervised self-organization that
our sociocultural immersions can be as efficacious as they are. But it
is only in the many complex and ill-understood interactions between
these two fundamental forces (between complex self-organizing neu-
ral dynamics and the evolving swirl of social and material influence)
that minds like ours emerge from the material flux. We must thus con-
front the ever-active predictive brain in its proper setting—inextricably
intertwined with an empowering backdrop of material, linguistic,
and sociocultural scaffolding. What follows is a preliminary gesture
towards that large and important task.

9.2 Reprise: Self-Organizing around Prediction Error

Prediction error provides an organismically computable quantity apt
to drive neural self-organization in many ways and at many tempo-
ral scales. We have seen this principle in action many times in previ-
ous chapters, but it is worth pausing to admire the potent sweep of
self-organization that results. At the heart of the process lies a proba-
bilistic generative model that progressively alters so as better to pre-
dict the plays of sensory data that impinge upon a biological organism
or artificial agent. This results in learning that can separate out inter-
acting bodily and environmental causes operating at varying scales
of space and time. Such approaches describe a potent mechanism
for self-organized, grounded, structural learning. Learning is now
grounded because distal causes are uncovered only as a means of pre-
dicting the play of sensory data (a play that also reflects the organ-
ism’s own actions and interventions upon the world). Such learning is
structure-revealing, unearthing complex patterns of interdependencies
among causes operating at different scales of space and time. All this
provides a kind of palette of predictive routines that can be combined
in novel ways to deal with new situations.

Such systems are self-organizing because they are not aiming at any
specific input-output mapping. Instead, they must discover the patterns
of cascading regularity that best accommodate their own (partially
self-induced) flows of sensory information. This is liberating because it
means that such systems can deliver ways of knowing that are not tied
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to the performance of specific tasks (although the plays of sensory data
to be accommodated are themselves constrained by the broad forms of
human activity).

Such systems are also deeply context-sensitive. This is because sys-
temic response in any area or at any level is now answerable to the
full downwards (and lateral) cascade of context-fixing information.
This non-linear dynamical picture increases still further in complex-
ity because the flow of influence is itself reconfigurable, as changing
precision estimations alter moment-by-moment patterns of effective
connectivity.

By self-organizing around prediction error, these architectures
thus deliver a multiscale grip upon the organism-salient features of the
world—a grip whose signature is the capacity to engage that world in
ongoing cycles in which perception and action work together to quash
high-precision prediction error.

9.3 Efficiency and ‘The Lord’s Prior’

An important point to notice is that such systems do not simply cease
to change and alter just because sensory prediction error has been suc-
cessfully minimized. For there is, as we saw in chapter 8, another (less
frequently highlighted) factor that can still drive change and learning.
That factor is efficiency. Efficiency (see, e.g., Barlow, 1961; Olshausen
& Field, 1996) is intuitively the opposite of redundancy and excess. A
scheme or strategy is efficient if it uses only the minimal resources nec-
essary to do the job. A generative model that is rich enough to main-
tain an organismic grip upon the regularities important for selecting
behaviour, but that does so using minimal energetic or representa-
tional resources (for example, using few parameters) is efficient in this
sense. By contrast, a system that uses a large number of parameters
to accommodate or respond to the same data is not therby rendered a
‘more accurate’ modeller of its world. On the contrary, the result will
often be ‘over-fitting’ the observed data, some of which turns out to be
merely ‘noise” or random fluctuations around the informative signal.
The Optical Acceleration Cancellation procedure described in
chapter 8 is a nice example of a model that combines low complexity
(few parameters) with high behavioural leverage. At the most general
level, the drive towards efficiency is simply part and parcel of the over-
all imperative to minimize the sum of sensory prediction errors. This
involves finding the most parsimonious model that successfully engages
the sensory flow. For the deep functional role of the prediction error
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signal, or so I have argued, is not to recruit new and better hypotheses
about the world, so much as to leverage sensory information so as to
guide fluent engagements with those aspects of the world relevant to
our current needs and projects.!

All this is nicely dramatized in Feldman’s (2013, p. 15) discussion of
the ‘Lord’s Prior” where this rather mischievously names the mislead-
ing idea that ‘the optimal Bayesian observer is correctly tuned when its
priors match those objectively in force in the environment’. The deep
problems with such a notion emerge as soon as we reflect that active
agents are not, at root, simply trying to model the data so much as to
come up with recipes for acting appropriately in the world. This will
mean separating agent-salient signal from noise, selectively ignoring
much of what the sensory signal makes available. Moreover, ‘one would
be unwise to fit one’s prior too closely to any finite set of observations
about how the world behaves, because inevitably the observations are a
mixture of reliable and ephemeral factors’ (Feldman, 2013, p. 25).

There is no guarantee that online predictive learning will cor-
rectly separate out signal from noise in the efficient way that that this
requires. But all is not lost. For efficiency can be increased (complex-
ity reduced) even in the absence of ongoing data-driven learning. One
way to do this is to ‘prune’ synaptic connectivity (perhaps, as specu-
lated in chapter 3, during sleep) by removing connections that are weak
or redundant. The ‘skeletonization’ algorithm? in connectionism (see
Mozer & Smolensky, 1990, and discussion in Clark, 1993) and the aptly
named wake-sleep algorithm (Hinton et al, 1995) are early examples
of such procedures, each aiming to deliver robust performance while
systematically reducing representational excess. The major benefit of
such pruning is improved generalization—an improved ability to use
what you know in a wide range of superficially distinct (but fundamen-
tally similar) cases. Synaptic pruning provides a plausible mechanism
for improving efficiency and reducing model complexity—an effect
that may most frequently occur when exteroceptive sensory systems
are dampened or shut down as occurs during sleep (see, e.g., Gilestro,
Tononi, & Cirelli, 2009; Tononi & Cirelli, 2006).

9.4 Chaos and Spontaneous Cortical Activity

Synaptic pruning provides an endogenous means of improving our
grip upon the world. It enables us to improve the grip of our models
and strategiesby eliminating spurious information and associations,
and thus avoiding—or at least repairing—the kind of ‘overfitting’ that
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occurs when a system uses valuable resources to track accidental or
unimportant features of the training data. Synaptic pruning of this
kind is best seen as a mechanism for improving the models that we
already, in some rough sense, command. But we routinely do much
more than that. For we are capable of a kind of deliberate imaginative
exploration of our own mental space. The rudiments of this capacity
come for free (as we saw in chapter 3) with the use of hierarchical neu-
ral prediction as a means of driving learning, perception, and action.
Creatures deploying that kind of strategy turned out to be natural
imaginars, able to drive their own sensorimotor systems ‘from the top
down’. Such creatures can benefit from the use of mental simulations
that automatically respect the interlocking constraints implied by the
generative model. Such simulations provide a means of getting the
most out of the generative model that we already command, while syn-
aptic pruning helps improve that model from within.

But all this can still sound somewhat conservative, as if we are
doomed (until new experiences are constructed or intervene) to stay,
broadly speaking, within the limits of our achieved world view. To
glimpse the possibility of more radical forms of endogenous cognitive
exploration, recall the account of spontaneous cortical activity briefly
sketched in 6.6. According to that account (see Berkes et al., 2011; see
also Sporns, 2010 chapter 8), such spontaneous activity is not ‘mere
neural noise’. Instead, it reflects a creature’s overall model of the world.
Evoked activity (the activity resulting from a specific external stimulus)
then reflects that model as it is applied to a specific sensory input.

What this and other work (see Sadaghiani et al., 2010) suggests
is that spontaneous cortical activity is an expression (a kind of gross
signature) of the specific generative model underlying perception
and action. According to such an account, ‘ongoing activity patterns
reflect a historically informed internal model of causal dynamics in
the world (that serves to generate predictions of future sensory input)’
(Sadaghiani et al., 2010, p. 10). Combining this picture of spontaneous
cortical activity with the suggestions (8.11) regarding self-organizing
instability opens up an intriguing possibility for more radical explora-
tions of cognitive space.

Suppose that our acquired world model is implemented by a
dynamical regime that is never quite stable, most likely due (see, e.g.,
Van Leeuwen, 2008) to various chaos-style effects. Under such condi-
tions, the model itself (where this is nothing but the constellations of
structured neural activity ready to guide perception and action) is con-
stantly ‘flittering’, exploring the edges of its own territory. Variations
in such activity would determine subtly different responses to the
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encountered sensory stimuli. Even in the absence of compelling sen-
sory inputs, that activity will not stop. Instead, it will continue to occur
yielding ongoing forms of stimulus-detached exploration around
the edges of the acquired model—explorations that, we may specu-
late, might suddenly result in a new or more imaginative (and often
more parsimonious, see 9.3) solution to a problem or puzzle that has
been occupying our attention. In addition, work by Coste et al. (2011)
suggests that some spontaneous cortical activity is related to fluctua-
tions in precision optimizations.> Perhaps such fluctuations allow us
to explore the edges of our own ‘meta-model'—our own estimates of
context-relative reliability.

Might all this be atleast part of the solution to deep and abiding puz-
zles concerning the origins of new ideas and creative problem-solving?
Sadaghiani et al. (2010) link their account to some recent work in
machine learning and robotics (Namikawa & Tani, 2010; Tsuda, 2001) in
which such mental ‘wanderings’ are indeed the primary source of new
forms of behaviour. Such wanderings might themselves be mandated
by implicit hyperpriors that depict the world itself as changing and
unstable, hence as no suitable place for systems that would rest on their
cognitive laurels. Instead, we would be driven continuously to explore
the edges of our own knowledge spaces, subtly altering our predictions
and expectations (including our precision expectations) from moment
to moment even in the absence of new information and experience.

In an interesting extension of these themes, Namikawa et al. (2011)
explored the relationship between complex hierarchical structure and
self-organizing instabilities (deterministic chaos) using neuro-robotic
simulations. In this work, a generative model with multi-timescale
dynamics enables a set of motor behaviours. In these simulations (just
as in the PP models to which they are formally closely related):

Action per se, was a result of movements that conformed to
the proprioceptive predictions of ... joint angles [and] per-
ception and action were both trying to minimize prediction
errors throughout the hierarchy, where movement minimized
the prediction errors at the level of proprioceptive sensations.
(Namikawa et al,, 2011, p. 4)

In the simulations, deterministic chaos affecting slower timescale
(higher level) network dynamics was found to enable new spontane-
ous transitions among primitive actions (the basic repertoire of the
agent). This organization was shown to be both emergent and func-
tionally crucial. It was emergent insofar as the concentration of chaotic
dynamics in the higher level network occurred naturally as long as the
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time constant of the higher level was significantly larger than that of
the other regions (for the numerical details, see Namikawa et al., 2011,
p- 3)- And this partial segregation of the chaotic dynamics was func-
tionally crucial, since by restricting the impact of self-organized chaos
to the higher level (slower timescale) networks, the robots were able to
explore the useful, well-constrained space of possible action sequences
without simultaneously undermining the stable, reusable elements
of the action repertoire itself. They were thus able to generate new,
spontaneous action transitions without disturbing the faster timescale
dynamics (in lower level networks) that rendered their actions robust
and reliably reproducible ‘on demand”.

Only the networks whose timescale dynamics were sufficiently
spread out in this way proved able to display ‘both itinerant behaviors
with accompanying spontaneous transitions of behavior primitives and
intentional fixed behaviors (repeatedly executable) [using] the same
dynamic mechanism’ (Namikawa et al., 2011, p. 3, italics added). By
contrast, if the timescale dynamics of the higher level network were
reduced (becoming faster, hence closer to those of the lower level net-
works), robot behaviour became unstable and unreliable, leading the
authors to conclude that ‘hierarchical timescale differences ... are
essential for achieving the two functions of freely combining actions
in a compositional manner and generating them stably in a physical
environment’ (Namikawa et al., 2011, p. 9). Such results, preliminary
though they are, begin to suggest something of the deep functional role
of multiple timescale dynamics—dynamics that occur naturally as a
result of hierarchical predictive processing and that are plausibly real-
ized by the spread of labour between neural structures with varying
temporal response characteristics.*

9.5 Designer Environments and Cultural Practices

There is nothing specifically human, however, about any of the
mechanisms for improving and exploring mental space just scouted.
Prediction-driven learning, imagination, limited forms of simulation,
and the canny exploitation of multi-timescale dynamics are all plausi-
bly displayed, albeit to varying degrees, by other mammals. The most
basic elements of the predictive processing story, as Roepstorff (2013,
p. 224) correctly notes, may thus be found in many types of organism
and model system. The neocortex (the layered structure housing corti-
cal columns that provides the most compelling neural implementation
for predictive processing machinery) displays some dramatic variations
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in size but is common to all mammals. Core features of the PP model
may also be supported in other species using other structures (e.g., the
so-called ‘mushroom bodies’ found in insect brains are conjectured to
provide a means of implementing forward models used for prediction,
see Li & Strausfeld, 1999, and discussion in Webb, 2004).

What, then, makes us (superficially at least) so very different? What
is it that allows us—unlike dogs, chimps, or dolphins—to latch on to
distal causes that include not just food, mates, and relative social rank-
ings but also neurons, predictive processing, Higgs bosons, and black
holes? One possibility (Conway & Christiansen, 2001) is that adapta-
tions of the human neural apparatus have somehow conspired to create,
in us, an even more complex and context-flexible hierarchical learning
system than is found in other animals. Insofar as the PP framework
allows for rampant context-dependent influence within the distrib-
uted system, the same basic operating principles might (given a few
new opportunities of routing and influence) result in the emergence
of qualitatively novel forms of behaviour and control. Such changes
might explain why human agents display what Spivey (2007, p. 169)
nicely describes as an ‘exceptional sensitivity to hierarchical structure
in any time-dependent signal”.

Another (possibly linked and certainly highly complementary)
possibility involves a potent complex of features of human life, espe-
cially our abilities of temporally co-coordinated social interaction (see
Roepstorff, 2013) and our abilities to construct artefacts, and designer
environments. Some of these ingredients have emerged in other spe-
cies too. But in the human case the whole mosaic comes together under
the influence of flexible structured symbolic language (this was the tar-
get of the Conway and Christiansen treatment mentioned above) and
an almost obsessive drive (Tomasello et al., 2005) to engage in shared
cultural practices. We are thus enabled repeatedly to redeploy our
core cognitive skills in the transformative context of exposure to what
Roepstorff et al. (2010) call “patterned sociocultural practices” These
include the use of symbolic inscriptions (encountered as ‘material sym-
bols’, see Clark, 2006) embedded in complex practices and social rou-
tines (Hutchins, 1995, 2014). Such environments and practices include
those of mathematics, reading,” writing, structured discussion, and
schooling. The succession and tuning of such designer environments
then constitutes the complex and ill-understood process that Sterelny
(2003) describes as ‘incremental downstream epistemic engineering’.

What are the potential effects of such stacked and trans-
missible structures (designer environments and practices) upon
prediction-driven learning in neural systems? Prediction-driven
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learning routines make human minds permeable, at multiple spatial
and temporal scales, to the statistical structure of the action-ready,
organism-salient world, as reflected in the training signals. But those
training signals are now delivered as part of a complex developmen-
tal web that gradually comes to include all the complex regularities
embodied in the web of statistical relations among the symbols and
other forms of sociocultural scaffolding in which we are immersed. We
thus self-construct a kind of rolling ‘cognitive niche’ able to induce the
acquisition of generative models whose reach and depth far exceeds
their apparent base in simple forms of sensory contact with the world.

To see how this might work, recall that the way to construct a new
idea or concept (assuming the resources of PP) is to encounter a new
sensory pattern that results in highly weighted (organism-salient) pre-
diction error. Highly weighted errors, if the system is unable to explain
them away by recruiting some model that it already commands, result
inincreased plasticity and (if all goes well) the acquisition of new knowl-
edge about the shape and nature of the distal causes responsible for the
surprising sensory inputs. But we humans are also expert at deliber-
ately manipulating our physical and social worlds so that they provide
new and ever-more-challenging patterns that will drive new learning.
A very simple example is the way that learning to perform mental arith-
metic has been scaffolded, in some cultures, by the deliberate use of an
abacus. Experience with the sensory patterns thus made available helps
to install appreciation of many complex arithmetical operations and
relations (for discussion, see Stigler et al., 1986). The specific example
does not matter very much, but the general strategy does. We structure
(and repeatedly restructure) our physical and social environments in
ways that make available new knowledge and skills (for some lovely
explorations, see Goldstone, Landy, & Brunel, 2011; Landy & Goldstone,
2005; and, for an information-theoretic twist, Salge, Glackin, & Polani,
2014). Prediction-hungry brains, exposed in the course of embod-
ied action to novel patterns of sensory stimulation, may thus acquire
forms of knowledge that were genuinely out-of-reach prior to such
physical-manipulation-based retuning of the generative model.

Such retuning and enhancement is now served by a huge variety
of symbol-mediated loops into material and social culture: loops that
involve (see Clark, 2003, 2008) notebooks, sketchpads, smartphones, and
also (see Pickering & Garrod, 2007) written and spoken conversations
with other agents.® Such loops are effectively enabling new forms of
re-entrant processing. They take a ‘first-order’ cognitive product (such
as the visual experience of seeing a new purple skyscraper) clothe it in
public symbols (turning it into the written or spoken sequence, “I saw
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a new purple skyscraper today”) and launch it into the world so that
it can re-enter our own cognitive system, and the cognitive systems of
other agents, as a new kind of concrete perceptible—the percept of a
written or spoken sentence (Clark 2006, 2008). Those new perceptibles
bear highly informative statistical relations to other such linguaform
perceptibles. Once externalized, an idea or thought is thus able to par-
ticipate in brand new webs of higher order and more abstract statistical
correlation. The signature of such correlations is that words predict the
occurrence of other words, tokens of mathematical symbols and opera-
tors predict the occurrence of other such tokens, and so on.

We glimpse the power of the complex internal statistical relation-
ships enshrined in human languages in Landauer and colleagues’ fas-
cinating work on ‘latent semantic analysis’ (LSA). This work reveals
the vast amount of information now embodied in statistical (but deep,
not first order) relations between words and the larger contexts (sen-
tences and texts) in which they occur (see Landauer & Dumais, 1997;
Landauer et al., 2007). For example, deep statistical relations among
words were here shown to contain information that could help pre-
dict the grade-score of essays in specific subject areas. More gener-
ally (for LSA is a very specific technique with strict limitations) the
rich symbolic world we humans immerse ourselves in is now demon-
strably chock-full of information about meaning relations in itself.
Those meaning relations are reflected in our patterns of use (hence
in patterns of occurrence) and they can be identified and exploited
regardless of the many more fundamental hooks that link words and
symbols to practical actions and the (rest of our) sensory world. Some
of those meaning relations, moreover, obtain in realms whose core
constructs are now far, far removed from any simple sensory signa-
tures, visible only in the internal relations proper to the arcane worlds
of quantum theory, higher mathematics, philosophy, art, and politics
{(to name but a few).

Our best takes on the world are thus given material form and
made available (in that new guise) as publically perceptible object—
words, sentences, equations. An important side-effect of this is that
our own thoughts and ideas now become available, to ourselves and
others, as potential objects for deliberate processes of attention. This
opens the door to a whole array of knowledge-improvement and
knowledge-testing techniques, ranging from simple conversations
in which we ask for reasons, to the complex practices of testing, dis-
semination, and peer-review characteristic of contemporary science.
Courtesy of all that material public vehicling in spoken words, writ-
ten text, diagrams, and pictures, our best predictive models of the
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world (unlike those of other creatures) have thus become stable, rein-
spectable objects apt for public critique and systematic, multi-agent,
multi-generational test and refinement. Our best models of the world
are thus able to serve as the basis for cumulative, communally distrib-
uted reasoning, rather than just providing the means by which indi-
vidual thoughts occur. The same potent predictive processing regimes,
now targeting these brand new types of statistically pregnant ‘designer
inputs’, are then enabled to discover and refine new generative mod-
els, latching onto (and at times actively creating) ever more abstract
structure in the world. The upshot is that the human-built (material
and sociocultural) environment becomes a potent source of new trans-
missible structure that trains, triggers, and repeatedly transforms the
activity of the prediction-hungry biological brain.”

In sum, our human-built worlds are not merely the arenas in which
we live, work, and play. They also structure the life-long statistical
immersions that build and rebuild the generative models that inform
each agent’s repertoire for perception, action, and reason. By construct-
ing a succession of designer environments, such as the human-built
worlds of education, structured play, art, and science, we repeatedly
restructure our own minds. These designer environments have slowly
become tailored to creatures like us, and they ‘know’ us as well as we
know them. As a species, we refine them again and again, generation
by generation. It is this iterative re-structuring, and not sheer process-
ing power, memory, mobility, or even the learning algorithms them-
selves, that completes the human mental mosaic.

9.6  White Lines

To further appreciate the power and scope of such culturally-mediated
reshaping, recall the main moral of chapter 8. The moral was that the
predictive brain is not doomed to deploy high-cost, model-rich strate-
gies moment-by-moment in a demanding and time-pressured world.
Instead, action and environmental structuring can both be called upon
to reduce complexity. In such cases, PP delivers and deploys low-cost
strategies that make the most of body, world, and action. In the simple
case of running to catch a fly ball, the problem to be solved was ‘posed’
by the very ball whose in-flight optical properties made available the
low-cost solution itself. In such cases, we did not need to actively struc-
ture our world so as to make the low-cost strategy available, or cue its
use. In other cases, however, the cultural snowball has enabled us to
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structure our worlds in ways that both cue and help constitute low-cost
routes to behavioural or cognitive success.

A maximally simple example is painting white lines along the
edges of a winding cliff-top road. Such environmental alterations allow
the driver to solve the complex problem of keeping the car on the road
by (in part) predicting the ebb and flow of various simpler optical fea-
tures and cues (see, e.g., Land, 2001). In such cases, we are building a
better world to predict in, while simultaneously structuring the world
to cue that strategy at the right time. In other words, we build worlds
that cue simpler strategies that are only available because of the way
we have altered the world in the first place. Other examples include the
use of posted prices in supermarkets (Satz & Ferejohn, 1994), wearing
the colours of our favourite football team, or displaying the distinctive
clothing styles of our chosen subculture.

The full potential of the prediction error minimization model of
how cortical processing most fundamentally operates may thus emerge
only when that story is paired with an appreciation of what immersion
in a huge variety of sociocultural designer environments can do (for
some early steps in this direction, see Roepstorff et al., 2010). Such a
combined approach would implement a version of ‘neuroconstructiv-
ism’ (Mareschal et al.,, 2007), a view according to which

The architecture of the brain ... and the statistics of the envi-
ronment, [are] not fixed. Rather, brain-connectivity is subject to
abroad spectrum of input-, experience-, and activity-dependent
processes which shape and structure its patterning and
strengths. ... These changes, in turn, result in altered interac-
tions with the environment, exerting causal influences on what
is experienced and sensed in the future. (Sporns, 2007, p. 179)

Much of what is distinctive about human thought and reason may thus
bebest explained by the operation of what Hutchins (2014, p. 35) describes
as ‘cultural ecosystems operating at large spatial and temporal scales’.
Within such ecosystems slowly evolved culturally transmitted practices
sculpt the very worlds within which neural prediction error minimi-
zation occurs. Those cultural practices may themselves be usefully
understood, Hutchins conjectures, as entropy (surprise) minimization
devices operating at extended spatial and temporal scales. Action and
perception then work together to reduce prediction error only against
the more slowly evolving backdrop of a culturally distributed process
that spawns a succession of practices and designer environments whose
impact on the development (e.g., Smith & Gasser, 2005) and unfolding of
human thought and reason can hardly be overestimated.
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There is a downside, of course. The downside is that these cul-
turally mediated processes may also incur costs in the form of vari-
ous kinds of path-dependence (Arthur, 1994) in which later solutions
build on earlier ones. Sub-optimal path-based idiosyncrasies may
then become frozen (perhaps like the much-discussed QWERTY key-
board or Betamax video format) into our material artefacts, institu-
tions, notations, measuring tools, and cultural practices. But these
costs are easy to bear. For it is those very same trajectory-sensitive
cultural processes that deliver the vast cognitive profits that
flow from the slow, multigenerational development of designer
environments—environments that help human minds go where
other animal minds do not.

9.7 Innovating for Innovation

Adding further fuel to this sociocultural-technological fire, it may even
be the case, as elegantly argued by Heyes (2012), that many of our capac-
ities for cultural learning are themselves cultural innovations, acquired by
social interactions, rather than flowing directly from fundamental bio-
logical adaptations. The idea here is that:

the specialized features of cultural learning—the features that
make cultural learning especially good at enabling the social
transmission of information—are acquired in the course of
development through social interaction. ... They are products
as well as producers of cultural evolution. (Heyes, 2012, p. 2182)

Cultural learning, to borrow Heyes own analogy, would not merely
be a producer of more and more ‘grist’ (transmissible facts about the
world) but a source of ‘mills'—the “psychological processes that enable
us to learn the grist from others’ (Heyes, 2012, p. 2182).

The most obvious example is reading and writing, a matched pair
of cultural practices that seem to have emerged far too recently to be
a result of genetic adaptations. The practice of reading is known to
cause widespread changes in human neural organization (Dehaene
et al, 2010; Paulesu et al.,, 2000). The resulting new organization exploits
what Anderson (2010) describes as a fundamental principle of ‘neural
reuse’ in which pre-existing elements are recruited and repurposed. In
this way:

learning to read takes old parts and remodels them into a new
system. The old parts are computational processes and cortical
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regions originally adapted, genetically and culturally, for object
recognition and spoken language, but it is an ontogenetic, cul-
tural process— literacy training—that makes them into a new
system specialized for cultural learning. (Heyes, 2012, p. 2182)

Reading is thus a nice example of a culturally inherited mill—a prod-
uct of cultural evolution that feeds and fuels the process of cultural
evolution itself. Other examples, Heyes argues, may include key mech-
anisms of social learning (learning by observing other agents in action)
and imitation. If Heyes is right, then culture itself may be responsible for
many of the sub-mechanisms that give the cultural snowball the means
and momentum to deliver minds like ours.

9.8  Words as Tools for Manipulating Precision

Words and phrases enjoy a double life. They function as communicative

vehicles, but they also seem to play a role in the unfolding and devel-
opment of our own thoughts and ideas. This latter role is sometimes
referred to as the supra-communicative dimension of language (see
Clark, 1998; Dennett, 1991; Jackendoff, 1996). This supra-communicative
role can seem rather mysterious. What cognitive advantage could pos-
sibly accrue to an agent simply in virtue of expressing a thought (one
that, you might insist, she already has) using language? The answer,
presumably, is that we are wrong to depict the case in quite that way.
Rather than merely expressing a thought we already have, such acts
must somehow alter, impact, or transform the thinking itself. But just
how might this work?

Consider, from the PP perspective, the likely effects of encoun-
tered, self-produced, or conversationally co-constructed words or
phrases upon individual processing and problem-solving. In such
cases we, either alone or as part of a collective, are creating ‘artificial
input streams’ that may be peculiarly well-adapted to alter and nuance
the flows of inner processing that help determine perception, experi-
ence, and action.

In a bare-bones exploration of such ideas, Lupyan and Ward (2013)
conducted an experiment using a technique called Continuous Flash
Suppression (CFS).? In CFS an image continuously presented to one
eye is suppressed when a changing stream of other images is pre-
sented to the other eye. This is another example of bi-stable percep-
tion, related to the binocular rivalry case that we explored way back in
chapter 1.” Lupyan and Ward found that an object that is masked from
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awareness by CFS can be unsuppressed (consciously detected) if the
right word—the word ‘zebra), if the suppressed object was a zebra—is
heard before the trial begins. Hearing the right word increased the
‘hit rate’ for detecting the object and shortened reaction times too. The
explanation, the authors suggest, is that ‘when information associated
with verbal labels matches incoming (bottom-up) activity, language
provides a top-down boost to perception, propelling an otherwise
invisible image into awareness” (Ward & Lupyan, 2013, p. 14196). In
this experiment the verbal enhancement was externally provided. But
related effects, in which no external cueing is provided, have also been
demonstrated for conscious recognition. Thus, Melloni et al. (2011, and
discussion in 3.6) showed that the onset time required to form a report-
able conscious percept varies substantially (by around 100 ms) accord-
ing to the presence or absence of apt expectations, even when those
expectations emerge naturally as the subject performs a task. Putting
these two effects together suggests that exposure to words functions to
alter or nuance the active expectations that help construct our ongoing
experience.

In some ways, this seems obvious enough. Words make a differ-
ence! But there is emerging evidence that the expectations induced
by exposure to words and phrases are especially strong, focused, and
targeted. Lupyan and Thompson-Schill (2012) found that hearing the
word ‘dog’ is better than simply hearing a barking sound as a means
of improving performance in a related discrimination task. There is
also intriguing evidence (see Cukur et al.,, 2013, and discussion in Kim
& Kasstner, 2013) that category-based attention (as when we are told
covertly to attend to ‘vehicles” or to ‘humans’ when watching a movie
or video clip) temporarily alters the tuning of neuronal populations,
shifting the category sensitivity of neurons or of neuronal ensembles
in the direction of the attended content.

Such transient instruction-induced alterations of cortical represen-
tations could be cashed out by the suite of mechanisms that alter the
precision-weighting of specific prediction error signals. This is sugges-
tive. A potent feature of structured language is its ability to cheaply
and very flexibly target highly specific aspects of our own understand-
ing or of our understanding of another agent. One way in which this
could work, within the context of a PP-style cognitive architecture,
is thus by impacting our ongoing estimations of precision, hence the
relative uncertainty assigned to different aspects of ongoing neural
activity. Recent work by Yuval-Greenberg and Heeger (2013, p. 9365)
suggests that ‘CFS is based on modulating the gain of neural responses,
akin to reducing target contrast’. The PP mechanism for modulating
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such gain is, of course, the precision-weighting of prediction error.
Language, it may be conjectured, provides a finely tuned means of arti-
ficially manipulating the precision (hence of temporarily modifying the
impact) of prediction error at different levels of neural processing. Such
transient, targeted, subtle manipulations of precision could selectively
enhance or mute the influence of any aspect of our own or another
agent’s world model. Self-produced (or mentally rehearsed) language
would then emerge as a potent means of exploring and exploiting the
full potential of our own acquired generative model, providing a kind
of artificial second system for manipulating the precision-weighting of
our own prediction errors—hence a ‘neat trick” (Dennett, 1991) for arti-
ficially manipulating our estimations of our own uncertainty enabling
us to make fully flexible use of what we know.

Words, we might say, are (for us language users) a metabolically
cheap and flexible source of ‘artificial contexts’ (Lupyan & Clark, in
press). Viewed from the PP perspective, the impact of strings of words
upon neural processing is thus flexibly to modify both what top-down
information is brought to bear, and how much influence it has at every
level of processing (see Figure 9.1). Such a powerful tool for targeted
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self-manipulation will provide a huge boost to intelligence, improving
performance in ways that go far beyond those associated with linguis-
tic performance alone® It is a tool, moreover, whose overall cognitive
impact would be expected to vary in proportion to the subtlety and
range of the linguistic repertoire of the agent.

This is a tempting picture indeed. But exactly how public lingua-
form encodings interact with the kinds of structured probabilistic
knowledge representation posited by PP remains largely unknown.
Such interactions lie at the heart of the processes of cultural construc-
tion described earlier and must constitute a crucial target for future
research.

9.9 Predicting with Others

In the social world, many of the tricks and ploys we have just sketched
come together in a mutually supportive mix. Other agents are (recall
chapter 5) often apt for prediction using the same generative model that
gives rise to our own actions. But other agents also provide a unique
form of ‘external scaffolding’, since their actions and responses can be
exploited to reduce our own individual processing loads. Finally, other
agents are themselves predictors, and this opens up an interesting space
for mutually beneficial (or sometimes destructive—recall 2.9) processes
of ‘continuous reciprocal prediction’.

A nice example, explored in some detail by Pickering and Garrod
(2007, 2013) is the co-construction of a conversation. In conversation,
Pickering and Garrod suggest, each person uses their own language
production system (hence the generative model underlying their own
behaviour) to help predict the other’s utterances, while also using
the output of the other as a kind of external scaffolding for their own
ongoing productions. These predictions (just as PP would suggest) are
probabilistic, and span multiple different levels from phonology to
syntax and semantics. As conversation proceeds, multiple predictions
are thus continuously co-computed with their associated probabilities
(see also Cisek & Kalaska, 2011; Spivey, 2007). Each party to such a pro-
cess is, in the typical case, in the business of matching, or attempting
to match, their behaviour and expectations to those of the other. As
conversation proceeds, words, grammar, intonation, gesture, and eye
movements may all be overtly copied or covertly imitated (for a handy
review of the linguistic and behavioural evidence, see Pickering &
Garrod, 2004). Overt copying, in particular, helps support mutual pre-
diction and mutual understanding since ‘if B overtly imitates A, then
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A’s comprehension of B’s utterance is facilitated by A’s memory for A's
previous utterance’ (Pickering & Garrod, 2007, p. 109). The upshot is
that ‘prediction and imitation can jointly explain why conversation
tends to be easy, even though it involves constant task-switching and
the need to determine when to speak and what to say’ (p. 109).

Such piggybacking is not, of course, restricted to our conversa-
tional interactions. Instead, in one form or another it seems to char-
acterize many forms of human joint action ranging from team sports
to changing the bed linen with a partner (Sebanz & Knoblich, 2009).
Individual agents may also actively constrain their own behaviour so
as to make themselves more easily predictable by other agents. Thus,
we might artificially stabilize our own public personas so as to encour-
age others to enter into economic or emotional arrangements with us
(Ross, 2004). On an even grander scale, Colombo (in press) depicts social
norms (the mostly unwritten ‘rules’ of daily social behaviour, such as
leaving a tip in a restaurant) as devices whose role is to reduce mutual
uncertainty by creating structures or schemas within which behaviour
becomes more mutually predictable. Social norms, Colombo argues,
are entropy-minimizing devices, represented as probability distribu-
tions, that serve to make social behaviour predictable. Expectations
about our own behaviour are thus simultaneously descriptive and pre-
scriptive in nature.

This dual nature is also evident (Hirsh et al., 2013) in the cogni-
tive role of personal narratives: the stories we tell, to ourselves and
to others, about the flow and meaning of our lives. Such narratives
function as high-level elements in the models that structure our own
self-predictions, and thus inform our own future actions and choices.
But personal narratives are often co-constructed with others, and thus
tend to feed the structures and expectations of society back in so that
they become reflected in the models that an individual uses to make
sense of her own acts and choices. Personal narratives may thus be con-
sidered as another species of communal uncertainty-reducing device.

Roepstorff and Frith (2004) note that many cases of human
interaction involve a kind of top-level ‘script-sharing” in which the
highest-level processes that control one agent’s action may originate in
the brain of another agent. The case they examine in detail is the con-
struction of a sufficient understanding of an experimental situation to
allow a subject to participate in a specific psychological experiment.
In such cases, human agents can often achieve the (sometimes quite
demanding) understanding needed to participate simply by means of a
bout of verbal instruction in which high-level understandings are com-
municated directly from experimenter to subject. This is a case of what
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Roepstorff and Frith engagingly dub ‘top-top control of action’, in which
elements of the experimenter’s high-level understanding become posi-
tioned, courtesy of linguistic exchange, to control patterns of response
in another agent. Such a situation may be contrasted with the long
and arduous training process needed to install sufficient understand-
ing in a monkey. The especially challenging example that Roepstorff
and Frith describe involved performing a simplified version of the
Wisconsin Card Sorting Task and required, before the monkeys were
able to act as suitable subjects, a full year of operant conditioning (see
Nakahara et al,, 2002). Following this training, Nakahara et al. found
anatomically similar brain activations in both monkeys and human
subjects as they performed the task, suggesting that, as planned, the
monkeys had indeed learnt the same ‘cognitive set” (the same guiding
recipe for action and choice) as the human subjects. But despite this
end-point similarity, the process was, clearly, radically different, since:

whereas the human participant receives this script directly
from the experimenter in a top-top” exchange, the monkey has
to reconstruct this script solely via the concrete stimuli and
rewards offered to it. It happens as the monkey, based on the
previous understandings of the situation, reacts to the reward
responses that the experimenter dispenses. (Roepstorff &
Frith, 2004, p. 193)

In the case of the monkey, script-synchronization required the experi-
menters’ top-level understanding to be recreated via a truly bottom-up
process of learning, whereas in the case of the human subjects, this
arduous route could be avoided by the judicious use of language and
pre-existing shared understandings. Among human subjects already
possessing significant shared understanding, language thus provides a
kind of cheap, readily available ‘top-top’ route for the control of action.
Looping linguaform interactions can thus help create what Hasson
et al. (2012, p. 114) describe as systems of ‘brain-to-brain coupling” in
which ‘the perceptual system of one brain [is] coupled to the motor sys-
tem of another” in ways that enable the emergence of new forms of joint
behaviour—for example, when one agent shouts commands to another
while moving a grand piano up a flight of stairs.

Language also provides a means for whole groups of human agents
to collectively negotiate complex representational spaces. In particu-
lar, it provides a means (see Clark, 1998) of taming ‘path-dependent’
learning. Path dependency, in its most familiar form, is the rationale for
structured education and training. This is necessary because certain
ideas can be understood only once others are in place. Such ‘cognitive
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path dependency’ is nicely explained (see, e.g., Elman, 1993) by treat-
ing intellectual progress as involving something like a process of
computational search in a large and complex space. Previous learning
inclines the system to try out certain locations in the space and not
others. When the prior learning is appropriate, the job of discovering
some new regularity is made tractable: the prior learning acts as a fil-
ter on the space of options to be explored. The hierarchical nature of
the prediction-based approaches we have been exploring makes them
especially well-suited as inner mechanisms capable of supporting com-
plex patterns of path-dependent learning in which later achievements
build on earlier ones. At the same time, however, prior learning makes
certain other regularities harder (at times impossible) to spot. Prior
knowledge is thus always both constraining and enabling.

When confronting agents that exhibit path-dependent learning, the
mundane observation that language allows ideas to be preserved and
(in some sense) to migrate between individuals takes on a new force.
For we can now appreciate how such migrations may allow the com-
munal construction of extremely delicate and difficult intellectual tra-
jectories and progressions. An idea which only Joe’s experience makes
available, but which can flourish and realize its full potential only in
the intellectual niche currently provided by the brain of Mary, can now
realize its full potential by journeying between those agents. Different
agents (and the same agent at different times) constitute different ‘fil-
ters, and groups of such agents make available trajectories of learning
and discovery that no single agent could comprehend. The variety of
intellectual niches available within a linguistically linked community
thus provides a stunning matrix of group-level multi-agent trajectories.
In sum, socially interacting agents benefit from nested and
self-reinforcing cycles of ongoing mutual prediction. This kind of joint
piggy-backing emerges naturally when groups of interacting, predic-
tive agents construct a shared social world and may be a fundamen-
tal source of low-cost computational strategies for human interaction.
Inter-agent exchanges thus create new paths through the space of pos-
sible understandings, allowing webs of communicating agents com-
munally to explore intellectual trajectories that would rapidly defeat
any individual agent.

9.10 Enacting Our Worlds

The combined effects of action, cultural learning, reciprocal prediction,
the canny use of language, and the many forms of socio-technological
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scaffolding are transformative. It is the ill-understood alchemy between
the predictive brain and this whole raft of mutually supportive tricks
and ploys that makes us distinctively human. An immediate implica-
tion of our larger story is thus that there is a very real sense in which
human agents help construct the very worlds they model and inhabit.
That process of construction corresponds rather closely to the
mysterious-sounding notion of ‘enacting a world, at least as that notion
appears in Varela et al. (1991)."
Varela et al. write that:

The overall concern of an enactive approach to perception is
not to determine how some perceiver-independent world is
to be recovered; it is, rather, to determine the common prin-
ciples or lawful linkages between sensory and motor sys-
tems that explain how action can be perceptually-guided in a
perceiver-dependent world. (Varela et al., 1991, p. 173)

Such an approach to perception is prefigured, Varela et al. report, in
the work of Merleau-Ponty (1945/1962). There, Merleau-Ponty stresses
the important degree to which perception itself is structured by human
action. Thus, we often think of perception as simply the source of infor-
mation that is then used for the guidance of action. But expand the
temporal window a little and it becomes clear that we might equally
well think of action as the selector of the perceptual stimulations them-
selves. In the words of Merleau-Ponty:

since all the stimulations which the organism receives have
in turn been possible only by its preceding movements which
have culminated in exposing the receptor organ to external
influences, one could also say that behavior is the first cause of
all the stimulations. (Merleau-Ponty, 1945/1962, p. 13)

In a striking image, Merleau-Ponty then compares the active organism
to a keyboard which moves itself around so as to offer different keys
to the ‘in itself monotonous action of an external hammer’ (p. 13)."* The
message that the world ‘types onto the perceiver’ is thus largely cre-
ated (or so the image suggests) by the nature and action of the perceiver
herself: the way she offers herself to the world. The upshot, according
to Varela et al. (1991, p. 174) is that ‘the organism and environment [are]
bound together in reciprocal specification and selection’.

This kind of relation is described by Varela et al. as one of ‘struc-
tural coupling’ in which ‘the species brings forth and specifies its own
domain of problems’ (p. 198) and in that sense ‘enacts’ or brings forth
(p- 205) its own world. In discussing these matters, Varela et al. are
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also concerned to stress that the relevant histories of structural cou-
pling may select what they describe as ‘non-optimal” features, traits,
and behaviours: ones that involve ‘satisficing’ (see Simon, 1956, and
chapter 8) where that means settling for whatever ‘good enough’ solu-
tion or structure ‘has sufficient integrity to persist’ (Varela et al., 1991,
P. 196). PP has the resources to cash all these ‘enactivist’ cheques, depict-
ing the organism and the organism-salient world as bound together in
a process of mutual specification in which the simplest approximations
apt to support a history of viable interaction are the ones that are learnt,
selected, and maintained.”®

The simplest way in which a predictive-processing enabled agent
might be said to actively construct its world is by sampling. Action here
serves perception by moving the body and sense organs around in ways
that aim to ‘serve up’ predicted patterns of stimulation. In particular,
they aim (chapter 2) to serve up predicted sequences of high-reliability,
task-relevant information. This is a very clear case, it seems to me, of
the kind of ‘active keyboard’ effect imagined by Merleau-Ponty—the
organism selectively moves its body and receptors to fry to discover
the very stimuli that it predicts. In this way, different organisms and
individuals may selectively sample in ways that both actively construct
and continuously confirm the existence of different ‘worlds”. It is in this
sense that, as Friston, Adams, and Montague (2012, p. 22) comment, our
implicit and explicit models might be said to ‘create their own data’.

Such a process repeats at several organizational scales. Thus, we
humans do not merely sample some natural environment. We also
structure that environment in (as we just saw) a wide variety of potent,
interacting, and often cumulative ways. We do this by building mate-
rial artefacts (from homes to highways), creating cultural practices
and institutions, and trading in all manner of symbolic and notational
props, aids, and scaffoldings. Some of our practices and institutions
are also designed to train us to sample and exploit our human-built
environment more effectively—examples would include sports prac-
tice, training in the use of specific tools and software, learning to
speed-read, and many, many more. Finally, some of our technological
infrastructure is now self-altering in ways that are designed to reduce
the load on the predictive agent, learning from our past behaviours
and searches so as to serve up the right options at the right time. In
all these ways, and at all these interacting scales of space and time, we
build and selectively sample the very worlds that—in iterated bouts of
statistically sensitive interaction—install the generative models that we
bring to bear upon them.



BEING HUMAN 291

The task of the generative model in all these settings is to capture
the simplest approximations that will support the actions required to do
the job—that (as we saw in chapter 8) means taking into account what-
ever work can be done by a creature’s morphology, physical actions,
and socio-technological surroundings. PP thus harmonizes fully with
work that stresses frugality, satisficing, and the ubiquity of simple but
adequate solutions that make the most of brain, body, and world. Brain,
body, and the partially self-constructed environment stand revealed
as ‘mutually embedded systems’ (Varela et al,, 2001, p. 423) working
together in the service of situated success.

9.11  Representations: Breaking Good?

There remains, however, at least one famously vexed issue upon
which PP and enactivism (at least if history is any guide) seem
doomed to disagree. That is the issue of ‘internal representa-
tion”. Thus Varela et al. are explicit that on the enactivist concep-
tion ‘cognition is no longer seen as problem solving on the basis of
representations’ (p. 205). PP, however, deals extensively in internal
models—rich, frugal, and all points in-between—whose role is to
control action by predicting complex plays of sensory data. This,
the enactivist might fear, is where our promising story about neu-
ral processing ‘breaks bad’. Why not simply ditch the talk of inner
models and internal representations and stay on the true path of
enactivist virtue?

This issue requires a lot more discussion than I shall (perhaps mer-
cifully) attempt here® Nonetheless, the remaining distance between
PP and enactivism may not be as great as that bald opposition sug-
gests. We can begin by recalling that PP, although it trades heavily in
talk of inner models and representations, invokes representations that
are probabilistic and action-oriented through and through. These are
representations that (see chapters 5-8) are fundamentally in the busi-
ness of serving action within the context of rolling sensorimotor cycles.
Such representations aim to engage the world, rather than to depict it in
some action-neutral fashion. They remain, moreover, firmly rooted in
the patterns of organism-environment interaction that served up the
structured sensory stimulations reflected in the mature probabilistic
generative model. The role of that generative model is to deliver an effi-
cient, context-sensitive grip upon a world of multiple competing affor-
dances for action.
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The shape of that grip is well captured by Itay Shani who writes that:

Actual sensory systems are not concerned with truth and accu-
racy as such but rather, with action and the need to maintain
the functional stability of the organisms in which they are
embedded. They do not report, or register, what is where like
an idealized scientific observer but, rather, help organisms to
cope with changing conditions in their external, and internal
(somatic), environments. (Shani, 2006, p. 90)

This is exactly the role played, if PP is correct, by the multilevel proba-
bilistic generative models that guide perception and action.”

What are the contents of the states governed by these multilevel
action-oriented probabilistic generative models? The generative
model issues predictions that estimate various identifiable worldly
states (including states of the body and the mental states of other
agents).’* But it is also necessary, as we have repeatedly seen, to esti-
mate the context-variable reliability (precision) of the neural estima-
tions themselves. Some of these precision-weighted estimates drive
action, and it is action that then samples the scene, delivering per-
cepts that select more actions. Such looping complexities will make
it hard (perhaps impossible) adequately to capture the contents or
the cognitive roles of many key inner states and processes using
the terms and vocabulary of ordinary daily speech. That vocabu-
lary is ‘designed’ for communication (though it may also enable
various forms of cognitive self-stimulation). The probabilistic gen-
erative model, by contrast, is designed to engage the world in rolling,
uncertainty-modulated, cycles of perception and action. The repre-
sentations thus constructed are ‘not actual re-presentations or dupli-
cates of objects in the world but ... incomplete, abstract code that
makes predictions about the world and revises its predictions on the
basis of interaction with the world” (Lauwereyns, 2012, p. 74). Within
PP, high-level states (of the generative model) target large-scale,
increasingly invariant patterns in space and time. Such states help us
to keep track of specific individuals, properties, and events despite
large moment-by-moment variations in the stream of sensory stimu-
lation. Unpacked via cascades of descending prediction, such higher
level states simultaneously inform both perception and action, lock-
ing them into continuous circular causal flows. Instead of simply
describing “how the world is/, these models—even when considered
at the ‘higher’ more abstract levels—are geared to engaging those
aspects of the world that matter to us. They are delivering a grip on
the patterns that matter for the interactions that matter.
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This suggests a recipe for peace in the disputes concerning internal
representation. Varela et al. (1991) strongly reject appeals to ‘internal rep-
resentation’. But for them, this notion implies the ‘action-neutral’ capture
of what they call a “pregiven world’. Organism and world, they argued,
are instead co-defined by a history of structural coupling: a kind of active
‘fitting” of each to the other, rather than a passive ‘mirroring’. PP, I have
tried to show, fully respects this intuition. It posits a hierarchical genera-
tive model that helps maintain the integrity and viability of a system by
enabling it to minimize prediction errors and thus avoid compromising
(possibly fatal) encounters with the environment. That distributed inner
model is itself the result of self-organizing dynamics operating at mul-
tiple temporal scales, and it functions selectively to expose the agent to
the patterns of stimulation that it predicts. The generative model thus
functions—just as an enactivist might insist—to enable and maintain
structural couplings that serve our needs and that keep us viable.

Could we perhaps have told our story in entirely non-
representational terms, without invoking the concept of a hierarchi-
cal probabilistic generative model at all? One should always beware
of sweeping assertions about what might, one day, be explanatorily
possible! But as things stand, I simply do not see how this is to be
achieved."” For it is surely that very depiction that allows us to under-
stand how it is that these looping dynamical regimes arise and enable
such spectacular results. The regimes arise and succeed because
the system self-organizes so as to capture patterns in the (partially
self-created) input stream. These patterns specify bodily and worldly
causes operating at varying scales of space and time. Subtract this
guiding vision and what remains is just a picture of complex looping
dynamics spanning brain, body, and world. Such a vision is surely
correct, as far as it goes. But it does not explain (does not render intelli-
gible) the emergence of a structured meaningful realm apt for percep-
tion, thought, imagination, and action.

Consider those same looping dynamics from the explanatory per-
spective afforded by PP, however, and many things fall naturally into
place. With that schema in mind, we comprehend perception, imagi-
nation, and simulation-based reasoning as co-emergent from a single
cognitive architecture; we see how that architecture simultaneously
supports perception and action, locking them together in a circular
causal embrace; we see why, and exactly how, perception and action
are themselves co-constructed and co-determining; we see how, at
longer timescales, statistically driven learning can unearth interact-
ing distal and bodily causes in the first place, revealing a structured
world of human-sized opportunities for action; and we understand
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how it is that unexpected omissions and absences can be every bit
as salient and perceptually striking as the most concrete of ordinary
perceptibles. We appreciate all this, moreover, from a perspective
that both accommodates and unifies impressive swathes of work in
machine learning, in psychophysics, in cognitive and computational
neuroscience and (increasingly) in computational neuropsychiatry.
This is surely encouraging. Perhaps models in this broad ballpark
offer our first glimpse of the shape of a fundamental and unified sci-
ence of the embodied mind?

9.12 Prediction in the Wild

Our neural economy exists to serve the needs of embodied action. It does
so by initiating and sustaining complex circular causal flows in which
actions and perceptions are co-determined and co-determining. These
flows enact structural couplings that serve our needs while keeping
the organism within its own specialized window of viability. All this is
orchestrated, or so our story suggests, by a multilevel generative model
tuned to predict task-salient aspects of the current sensory signal.

Is this an inner economy bloated with representations, detached
from the world? Not at all. This is an inner economy geared for action
that aims to lock embodied agents onto opportunities in their worlds.
Dynamically speaking, the whole embodied, active system here
self-organizes around the organismically-computable quantity ‘pre-
diction error”. This is what delivers that multi-level, multi-area grip on
the evolving sensory barrage—a grip that must span multiple spatial
and temporal scales. Such a grip simultaneously determines percep-
tion and action, and it selects (enacts) the ongoing stream of sensory
bombardment itself. The generative model that here issues sensory
predictions is thus nothing but that multi-level, multi-area, multi-scale,
body-and-action involving grip on the unfolding sensory stream. To
achieve that grip is to know the structured and meaningful world that
we encounter in experience and action.

That grip, in the somewhat special case of the human mind, is fur-
ther enriched and transformed by layer upon layer of sociocultural
structures and practices. Steeped in such practices, our predictive
brains are empowered to redeploy their basic skills in new and trans-
formative ways. Understanding the resulting interplay between cul-
ture, technology, action, and cascading neural prediction is surely one
of the major tasks confronting twenty-first-century cognitive science.



10

Conclusions

The Future of Prediction

Remember that all models are wrong; the practical question is how
wrong do they have to be to not be useful.

—DBox & Draper, 1987

10.1  Embodied Prediction Machines

Predictive processing (PP) offers a vision of the brain that dove-
tails perfectly (or so I have argued) with work on the embodied and
environmentally situated mind. This is a fit forged by action and by
the circular causal flows that bind acting and perceiving. It is a fit
that reveals perception, understanding, reason, and imagination as
co-emergent, and restless itinerant dynamics as the signature of the
embodied mind. Within this ever-active, self-organizing flow, neural
sub-assemblies form and dissolve in ways determined by changing
estimations of relative uncertainty. These temporary circuits recruit,
and are recruited by, shifting webs of bodily and extra-bodily struc-
ture and resources. The resulting transient wholes are the true (frugal,
efficient) vehicles of adaptive and behavioural success. The predictive
brain is thus not an insulated inference engine “in the head” so much
as an action-oriented engagement engine, delivering a rolling grip on
task-salient opportunities.

Sculpting and maintaining that rolling grip are the deep cogni-
tive engines of downwards (and lateral) flowing prediction. It is those
deep cognitive engines (multilevel probabilistic generative models)

295
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that enable us to encounter, in perception and action, a world parsed
for human needs and purposes. Sprinkled liberally with estimations
of the precision (the variance or uncertainty) of our own prediction
errors, this provides a potent toolkit for surfing the waves of sensory
uncertainty. Creatures thus equipped are nature’s experts at separat-
ing the signal from the noise, discerning the salient interacting causes
that are structuring the constant energetic pummelling of their sensory
surfaces.

Perception and action here emerge as two sides of a single com-
putational coin. Rooted in multilevel prediction-error minimizing
routines, perception and action are locked in a complex circular causal
flow. Within that flow, actions select sensory stimulations that both test
and respond to the bodily and environmental causes identified by the
multilevel cascade. Percepts and action-recipes here co-emerge, com-
bining motor prescriptions with continuous efforts at understanding
our world. Perception and action are thus similarly and simultaneously
constructed, and intimately entwined.

Systems such as these are knowledge-driven, courtesy of the struc-
tured probabilistic know-how encoded in complex multilevel genera-
tive models. But they are also fast and frugal, able to use that know-how
to help select the most cost-efficient strategy for a given task and con-
text. Many of those cost-efficient strategies trade the use of action and
of bodily and environmental structure (and intervention) against the
use of expensive forms of on-board computation. Working alongside
the full gamut of strategies and ploys installed by slower processes of
evolutionary adaptation, this enables the flexible and intelligent selec-
tion of low-cost efficient strategies whenever task and context allows.

The fit with embodied and situated cognitive science is thus fully
realized. Perception-action loops are fundamental; low-cost, represen-
tationally efficient options are preferred; and the continuous stream
of error-minimizing action allows for the recruitment and use of arbi-
trarily complex suites of external resources—resources that are now
simply swept up in the ongoing circular causal flow.

The world thus encountered is a world structured, in large part,
by the affordances for action that it presents. As our affordance-based
exploration of this world proceeds, interoceptive and exteroceptive
information are constantly combined as environmental causes are
identified and behaviours entrained. This provides a rich new entry
point for accounts of experience, emotion, and affect: accounts that
do not compartmentalize cognition and emotion, but reveal them
as (at most) distinctive threads in a single inferential weave. In this
dense, ongoing, multilayer exchange, interoceptive, proprioceptive,
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and exteroceptive information work constantly together, and the flow
of human experience emerges as a continuous construct at the meet-
ing point of diverse systemic expectations and the self-structured
sensory flow.

There are hints here of a new understanding of what it means to
encounter the world in perception.! This will be an understanding in
which experience, expectation, estimated uncertainty, and action are
inextricably intertwined, together delivering a grip upon—and a tra-
jectory within—a world whose organism-salient features are continu-
ously disclosed (and in some cases, continuously created) as a result
of our own activity. The fit between mind and world, if this is cor-
rect, is a fit forged not by some form of passive ‘apt description’ but by
action itself: action that continuously selects the stimuli to which we
respond. Key to this process of continual sensorimotor flow is the use
of precision-weighting to control not just the relative influence of prior
knowledge (hence predictions) at every level but also the large-scale
flows of information that constitute the transient-but-unified process-
ing regimes that form and disperse as we move from task to task and
from context to context.

By self-organizing around prediction error, and by learning a gen-
erative rather than a merely discriminative (i.e., pattern-classifying)
model, these approaches realize many of the dreams of previous work
in artificial neural networks, robotics, dynamical systems theory, and
classical cognitive science. They perform unsupervised learning using
a multilevel architecture and acquire a satisfying grip—courtesy of
the problem decompositions enabled by their hierarchical form—upon
structural relations within a domain. They do this, moreover, in ways
that remain firmly grounded in the patterns of sensorimotor experi-
ence that structure learning, using continuous, non-linguaform, inner
encodings (probability density functions and probabilistic inference).
Courtesy of precision-based restructuring of patterns of effective con-
nectivity, those same approaches nest simplicity within complexity and
make as much (or as little) use of body and world as task and context
dictate.

10.2  Problems, Puzzles, and Pitfalls

All this hints at the shape of a truly fundamental and deeply unified
science of the embodied mind. In the present text, it is this bigger pic-
ture that I have tried to bring into focus. This meant concentrating on
that positive, integrative story—a strategy that seems warranted, at
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least while the science of the predictive mind is still in its infancy. But
there remain a raft of problems, pitfalls, and shortfalls that need to be
addressed. Among the key puzzles and problems, four stand out as
especially challenging and important.

The first concerns the urgent need to explore a larger space of
approximations and of possible representational forms. Complex
real-world problems demand the use of approximations to truly opti-
mal forms of probabilistic inference, and there are many ways in which
neuronal populations might represent probabilities and many ways to
perform probabilistic inference (see, e.g., Beck et al.,, 2012; Kwisthout
& van Rooij, 2013; Pouget, Beck, et al,, 2013). Much more work is thus
required to discover which approximations the brain actually deploys.
Moreover, the form of such preferred approximations will interact
with the kinds of representation used and will reflect the availability
of domain-knowledge that could be used to shrink the search space.
Addressing these issues, both in simulation (Thornton, ms), using
behavioural metrics (Houlsby et al, 2013) and by probing biological
brains (Bastos et al., 2012; Egner & Summerfield, 2013; Iglesias, Mathys,
et al.,, 2013; Penny, 2012) is essential if relatively abstract theoretical
models (such as PP) are to be tested and transformed into plausible
accounts of human cognition.

A second issue concerns the need to explore multiple variant archi-
tectures. The present text focused mostly upon one possible architectural
schema: a schema requiring functionally distinct neural populations
coding for representation (prediction) and for prediction error, and in
which predictions flow backwards (and laterally) through the neural
hierarchy while information concerning residual prediction error flows
forwards (and laterally). But that schema represents just one point in
the large and complex space of probabilistic generative-model based
approaches, and there are many possible architectures, and possible
ways of combining top-down predictions and bottom-up sensory infor-
mation, in the general vicinity. For example, the foundational work by
Hinton and colleagues on deep belief networks (Hinton, Osindero, &
Tey, 2006; Hinton & Salakhutdinov, 2006) differs (chapter 1, note 13)
despite sharing an emphasis upon probabilistic generative models;
McClelland (2013) and Zorzi et al. (2013) bring work on deep unsuper-
vised learning into alignment with work on Bayesian models of contex-
tual effects and with neural network models such as the connectionist
interactive activation model; Spratling (2010, 2011, 2014) has proposed
an alternative predictive coding model, PC/BC, standing for predic-
tive coding/biased competition, that implements the key principles of
predictive coding using a different flow of prediction and error, and
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that is described by a variant mathematical framework; Dura-Bernal,
Wennekers et al. (2011, 2012) develop a variant of the Spratling PC/
BC architecture that extends the well-known HMAX (Riesenhuber &
Poggio, 1999; Serre et al.,, 2007) feedforward model of object recogni-
tion, accommodating strong top-down effects (such as the perception
of illusory contours) while reproducing many of the computational effi-
ciencies of the feedforward approach; Wacongne et al. (2012) develop a
detailed neuronal model implementing predictive coding (for auditory
cortex) using layered networks of spiking neurons; O'Reilly, Wyatte,
and Rohirlich (ms; see also Kachergis et al,, 2014) offer a rich neuro-
computational account of predictive learning in which the very same
layer encodes expectations and outcomes (at differing temporal stages
of processing) and in which input is often only partially predicted;
Phillips and Silverstein (2013) develop a broader, computationally rich
perspective on context-sensitive gain control; den Ouden, Kok, and
de Lange (2012) survey the many ways in which the brain seems to
code prediction error signals, and the varying functional roles of such
signals in different brain regions; Pickering and Garrod (2013) pres-
ent a rich cognitive psychological account of language production and
comprehension using the apparatus of mutual prediction and forward
models; and roboticists such as Tani (2007), Saegusa et al. (2008), Park
et al. (2012), Pezzulo (2007), and Mohan, Morasso, et al. (2011), Martius,
Der, and Ay (2013) are exploring the use of a variety of prediction-based
learning routines as a means of grounding higher cognitive functions
in the solid bedrock of sensorimotor engagements with the world.

This remarkable efflorescence of work on prediction-based learn-
ing and response is both encouraging and vital. For it is only by con-
sidering the full space of possible prediction-and-generative-model
based architectures and strategies that we can start to ask truly pointed
experimental questions of the brain and of biological organisms: ques-
tions that might one day favour one of these models (or, more likely,
one coherent sub-set of models?) over the rest, or else may reveal deep
faults and failings among their substantial common foundations. Only
then will we find out, to echo the laudably dour sentiments of Box and
Draper, just how wrong, or how useful, these models actually are.

The third set of challenges concerns the extension of these accounts
into the intuitively “higher level’ domains of long-term planning, cog-
nitive control, social cognition, conscious experience,® and explicit, lin-
guistically inflected, reasoning. Here, the present text ventured at least
a smattering of hints and suggestions—for example, linking planning
and social cognition to varying kinds of generative-model-based simu-
lation; control to context-sensitive gating routines; conscious experience
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to delicate mixtures of interoceptive and exteroceptive predictions; and
linguistically inflected reasoning to the artificial self-manipulation of
precision-weightings. But despite these tentative footsteps, the exten-
sion of these accounts into such domains remains murky at best. (For
some discussion, see Fitzgerald, Dolan, & Friston, 2014; Harrison,
Bestmann, Rosa, et al, 2011; Hobson & Friston, 2014, Hohwy, 2013,
chapters 9-12; Jiang, Heller, & Egner, 2014; King & Dehaene, 2014;
Limanowski & Blankenburg, 2013; Moutoussis et al., 2014; Panichello,
Cheung, & Bar, 2012; and Seth, 2014). Most challenging of all, perhaps,
will be the implied reconstruction of motivation, value, and desire in
terms of more fundamental processes of prediction, Bayesian infer-
ence, and self-estimated uncertainty (see Friston, Shiner, et al,, 2012;
Gershman & Daw 2012; Bach & Dolan 2012; Solway & Botvinick 2012;
Schwartenbeck et al., 2014).

The fourth and final batch of issues is more strategic and conceptual.
Does the picture of extensive reliance upon multilevel generative mod-
els and top-down prediction somehow over-intellectualize the mind?
Are we back-sliding towards an outmoded ‘Cartesian’ view in which
the mind is an insulated inner arena, teeming with internal representa-
tions yet somehow estranged from the multiple problem-simplifying
opportunities provided by body and world? Nothing, or so I have
argued, could be further from the truth. Instead we have seen how the
use of prediction-driven learning and multilevel generative models
directly serve the twin pillars of perception and action, enabling fast,
fluent forms of context-sensitive response. The predictive brain, I have
tried to show, is an action-oriented engagement machine, adept at finding
efficient embodied solutions that make the most of body and world.
Brains now emerge as complex nodes in a constant two-way flux in
which the inner (neural) organization is open to constant reconfigura-
tion by external (bodily and environmental) factors and forces, and vice
versa. Inner and outer here become locked in constant co-determining
patterns of exchange, as predictive agents continuously select the stim-
ulations that they receive. This pattern repeats at more extended scales
of space and time, as we structure (and repeatedly restructure) the
social and material worlds that slowly but surely structure us.

The brain thus revealed is a restless, pro-active organ locked in
dense, continuous exchange with body and world. Thus equipped
we encounter, through the play of self-predicted sensory stimulation,
a world of meaning, structure, and opportunity: a world parsed for
action, pregnant with future, and patterned by the past.



Appendix 1

Bare Bayes

Bayes theorem delivers an optimal way of altering existing beliefs in
response to new information or evidence. In the case of sensory evi-
dence, it shows how to update belief in some hypothesis (e.g,, that there
is a cat on the mat) as a function of how well the sensory data (e.g,,
plays of light on the retina, or more realistically, the unfolding plays
of light resulting from active exploration of the scene) are predicted by
the hypothesis. In so doing, it assumes a prior state of belief of some
kind and then specifies how to alter that belief in the light of the new
evidence. This allows continual, rational updating of our background
model (the source of the prior states of belief) as more and more new
evidence arrives.

For our—admittedly rather limited—purposes, the mathematics
here does not matter (though for a lovely primer, see Doya & Ishii, 2007;
for something more informal, see Bram, 2013, chapter 3; and for discus-
sion of applications to human cognition, see Jacobs & Kruschke, 2010).
But what the mathematics achieves is something rather wonderful. It
allows us to adjust the impact of some incoming sensory data accord-
ing to background information about (1) the chances of getting that
sensory data if the world was, indeed, in such-and-such a state (that
is, ‘the probability of the data given the hypothesis’, i.e., how well the
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data are predicted by the hypothesis) and (2) the prior probability of
the hypothesis (the chances, regardless of the sensory data, of the cat
being on the mat). Crunching all that together in the right way yields
the correct estimation (given what you know) of the revised (posterior)
probability of the hypothesis given the new sensory evidence.! The nice
thing here is that once you have updated your prior belief to a posterior
belief, the posterior belief can serve as the prior for the next observation.

The crunching is important, since failures to take account of back-
ground information can badly skew assessments of the impact of new
evidence. Classic examples include how to assess your chances of hav-
ing some medical condition given a positive result using an accurate
test, or assessing the chances that a defendant is guilty given some
forensic (e.g., DNA) evidence. In each case, the proper impact of the
evidence turns out to depend much more strongly than we intuitively
imagine upon the prior chances of having the condition (or being
guilty of the crime) anyway, independently of that specific evidence.
In essence, Bayes rule is thus a device for combining prior knowledge
(about base rates, for example) with what Kahneman (2011, p. 154) calls
the ‘diagnosticity of the evidence’—the degree to which the evidence
favours one hypothesis over another. A direct implication is that—as
the cosmologist Carl Sagan famously put it—'extraordinary claims
need extraordinary evidence’.

The ‘predictive processing” models discussed in the text implement
just such a process of ‘rational impact adjustment’. They do so by meet-
ing the incoming sensory signal with a set of top-down probabilistic
predictions based on what the system knows about the world and what
it knows about the context-varying reliability of its own sensing and
processing. There is a reformulation of Bayes’s rule that makes espe-
cially clear its relation to such prediction-based models of perception.
The reformulation (as translated into prose by Joyce, 2008) says that:

The ratio of probabilities for two hypotheses conditional on a
body of data is equal to the ratio of their unconditional [base-
line] probabilities multiplied by the degree to which the first
hypothesis surpasses the second as a predictor of the data.

The drawback, you might think, is that all this will only work when
you know all that stuff about unconditional probabilities (the priors
and ‘statistical background conditions’) already. That is where so-called
‘empirical Bayes’ (Robbins, 1956) gets to make a special contribution.
For within a hierarchical scheme, the required priors can themselves
be estimated from the data, using the estimates at one level to provide
the priors (the background beliefs) for the level below. In predictive
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processing architectures, the presence of multilevel structure induces
such ‘empirical priors” in the form of the constraints that one level in
the hierarchy places on the level below. These constraints can be pro-
gressively tuned, using standard gradient descent methods, by the sen-
sory input itself. Such multilevel learning procedures look neuronally
implementable courtesy of the hierarchical and reciprocally connected
structure and wiring of cortex (see Bastos et al., 2012; Friston, 2005;
Lee & Mumford, 2003).

Some words of caution however. The notion that the brain per-
forms some form of approximate Bayesian inference is increasingly
popular. In its broadest form, this need only mean that the brain uses
a generative model (a model, that is, embodying background knowl-
edge about the statistical structure of the task) to compute its best guess
(the ‘posterior distribution’) about the world, given the current sensory
evidence. Such methods need not deliver good results or optimal infer-
ence. The generative model might be wrong, coarse, or incomplete,
either because the training environment was too limited or skewed,
or because the true distributions were too hard to learn or impossible
to implement using available neural circuitry. Such conditions force
the use of approximations. The moral is that ‘all optimal inference is
Bayesian, but not all Bayesian inference is optimal’ (Ma, 2012, p. 513).
In other words, there is a large space hereabouts, and it needs careful
handling. For a useful survey, see Ma (2012).
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The Free-Energy Formulation

Free-energy formulations originate in statistical physics and were intro-
duced into the machine-learning literature in seminal treatments that
include Hinton and von Camp (1993), Hinton and Zemel (1994), MacKay
(1995), and Neal and Hinton (1998). Such formulations can arguably be
used (e.g., Friston, 2010) to display the prediction error minimization
strategy as itself a manifestation of a more fundamental mandate to
minimize an information-theoretic isomorph of thermodynamic free
energy in a system’s exchanges with the environment.
Thermodynamic free energy is a measure of the energy available
to do useful work. Transposed to the cognitive/informational domain,
it emerges as the difference between the way the world is represented
(modelled) as being and the way it actually is. Care is needed here,
though, as that notion of ‘the way the world is represented as being’is a
slippery beast and must not be read as implying a kind of passive (‘mir-
ror of nature’, see Rorty, 1979) story about the implied fit between model
and world. For the test of a good model, as we see at some length in the
present text, is how well it enables the organism to engage the world
in a rolling cycle of actions that maintain it within a window of viabil-
ity. The better the engagements, the lower the information-theoretic
free energy (this is intuitive, since more of the system’s resources are
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being put to ‘effective work’ in modelling the world). Prediction error
reports this information-theoretic free energy, which is mathemati-
cally constructed so as always to be greater than ‘surprisal’ (where
this names the sub-personally computed implausibility of some sen-
sory state given a model of the world, see Tribus, 1961). Entropy, in this
information-theoretic rendition, is the long-term average of surprisal,
and reducing information-theoretic free energy amounts to improv-
ing the world model so as to reduce prediction errors, hence reduc-
ing surprisal (better models make better predictions). The overarching
rationale is that good models (by definition) are those that help us suc-
cessfully engage the world and hence help us to maintain our struc-
ture and organization so that we appear—over extended but finite
timescales—to resist increases in entropy and (hence) the second law
of thermodynamics.

The ‘free-energy principle’ itself then states that ‘all the quantities
that can change; i.e. that are part of the system, will change to minimize
free-energy’ (Friston & Stephan, 2007, p. 427). Notice that, thus formu-
lated, this is a claim about all elements of systemic organization (from
gross morphology to the entire organization of the brain) and not just
about cortical information processing. Using a series of elegant math-
ematical formulations, Friston (2009, 2010) suggests that this principle,
when applied to various elements of neural functioning, leads to the
generation of efficient internal representational schemes and reveals
the deepest rationale behind the links between perception, inference,
memory, attention, and action explored in the present text. Morphology,
action tendencies (including the active structuring of environmental
niches), and gross neural architecture are all expressions, if this story is
correct, of this single principle operating at varying timescales.

The free-energy account is of great independent interest. It repre-
sents a kind of ‘maximal version’ of the claims concerning the compu-
tational intimacy of perception and action, and it is at least suggestive
of a general framework that might accommodate the growing inter-
est (see, e.g., Thompson, 2010) in understanding the complex relations
between life and mind. Essentially, the hope is thus to illuminate the
very possibility of self-organization in biological systems (see, e.g.,
Friston, 2009, p. 293, and discussion in chapter 9).

A full assessment of the free-energy principle and its potential
applications to understanding life and mind is, however, far beyond
the scope of the present treatment.



Notes

INTRODUCTION

1. Hermann von Helmholtz (1860) depicts perception as involving probabi-
listic inference. James (1890), who studied under Helmholtz, also depicts
perception as drawing upon prior knowledge to help deal with imper-
fect or ambiguous inputs. These insights informed the ‘analysis-by-
synthesis’ paradigm within psychology (see Gregory, 1980; MacKay,
1956; Neisser, 1967; for a review, see Yuille & Kersten, 2006). Helmholtz's
insight was also pursued (as we shall see in chapter 1) in an important
body of computational and neuroscientific work. Crucial to this lineage
were seminal advances in machine learning that began with pioneer-
ing connectionist work on backpropagation learning (McClelland et al,
1986; Rumelhart et al,, 1986) and continued with work on the aptly named
‘Helmholz Machine’ (Dayan et al,, 1995; Dayan & Hinton, 1996; see also
Hinton & Zemel, 1994). For useful reviews, see Brown & Briine, 2012;
Bubic et al., 2010; Kveraga et al.,, 2007. See also Bar et al., 2006; Churchland
et al,, 1994; Gilbert and Sigman, 2007; Grossberg, 1980; Raichle, 2010.

2. Barney was at that time working with Dennett at the Curricular Software
Studio, which Dennett co-founded at Tufts in 1985. The project advisor
was Tufts geologist Bert Reuss.
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NOTES

3. The remark is made during an interview with Danny Scott (‘Racing to

the Bottom of the World’) published in the Sunday Times Magazine, 27
November 2011, p. 82.

These are cases that are sometimes described as ‘psychogenic)
‘non-organic’, ‘unexplained’ or even (in older parlance) ‘hysterical’ I bor-
row the term ‘functional motor and sensory symptoms’ from Edwards
et al. (2012).

CHAPTER 1

1. Examples include Biederman, 1987; Hubel & Wiesel, 1965; and Marr, 1982.
2. I will sometimes write, as a kind of shorthand, that predictions flow

downwards (from higher areas towards the sensory peripheries) in these
systems. This is correct, but importantly incomplete. It highlights the
fact that predictions, at least in standard implementations of PP, flow
from each higher level to the level immediately below. But a great deal
of predictive information is also passed laterally within levels. Talk of
downward-flowing prediction should thus be read as indicating ‘down-
ward and lateral flowing’ prediction. Thanks to Bill Phillips for suggest-
ing that I clarify this at the outset.

. 1 have seen this dictum variously attributed to the machine-learning pio-

neer Max Clowes, and to the neuroscientists Rodolfo Llinas and Ramesh
Jain. The “controlled hallucination’ spin can, however, make it seem as if
our perceptual grip on reality is fragile and disturbingly indirect. On the
contrary, it seems to me—though the arguments for this must wait until
later—that this view of perception shows, in detail, just how perception
(or better, perception-action loops) puts us in genuine cognitive contact
with the salient aspects of our environment. It might thus be better, or
so I will later (chapter 6) suggest, to regard hallucination as a form of
‘uncontrolled perception’.

. In practice, simple back-propagation networks starting with random

assignments of weights and non-problem-specific architectures tended
to learn very slowly and often got stuck in so-called local minima.

. Famous victims of this temptation include Chomsky, Fodor, and to a

lesser extent, Pinker (see his 1997).

. By this I mean, in forms that multiplied the layers of so-called ‘hid-

den units’ intervening between input and output. For a nice discussion
of these difficulties, see Hinton, 2007a.

. There are echoes here both of Husserl and of Merleau-Ponty. For some

nice discussion, see Van de Cruys & Wagemans, 2011.

. ‘Analysis by synthesis’ is a processing strategy in which the brain does not

build its current model of worldly causes by accumulating, bottom-up, a
mass of low-level cues. Instead, the brain tries to predict the current suite
of sensory cues from its best models of interacting worldly causes (see
Chater & Manning, 2006; Neisser, 1967; Yuille & Kersten, 2006).
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. For a nice account, defending a prediction-based model, see Poeppel &

Monahan, 2011.

This was a computationally tractable approximation to ‘maximum like-
lihood learning’ as used in the expectation-maximization (EM) algo-
rithm of Dempster et al. (1977).

Readers unfamiliar with this notion might want to revisit the informal
example of SLICE presented in the Introduction.

You can see the network in action on Hinton’s website at: http://www.
cs.toronto.edu/~hinton/digits.html.

The differences mostly concern the kinds of message passing schemes
that are, and are not, allowed, and the precise ways that top-down and
bottom-up influences are used and combined during both learning and
online performance. In Hinton’s digit-recognition work, for example,
generative-model based prediction plays a key role during learning. But
what that learning delivers are simpler (purely feedforward) strategies
for use in rapid online discrimination. We shall later see (in Part III)
how PP systems might fluidly and flexibly accommodate the use of such
simple, low-cost strategies. What all these approaches share, however,
is a core emphasis, at least during learning, on the use of generative
models within a multilevel setting. For a useful introduction to Hinton
and colleagues (often more ‘engineering-driven’) work on ‘deep learn-
ing’ systems, see Hinton, 2007a; Salakhutdinov & Hinton, 2009.

For a sustained discussion of these failings, and the attractions of con-
nectionist (and post-connectionist) alternatives, see Bermudez, 2005;
Clark, 1989, 1997; Pfeifer & Bongard, 2006.

See Kveraga, Ghuman, & Bar, 2007.

For a selection of pointers to this important, and much larger, space, see
chapter 10.

The basic story just rehearsed is, as far as I can tell, still considered cor-
rect. But for some complications, see Nirenberg et al., 2010.

See essays in Alais & Blake, 2005, and the review article by Leopold &
Logothetis, 1999. For an excellent introduction, see Schwartz et al., 2012.
Such methods use their own target data sets to estimate the prior distri-
bution: a kind of bootstrapping that exploits the statistical independen-
cies that characterize hierarchical models.

For further discussion, see Hohwy, 2013.

This is not ‘explaining away’ in the sense of Pearl (1988), where that names
the effect by which confirming one cause reduces the need to invoke
alternative causes (as Hypothesis 1 increases its posterior probability,
Hypothesis 2 will decrease its, even if they were independent before
the evidence arrived). Nor is it ‘explaining away’ in the sense associated
with the elimination of unnecessary entities from an ontology. Rather,
the idea is simply that well-predicted sensory signals are not treated as
newsworthy, since their implications are already accounted for in systemic
response. Thanks to Jakob Hohwy for pointing this out.
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NOTES

Notice, however, that the obvious efficiencies in forward process-
ing are here bought at the cost of the multilevel generative machin-
ery itself: machinery whose implementation and operation requires a
whole set of additional connections to realize the downward swoop of
the bidirectional cascade.

The consistency of selective sharpening and dampening also makes
it harder—though not impossible—to tease apart the empirical
implications of predictive coding and ‘evidence accumulation’ accounts
such as Gold and Shadlen’s (2001). For a review, see Smith & Ratcliff,
2004. For an attempt to do so, see Hesselmann et al., 2010.

The most minimal suggestion might be that the separation is essen-
tially temporal, implicating the very same units at diffferent processing
stages. Such proposals would, however, be required to resolve a host of
technical problems that do not afflict more standard suggestions (such
as Friston’s).

Experimental tests have also recently been proposed (Maloney &
Mamassian, 2009; Maloney & Zhang, 2010) which aim to ‘operational-
ize’ the claim that a target system is (genuinely) computing its outputs
using a Bayesian scheme, rather than merely behaving ‘as if’ it did so.
This, however, is an area that warrants a great deal of further thought and
investigation (for some nice discussion, see Colombo & Seriés, 2012).
Potter et al. (2014) show that the minimum viewing time needed for
comprehension of the conceptual gist of a visually presented scene
(e.g., 'smiling couple’ or ‘picnic’ or ‘harbour with boats’) can be as low
as 13ms. This is too fast to allow new feedforward-feedback loops
(‘re-entrant loops’) to become established. Moreover, the results do not
depend upon the subjects being told the target labels before seeing the
images (thus controlling for specific top-down expectations that might
already be in place before presentation of the image). This suggests that
gists of these kinds can indeed be extracted (as Barrett and Bar suggest)
by an ultra-rapid feedforward sweep.

This means that we need to be very careful when generalizing from
ecologically strange laboratory conditions that effectively deprive us of
such ongoing context. For some recent discussion, see Barrett & Bar,
2009; Fabre-Thorpe, 2011; Kveriga et al., 2007.

Such effects have long been known in the literature, where they first
emerged in work on sensory habituation, and most prominently in
Eugene Sokolov’s pioneering (1960) studies of the orienting reflex. More
on this in chapter 3.,

For an excellent discussion of this recent work, see de-Wit et al., 2010.
Possible alternative implementations are discussed in Spratling and
Johnson (2006) and in Engel et al. (2001).

This is a measure of relative neural activity (‘brain activation’) as indexed
by changes in blood flow and blood oxygen level. The assumption is
that neural activity incurs a metabolic cost that this signal reflects. It is
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widely acknowledged (see, e.g., Heeger & Ross, 2002) to be a rather indi-
rect, assumption-laden, and ‘blunt’ measure compared to, say, single
cell recording. Nonetheless, new forms of multivariate pattern analysis
are able to overcome some of the limitations of earlier work using this
technique.

32. This could, the authors note, be due to some fundamental metabolic
difference in processing cost between representing and error detection,
or it may be that for other reasons the BOLD signal tracks top-down
inputs to a region more than bottom-up ones (see Egner at al., 2010,
p- 16607).

33. These views stress the pro-active elicitation of task-relevant information
‘just-in-time’ for use. Examples include Ballard, 1991; Ballard et al., 1997;
Churchland et al., 1994. For discussion, see Clark, 1997, 2008. We return
to these topics in chapters 4 through 9.

34. For windows onto this large literature, see Raichle, 2009; Raichle &
Snyder, 2007; Sporns, 2010, chapter 8; Smith, Vidaurre, et al., 2013. See
also the discussions of spontaneous neural activity in chapters 8 and 9.

35. Such economy and preparedness is biologically attractive, and neatly
sidesteps many of the processing bottlenecks (see Brooks, 1991)
associated with more passive models of the flow of information. In pre-
dictive processing, the downward flow of prediction does most of the
computational ‘heavy-lifting’, allowing moment-by-moment process-
ing to focus only on the newsworthy departures signified by salient
(high-precision, see chapter 2) prediction errors. We take up these issues
in chapters 4 to 9.

CHAPTER 2

1. For another new one, that involves movement and requires viewing using
a web browser, try http://www.michaelbach.de/ot/cog-hiddenBird/
index.html.

2. ‘Beliefs’ thus construed are best understood as induced by ‘probability
density functions’ (PDFs), where these describe the relative likelihood
that some continuous random variable assumes a given value. A random
variable simply assigns a number to an outcome or state and may be dis-
crete (if the possible values are at different points) or continuous (if they
are defined over an interval).

3. This flexible computation of sensory uncertainty is common ground
between predictive processing and ‘Kalman filtering’ (see Friston, 2002;
Grush, 2004; Rao & Ballard, 1999).

4. Recall that in these models, error units receive signals from
representation-units at their own level, and from representation-units
at the level above, while representation units (sometimes called ‘state
units’) are driven by error units at the same level and at the level below.
See Friston, 2009, Box 3, p. 297.
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5.

10.

11.

12.

13.

NOTES

So-called ‘synchronous gain’ (in which synchronized pre-synaptic
inputs modify post-synaptic gain; see Chawla, Lumer, & Friston, 1999)
may also be a contributor here. There is also recent speculation, as
Friston (2012a) points out, concerning a possible role for fast (gamma)
and slow (beta) frequency oscillations in conveying bottom-up sensory
information and top-down predictions, respectively. This affords a
nice mapping to the activity of superficial and deep pyramidal cells.
Investigations of these interesting dynamic possibilities remain in their
infancy, but see Bastos et al,, 2012; Friston, Bastos, et al.,, 2015; Buffalo et
al.,, 2011; and the more general discussion in Engel, Fries, & Singer, 2001.
See also Sedley & Cunningham, 2013, p. 9.

. Hohwy (2012) offers a wonderful quotation from Helmholtz’ 1860

Treatise on Physiological Optics that captures this experience well. The
quotation (as translated by Hohwy) reads:

The natural unforced state of our attention is to wander
around to ever new things, so that when the interest of an
object is exhausted, when we cannot perceive anything new,
then attention against our will goes to something else. ... If
we want attention to stick to an object we have to keep finding
something new in it, especially if other strong sensations seek
to decouple it. (Helmholtz, 1860, p. 770; translated by JH)

. Here too, such assignments may sometimes mislead, and plausible

accounts of phenomena such as change blindness and inattentional blind-
ness can be constructed that turn upon variations of precision-weighting
across different types and channels of information, see Hohwy (2012).

. Such cases may also involve another kind of prediction, associated with

emotions (in this case, fear and arousal)—interoceptive predictions
concerning our own physiological state. These further dimensions are
discussed in chapter 7.

. Ihere concentrate on vision, but the points should apply equally well to other

modalities (consider, e.g, the way we explore a familiar object by touch).
Despite this core commonality with PP-style approaches, important dif-
ferences (especially concerning the roles of reward and reinforcement
learning) separate these accounts. See the discussion in Friston, 2011a;
and in chapter 4.

It is thus not a ‘conspicuity’ based map of the kind rejected by Tatler,
Hayhoe et al. (2011).

The simulation captures only the direct effects of the winning hypoth-
esis on the pattern of saccades. A more complex model would need to
include the effects of neural estimations of precision, driving the simu-
lated agent to probe the scene according to where the most reliable (not
just the most distinctive) sensory information is expected.

For example, the suggestion of purchases that reflect previous choices
may lead to cycles of new purchasing (and consequently adjusted
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recommendations) that progressively cement and narrow the scope
of our own interests, making us victims of our own predictability. For
some discussion, see Clark, 2003, chapter 7.

Indeed, stimulus contrast can be used as a proxy to manipulate precision.
An example of this is the empirical evidence for changes in post-synaptic
gain—of the sort seen during attentional modulation—induced by chang-
ing luminance contrast. See Brown et al., 2013.

For a similar example, see Friston, Adams, et al,, 2012, p. 4.

A much better understanding of such multiple interacting mechanisms
(various slow neuromodulators perhaps acting in complex concert with
neural synchronization) is now needed, along with a thorough exami-
nation of the various ways and levels at which the flow of prediction
and the modulating effects of the weighting of prediction error (preci-
sion) may be manifest (see Corlett et al,, 2010; Friston & Kiebel, 2009;
Friston, Bastos et al., 2015). See also Phillips & Silverstein (2013); Phillips,
Clark, & Silverstein (2015).

Intriguingly, the authors are also able to apply the model to one
non-pharmacological intervention: sensory deprivation.

Feldman and Friston (2010) point out that precision behaves as if it were
itself alimited resource, in that turning up the precision on some prediction
error units requires reducing it on others. They also comment, intriguinly
(op citp. 11) that “The reason that precision behaves like a resource is that the
generative model contains prior beliefs that log-precision is redistributed
over sensory channels in a context-sensitive fashion but is conserved over
all channels.” Clearly, such ‘beliefs” will in no way be explicitly encoded
but must instead be somehow inherent in the basic structure of the sys-
tem. This raises important issues {(concerning what is and is not explicitly
encoded in the generative model) that we return to in chapter 8.

CHATTER 3

1.

W

See also DeWolf & Eliasmith, 2011, section 3.2. It is interesting to notice
that key signature elements are preserved even when physical motion is
minimized, as in the use of surgical micro-tools as non-standard imple-
ments for signing one’s name. Experienced micro-surgeons succeed at
the first attempt and show the same handwriting style as their normal
writing (except that at 40X magnification, they can become tangled in
the individual fibres of the paper!); see Allard & Starkes, 1991, p. 148.
Such feats attest to our remarkable capacity to construct new skilled
performances using existing elements and knowledge.

. Sokolov, 1960; see also Bindra, 1959; Pribram, 1980; and Sachs, 1967.
. See Sutton et al., 1965; Polich, 2003, 2007.
. Iremain deliberately uncommitted as to the correct neuronal interpre-

tation of this essentially functional notion of layers or levels. But for
some speculations, see Bastos et al., 2012.
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. Though they do not, of course, recognize them under those

descriptions!

. I make no attempt to specify which animals fall under this broad

umbrella, but the presence of bidirectional neocortical circuitry
(or—and this is obviously harder to establish—functional analogues of
such circuitry) should provide a good clue.

. A voxel is a ‘volumetric pixel. Each voxel tracks activity in a circum-

scribed three-dimensional space. A single fMRI voxel typically repre-
sents a fairly large volume (typically 27 cubic mm within a 3mm x 3mm
X 3mm cube).

. Actually, the experimenter’s task is harder, as the raw fMRI data pro-

vides at best a coarse shadow (built from hemodynamic response) of the
underlying neural activity itself.

. Recall, however, that each voxel covers a substantial volume (around 27

cubic mm ) of neural tissue.

Thanks to Bill Phillips for suggesting this (personal communication).
There may also be scope hereabouts for some illuminating discus-
sion of ‘disjunctivism’—the idea, roughly, that veridical percepts and
hallucinations share no common kind. Much turns, of course, on just
how the disjunctivist claim is to be unpacked. For a pretty comprehen-
sive sampling of possible formulations, see the essays in Haddock &
Macpherson, 2008, and in Byrne & Logue, 2009.

This paragraph condenses, and slightly oversimplifies, the views found
in Hobson (2001) and Blackmore (2004). See also Roberts, Robbins, &
Weiskrantz, 1998; and Siegel, 2003.

Just such a two-stage process, as Hobson and Friston note, lay at the
heart of Hinton et al’s aptly named wake-sleep algorithm (see Hinton
et al,, 1995, and discussion in chapter 1).

See chapter 2 and further discussion in chapters 5 and 8.

This second-order (‘meta-memory’) component is necessary to account
for the feeling of familiarity-without-episodic-recall. (Think, for exam-
ple, of recognizing a face as familiar, despite having no episodic mem-
ory of any specific encounter with that individual.)

For another attempt to tackle memory using predictive-processing-style
resources, see Brigard, 2012. For a different strategy, see Gershman,
Moore, et al., 2012.

For another example of this kind of account, see van Kesteren et al.,
2012.

For example some model-elements must account for small variations in
the sensory signals that accompany bodily movement and that help to
specify a perspective upon a scene, while others track more invariant
items, such as the identity and category of the perceived object. But it is
the precision-modulated interactions between these levels, often medi-
ated (see Part II) by ongoing motor action of one kind or another, that
now emerges as the heart of intelligent, adaptive response.
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CHAPTER 4
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. James, 1890, vol. 2, p. 527.
. The perceived opposition is apparent in treatments including Anderson

and Chemero (2013), Chemero (2009), Froese and lkegami (2013).
More ecumenical views are defended in treatments including Clark
(1997, 2008).

. See also Weiskrantz, Elliot, and Darlington (1971), who there introduce

what has rather charmingly become known as the ‘standard tickle
apparatus’ allowing easy experimental comparisons between self- and
other-induced tickling.

. See Decety, 1996; Jeannerod, 1997; Wolpert, 1997; Wolpert, Ghahramani,

& Jordan, 1995; Wolpert, Miall, & Kawato, 1998.

. A related (but simpler and more general) explanation of such effects

is made available by the absorption of the standard accounts into the
more general framework of prediction-based processing. According
to this account, the reason we do not see the world as moving simply
because we move our eyes is that the sensory flow thus induced is best
predicted using an internal model whose highest levels depict a stable
world available for motoric sampling.

. In that more complete account, descending precision expectations dur-

ing self-made acts turn down the volume or gain of prediction errors
reporting the sensory consequences of those acts. In effect, we thus tem-
porarily suspend our attention to many of the sensory perturbations
that we ourselves cause (see Brown et al., 2013; and further discussion
in chapter 7).

. These are cost functions that address bodily dynamics, systemic noise,

and required accuracy of outcome. See Todorov, 2004, Todorov &
Jordan, 2002.

. See Adams, Shipp, & Friston, 2012; Brown et al, 2011; Friston,

Samothrakis, & Montague, 2012.

. For the full story, see Shipp et al,, 2013. Compactly, ‘the descending

projections from motor cortex share many features with top-down
or backward connections in visual cortex; for example, corticospinal
projections originate in infragranular layers, are highly divergent and
(along with descending cortico-cortical projections) target cells express-
ing NMDA receptors’ (Shipp et al., 2013, p. 1).

Anscombe’s target was the distinction between desire and belief, but
her observations about direction of fit generalize (as Shea, 2013, nicely
notes) to the case of actions, here conceived as the motoric outcomes of
certain forms of desire.

Two commonly cited costs are thus ‘noise” and ‘effort’—fluent action
seems to depend upon the minimization of each of these factors. See
Harris & Wolpert, 1998; Faisal, Selen, & Wolpert, 2008; O’'Sullivan,
Burdet, & Diedrichsen, 2009.
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Recall that the term ‘belief’ is here used to cover any of the contents of the
generative models that guide perception and action. Such beliefs need not
be agent-accessible and, as previously noted, are usually understood as
expressions of probability density functions describing the relative likeli-
hood that some continuous random variable assumes a given value. In the
context of action selection, for example, a PDF might specify, in a continu-
ous fashion, the current probability of the transition to some successor state.
What this all amounts to, in the end, is a combination of active con-
struction, selective sampling, and selective representing. The full pic-
ture here will not emerge until Part III of our text. But when all those
factors conspire, the knowing agent locks on to the organism-relevant
structure of the surrounding (social, physical, and technological) envi-
ronment, achieving a delicate and life-sustaining balancing act between
building a world and being constrained by a world. This is the same bal-
ancing act highlighted by Varela, Thompson, and Rosch in their classic
(1991) treatment, The Embodied Mind.

1 borrow this phrase from one of my favourite philosophers, Willard
van Orman Quine, who used it when commenting on a rather bloated
ontology, writing that ‘Wyman’s overpopulated universe is in many
ways unlovely. It offends the aesthetic sense of us who have a taste for
desert landscapes’ (Quine, 1988, p. 4).

For some critical concerns about this general strategy, see Gershman &
Daw, 2012. Gershman and Daw worry, in effect, that collapsing costs
and utilities into expectations delivers too blunt a tool, since it makes
it hard to see how unexpected events (such as winning the lottery)
could be treated as valuable. This kind of worry underestimates the
resources available to the fans of prediction and expectation. Adaptive
agents should expect to be able, at times, to benefit from surprises and
environmental change. This suggests that the two approaches may
not be as conceptually distinct as they might at first appear. They may
even be inter-translatable, since everything that one side might wish
to express using talk of utility and value, the other may express using
talk of higher level (more abstract and flexible) expectations. For more
on these and related issues, see Part III.

See Friston, 2011a; Mohan & Morasso, 2011.

For some discussion, see Friston, 2009, p. 295.

The apparent radicalism of this view depends mostly upon the contrast
with work that posits multiple paired forward and inverse models as
the substrate of fluent, flexible motor behaviour. As we saw, alternative
approaches (such as Feldman, 2009; Feldman & Levin, 2009) that posit,
e.g., equilibrium or reference points as their core organizing principle
provide a very natural fit with the proprioceptive prediction-based pro-
cess model (for further discussion, see Friston, 2011a; Pickering & Clark,
2014; Shipp et al,, 2013).
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For the most part (but see Mohan & Morasso, 2011; Mohan, Morasso,
et al, 2013) work in Cognitive Developmental Robotics (CDR) has
retained the classical structure of paired forward/inverse models, effer-
ence copy, and value and reward signals. The CDR experiments are
suggestive, however, insofar as they show that prediction-error-based
encodings can structure motor actions in ways that open the door to
imitation learning,

Predictive processing is, I think, ideally positioned to satisfy this remit,
since it combines powerful learning routines with a fully unified per-
spective encompassing perception and action.

In the work by Park et al,, this kind of early learning was enabled using
a self-organizing feature map (Kohonen, 1989, 2001). This is closely
related to Hebbian learning, but it adds a ‘forgetting term’ to restrict the
potential explosion of learned associations. Another approach to such
learning deploys a modified recurrent neural network (a ‘recurrent neu-
ral network with parametric biases’, see Tani et al., 2004).

Dynamic Anthropomorphic Robot with Intelligence—Open Platform,
from the Virginia Tech Robotics and Mechanisms Lab. See http://www:.
romela.org/main/DARwIn_OP:_Open_Platform_Humanoid_Robot_
for_Research_and_Education.

CHAPTER 5

1.

Of course, they may also be treated simply as further phenomena requir-
ing the development of brand new models—a less efficient strategy that
may be mandated by encounters with the alien and exotic, or perhaps
(see Pellicano & Burr, 2012, and comments by Friston, Lawson, & Frith
2013) by malfunctions of the context/prediction machinery itself. See
also chapter 7.

. See McClelland & Rumelhart, 1981, and for an updated ‘multino-

mial interactive activation’ model, see Khaitan & McClelland, 2010;
McClelland, Mirman, et al., 2014.

. There are deep connections between this form of connectionism and

work in the PP paradigm. For some explorations, see McClelland, 2013,
and Zorzi et al., 2013.

. For an alternative implementation, that nonetheless preserves key fea-

tures of the PP model, and that also implements a functional hierarchy,
see Spratling (2010, 2012).

. Recall that empirical priors are the probabilistic densities or ‘beliefs’

associated with intermediate levels in a hierarchical model.

. See Aertsen et al,, 1987; Friston, 1995; Horwitz, 2003; Sporns, 2010.

Sporns (2010, p. 9) suggests that structural connectivity remains stable
‘on a scale of seconds to minutes’, while changes in effective connectiv-
ity may occur on the order of hundreds of milliseconds.
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. For useful introductions to these approaches, see Stephan, Harrison, et

al.,, 2007, and Sporns, 2010.

. Context-reflecting expectations about reliability and salience are thus

acquired in just the same way as knowledge about other worldly or bodily
properties and states of affairs. Estimations of reliability and salience are
themselves determined by the current interaction of sensory data with
the overall generative model, giving rise to the increasingly intractable
problem of ‘estimating the reliability of one’s own estimates of reliability”
(for some nice discussion, see Hohwy, 2013, chapter 5).

As achieved, for example, using varjous forms of network analysis (for a
rich and comprehensive review, see Sporns, 2002) able to reveal patterns
of functional and effective connectivity between neurons and between
neuronal populations. See also Colombo, 2013.

The brain thus construed is ‘labile” and comprises ‘an ensemble of func-
tionally specialized areas that are coupled in a nonlinear fashion by
effective connections’ (Friston & Price, 2001, p. 277). Except that where
Friston and Price speak of ‘functionallly specialized’ areas, I think it
would be better to follow Anderson (2014, pp. 52-53) and speak of func-
tionally differentiated” ones.

Such accounts share core commitments with several related proposals
(for reviews, see Arbib, Metta, et al., 2008, section 62.4, and Oztop et
al.,, 2013). The HMOSAIC model (Wolpert et al., 2003) exploits the same
kind of hierarchical prediction-driven multilevel model as a means of
supporting action imitation, and Wolpert et al. further suggest that that
approach might likewise address issues concerning action understand-
ing and the ‘extraction of intentions’.

For ease of exposition, I will sometimes speak as if we commanded
distinct generative models for different domains. Mathematically, how-
ever, this can always be couched as further tuning of a single, overall
generative model. This is clear in the various treatments by Friston and
colleagues, see, e.g., Friston, 2003.

The suggestion here is not that our somatosensory areas themselves
are rendered inactive during action observation. Indeed, there is con-
siderable evidence (reviewed in Keysers et al,, 2010) that such areas
are indeed active during passive viewing. Rather, it is that the for-
ward flowing influence of (the relevant aspects of) proprioceptive
prediction error now becomes muted, rendering such error unable to
impact higher levels of somatosensory processing. Just such a pattern
(of lower level activity combined with higher level inactivity) was
found by Keysers et al. (2010). See also Friston, Mattout, et al., 2011,
p. 156.

This, as Jakob Hohwy (personal communication) nicely notes, is not
a lucky or ad hoc trick. It is simply another manifestation of learn-
ing the best ways to estimate precision so as to minimize prediction
errors.
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There is large and complex literature on this topic, see Vignemont &
Fourneret, 2004, for a useful review, and some important fine-tuning of
the basic notion. See also Hohwy, 2007b.

See, e.g., Friston, 2012b; Frith, 2005; Ford & Mathalon, 2012.

See Barsalou, 1999, 2009; Grush, 2004; Pezzulo, 2008; Pezzulo et al., 2013;
see also Colder, 2011; Hesslow, 2002.

In this work, an ambiguous figure (the famous face-vase figure) is
seen as either a face or a vase in ways that co-varied with spontane-
ous pre-stimulus activity in the fusiform face area (FFA). As the authors
note, however ‘it is unclear whether the variations in the ongoing activ-
ity of FFA signals reported here are akin to slow fluctuations as they
have been described in the form of resting state networks’ (Hesselmann
et al,, 2008, p. 10986).

Some sleeping states and perhaps some practices (such as meditation
and chanting) may provide exceptions to this rule.

Such estimates of our own uncertainty play a central role in a wide
variety of recent computational and neuroscientific work. See, e.g., Daw,
Niv, & Dayan, 2005; Dayan & Daw, 2008; Knill & Pouget, 2004; Yu &
Dayan, 2005; Daw, Niv, & Dayan 2005; Dayan & Daw, 2008; Ma, 2012; van
den Berg et al.,, 2012; Yu & Dayan, 2005.

CHAPTER 6

1L

As noted in chapter 1, the phrase ‘perception as controlled hallucina-
tion” has been variously attributed to Ramesh Jain, Rodolfo Llinas, and
Max Clowes. It is also quoted by Rick Grush in his work on the ‘emula-
tion theory of representation’ (e.g., Grush, 2004).

. Given the standard implementation of the predictive processing

story—for an alternative implementation, see Spratling, 2008.

. Though recall the discussion (in 1.13) of the surprising power of an

ultra-rapid feedforward pass to uncover the conceptual gist of a visu-
ally presented scene (Potter et al., 2013).

. For an example of this, see 6.9.
. The notion of an affordance is widely used and widely interpreted. In

the hands of its originator, J. J. Gibson, affordances were agent-relative
possibilities for action present (though not necessarily recognized by
the agent) in the distal environment (see Gibson, 1977, 1979). For a care-
ful, nuanced discussion, see Chemero, 2009, chapter 7.

. See also Kemp et al., 2007.
. The process level here corresponds to what Marr (1982) described as the

level of the algorithm.

. The classic critique is that of Fodor and Pylyshyn (1988), but related

points were made by more ecumenical theorists, such as Smolensky
(1988) whose later work on optimality theory and harmonic grammar
(Smolensky & Legendre, 2006) likewise accommodates both generative
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structure and statistical learning. For further discussion of this impor-
tant issue, see Christiansen & Chater, 2003.

. For an excellent discussion of this attractive feature of hierarchi-

cal Bayesian approaches, see Tenenbaum et al., 2011. Caution is still
required, however, since the mere fact that multiple forms of knowledge
representation can co-exist within such models does not show us, in any
detail, how such various forms may effectively be combined in unified
problem-solving episodes.

For a review, see Tenenbaum et al., 2011. But for an important critique
of some of the claims as applied to higher-level cognition, see Marcus &
Davis, 2013.

As Karl Friston (personal communication) has suggested.

For example, a system might start with a set of so-called ‘perceptual
input analyzers’ (Carey, 2009) whose effect is to make a few input
features more salient for learning. For discussion of the combined
effects of HBM learning and such simple biases, see Goodman et al.,
in press.

This ‘action-oriented’ paradigm is associated with insights from devel-
opmental psychology (Smith & Gasser, 2005; Thelen et al., 2001), eco-
logical psychology (Chemero, 2009; Gibson, 1979; Turvey & Shaw, 1999),
dynamical systems theory (Beer, 2000), cognitive philosophy (Clark,
1997, Hurley, 1998; Wheeler, 2005), and real-world robotics (Pfeifer &
Bongard, 2006). For a useful sampling of many of these themes, see the
essays in Nunez & Freeman, 1999.

There is a nice discussion of this issue in Wiese (2014).

Such appeals to powerful (and often quite abstract) hyperpriors will
clearly form an essential part of any larger, broadly Bayesian, story
about the shape of human experience. Despite this, no special story
needs to be told about either the very presence or the mode of action of
such hyperpriors. Instead, they arise quite naturally within hierarchi-
cal models of the kind we have been considering where they may be
innate (giving them an almost Kantian feel) or acquired in the manner
of empirical (hierarchical) Bayes.

See Ballard (1991), Churchland et al., (1994), Warren (2005), Anderson
(2014), pp. 163-172.

Thus Hohwy et al. (2008) note that ‘Terms like “predictions” and
“hypotheses” sound rather intellectualist when it comes to basic per-
ceptual inference. But at its heart the only processing aim of the system
is simply to minimize prediction error or free energy, and indeed, the
talk of hypotheses and predictions can be translated into such a less
anthropomorphic framework [and] implemented using relatively sim-
ple neuronal infrastructures” (Hohwy et al., 2008, pp. 688—-690).

One might even deny that evil demon style manjpulations actually
deceive us. Instead, they merely suggest an alternate substrate for the
same old veridical knowledge about an external reality: a world built
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of tables, chairs, baseball games, and the like. For this kind of response,
see Chalmers (2005).

Typically, these rich inner models involved symbolic encodings that
described states of affairs using complex language-like knowledge
structures. Nothing like this is implied by PP.

A versions of this misplaced worry also appears in Froese &
Tkegami, 2013.

Thanks to Michael Rescorla for this helpful terminological suggestion.
Thus Friston, in a passage already quoted back in chapter 1, suggests
that ‘the hierarchical structure of the real world literally comes to be
“reflected” by the hierarchical architectures trying to minimize predic-
tion error, not just at the level of sensory input but at all levels of the
hierarchy’ (Friston, 2002, p. 238).

It is a weak sense because there is no guarantee that the potential think-
ings of beings deploying this strategy will form the kind of closed set
(encompassing all possible combinations of the component grasps)
required by the so-called Generality Constraint (Evans, 1982).

See, e.g., Moore, 1903/1922; Harman, 1990.

In this case we are perceptually misled even though we, as reflective
agents know better. In more severe cases (cases of delusions and hal-
lucinations) we may be misled at every level.

It is not inconceivable, for example, that a broader ecological perspective
might reveal the rubber hand illusion and its ilk as the inescapable price
of being a labile biological system whose parts may grow, change, and
suffer various forms of unexpected damage and/or augmentation.

For a nice introduction to this illusion, with accompanying graph-
ics, see http://psychology.about.com/od/sensationandperception/ss/
muller-lyer-illusion.htm.

Advanced agents may manage a step or two into these murky meta-
waters. See, e.g., Daunizeau, den Ouden, et al., 2010a, b.

CHAPTER 7

1.

w

For an excellent discussion of many general issues concerning metacog-
nition and prediction error, see Shea (2013). That discussion is couched
in terms of ‘reward prediction errox” but all the key claims apply, as far
as I can tell, to the more general case of sensory prediction error dis-
cussed in the present text.

. Thas illustration first appeared in Frith and Friston (2012).
. For a review of some of the recent literature, see Schiitz et al., 2011.
. For the equations, see Adams et al., 2012, pp. 8-9. Note that the equations

on those pages specify first, the process generating the sensory inputs
that the agent receives (exteroceptive retinal input concerning the tar-
get location, in an intrinsic (retinal) frame of reference, and propriocep-
tive input reporting angular displacement of the eye) then second, the
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generative model that the agent brings to bear upon those inputs. Only
the latter is described (informally) in the present text.

. There is a kind of double negation here that can be a little confus-

ing. The picture is one in which the standard (neurotypical) state
involves an attenuation (i.e, a reduction) of the sensory consequences
of self-produced actions. When this attenuation is itself reduced (abol-
ished or lessened), such sensory consequences are—in one sense at
least—experienced more veridically. They are experienced as being of
the same intensity as the same event (a certain pressure on the hand,
say) externally generated. But this, as we shall see, is not always a good
thing and may also lead to the emergence of various illusions of agency
and control.

. All subjects underestimate their own applied forces but that underesti-

mation is much reduced in the case of the schizophrenic subjects (see
Shergill et al., 2005).

. See Adams et al.,, 2012, pp. 13-14; Feldman & Friston, 2010; Seamans &

Yang, 2004; see also Braver et al.,, 1999.

. Heath Robinson, was a British cartoonist whose work, rather like that of

Rube Goldberg in the USA, often depicted weird and complex machin-
ery for the achievement of simple goals—for example, a long arrange-
ment of chains, pulley, levers, and cuckoo-clocks to butter a slice of
bread or deliver a cup of tea at a pre-arranged time.

. Itis worth repeating that what matters in all these cases is really just the

relative balance between the precision of prediction errors computed
at various levels. It does not matter, functionally speaking, whether
high-level precision is decreased or low-level precision increased. This
is not to say that such differences are unimportant, as they concern pat-
terns of causality that may have clinical implications concerning etiol-
ogy and treatment.

The label ‘functional motor and sensory symptoms’, unlike many of
these older locutions, is considered acceptable by patients (see Stone
et al., 2002).

The influence of folk-physiological expectations has also been noted
when hypnotized patients are told that their hand is paralysed. Here,
as in cases of so-called ‘hysterical paralysis|, the boundaries of the
paralysis reflect our commonsense ideas about the borders of the hand
rather than the true physiology of the hand as a moveable unit (see
Boden, 1970).

E.g., insular cortex (in the case of functional pain symptoms) or premo-
tor cortex or supplementary motor area (in the case of functional motor
symptoms).

For an interesting application of this kind of framework to the special
case of phantom limb pain, see De Ridder, Vanneste, & Freeman, 2012.
For reviews, see Benedetti, 2013; Enck et al., 2013; Price et al., 2008.
Buchel et al. also speculate (2014, pp. 1227-1229) that administered
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opioids might similarly play a (somewhat more direct and ‘mechani-
cal’) role in modulating the precision of top-down predictions. For an
intriguing evolutionary account that seems broadly compatible with the
PP model, see Humphrey, 2011.

It is enlightening to visit the online discussion forum ‘wrongplanet.
com’ and search for ‘hollow mask illusion’. On one thread, a variety of
autistic subjects report initially failing to see the hollow mask illusion
(instead seeing it as it really is, i.e., as an inverted concave mask rather
than as a convex face-shape). But many subjects were able to learn to see
it in the neurotypical way, and those same subjects then found them-
selves unable to experience the inverted mask as concave. This is very
much like the neurotypical experience of sine-wave speech (see 2.2).
There is emerging empirical support for this story (see Skewes
etal,, 2014).

This is probably not the best term here, as it invites a false parallel with
the technical notion of a hyper-prior (see Friston, Lawson, & Frith, 2013).
In exploring the so-called ‘sense of presence’, it is not clear whether the
experiential target is some nebulous but positive sense of presence, or
simply the normal absence of a sense of non-presence, unreality or dis-
connection. The model that Seth et al. propose is deliberately agnostic on
this subtle but potentially quite illuminating issue. Instead, their target
is whatever (a feeling of presence, or the absence of a feeling of absence)
is impaired in so-called ‘dissociative psychiatric disorders” disorders
where the sense of reality of the world, or of the self, is altered or lost.
Sometimes proprioception is counted as part of exteroception. Seth
et al. themselves carve the cake in this manner. Nothing in the present
treatment turns upon this terminological choice, but it is worth bearing
in mind when viewing Figure 7.2

For criticisms and complexities, see Marshall and Zimbardo (1979),
Maslach (1979), and LeDoux (1995).

There is resonance here with the complex and subtle work of Nick
Humphrey, who argues (Humphrey, 2006) that sensation always
involves something pro-active—the ongoing attempt to meet the incom-
ing signal with an active (predictive processing would say, ‘anticipa-
tory’) response.

Towards the end of his treatment, Pezzulo adds a further (and I think
important) twist, arguing (2013, p. 18) that ‘interoceptive information is
part and parcel of the representation of entities such as “wind”, “thief”,
and many others”. The idea here is that the internal states that become
active in the presence of specific external states of affairs are always
richly contextually inflected, and that this inflection now seamlessly
combines ‘objective’ and ‘subjective’ (e.g., emotional and body-related)
elements.

An additional factor (Pezzulo, 2013, p. 14) might be the greater simplic-
ity or parsimony of the single model (thief in the night) as against the
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complex model involving two co-occurring but causally unrelated fac-
tors. We shall have more to say about this kind of factor in chapters 8
and 9.

For a lovely rendition of this kind of picture, see Barrett & Bar, 2009.
Consistent with this single crucial role, insults or disturbances impact-
ing distinct neural populations, or selectively impacting tonic or phasic
dopaminergic response, will often have very different behavioural and
experiential effects (see Friston, Shiner, et al. 2012).

It will only feel like progress, of course, if you are already somewhat
sceptical about the way the ‘hard problem’ is typically presented in the
literature. True believers in the hard problem will say that all we can
make progress with using these new-fangled resources is the familiar
project of explaining patterns of response and judgement, and not the
very existence of experience itself. Those of a more optimistic nature
will think that explaining enough of that just is explaining why there
is experience at all. For a start on this project, as it takes shape within
the broadly Bayesian framework on offer, see Dennett, 2013.

CHAPTER §

1.

The full title was ‘Fast, Cheap, and Out of Control: A Robot Invasion
of the Solar System’—this alluded to parts of the paper mooting the
idea of sending hundreds of tiny, cheap robots into space. See Brooks &
Flynn, 1989.

. For example, if asked to judge which of a pair of towns has the high-

est population, we will often choose the one whose name we find most
familiar. In many cases this familiarity contest (or ‘recognition heu-
ristic’) will indeed track population size. For a balanced review, see
Gigerenzer and Goldstein (2011).

. There are related accounts of how dogs catch Frisbees, a rather more

demanding task due to occasional dramatic fluctuations in the flight
path (see Shaffer et al., 2004).

. To test this hypothesis, Ballard et al. used a computer program to alter

the colour of a block while the subject was looking elsewhere. For most
of these interventions, subjects did not notice the changes even for
blocks and locations that had been visited many times before, or that
were the focus of the current action.

. Thanks to Jakob Hohwy (personal communication) for this helpful

suggestion.

. This might be implemented as an adapted version of the so-called

‘actor-critic’ account (see Barto, 1995; Barto et al. 1983) but one in which
a model-free ‘actor’ is trained by a model-based ‘critic’ (see Daw et al,,
2011, p. 1210).

. In essence, this involves creating a weighted average of the predic-

tions made by different models. Bayesian model selection, by contrast,
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involves selecting one model over others (see, e.g., Stephan et al., 2009).
The reader may note that for most of the present chapter, I frame my
own discussion in terms of model selection. Nonetheless, model aver-
aging, under some (high sensitivity) conditions, can deliver outright
model selection. Agents able to vary the sensitivity of their own model
comparisons would benefit from increased flexibility though it is not yet
clear which procedure provides the best fit with behavioural and neural
evidence. For further discussion, see Fitzgerald, Dolan, & Friston, 2014.

8. Weaker versions of the ‘dual systems’ view, such as those recently
defended by Evans (2010) and Stanovich (2011) are, however, potentially
consistent with the more integrated PP account. See also Frankish,
forthcoming,

9. Such an effect has been demonstrated in some simple simulations of
cued reaching under the influence of changing tonic levels of dopamine
firing—see Friston, Shiner, et al., (2012).

10. This kind of approach, in which simple, efficient models are gated and
enabled within the larger context of a hierarchical Bayesian system, is
by no means unique to predictive processing. It is present, for example,
in the MOSAIC framework due to Haruno, Wolpert, & Kawato, 2003. In
general, this kind of strategy will be available wherever estimations of
our own uncertainty are available to gate and nuance online response.

11. For a thorough rehearsal of the positive arguments, see Clark, 2008. For
critiques, see Adams & Aizawa, 2008; Rupert, 2004, 2009. For a rich sam-
pling of the ongoing debate, see the essays in Menary, 2010.

12. Except at bed time! I use the term ‘darkened room’ to mean the scenario
in which we retire to a dark chamber and remain there, without food,
water, or amusements until we die—this is the kind of ‘predictable but
deadly’ circumstance that the critics have in mind.

13. This example occurs in Campbell, 1974.

14. This was confirmed by Lisa Meeden (personal communication).
Meeden thinks the story might originate with a learning robot (Lee
et al., 2009) designed to seek out learnable (but as yet unlearnt) sen-
sory states. One such ‘curiosity-bot” (or ‘intrinsically motivated con-
troller’), instead of simply learning the easiest stuff first, seemed to
challenge itself by trying to learn a hard thing alongside an easier one.
This behaviour was not one that the experimenters had anticipated
and resulted in the robot displaying oscillating back-and-forth view-
ing routine. Commenting on the mythological spinning behaviour,
Meeden (personal communication) notes that ‘it would be interesting
to see what would happen with a curiosity-based learning robot placed
into a fairly simple environment for a long period of time. Would it
begin to create new experiences for itself by trying new combinations
of movements?’ For more on robotics and intrinsic motivations, see
Oudeyer et al., 2007.

15. The original study was that of Jones, Wilkinson, and Braden (1961).
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16.

17.

NOTES

For more on this ‘exploration/exploitation” trade-off, see Cohen,
McClure, & Yu, 2007.

In the case of perception, another fundamental pay-off for such
‘self-organized instability’ may be avoiding overconfidence, thus
always leaving room to explore other possibilities.

CHAPTER 9

1

w

10.

11.

As noted earlier (4.5) I do not mean to suggest that all prediction errors
can be quashed by action. What seems right, however, is that even
in the case where the error cannot itself be resolved by action, the
error-minimizing routine is still trying to deliver a grip upon the world
that is apt for the selection of action. Salient unexplained errors, even in
the ‘purely perceptual’ case, are thus geared to select percepts that are
fundamentally designed to help us select actions.

. This routine (Mozer & Smolensky, 1990) removed the least necessary

hidden units from a trained-up network and thus improved both effi-
ciency and generalization. Similarly, in computer graphics, skeletoniza-
tion routines remove the least necessary pixels from an image. For some
discussion, see Clark (1993).

. Thanks to Jakob Hohwy for drawing this work to my attention.
. In the work by Namikawa et al., the neural structures thus implicated

were prefrontal cortex, supplementary motor area, and primary motor
cortex (see Namikawa et al., 2011, pp. 1-3).

. The potency and the complexity of such effects are nicely illustrated

in Dehaene’s (2004) ‘neuronal re-cycling” account of the complex inter-
play between neural precursors, cultural developments, and the neural
effects of those cultural developments, as manifest in the key cognitive
domains of reading and writing (see 9.7 following).

. For some intriguing speculations concerning the initial emergence of all

those discrete symbols in predictive, probabilistic contexts, see Konig &
Kriger, 2006.

. See, e.g., Anderson, 2010; Griffiths & Gray, 2001; Dehaene et al., 2010;

Hutchins, 2014; Oyama, 1999; Oyama et al., 2001; Sterelny, 2003; Stotz,
2010; Wheeler & Clark, 2008. For a useful review, see Ansari, 2011.

. For some discussion, see Tsuchiya & Koch, 2005.
. Exposure to words does not, however, appear to work in the case of bin-

ocular rivalry, although priming with other (image-congruent) sounds
does, see Chen, Yeh, & Spence, 2012.

Thiswould go some way towards explaining why simplelanguage-based
measures (such as vocabulary size) are good predictors of performance
on non-verbal intelligence tests. See Cunningham & Stanovich, 1997.
See also Baldo et al., 2010.

There is now a large, and not altogether unified, literature on enaction.
For our purposes, however, it will suffice to consider only the classic
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statement by Varela et al. (1991). Important contributions to the larger
space of enactivist, and enactivist-inspired, theorizing include Froese
and Di Paolo (2011), Noé (2004, 2010), and Thompson (2010). The edited
volume by Stewart et al. (2010) provides an excellent window onto much
of this larger space.

12. Part of this image is misleading, insofar as it suggests that the external
world is merely a source of undifferentiated perturbations (the repeated
striking of a monotonous hammer). What seems correct is that the
agent, by exposing herself to the varied stimulations predicted by the
generative mode), actively contributes to the world as sampled. Since it
is only the world as sampled that the model needs to accommodate and
explain, this delivers a very real sense in which (subject to the overarch-
ing constraint of structural self-maintenance, i.e., persistence and sur-
vival) we do indeed build or ‘enact’ our individual and species-specific
worlds.

13. Variants of such a process may be found at several organizational
scales, perhaps down to the level of dendrites of single cells. In just
this vein, Kiebel and Friston (2011) suggest that one can understand
intra-cellular processes as minimizing ‘free energy’ (see Appendix 2).

14. 1 have engaged such arguments at length elsewhere (see Clark, 1989,
1997, 2008, 2012). For sustained arguments against the explanatory
appeal to internal representation, see Chemero, 2009; Hutto & Myin,
2013; Ramsey, 2007. For some useful discussion, see Gallagher, Hutto,
Slaby, & Cole, 2013; Sprevak, 2010, 2013.

15. Itis also the role more broadly played by what Engel et al. (2013) describe
as ‘dynamic directives—dispositions towards action that are rooted
in emergent ensembles that can include multiple neural and bodily
structures.

16. Bayesian perceptual and sensorimotor psychology already has much
to say about just what worldly and bodily states these may be. See e.g,,
Kérding & Wolpert, 2006; Rescorla, 2013, In Press.

17. For a wonderful attempt, see Orlandi (2013). Orlandi’s provocative but
closely argued claim is that vision is not a cognitive activity and does
not involve trading in internal representations (although it may some-
times generate mental representations as a kind of end-product). The
argument is restricted in scope, however, as it targets only the processes
involved in online visual perception.

CHAPTER 10

1. Such an understanding may have social and political consequences too.
For at the very heart of human experience, PP suggests, lie the massed
strata of our own (mostly unconscious) expectations. This means that
we must carefully consider the shape of the worlds to which we (and
our children) are exposed. If PP is correct, our percepts may be deeply
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informed by non-conscious expectations acquired through the statistical
lens of our own past experience. So if (to take just the glaringly obvi-
ous examples) the world that tunes those expectations is thoroughly
sexist or racist, that will structure the subterranean prediction machin-
ery that actively constructs our own future perceptions—a potent rec-
ipe for tainted ‘evidence’ unjust reactions, and self-fulfilling negative
prophecies.

One such subset is, of course, the set of hierarchical dynamic models (see
Friston, 2008).

Conscious experience is something of an outlier in this set, since it may
well be a rather basic feature of animal cognition. This is suggested, in
fact, by recent work (reviewed in chapter 7) associating conscious experi-
ence with interoceptive prediction: prediction of our own physiological
states.

APPENDIX 1

1. The posterior probability of the hypothesis given some new data (or sen-

sory evidence) is proportional to the probability of the data given the
hypothesis, multiplied by the prior probability of the hypothesis.
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