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Preface: Meat That Predicts 

‘T'hey’re made out of meat.’ 

‘Meat?’ 
‘Meat. Theyre made out of meat.’ 
‘Meat?’ 

‘“There’s no doubt about it. We picked several from different parts of the 
planet, took them aboard our recon vessels, probed them all the way 

through. Theyre completely meat. 

Such are the opening remarks of the very puzzled non-carbon-based 
aliens whose conversation is reported in the wonderful short story 
‘Alien/Nation’ by science-fiction writer Terry Bissom (Omni, 1991). The 

aliens’ puzzlement increases upon learning that the meaty strangers 
were not even built by non-meat intelligences and do not harbour even 

a simple non-carbon-based central processing unit hidden inside their 

meaty exteriors. Instead, it’s meat all the way down. Even the brain, as one 
of them exclaims, is made of meat. The upshot is startling: 

“Yes, thinking meat! Conscious meat! Loving meat. Dreaming 

meat. The meat is the whole deal! Are you getting the picture?’ 

Unable to overcome their initial surprise and disgust, the aliens soon 

decide to continue their interstellar journey, casting us short-lived 

xiii
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meat-brains aside with the inevitable quip ‘who wants to meet 

meat?’, 

Such carnophobia aside, the aliens were surely right to be puzzled. 

Thinking meat, dreaming meat, conscious meat, meat that under- 

stands. It seems unlikely, to say the least. Of course, it would be no 

less surprising were we made of silicon, or anything else for that mat- 
ter. The mystery is, and remains, how mere matter manages to give 

rise to thinking, imagining, dreaming, and the whole smorgasbord of 

mentality, emotion, and intelligent action. Thinking matter, dream- 

ing matter, conscious matter: that’s the thing that it’s hard to get your 
head—whatever it’s made of—around. But there is an emerging clue. 

It is one clue among many, and even if it’s a good one, it won't solve 
all the problems and puzzles. Still, it’s a real clue, and it’s also one that 

provides a handy umbrella under which to consider (and in some cases 
rediscover) many of the previous clues. 

The clue can be summed up in a single word: prediction. To deal 

rapidly and fluently with an uncertain and noisy world, brains like ours 
have become masters of prediction—surfing the waves of noisy and 
ambiguous sensory stimulation by, in effect, trying to stay just ahead 

of them. A skilled surfer stays ‘in the pocket” close to, yet just ahead of 
the place where the wave is breaking. This provides power and, when 

the wave breaks, it does not catch her. The brain’s task is not dissimilar. 

By constantly attempting to predict the incoming sensory signal we 

become able—in ways we shall soon explore in detail—to learn about 
the world around us and to engage that world in thought and action. 
Succesful, world-engaging prediction is not easy. It depends crucially 

upon simultaneously estimating the state of the world and our own 

sensory uncertainty. But get that right, and active agents can both know 

and behaviourally engage their worlds, safely riding wave upon wave 

of sensory stimulation. 

Matter, when organized so that it cannot help but try (and try, and 
try again) to successfully predict the complex plays of energies that 
are washing across its energy-sensitive surfaces, has many interest- 

ing properties. Matter, thus organized, turns out, as we’ll see, to be 

ideally positioned to perceive, to understand, to dream, to imagine, 

and (most importantly of all) to act. Perceiving, imagining, under- 

standing, and acting are now bundled together, emerging as different 

aspects and manifestations of the same underlying prediction-driven, 
uncertainty-sensitive, machinery. 

For such properties to fully emerge, however, several more condi- 

tions need to be met. The energy-sensitive surfaces whose time-varying 

(and action-relevant) perturbations are to be predicted need to be many
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and variegated. In us humans they include eyes, ears, tongues, noses, 

and the whole of that somewhat neglected sensory organ, the skin. 

They also include a range of more ‘inward-looking’ sensory channels, 
including proprioception (the sense of the relative positions of bodily 
parts, and the forces being deployed) and interoception (the sense of the 
physiological conditions of the body, such as pain, hunger, and other 

visceral states). Predictions concerning these more inward-looking 

channels will prove crucial in the core account of action, and in account- 

ing for feelings and conscious experiences. 

Most important of all, perhaps, the prediction machinery itself 

needs to operate in a distinctively complex, multilevel, variegated 
internal environment. In this complex (and repeatedly reconfigu- 

rable) neural economy, what gets traded are probabilistic predictions, 

inflected at every level by changing estimates of our own uncertainty. 
Here different (but densely interanimated) neuronal populations learn 

to predict various organism-salient regularities obtaining at many spa- 
tial and temporal scales. In so doing they lock on to patterns specifying 

everything from lines and edges, to zebra stripes, to movies, mean- 

ings, popcorn, parking lots, and the characteristic plays of offense and 
defence by your favourite football team. The world thus revealed is a 

world tailored to human needs, tasks, and actions. It is a world built 

of affordances—opportunities for action and intervention. And it is a 
world that is exploited, time and time again, to reduce the complexities 

of neural processing by means of canny action routines that alter the 

problem-space for the embodied, predictive brain. 

But where, you might well ask, do all these predictions and 

estimations of our own sensory uncertainty come from? Even if 

prediction-based encounters with the play of energies across our 

sensors are what reveal—as I shall argue they do—a complex struc- 
tured world apt for engagement and action, the knowledge those 
predictions reflect still needs to be accounted for. In an especially 

satisfying twist, it will turn out that meat that constantly attempts 

(using a multilevel inner organization) to predict the plays of (par- 
tially self-caused) sensory data is nicely positioned to learn about 

those regularities themselves. Learning and online processing are 

thus supported using the same basic resources. This is because 

perceiving our body and the world, if this story is correct, involves 
learning to predict our own evolving sensory states—states that are 
responding both to the body-in-action and to the world. A good way 

to predict those changing sensory states is to learn about the world 

(including our own body and actions) that is causing the changes. 

The attempt to predict the play of sensory stimulation can thus itself
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be used gradually to install the very models that will enable the pre- 

dictions to succeed. The prediction task, as we shall see, is thus a 

kind of ‘bootstrap heaven’. 
Meat like this is imagining and dreaming meat too. Such meat 

becomes able to drive its own internal states ‘from the top-down’ 

using the knowledge and connections that enable it to match incom- 

ing sensory data with structured predictions. And meat that dreams 

and imagines is (potentially at least) meat that can harnass its imag- 

inings to reason—to think about what actions it might, or might 

not, perform. The upshot is a compelling ‘cognitive package deal” in 

which perception, imagination, understanding, reasoning, and action 
are co-emergent from the whirrings and grindings of the predictive, 

uncertainty-estimating, brain. Creatures that perceive and act on the 

basis of such subterranean flows of prediction are active, knowledge- 

able, imaginative beings in rich cognitive contact with a structured and 

meaningful world. That world is a world made of patterns of expecta- 
tion: a world in which unexpected absences are as perceptually salient 
as any concrete event, and in which all our mental states are coloured 

by delicate estimations of our own uncertainty. 

To complete the picture, however, we must locate the inner pre- 
diction engine in its proper home. That home—as the surfing image 
is also meant to powerfully suggest—is a mobile embodied agent 
located in multiple empowering webs of material and social struc- 

ture. To make full and satisfying contact with the thinking and rea- 
soning of agents like us, we must factor in the myriad effects of the 
complex social and physical ‘designer environments’ in which we 
learn, act, and reason. Without this environment, our kind of selec- 

tive response to the world could never emerge or be maintained. It is 
the predictive brain operating in rich bodily, social, and technologi- 

cal context that ushers minds like ours into the material realm. Here 

especially, the focus on prediction pays rich dividends, offering new 

and potent tools for thinking about the moment-by-moment orches- 
tration of neural, bodily, and environmental resources into effective 

transient problem-solving coalitions. By the end of our story, the pre- 

dictive brain will stand revealed not as an insulated inner ‘inference 

engine’ but an action-oriented engagement machine—an enabling 

(albeit, as it happens, meaty) node in patterns of dense reciprocal 

exchange binding brain, body, and world. 

AC 
Edinburgh, 2015
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Introduction 

Guessing Games 

This is a book about how creatures like us get to know the world and 

to act in it. At the heart of such knowing engagements lies (if these sto- 

ries are on track) a simple but remarkably powerful trick or stratagem. 

That trick is trying to guess the incoming sensory stmulations as they 
arrive, using what you know about the world. Failed guesses generate 
‘prediction errors’ that are then used to recruit new and better guesses, 
or to inform slower processes of learning and plasticity. Rooted in the 
dynamics of self-organization, these ‘predictive processing’ (PP) mod- 
els deliver compelling accounts of perception, action, and imagina- 

tive simulation. They deliver new accounts of the nature and structure 

of human experience. And they place centre stage a self-fuelling cycle 
of circular causal commerce in which action continuously selects new 
sensory stimulations, folding in environmental structure and opportu- 

nities along the way. PP thus provides, or so I will argue, the perfect 
neuro-computational partner for recent work on the embodied mind— 
work that stresses the constant engagement of the world by cycles of 
perceptuo-motor activity. The predictive brain, if this is correct, is not an 

insulated inference engine so much as an action-oriented engagement 

machine. It is an engagement-machine, moreover, that is perfectly posi- 

tioned to select frugal, action-based routines that reduce the demands 

on neural processing and deliver fast, fluent forms of adaptive success. 

1



2 INTRODUCTION 

Prediction is, of course, a slippery beast. It appears, even within 

these pages, in many subtly (and not-so-subtly) different forms. 

Prediction, in its most familiar incarnation, is something that a per- 

son engages in, with a view to anticipating the shape of future events. 
Such predictions are informed, conscious guesses, usually made well 

in advance, generated by forward-looking agents in the service of their 

plans and projects. But that kind of prediction, that kind of conscious 
guessing, is not the kind that lies at the heart of the story I shall present. 
At the heart of that story is a different (though not ultimately unrelated) 

kind of prediction, a different kind of ‘guessing’. It is the kind of auto- 

matically deployed, deeply probabilistic, non-conscious guessing that 

occurs as part of the complex neural processing routines that under- 
pin and unify perception and action. Prediction, in this latter sense, 

is something brains do to enable embodied, environmentally situated 
agents to carry out various tasks. 

This emphasis on prediction has a long history in the sciences 
of mind.! But it is only in the last decade or so that the key elements 
have come together to offer what is (potentially at least) the first truly 

unifying account of perception, cognition, and action. Those ele- 

ments include practical computational demonstrations of the power 
and feasibility of prediction-driven learning, the emergence of new 

neuroscientific frameworks that complement the computational ones, 

and a wealth of experimental results suggesting an inner economy in 

which predictions, prediction-error signals, and estimates of our own 

sensory uncertainty play a large and previously underappreciated 

role. Such work straddles the once-firm divide between accounts that 

stress the importance of inner, model-building activity and those that 

recognize the delicate distributions of labour between brain, body, 
and world. 

PP, as I shall describe it, may best be seen as what Spratling (2013) 
dubs an ‘intermediate-level model’. Such a model leaves unspecified a 

great many important details concerning neural implementation, aim- 

ing instead to ‘identify common computational principles that operate 

across different structures of the nervous system [and] provide func- 

tional explanations of the empirical data that are arguably the most 

relevant to neuroscience’. It thus offers a distinctive set of tools and 

concepts, and a kind of mid-level organizational sketch, as a means 

of triangulating perception, cognition, emotion, and action. The PP 

schema is especially attractive because it deeply illuminates the nest- 
ing of the neural economy within the much larger nexus of embodied, 

world-involving action. Applied to a wide variety of both normal and 

pathological cases and phenomena, PP suggests new ways of making
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sense of the form and structure of human experience, and opens up 

an interesting dialogue with work on self-organization, dynamics, and 
embodied cognition. 

Brains like ours, this picture suggests, are predictive engines, con- 

stantly trying to guess at the structure and shape of the incoming sen- 

sory array. Such brains are incessantly pro-active, restlessly seeking to 

generate the sensory data for themselves using the incoming signal (in 

a surprising inversion of much traditional wisdom) mostly as a means 

of checking and correcting their best top-down guessing. Crucially, 

however, the shape and flow of all that inner guessing is flexibly modu- 

lated by changing estimations of the relative uncertainty of (hence our 

confidence in) different aspects of the incoming signal. The upshot is 
a dynamic, self-organizing system in which the inner (and outer) flow 
of information is constantly reconfigured according to the demands 

of the task and the changing details of the internal (interoceptively 

sensed) and external context. 

Such accounts make tempting contact with the form and structure 

of human experience itself. That contact is evident, for example, in the 
ease which such models accommodate the perceptual strangeness of 

unexpected sensations (as when we take a sip of tea under the strong 
expectation of coffee) or the remarkable salience of omissions (as when 

the note that is suddenly absent from a well-predicted musical sequence 
seems almost present in experience, before being replaced by a strong 

sense of a very specific absence). PP models also illuminate a variety of 

pathologies and disturbances, ranging from schizophrenia and autism 
to ‘functional motor syndromes’ (in which expectations and altered 

assignments of confidence (precision) result in false sensory ‘evidence’ 

of illness or injury). 

More generally still, the PP framework delivers a compelling and 

unifying account of familiar human experiences such as the capacity 
to produce mental imagery, to reason ‘off-line” about possible future 

choices and actions, and to grasp the intentions and goals of other 
agents. All these capacities, we shall see, emerge naturally from the use 
of a top-down ‘generative model’ (more on which shortly) as a means of 

intelligently guessing (predicting) the play of sensory data across mul- 

tiple spatial and temporal scales. This same apparatus delivers a firm 
and intuitive grip upon the nature and possibility of meaning itself. 

For to be able to predict the play of sensory data at multiple spatial and 
temporal scales just is, or so I shall argue, to encounter the world as a 

locus of meaning, It is to encounter, in perception, action, and imagina- 

tion, a world that is structured, populated by organism-salient distal 
causes, and prone to evolve in certain ways. Perception, understanding,
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action and imagination, if PP is correct, are constantly co-constructed 

courtesy of our ongoing attempts at guessing the sensory signal. 

That guessing ploy is of profound importance. It provides the 
common currency that binds perception, action, emotion, and the 

exploitation of environmental structure into a functional whole. In 

contemporary cognitive scientific parlance, this ploy turns upon the 

acquisition and deployment of a ‘multilayer probabilistic generative 

model”. 

The phrase, when first encountered, is a little daunting. But the 

basic idea is not. It can be illustrated right away, using as a springboard 

a tale told to me by one of my true philosophical and scientific heroes, 

Daniel Dennett, while we were rather splendidly marooned in his 

Maine farmhouse late in the summer of 2011, courtesy of Hurricane 
Irene. Back in the mid-1980s, Dennett encountered a colleague, a 

famous palaeontologist who was worried that students were cheating 

at their homework by simply copying (sometimes even tracing) the 

stratigraphy drawings he really wanted them to understand. A stra- 
tigraphy drawing—literally, the drawing of layers—is one of those 

geological cross-sections showing (you guessed it) rock layers and lay- 

erings, whose job is to reveal the way complex structure has accrued 
over time. Successful tracing of such a drawing is, however, hardly a 

good indicator of your geological grasp! 

To combat the problem, Dennett imagined a device that was later 

prototyped and dubbed SLICE. SLICE, named and built by the soft- 
ware engineer Steve Barney? ran on an original IBM PC and was 

essentially a drawing program whose action was not unlike that of the 

Etch-a-Sketch device many of us played with as children. Except that 

this device controlled the drawing in a much more complex and inter- 
esting fashion. SLICE was equipped with a number of ‘virtual” knobs, 

and each knob controlled the unfolding of a basic geological cause 
or process, for example, one knob would deposit layers of sediment, 
another would erode, another would intrude lava, another would con- 

trol fracture, another fold, and so on. 

The basic form of the homework is then as follows: the student is 

given a stratigraphy drawing and has to recreate the picture not by trac- 

ing or simple copying but by twiddling the right knobs, in the right 

order. In fact, the student has no choice here, since the device (unlike 

an Etch-a-Sketch or a contemporary drawing application) does not 

support pixel-by-pixel, or line-by-line, control. The only way to make 

geological depictions appear on screen is to find the right ‘geological 

cause’ knobs (for example, depositing sediment, then intruding lava) 
and deploy them with the right intensities. This means twiddling the
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right knobs, in the right sequence, and with the right intensities (‘vol- 

umes’) so as to recreate the original drawing. Dennett’s thinking was 

that IF a student could do that, then she really did understand quite a 
lot about how hidden geological causes (like sedimentation, erosion, 

lava flow, and fracture) conspire to generate the physical outcomes 
captured by different stratigraphic drawings. In the terminology that 

I will be using in the rest of this book, the successful student would 

have to command a ‘generative model’, enabling her to construct vari- 
ous geological outcomes for herself, based upon an understanding of 

what causes might be at work and how they would need to interact to 

yield the target drawing. The target drawing thus plays the role of the 
sensory evidence that the student needs to re-construct using her best 

model of the geological domain. 
We can take this further by requiring the student to command a 

probabilistic generative model. For a single presented picture, there will 

often be a number of different ways of combining the various knob 

twiddlings to recreate it. But some of these combinations may represent 

far more likely sequences and events than others. To get full marks, 

then, the student should deploy the set of twiddlings that correspond 

to the set of events (the set of ‘hidden geological causes’) that are the 

most likely to have brought about the observed outcome. More advanced 

tests might then show a picture while explicitly ruling out the most 

common set of causes, thus forcing the student to find an alternative 

way of bringing that state about (forcing her to find the next most likely 

set of causes, and so on). 

SLICE allows the user to deploy what she knows about geo- 
logical causes (sedimentation, erosion, etc.) and how they interact to 

self-generate a stratigraphic image: one that matches the image set in 
the homework. This stops the cheating. To match the given picture (just 

a set of pixels after all) by twiddling knobs that create that picture from 

well-controlled mixtures of hidden causes such as erosion, sedimenta- 

tion, and fracture just is to understand quite a lot about geology and 

geological causes. 

This is a nice—if limited—illustration of a fundamental trick that 

the brain uses, if the models I will be considering are on track, to make 

sense of the ongoing play of sensory signals (really, just impinging ener- 

gies) received from the world. We perceive the world, this suggests, by 
identifying the set of interacting worldly causes that make most likely 

the current patterns of energies impinging upon our many (exterocep- 

tive, proprioceptive, and and interoceptive) sensory receptors. In this 

way, we see the world by (if you will) guessing the world, using the 

sensory signal to refine and nuance the guessing as we go along.
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Notice that the real-world perceptual matching task targets not a 

single static outcome (as in SLICE) but rather an evolving real-world 

scene. Matching the incoming signal, in the kinds of cases we will 

be considering, thus requires knowing how the elements of the 
scene will evolve and interact across multiple spatial and temporal 
scales. This can be accomplished courtesy of the multilevel nature 

of the prediction-mongering neural organization—we shall have a 

lot more to say about such multilevel architectures in the chapters 

to follow. 
To complete the illustration, we need to remove both the student 

and as much of the prior knowledge as possible from the equation! 

The resulting device is SLICE*: a self-sufficient version of SLICE that 

acquires its own knowledge concerning geological hidden causes. In 

microcosm at least, using prediction-driven learning in hierarchical 

(deep, multilayer) architectures, this can be done. The key idea, one 
that seems to be turning up in very many guises in contemporary cog- 

nitive science, is that we also learn about the world by attempting to 

generate the incoming sensory data for ourselves, from the top-down, 

using the massed recurrent connectivity distinctive of advanced bio- 

logical brains. This works because good models make better predic- 
tions, and we can improve our models by slowly amending them (using 
well-understood learning routines) so as to incrementally improve 

their predictive grip upon the sensory stream. 

The core idea, as it emerges for the simple but unrealistic (see 

below) case of passive perception, can now be summarized. To perceive 

the world is to meet the sensory signal with an apt stream of multilevel 

predictions. Those predictions aim to construct the incoming sensory 

signal ‘from the top down’ using stored knowledge about interacting 

distal causes. To accommodate the incoming sensory signal in this way 

is already to understand quite a lot about the world. Creatures deploy- 

ing this kind of strategy learn to become knowledgeable consumers of 

their own sensory stimulations. They come to know about their world, 
and about the kinds of entity and event that populate it. Creatures 
deploying this strategy, when they see the grass twitch in just that cer- 

tain way, are already expecting to see the tasty prey emerge, and already 

expecting to feel the sensations of their own muscles tensing to pounce. 

An animal, or machine, that has that kind of grip on its world is already 

deep into the business of understanding that world. This whole bed- 
rock story about perception and learning is presented in Part I of the 

present treatment. 

But there is something crucial missing from this neat picture of 

passive perception. What is missing is action, and action changes
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everything. Our massed recurrent neuronal ensembles are not just 

buzzing away constantly trying to predict the sensory stream. They 

are constantly bringing about the sensory stream by causing bodily 

movements that selectively harvest new sensory stimulations. 

Perception and action are thus locked in a kind of endless circular 

embrace. This means that we need to make a further—and cogni- 

tively crucial—amendment. Our new toy system is a robot (call it 

Robo-SLICE) that must act in ways responsive to the sensory stimu- 

lations it receives. It must act, that is to say, in ways appropriate to 

the combinations of bodily and environmental causes that (it esti- 
mates) make the current sensory data most likely. World-engaging 

actions are now central to the account, enabling Robo-SLICE actively 

to seek and select its own sensory stimulations, exposing its receptors 

to the kinds of energetic inputs that matter for its own survival and 

for the kinds of goals and purposes to which it has become attuned. 
Robo-SLICE, moreovet, is able to use action upon the world to reduce 

the complexity of its own inner processing, selecting frugal, efficient 
routines that trade movement and environmental structure against 

costly computation. 

Imagining Robo-SLICE is a tall order, and the limitations of our little 

thought experiment are rapidly revealed. For we have not specified any 
kind of lifestyle, niche, or set of basic concerns for SLICE, and so we have 

no sense of what might constitute apt action in response to the sensory 

inputs. Nor have we yet shown how the ongoing attempt to predict the 

sensory signal might cause such an agent to act appropriately, sampling 

its world in ways designed to bring the sensory signal progressively in 
line with some special subset of its own sensory predictions. This neat 
trick, which turns some of our sensory predictions into self-fulfilling 
prophecies, is the subject of Part Il of the present treatment. 

And we are not there yet. To complete the picture, we will need to 
endow Robo-SLICE with a capacity to alter the long-term structure of 

its own social and material environment, so as to inhabit a world in 

which the ‘energetic inputs that matter” are more reliably served up as 
and when required. Such world-structuring, repeated time and time 

again, generation by generation, also enables beings like us to build 

better and better worlds to think in, allowing impinging energies to 

guide ever-more-complex forms of behaviour and enabling thought 

and reason to penetrate domains that were previously ‘off-limits’. 
This, then, is Situated Robo-SLICE —an autonomous, active, learning 

system able to alter its world in ways that improve its thinking and 

serve (and alter) its needs. This is the subject of Part III of the present 

treatment.
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I want to end this brief Introduction by mentioning some key 

features and attractions that are just-visible (or so I hope) from the 

sketch above. 
One feature is cognitive co-emergence. The strategy of multilevel 

sensory prediction simultaneously supports rich, world-revealing 

forms of perception, is learning-friendly, and looks well-placed to usher 

imagination (and, as we will later see, more directed forms of mental 

simulation) onto the biological stage. If we perceive the world by gen- 

erating the incoming sensory data ‘top-down’ using stored knowledge 

about the world to recreate salient aspects of those sensory patterns, 
then perceiving itself involves a form of understanding: it involves 

knowing what things are like, and how they are disposed to evolve over 

time. Imagination is there too, since the capacity to self-generate (at least 
an approximation to) the sensory signal implies that systems that can 

perceive the world this way can also generate, off-line, perception-like 

states for themselves. Such self-generation is simply another use of the 
same generative-model-style knowledge that enables them to meet 
incoming sensory stimulations with apt sensory predictions. 

Such accounts make deep and suggestive contact with the recent 

explosion of experimental results favouring the so-called ‘Bayesian 

brain hypothesis” the hypothesis that the brain somehow implements 
processing that approximates ideal ways of weighing new evidence 
against prior knowledge. Finding the set of hidden causes that make 
the current sensory data most likely corresponds to Bayesian inference. 

Such brains will not, of course, get everything right, all the time! 

I was struck recently by the following description by Lt Colonel Henry 

Worsley, head of a British Army team on an expedition to the North Pole: 

Whiteout days are tricky. That’s when the cloud cover gets so 

low it obscures the horizon. Amundsen called it ‘the white 

darkness’. You have no idea of distance or height. There’s a 
story of him seeing what he thought was a man on the horizon. 

As he started walking, he realized it was a dog turd just three 

feet in front of him.? 

The ‘man’ percept may well have been globally (i.e., overall, in the kind 

of world we inhabit and in the light of our state of information) ‘Bayes’ 

optimal’ given that Amundsen believed that he was looking to a far 
horizon. Colonel Worsley’s brain, that is to say, may have been crunch- 

ing prior knowledge and present evidence together in the best possible 

fashion. Nonetheless, that percept of a man on the horizon was really 

tracking a mere turd. Whenever I use the worrying word ‘optimal’ in 
this book, I mean to gesture only at this kind of ‘dog-turd optimality”.
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Another large-scale feature is integration. The perspective to be 
explored will allow us to view a number of core cognitive phenomena 
(perception, action, reason, attention, emotion, experience, and learn- 

ing) in a unified way, and it will suggest ways of making qualitative 

and perhaps even quantitative sense of many of the claims of ‘embod- 
ied and situated’ cognitive science. These latter integrations are made 

possible by a kind of cognitive common denominator in the form of 

‘ways of rendering increasingly predictable the stream of sensory data’. 

We can twiddle the knobs in our generative model so as to match the 
sensory data. But we can also alter the data to make it easier to capture 

by twiddling the knobs—alterations that may be effected both by our 

immediate actions, and by longer term bouts of environmental restruc- 

turing. This potential unification of work on probabilistic neural pro- 
cessing with work on the role of embodiment and action is, I believe, 

one of the most attractive features of the emerging framework. 
These same accounts open up new avenues for thinking about 

the shape and nature of human experience. By foregrounding predic- 
tion and (importantly) neural estimations of the reliability of those 
predictions, they cast new light upon a variety of pathologies and 

disturbances including schizophrenia, autism, and functional motor 

and sensory symptoms.* They also help us to appreciate the large and 

complex space of neurotypical human experience and may offer hints 

(especially once we incorporate interoceptive predictions concerning 

our own evolving visceral states) concerning the mechanistic origins of 

conscious feelings and experience. 

Despite all this, it is perhaps worth stressing that prediction is not 

the only instrument in the brain’s cognitive toolkit. For prediction, at 

least in the rather specific sense to be explored, involves the recruit- 
ment, at quite short timescales, of top-down approximations to the 

incoming sensory signal using prediction error signals computed dur- 

ing online processing. This is a powerful strategy that may well under- 

lie a wide variety of cognitive and behavioural effects. But it is surely 

not the only strategy available to the brain, let alone to the active agent. 

Adaptive response is a many-splendored thing, and multiple strategies 

must surely combine to keep active agents in touch with their complex, 

and partially self-constructed, worlds. 

But even upon this wider playing field prediction may play a key 
role, contributing to the moment-by-moment orchestration of our many 

disparate inner and outer resources, as well as in the construction of 

core forms of intelligent contact with the world. What emerges is a pic- 
ture in which prediction-based processing (courtesy, we shall see, of 
variable ‘precision-weighting’) selects transient neuronal ensembles.
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Those transient ensembles recruit, and are constantly recruited by, 

bodily actions that may exploit all manner of environmental oppor- 

tunities and structure. In this way, the vision of the predictive brain 

makes full and fruitful contact with that of the embodied, environmen- 

tally situated mind. 

Finally, it is important to notice that there are really two stories 

on offer in the present work. One is an extremely broad vision of the 
brain as an engine of multilevel probabilistic prediction. The other is a 

more specific proposal (‘hierarchical predictive coding’ or Predictive 

Processing (PP)) concerning just how such a story might be told. It is 

entirely possible that the broad story will turn out to be correct, even 

if many of the details of the more specific proposal (PP) turn out to be 

wrong or incomplete. The added value of pursuing the more specific 
proposal is twofold. First, that proposal represents the most thoroughly 

worked out version of the more general story that is currently available. 

Second, it is a proposal that has already been applied to a large—and 

ever-increasing—variety of phenomena. It thus serves as a powerful 

illustration of the potential of some such story to tackle a wide range 

of issues, illuminating perception, action, reason, emotion, experience, 

understanding other agents, and the nature and origins of various 

pathologies and breakdowns. 

These are exciting developments. Their upshot is not, I think, yet 

another ‘new science of the mind’, but something potentially rather bet- 

ter. For what emerges is really just a meeting point for the best of many 

previous approaches, combining elements from work in connectionism 

and artificial neural networks, contemporary cognitive and computa- 

tional neuroscience, Bayesian approaches to dealing with evidence and 

uncertainty, robotics, self-organization, and the study of the embodied, 

environmentally situated mind. By seeing brains as restless, pro-active 

organs constantly driven to predict and help bring about the play of 

sensory stimulation, we may be glimpsing some of the core functional- 

ity that allows three pounds or so of mobile, body-based brain-meat, 

immersed in the human social and environmental swirl, to know and 

engage its world.



Part 1 

THE POWER OF PREDICTION
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Prediction Machines 

1.1 Two Ways to Sense the Coffee 

What happens when, after a brief chat with a colleague, I re-enter my 

office and visually perceive the hot, steaming, mug of coffee that I left 

waiting on my desk? One possibility is that my brain receives a swathe of 

visual signals (imagine, for simplicity, an array of activated pixels) that 

rapidly specify a number of elementary features such as lines, edges, 

and colour patches. Those elementary features are then fed forward, 
progressively accumulated, and (where appropriate) bound together, 

yielding higher and higher level types of information culminating in 

an encoding of shapes and relations. At some point, these complex 

shapes and relations activate bodies of stored knowledge, turning the 

forward flow of sensation into world-revealing perception: the seeing 
of steaming delicious coffee in (as it happens) a funky retro-green mug. 

Such a model, though here simplistically expressed, corresponds quite 

accurately to traditional cognitive scientific approaches that depict 

perception as a cumulative process of ‘bottom-up’ feature detection.! 
Here is an alternative scenario. As I re-enter my office my brain 

already commands a complex set of coffee-and-office involving 
expectations. Glancing at my desk, a few rapidly processed visual 

13
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cues set off a chain of visual processing in which incoming sensory 
signals (variously called ‘driving’ or ‘bottom-up signals’) are met by 

a stream of downwards (and lateral?) predictions concerning the 
most probable states of this little world. These predictions reflect the 

buzzing, pro-active nature of much of our ongoing neuronal process- 

ing. That torrent of downward-flowing prediction is in the business 

of pre-emptively specifying the probable states of various neuro- 

nal groups along the appropriate visual (and other) pathways. The 

downwards (and lateral) flow of prediction concerns all aspects of 

the unfolding encounter and is not limited to simple visual features 

such as shape and colour. It may include a wealth of multimodal asso- 

ciations and (as we shall see in subsequent chapters) a complex mix of 
motoric and affective predictions. There ensues a rapid exchange (an 

energetic dance between multiple top-down and bottom-up signals) in 

which incorrect downward-flowing ‘guesses’ yield error signals that 

propagate laterally and upwards and are used to leverage better and 

better guesses. When the flow of prediction adequately accounts for the 

incoming signal, the visual scene is perceived. As this process unfolds, 

the system is trying to generate (at multiple spatial and temporal scales) 

the incoming sensory signal for itself. When this succeeds, and a match 

is established, we experience a structured visual scene. 

That, I submit, is how I actually see the coffee. This bare-bones pro- 

posal, to be nuanced, refined, and repeatedly augmented as our story 

unfolds, recalls the catchy (but potentially a little distortive, as we shall 

see in chapter 6) dictum that perception is controlled hallucination.> Our 

brains try to guess what is out there, and to the extent that that guess- 

ing accommodates the sensory barrage, we perceive the world. 

1.2 Adopting the Animal's Perspective 

How does all that knowledge—the knowledge that powers the predic- 
tions that underlie perception and (as we shall later see) action—arise 

in the first place? Surely we have to perceptually experience the 

world before we can acquire the knowledge needed to make predic- 

tions about it? In which case, perceptual experience cannot require 

prediction-based processing after all. 
To resolve this worry, we will need firmly to distinguish what 

might be thought of as the mere transduction of energetic patterns via 
the senses from the kinds of rich, world-revealing perception that result 

(if this story is on track) when and only when that transduction can be 

met with apt top-down expectations. The question then becomes: How,



PREDICTION MACHINES 15 

on the basis of mere energetic transduction, can apt expectations ever 

be formed and brought to bear? It is an attractive feature of the story on 

offer that the very same process (attempting to predict the current sen- 

sory input) may turn out to underlie both learning and online response. 

A good place to start (following Rieke et al., 1997, and Eliasmith, 

2005) is by contrasting the perspective of an external observer of some 

system with that of the animal or system itself. The external observer 

might be able to see, for example, that certain neurons in the frog’s brain 

fire only when there is a pattern of retinal stimulation that most often 

occurs when some juicy prey, such as a fly, is within tongue’s reach. 

That pattern of neuronal activity might then be said to ‘represent’ the 
presence of the prey. But such descriptions, though sometimes useful, 

can blind us to a much more pressing problem. This is the problem of 

how the frog, or any other system of interest, might come to get a grip 

upon a world at all. To bring this question into better view, we need to 

adopt (in an innocent sense to be explained shortly) the perspective not 

of the external observer but of the frog itself. The way to do this is to 

consider only the evidence available to the frog. In fact, even this may be 

misleading, as it seems to invite us to imagine the world from some 

kind of frog’s eye view. Instead, to adopt the animal’s perspective in 

the sense at issue is to restrict ourselves to what can be known from 

the flows of energetic stimulation that impinge upon the frog’s sen- 

sory apparatus. Those energetic stimulations might indeed be caused 

by what we, as external observers, recognize as a fly. But the only thing 

that is ever available to the frog’s brain is the perturbations to its sen- 
sory systems caused by the energies flowing from the world across its 

many receptors. This means, as Eliasmith (2005, p. 102) points out, that 

‘the set of possible stimuli is unknown, and an animal must infer what 

is being presented given various sensory cues’. [ would add (to anticpate 

some of our later discussions) that ‘inferring what is being presented’ is 

deeply related to selecting apt actions. The animal’s perspective, in this 

sense, is determined by what information is made available, via chang- 

ing states of the sensory receptors, to the animal’s brain. But the whole 

point of ‘processing’ that information is to help select an appropriate 

action, given the current state of the animal (e.g., how hungry it is) and 

the state of the world as indexed by those impiniging energies. 

It is also worth stressing that the term ‘information’ is here used 

simply as a description of ‘energy transfer’ (see Eliasmith, 2005; Fair, 

1979). Talk of information, that is to say, must ultimately be cashed 

simply in terms of the energies impinging upon the sensory receptors. 

This is essential if we are to avoid, yet again, the illicit importation of 

an observer’s perspective into our account of how informed observers



16 THE POWER OF PREDICTION 

are naturally possible in the first place. Information talk, thus used, 
makes no assumptions concerning what the information is about. This 

is essential, since sorting that out is precisely what the animal’s brain 

needs to do if it is to serve as an empowering resource for the control of 

an environmentally apt response. It is thus the task of the (embodied, 

situated) brain to turn those energetic stimulations into action-guiding 

information. 
An early example of ‘taking the animal’s perspective’ in this way 

can be found, Eliasmith notes, in the work of Fitzhugh (1958) who 

explored ways to try to infer the nature of the environmental causes 

from the responses of the animal’s nerve fibres alone, deliberately 

ignoring everything he knew (as an external observer) about the kinds 

of stimuli to which those fibres might be responding. In this way: 

Just as a brain (or its parts) infer the state of the world from 

sensory signals, Fitzhugh attempts to determine what is in the 

world, once he knows a nerve fiber’s response to an unknown 

stimulus. He purposefully limits the information he works 

with to that available to the animal. The ‘extra’ information 

available via the observer’s perspective is only used after the 

fact to ‘check his answers’; it is not used to determine what the 

animal is representing. (Eliasmith, 2005, p. 100) 

Fitzhugh faced a formidable task. Yet such, in essence, is the task of 

the biological brain. The brain must discover information about the 

likely causes of impinging signals without any form of direct access to 

their source. All that it ’knows’ about, in any direct sense, are the ways 

its own states (e.g. spike trains) flow and alter. Such states also cause 

effects in the embodied organism, some of which (an external observer 

might notice) are effects upon the motion of the sensory transducers 

themselves. In this way active agents get to structure their own sensory 

flows, affecting the ebb and flow of their own energetic stimulation. 

This, we shall later see, is an important additional source of informa- 

tion. But it does not alter the basic situation. It remains correct to say 

that all the system has direct access to is its own sensory states (pat- 

terns of stimulation across its sensory receptors). 

How, simply on the basis of patterns of stimulation across the sen- 

sory receptors, can embodied, situated brains alter and adapt so as to 

act as useful nodes (ones that incur considerable metabolic expense) for 

the origination of adaptive response? Notice how different this concep- 

tion is to ones in which the problem is posed as one of establishing a 
mapping relation between environmental and inner states. The task is
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not to find such a mapping but to infer the nature of the signal source 

(the world) from just the varying input signal itself. 

1.3 Learning in Bootstrap Heaven 

Prediction-driven learning provides a remarkably powerful way to 

make progress under such initially unpromising conditions. The best 

way to appreciate this is by first recalling the kind of learning that can 

be achieved by providing a system with an apt ‘teacher”. The teacher, of 

course, is not usually a human agent, but rather some automated signal 

that tells the learner exactly what it ought to be doing or concluding 
given the current input. Systems that rely on such signals are said to be 

‘supervised’ learners. The most famous such systems are those relying 

upon the so-called ‘back-propagation of error’ (e.g, Rumelhart, Hinton, 

& Williams, 1986a,b; and discussion in Clark, 1989, 1993). In these kinds 

of ‘connectionist’ systems the current output (typically, some kind of cat- 

egorization of the input) is compared to the correct output (as set-up in 

some body of labelled or otherwise pre-classified training data) and the 
connection weights that encode the system’s know-how slowly adjusted 

to bring future response more and more into line. Such processes of 

slow automatic adjustment (known as gradient descent learning) are 

able to take systems starting with random assignments of connection 

weights and gradually—all being well*—bring them up to speed. 

The development and refinement of connectionist systems was a 

crucial step in the long lineage leading to the predictive processing (PP) 

models that we shall shortly be considering. Indeed, predictive pro- 

cessing (and more generally, hierarchical Bayesian) models are prob- 

ably best seen as a development within that same broad lineage (for 

discussion, see McClelland, 2013, and Zorzi et al., 2013). Prior to such 

work, it was tempting® to simply deny that effective and fundamental 

learning was possible, given only the apparently slim pickings of the 

sensory evidence. Instead, the bulk of human knowledge might simply 
have been innate, gradually installed in the shape and functioning of 

our neural circuits over many millennia. 

Connectionist models of learning raised important doubts 

about such arguments, showing that it was actually possible to learn 

quite a lot from the statistically rich bodies of sensory data that we 

actually encountered (for a review, see Clark, 1993). But standard 

(back-propagation-trained) connectionist approaches were hampered 

in two ways. The first was the need to provide sufficient amounts of 
pre-categorized training data to drive supervised learning. The second
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was the difficulty of training such networks in multilayer forms,® since 
this required distributing the response to the error signal in hard-to- 

determine ways across all the layers. Prediction-driven learning, 

applied in multilayer settings, addresses both these issues. 

Let’s take the training signal first. One way to think about 

prediction-driven learning is to see it as offering an innocent (that is, 

ecologically feasible) form of supervised learning. More accurately, it 

offers a form of self-supervised learning, in which the ‘correct’ response 

is repeatedly provided, in a kind of ongoing rolling fashion, by the 

environment itself. Thus, imagine you are that brain/network, busily 

transducing signals from the world, able to detect only the ongoing 

changes in your own sensory registers. One thing you can do, while 

thus helping yourself to nothing more than the ‘animal’s perspective’, 

is busily to try to predict the next state of those very registers. 

The temporal story here is, however, rather more complex than that 

makes it seem. It is easiest to think of the process in terms of predic- 
tion at discrete time-steps. But, in fact, the story we will explore depicts 

the brain as engaging in a continuous process of sensory prediction in 

which the target is a kind of rolling present. The line between ‘predict- 

ing the present’ and ‘predicting the very-near-future’ is one that simply 

vanishes once we see the percept itself as a prediction-driven construct 

that is always rooted in the past (systemic knowledge) and anticipating, 

at multiple temporal and spatial scales, the future.’ 

The good news about the prediction task is that the world itself will 

now provide the training signal you need. For the states of your sen- 
sory registers will change, in ways systematically driven by the incom- 

ing signal, as the world around you changes. In this way, the evolving 

states of your own sensory receptors provide a training signal allowing 

your brain to ‘self-supervise’ its own learning. Thus: 

predictive forms of learning are particularly compelling 
because they provide a ubiquitous source of learning signals: 

if you attempt to predict everything that happens next, then 

every single moment is a learning opportunity. This kind of 

pervasive learning can for example explain how an infant 

seems to magically acquire such a sophisticated understand- 

ing of the world, despite their seemingly inert overt behavior 

(Elman, Bates, Johnson, Karmiloff-Smith, Parisi, & Plunkett, 

1996)—they are becoming increasingly expert predictors of 

what they will see next, and as a result, developing increas- 

ingly sophisticated internal models of the world. (O'Reilly et 

al. (submitted) p. 3)
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The prediction task, thus conceived, is a kind of bootstrap heaven. 

For example, to predict the next word in a sentence, it helps to know 

about grammar (and lots more too). But one way to learn a surpris- 

ing amount about grammar (and lots more too) is to look for the best 

ways to predict the next words in sentences. This is just the kind of 

training that the world can naturally provide, since your attempts 

at prediction are soon followed by the soundform corresponding to 

(you guessed it) the next word in the sentence. You can thus use the 

prediction task to bootstrap your way to the grammar, which you 

then use in the prediction task in future. Properly handled, this kind 

of bootstrapping (which implements a version of ‘empirical Bayes’ 

see Robbins, 1956) turns out to provide a very potent training regime 

indeed. 

Prediction-driven learning thus exploits a rich, free, constantly 

available, bootstrap-friendly, teaching signal in the form of the 

ever-changing sensory signal itself. Whether the task is ecologically 

basic (e.g., predicting the evolving visual scene so as to spot predators 

and prey) or more ecologically advanced (e.g., detecting coffee cups or 

predicting the next word in a sentence) the world can be relied upon 

to provide a training signal allowing us to compare current predic- 

tions with actual sensed patterns of energetic input. This allows 

well-understood learning algorithms to unearth rich information 

about the interacting external causes (latent variables’) that are actu- 

ally structuring the incoming signal. But in practice this requires an 

additional and vital ingredient. That ingredient is the use of multilevel 
learning. 

1.4 Multilevel Learning 

Prediction-driven learning operating in hierarchical (multilayer) set- 

tings plausibly holds the key to learning about our kind of world: a 

world that is highly structured, displaying regularity and pattern at 

many spatial and temporal scales, and populated by a wide variety of 

interacting and complexly nested distal causes. It is there, where sen- 

sory prediction and hierarchical learning combine, that we locate an 

important computational advance over previous work. That advance 

has roots in Helmholtz’s (1860) depiction of perception as a process of 

probabilistic, knowledge-driven inference. From Helmholtz comes the 

key idea that sensory systems are in the tricky business of inferring 

worldly causes from their bodily (sensory) effects. It is thus a kind of bet 

on what’s out there, constructed by asking how the world would have
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to be for the sensory organs to be stimulated the way they currently 

are. Part of what makes this tricky is that a single such pattern of sen- 

sory stimulation will be consistent with many different sets of worldly 

causes, distinguished only by their relative (and context-dependent) 

probability of occurrence. 

Helmholz’s insights informed influential work by MacKay (1956), 

Neisser (1967), and Gregory (1980), as part of the cognitive psycho- 

logical tradition that became known as ‘analysis-by-synthesis’ (for a 

review, see Yuille & Kersten, 2006).® In machine learning, such insights 

helped inspire a cascade of crucial innovations beginning with work 

on the aptly named ‘Helmholz Machine’ (Dayan et al., 1995, Dayan 

and Hinton, 1996; see also Hinton and Zemel, 1994). The Helmholz 

Machine was an early example of a multilayer architecture trainable 

without reliance upon experimenter pre-classified examples. Instead, 

the system ‘self-organized’ by attempting to generate the training data 

for itself, using its own downwards (and lateral) connections. That is to 

say, instead of starting with the task of classifying (or ‘learning a recog- 

nition model for’) the data, it had first to learn how to generate, using a 

multilevel system, the incoming data for itself. 

This can seem an impossible task, since generating the data requires 

the very knowledge that the system is hoping to acquire. For example, 

to generate the phonetic structures proper to some public language you 

would need already to know a lot about the various speech sounds 
and how they are articulated and combined.® Likewise, a system could 

learn to perform the classification task (taking sound streams as input 

and delivering a phonetic parse as output) if it already commanded a 

generative model of phonetically structured speech in the language. 

But, in the absence of either, where do you begin? The answer seems 

to be ‘gradually, and in both places at once’. The impasse was solved, 

in principle at least, by the development of new learning routines that 

made iterated visits to ‘bootstrap heaven’. 

The key development that made this possible was the discovery of 

algorithms such as the ‘wake-sleep algorithm’ (Hinton et al., 1995) that 

used each task (recognition and generation) gradually to bootstrap the 

other. This algorithm! allowed the system to learn both the recognition 

and the generation models by training both sets of weights in an alter- 

nating fashion, in a process of ‘iterative estimation’. The wake-sleep 

algorithm used its own top-down connections to provide the desired 
(target) states for the hidden units, thus (in effect) self-supervising the 
development of its perceptual recognition model” using a generative 

model that tried to create the sensory patterns for itself (in fantasy’, as
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it was sometimes said). Importantly, this kind of process could succeed 

even starting with small random weight assignments throughout (for a 

useful review, see Hinton, 2007a). 

A generative model," in this quite specific sense, aims to cap- 

ture the statistical structure of some set of observed inputs by infer- 

ring a causal matrix able to give rise to that very structure. In the 

Introduction, we met SLICE* whose acquired generative model com- 

bined hidden geological causes such as fracture and lava intrusion 

so as to best account for (by generating, from the top-down) the pixel 

patterns in a target geological (stratigraphic) image. A good proba- 

bilistic generative model for vision would likewise seek to capture 

the ways that lower level visual patterns (ultimately, retinal stimula- 

tions) are generated by an inferred interacting web of distal causes. 

A certain pattern of retinal stimulation, encountered in a given con- 

text, might thus be best accounted for using a generative mode] that 

(as an admittedly simplistic illustration) combines top-level repre- 

sentations of interacting agents, objects, motives, and motions with 

multiple intermediate layers capturing the way colours, shapes, tex- 

tures, and edges combine and temporally evolve. When the combina- 

tion of such hidden causes (which span many spatial and temporal 

scales) settles into a coherent whole, the system has self-generated the 

sensory data using stored knowledge and perceives a meaningful, 

structured scene. 

It is again worth stressing that this grip upon the structured 

distal scene must be generated using only the information available 

from the animal’s perspective. It must be a grip, that is to say, rooted 

entirely in the combination of whatever pre-structuring (of brain 

and body) may be present thanks to the animal’s evolutionary his- 

tory and the plays of energetic stimulation that have been registered 

by the sensory receptors. A systematic means of achieving such a 

grip is provided by the ongoing attempt to self-generate the sensory 

signal using a multilevel architecture. In practice, this means that 

top-down and lateral connections within a multilevel system come to 

encode a probabilistic model of interacting causes operating at mul- 

tiple scales of space and time. We recognize objects and states and 

affairs, if these approaches are correct, by finding the most likely 

set of interacting factors (distal causes) whose combination would 

generate (hence predicts, and best accounts for) the incoming sen- 

sory data (see, e.g., Dayan, 1997; Dayan et al., 1995; Hinton et al., 1995; 

Hinton & Ghahramani, 1997; Hinton & Zemel, 1994; Kawato et al., 

1993; Mumford, 1994; Olshausen & Field, 1996).
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1.5 Decoding Digits 

Consider a practical problem that many of us solve daily, often without 

much conscious effort: the problem of identifying handwritten digits. 
Granted, there is less and less of this about. But when someone does 

leave that hastily scrawled sticky-note on the bathroom mirror, it can be 

essential (or at the very least, a matter of date or no date) to distinguish 

the numbers. How do we do it? 

The machine-learning theorist Geoffrey Hinton describes a bench- 

mark machine-learning system capable of handwritten digit recog- 

nition (see Hinton, 2007a, b; Hinton & Nair, 2006; see also Hinton & 

Salakhutdinov, 2006). The system’s task is simply to classify images 

of handwritten digits (images of handwritten 1s, 2s, 3s, etc). That is 

to say, the system aims to take images of highly variable handwritten 

digits as inputs, and output the correct classification (identifying the 

digit as an instance of a 1, ora 2, 0ra 3 ... etc.). The set-up (see Figure 

1.1) involves three layers of feature detectors trained on a corpus of 

unlabelled images of handwritten digits. But instead of attempting 

directly to train the multilayer neural network to classify the images, 

the network learns and deploys a probabilistic generative model of the 

kind described above. It learns a multilayer generative model capable 

of producing such images for itself, using its top-down connections 

(followed by some additional fine-tuning). The goal of the learning is 
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FIGURE 1.1 Learning to Recognize Hand-Written Digits 

(@) The generative model used to learn the joint distribution of digit images 

and digit labels. (b) Some test images that the network classifies correctly 

even though it has never seen them before. 

  

      

Source: Hinton, 2007a.
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thus progressively to ‘adjust the weights on the topdown connections 

so as to maximize the probability that the network would generate the 

training data’ (Hinton, 2007a, p. 428). The route to successful perception 

(in this case, handwritten digit recognition) thus goes via a learning 

strategy that is actually much closer to the active generation of digits 

(e.g., in computer graphics). 

The results were impressive. The trained net gets all the (often 

badly written) examples shown in Figure 1.1 right, although none 

were actually in the training data. The network'? was tested exten- 

sively using a benchmark database of 60,000 training images 

and 10,000 test images. It outperformed all the more standard 

(‘back-propagation’ trained) artificial neural networks except those 

especially ‘hand-crafted’ to the task. It also performed nearly as well 
as more computationally expensive methods involving so-called 

‘support-vector machines’. And most important of all, it did so using 
a learning routine that echoes, if the stories we will be considering are 

on track, a key aspect of the functional organization of the brain: the 

use of top-down connections to generate versions of the very data to 

which the system seeks to respond. 
Such an approach may be applied to any structured domain. 

Hinton’s own variety (which, I should stress, differs in some very 

important ways from the ‘predictive processing’ models that we 

will soon be focussing upon®) has been successfully applied to tasks 

as diverse as document retrieval, predicting the next word in a sen- 

tence, and predicting what movies people will enjoy (see Hinton & 

Salakhutdinov, 2006; Mnih & Hinton, 2007; Salakhutdinov et al.,, 2007). 

To begin to appreciate the potential power of such approaches, it helps 
to note that the entire digit recognition network, Hinton remarks, has 

only ‘about as many parameters as 0.002 cubic millimeters of mouse 

cortex” and that ‘several hundred networks of this complexity would fit 

within a single voxel of a high resolution fMRI scan’ (Hinton, 2005, p. 

10). Hinton plays this card humbly, as a means of dramatizing just how 

far machine learning still has to go. But looked at another way, it invites 

us to appreciate just how deep a grip on the world that surrounds us a 

brain as complex as ours, deploying some version of that potent learn- 
ing strategy, might achieve. 

1.6 Dealing with Structure 

Prediction-driven multilevel learning also addresses another key 

shortfall of early (‘back-propagation of error’ based) connectionist
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treatments—their lack of a principled means of dealing with struc- 

ture. This is the need to represent and process ‘complex, articulated 

structures’ (Hinton, 1990, p. 47) such as part-whole hierarchies: struc- 

tures in which elements form wholes that can themselves be elements 

of one or more larger wholes. Work in ‘classical Artificial Intelligence’ 
offered a rather (too) direct solution to this problem. Conventional 

symbolic approaches used systems of ‘pointers’ in which one essen- 

tially arbitrary digital object could be used to access another, which 

might itself be used to access another, and so on. Within such a sys- 

tem a symbol could be viewed as ‘a small [usually arbitrary] rep- 

resentation of an object that provides an “remote access” path to a 

fuller representation of the same object’. In this way ‘many [small] 
symbols can be put together to create a “fully-articulated” representa- 

tion of some larger structure’ (both quotes from Hinton, 1990, p. 47). 

Such systems could indeed represent structured (nested, often hier- 

archical) relationships in a manner that allowed for easy sharing and 

recombination of elements. But they proved brittle and inflexible in 
other ways, failing to display fluid context-sensitive responsiveness, 

and floundering when required to guide behaviour in time-pressured 

real-world settings.™ 
The need to deal in a principled manner with structured domains 

drove much early scepticism (e.g., Fodor & Pylyshyn, 1988) about the 

connectionist alternative to the use of classical, sentence-like internal 

representational forms. But jump to the year 2007 and we find Geoffrey 

Hinton, a machine-learning theorist not given to overstatement, writ- 

ing that ‘the limitations of back-propagation learning can now be 

overcome by using multilayer neural networks that contain top-down 

connections and training them to generate sensory data rather than 

to classify it’ (Hinton, 2007a, p. 428). The worries about structure are 

directly addressed because (as we shall see frequently in the text) 
prediction-driven learning, as it unfolds in these kinds of multilayer 
settings, tends to separate out interacting distal (or bodily) causes oper- 

ating at varying scales of space and time. 

This is important since structured domains are ubiquitous in both 

the natural and human-built world. Language exhibits densely nested 

compositional structure in which words form clauses that form whole 

sentences that are themselves understood by locating them in the con- 
text of even larger linguistic (and non-linguistic) settings. Every visual 

scene, such as a city street, a factory floor, or a tranquil lake, embeds 

multiple nested structures (e.g., shops, shop doorways, shoppers in 

the doorways; trees, branches, birds on the branches, leaves, patterns 

on the leaves). Musical pieces exhibit structures in which overarching
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sequences are built from recurring and recombinant sub-sequences, 

each of which has structure of its own. The world, we might reason- 

ably suggest, is known by us humans (and doubtless most other ani- 

mals too) as a meaningful arena populated by articulated and nested 

structures of elements. Such structured forms of knowing are made 
possible (in ways we are about to explore) by prediction-driven learn- 

ing in which top-down connections try to build-up the sensory scene 
using knowledge about worldy causes operating at multiple spatial and 

temporal scales. 

1.7  Predictive Processing 

It is that twist—the strategy of using top-down connections to try to 

generate, using world knowledge, a kind of virtual version of the sen- 

sory data via a deep multilevel cascade—that lies at the heart of ‘hier- 

archical predictive coding’ approaches to perception (Friston, 2005; Lee 

& Mumford, 2003; Rao & Ballard, 1999). Hierarchical predictive coding 

(or ‘predictive processing’ (Clark (2013)) combines the use of top-down 

probabilistic generative models with a specific vision of how and when 
such influence might operate. Borrowing from commercial work in 

‘linear predictive coding, that vision depicts the top-down and lateral 

flow of neural signals as constantly (not just during learning) aiming 

to predict the current sensory barrage, leaving only any unpredicted 

elements (in the form of residual ‘prediction errors’) to propagate infor- 
mation forward within the system (see Brown et al,, 2011; Friston, 2005, 

2010; Hohwy, 2013; Huang & Rao, 2011; Jehee & Ballard, 2009; Lee & 

Mumford, 2003; Rao & Ballard, 1999). 

Transposed (in ways we are about to explore) to the neural domain, 

this makes prediction error into a kind of proxy (Feldman & Friston, 

2010) for any as-yet-unexplained sensory information. Prediction error 

here reports the ‘surprise’ induced by a mismatch between the sen- 

sory signals encountered and those predicted. More formally—and 

to distinguish it from surprise in the normal, experientially loaded 

sense—this is known as surprisal (Tribus, 1961). As mentioned earlier, 

I shall describe such systems as engaging in ‘predictive processing’. In 

thus speaking of ‘predictive processing’ rather than resting with the 

more common usage ‘predictive coding’, I mean to highlight the fact 

that what distinguishes these approaches is not simply the use of the 

data compression strategy (more on which shortly) known as predictive 

coding. Rather, it is the use of that strategy in the very special context of 

hierarchical (i.e,, multilevel) systems deploying probabilistic generative
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models. Such systems exhibit powerful forms of learning and—as we 

will later see—deliver rich forms of context-sensitive processing and 

are able flexibly to combine top-down and bottom-up flows of informa- 

tion within the multilayer cascade. 

Predictive coding was first developed as a data compression strat- 

egy in signal processing (for a history, see Shi & Sun, 1999). Thus con- 

sider a basic task such as image transmission. In most images, the value 

of one pixel regularly predicts the value of its nearest neighbours, with 

differences marking important features such as the boundaries between 

objects. That means the code for a rich image can be compressed (for a 

properly informed receiver) by encoding only the ‘unexpected’ varia- 

tion: the cases where the actual value departs from the predicted one. 

The simplest prediction would be that neighbouring pixels all share 

the same value (the same grey scale value, for example) but much more 

complex predictions are also possible. As long as there is detectable 

regularity, prediction (and hence this particular form of data compres- 

sion) is possible. It is the deviations from what is predicted that then 

carry the ‘news’, quantified as the difference (the ‘prediction error’) 

between the actual current signal and the predicted one. This affords 

major savings on bandwidth, an economy that was the driving force 

behind the development of the techniques by James Flanagan and oth- 

ers at Bell Labs during the 1950s (for a review, see Musmann, 1979). 

Data-compression by informed prediction allows quite modest 

encodings to be reconstructed into rich and florid renditions of the 

original sights and sounds. Such techniques figure prominently in, for 

example, motion-compressed coding for video. This is an especially 

effective application since so much of the information needed to recon- 

struct the image in the current frame of a video sequence is already 

present in the previously processed frame. Take the case of a moving 

object against a stable background. There, most of the background 

information for the present frame can be assumed to be the same as 

the previous frame, with prediction error signalling changes in what 

is occluded, or camera pans. Nor is the technique limited to such sim- 

ple cases. Predictable transforms of the moving object can themselves 

be factored in (as long as the speed, or even the rate of acceleration, 

remains the same) using so-called motion-compensated prediction 

error. Thus, all the information required to construct frame 2 of a very 

simple moving image might already be present in frame 1, with com- 

pensation applied for motion. To receive the second frame, you would 

then just need to transmit a simple message (e.g., informally ‘same as 

before except move everything two pixels to the right’). In principle, 

every systematic and regular change could be predicted leaving only
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truly unexpected deviations (e.g.,, the emergence of an unexpected, 

previously occluded, object) as the source of residual errors. 

The trick is thus trading intelligence and knowledge against the 

costs of encoding and transmission on the day. Notice that nothing 

here requires the receiver to engage in processes of conscious predic- 

tion or expectation. All that matters is that the receiving system be 

able to reconstruct the incoming signal in ways that make the most of 

whatever regularities have been detected or that it has proven useful 
to assume. In this way, animals like us may be saving valuable neural 

bandwidth by using what we already know to predict as much of the 

current sensory data as possible. When you seem almost to see your 

beloved cat or dog when the curtains start to move in just the right way 

(even if it was, on this occasion, only the wind that was responsible) 

you may have been using well-trained prediction machinery to start to 

complete the perceptual sequence, saving on bandwidth and (usually) 

knowing your world better as a result. 

Predictive processing thus combines the use, within a multilevel 
bidirectional cascade, of ‘top-down’ probabilistic generative mod- 
els with the core predictive coding strategy of efficient encoding and 

transmission. If the predictive processing story is on track, then per- 

ception is indeed a process in which we (or rather, various parts of 

our brains) try to guess what is out there, using the incoming signal 

more as a means of tuning and nuancing the guessing rather than as 

a rich (and bandwidth-costly) encoding of the state of the world. This 

does not mean, of course, that perceptual experience occurs only after 

all forward-flowing error is eliminated. Full, rich, percepts here take 
shape only when downward predictions match the incoming sensory 

signal at many levels. But this matching (as we will later see) is itself 

a piecemeal matter in which rapid perception of the general nature or 

‘gist” of a scene may be accomplished using a well-trained feedforward 

sweep that is sensitive to simple (e.g.,, low spatial frequency®) cues. 

Richer detail then emerges concurrently with the progressive reduc- 

tion of residual error signals calculated relative to the ensuing waves of 

top-down prediction. The ongoing process of perceiving, if such mod- 

els are correct, is a matter of the brain using stored knowledge to pre- 

dict, in a progressively more refined manner, the patterns of multilayer 

neuronal response elicited by the current sensory stimulation. This 

in turn underlines the surprising extent to which the structure of our 

expectations (both conscious and non-conscious) may be determining 

much of what we see, hear, and feel. 

In the rest of this book, we will thus be exploring two dis- 
tinct but overlapping stories. The first is a general, and increasingly
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well-supported, vision of the brain (and especially the neocortex) as 

fundamentally an inner engine of probabilistic prediction (see, e.g., 

Bubic et al,, 2010; Downing, 2007; Engel, Fires, et al., 2001; Kvergaga 

et al.,, 2007). The other is one specific proposal (hierarchical predictive 
coding, or ‘predictive processing’) describing the possible shape and 
nature of that core process of multilevel probabilistic prediction. This 

proposal is conceptually elegant, computationally well-grounded, and 

seems to have a reasonably promising shot at being neurally imple- 
mented. As a result, it is being widely applied, with new phenomena 

being brought under its umbrella at a surprising (sometimes even an 

alarming) rate. It offers a very comprehensive vision. We should not 

forget, however, that there are many possible models in this general 

vicinity.® 

1.8 Signalling the News 

To put some example-based flesh on all this, consider first a demonstra- 

tion (Hosoya et al., 2005) of the basic predictive coding strategy at work 

in the retina. The starting point of this account is the well-established 

sense in which retinal ganglion cells take part in some form of predictive 

coding, insofar as their receptive fields display centre-surround spatial 

antagonism, as well as a kind of temporal antagonism. What this means 

is that neural circuits predict, on the basis of local image characteris- 

tics, the likely image characteristics of nearby spots in space and time 

(basically, assuming that nearby spots will display similar image inten- 

sities) and subtract this predicted value from the actual value. What gets 

encoded is thus not the raw value but the differences between raw val- 

ues and predicted values. In this way, ‘ganglion cells signal not the raw 

visual image but the departures from the predictable structure, under 

the assumption of spatial and temporal uniformity’ (Hosoya et al., 2005, 

p. 71). This saves on bandwidth and also flags what is (to use Hosoya 

et al.'s own phrase) most ‘newsworthy’ in the incoming signal. 

These computations of predicted salience might have been made 

solely on the basis of average image statistics. Such an approach would, 

however, lead to trouble in many ecologically realistic situations. 

Consider the problem faced by ‘Mexican Walking Fish’, a salamander 

that frequently moves between a watery environment and dry land. 
The spatial scales at which nearby points in space and time are typi- 

cally similar in image intensity vary markedly between such cases, 

because the statistical properties of the different types of scene vary. 

This is true in less dramatic cases too, such as when we move from
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inside a building to a garden or lake. Hosoya et al. thus predicted that, 

in the interests of efficient, adaptively potent, encoding, the behaviour 

of the retinal ganglion cells (specifically, their receptive field proper- 

ties) should vary as a result of adaptation to the current scene or con- 
text, exhibiting what they term ‘dynamic predictive coding’ 

Putting salamanders and rabbits into varying environments, and 

recording from their retinal ganglion cells, Hosoya et al. confirmed 

their hypothesis: Within a space of several seconds, about 50% of the 
ganglion cells altered their behaviours to keep step with the changing 

image statistics of the varying environments. A mechanism was then 

proposed and tested using a simple feedforward neural network that 

performs a form of anti-Hebbian learning. Anti-Hebbian feedforward 

learning, in which correlated activity across units leads to inhibition 

rather than to activation (see, e.g., Kohonen, 1989), enables the creation 

of so-called ‘novelty filters’ that learn to become insensitive to the most 

highly correlated (hence most ‘familiar’) features of the input. This, of 

course, is exactly what is required to learn to discount the most sta- 

tistically predictable elements of the input signal in the way dynamic 

predictive coding suggests. Better yet, there are neuronally plausible 

ways to implement such a mechanism using amacrine cell synapses 

to mediate plastic inhibitory connections that in turn alter the recep- 

tive fields of retinal ganglion cells (for details, see Hosoya et al., 2005, 

p- 74) 50 as to suppress the most correlated components of the stimulus. 

In sum, retinal ganglion cells seem to be engaging in a computation- 

ally and neurobiologically explicable process of dynamic predictive 

recoding of raw image inputs, whose effect is to ‘strip from the visual 

stream predictable and therefore less newsworthy signals’ (Hosoya 

et al., 2005, p. 76). 

1.9 Predicting Natural Scenes 

Predictive processing takes this biological emphasis on the newswor- 

thy several steps further, offering a new take on cortical organization 

itself. In predictive processing schemes the incoming sensory signal 

is met by a flow of ‘guessing’ constructed using multiple layers of 

downward and lateral influence, and residual mismatches get passed 

forwards (and laterally) in the form of an error signal. At the core of 
such proposals lies a deep functional asymmetry between forward 

and backwards pathways—functionally speaking ‘between raw data 

seeking an explanation (bottom-up) and hypotheses seeking confirma- 

tion (topdown)” (Shipp, 2005, p. 8o5). Each layer in such a multilevel



30 THE POWER OF PREDICTION 

High-level predictions 
{increasingly abstract} 

Bottom-up flow of input 
(residuals, ‘errors’) 

Yte&&o“s 

   

    

et 

\_‘\\Y‘\'ed'\ded s 

Top-down flow of predictions     

  

Low-level predictions 
{often highly 
spatially/temporally 
precise) 

Input 

FIGURE 1.2 The Basic Predictive Processing Schema 

A highly schematized view of the predictive processing view of information 

transfer in the brain. Bottom-up inputs are processed in the context of priors 

(beliefs/hypotheses) from layers higher up in the hierarchy. The unpredicted 

parts of the input (errors) travel up the hierarchy, leading to the adjustment of 

subsequent predictions, and the cycle continues. 

Source: Adapted from Lupyan & Clark, In Press 

hierarchical system treats activity in the layer below as if it were sen- 

sory input, and attempts to meet it with a flow of apt top-down predic- 

tion (for this basic schema, see Figure 1.2). There are several worked 

examples of this in the literature (see the review by Huang & Rao, 2011). 

Rao and Ballard (1999) provide the seminal proof-of-concept. In this 

work prediction-based learning targets image patches drawn from nat- 

ural scenes using a multilayer artificial neural network. The network, 

which had no pre-set task apart from that of using the downwards 

and lateral connections to match input samples with successful predic- 

tions, developed a nested structure of units with simple-celi-like recep- 

tive fields and captured a variety of important, empirically observed 

effects. At the lowest level, there is some pattern of energetic stimu- 

lation, transduced (let’s suppose) by sensory receptors from ambient 
light patterns produced by the current visual scene. These signals are 

then processed via a multilevel cascade in which each level attempts 

to predict the activity at the level below it via backward connections.
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The backward connections allow the activity at one stage of the pro- 

cessing to return as another input at the previous stage. So long as this 

successfully predicts the lower level activity, all is well, and no further 

action needs to ensue. But where there is a mismatch, ‘prediction error’ 

occurs and the ensuing (error-indicating) activity is propagated later- 

ally and to the higher level. This automatically recruits new probabilis- 

tic representations at the higher level so that the top-down predictions 

do better at cancelling the prediction errors at the lower level (yield- 

ing rapid perceptual inference). At the same time, prediction error is 

used to adjust the longer-term structure of the model so as to reduce 

any discrepancy next time around (yielding slower timescale percep- 

tual learning). Forward connections between levels thus carry only 

the ‘residual errors’ (Rao & Ballard, 1999, p. 79) separating the predic- 

tions from the actual lower level activity, while backward and lateral 

connections (conveying the generative model) carry the predictions 

themselves. Changing predictions corresponds to changing or tuning 

your hypothesis about the hidden causes of the lower level activity. In 

the context of an embodied active animal, this means it corresponds 

to changing or tuning your grip on what to do about the world, given 

the current sensory barrage. The concurrent running of this kind of 

prediction error calculation within a bidirectional hierarchy of cortical 
areas allows information pertaining to regularities at different spatial 

and temporal scales to settle into a mutually consistent whole in which 

each such ‘hypothesis’ is used to help tune the rest. As the authors put 

it, ‘prediction and error-correction cycles occur concurrently through- 

out the hierarchy, so top-down information influences lower-level esti- 

mates, and bottom-up information influences higher-level estimates of 

the input signal’ (Rao & Ballard, 1999, p. 80). In the visual cortex, such a 

scheme suggests that backward connections from V2 to Vi would carry 

a prediction of expected activity in Vi, while forward connections 

from V1 to V2 would carry forward the error signal indicating residual 

(unpredicted) activity. This kind of functional asymmetry in the role of 
forward and backward connections is central to the PP vision. 

To test these ideas, Rao and Ballard implemented a simple bidirec- 

tional hierarchical network of such ‘predictive estimators’ and trained 
it on image patches derived from five natural scenes (see Figure 13). 

Using learning algorithms that progressively reduce prediction error 

across the linked cascade and after exposure to thousands of image 

patches, the system learned to use responses in the first-level net- 
work to extract features such as oriented edges and bars, while the 

second-level network came to capture combinations of such features 

corresponding to patterns involving larger spatial configurations—for
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FIGURE 13 Five Natural Images Used for Training the Three-Level 

Hierarchical Network Described in the Text 

Source: Rao & Ballard, 1999. 

example, the alternating stripes of a zebra. In this way the hierarchi- 

cal predictive coding architecture, using only the statistical properties 

of the signals derived from the natural images, was able to induce a 

simple generative model of the structure of the input data. It learned 

about the presence and importance of features such as lines, edges, and 

bars, and about combinations of such features (such as stripes) in ways 

that enable better predictions concerning what to expect next, in space 

or in time. In Bayes-speak (see Appendix 1), the network maximized 

the posterior probability of generating the observed states (the sensory 

inputs) and, in so doing, induced a kind of internal model of structure 

in the signal source. 

The Rao and Ballard model also displayed a number of inter- 

esting ‘non-classical receptive field’ effects, such as end-stopping. 

End-stopping (see Rao & Sejnowski, 2002) occurs when a neuron 

responds strongly to a short line falling within its classical recep- 

tive field but (surprisingly) shows diminishing response as the line 

gets longer. Such effects (and with them, a whole panoply of ‘context 

effects” as we will later see) emerge naturally from the use of hierarchi- 

cal prediction machinery. The response tails off as the line gets longer 

because longer lines and edges were the statistical norm in the natural 

scenes to which the network was exposed in training. After training, 

longer lines are thus what is first predicted (and fed back, as a hypoth- 

esis) by the level-two network. The strong firing of the level-1 ‘edge 

cells” when they are driven by shorter lines thus reflects not successful



PREDICTION MACHINES 33 

feature detection by those cells but rather an earljer stage of error or 

mismatch since the short segment was not initially predicted by the 

higher level network. 

This example neatly illustrates the dangers of thinking in terms 

of a simple cumulative flow of feature detection and the advantages of 

rethinking the flow of processing as a mixture of top-down expecta- 

tion and bottom-up error correction. It also highlights the way these 

learning routines latch on to the structure of the world as it is specified 
by the training data. End-stopped cells are simply a response to the 

statistics of the natural scenes used in training and reflect the typical 
length of the lines and edges in those scenes. In a very different world 
(such as the underwater world of some sea creatures) such cells would 

have learnt very different responses. 

Such approaches assume that the environment generates sensory 

signals by means of nested interacting causes and that the task of the 

perceptual system is to invert this structure by learning and applying 

a hierarchical generative model so as to predict the unfolding sensory 

stream. Learning routines of this broad kind have been successfully 
applied in many domains, including speech perception, reading, and 

recognizing the actions of oneself and of other agents (see Friston, 

Mattout, & Kilner, 2011; Poeppel & Monahan, 2011; Price & Devlin, 

2011). This is not surprising, since the underlying rationale is quite gen- 

eral. If you want to predict the way some set of sensory signals will 

change and evolve over time, a good thing to do is to learn how those 

sensory signals are determined by interacting external causes. And a 

good way to learn about those interacting causes is to try to predict 

how the sensory signal will change and evolve over time. 

1.10 Binocular Rivalry 

So far, our examples of predictive processing have been restricted to 

a few relatively low-level phenomena. As a final opening illustration, 
however, and one that nicely brings together many of the key elements 
introduced so far, consider Hohwy et al’s (2008) hierarchical predictive 

coding model of binocular rivalry. 

Binocular rivalry® (see Figure 1.4) is a striking form of visual expe- 

rience that occurs when, using a special experimental set-up, each eye 

is presented (simultaneously) with a different visual stimulus. This can 

be achieved by using two superimposed images rendered using red 

and cyan graphics, viewed using special glasses with one red and one 

cyan lens (the same kind of set-up, known as anaglyph 3D, that was once
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FIGURE 1.4 Illustration of Binocular Rivalry 

Different images are presented to the left and right eyes (‘stimulus’). The 

subject experiences switches from perception of one image (face) to the other 

(house). Note that ‘mixed percepts’ (composed of parts of both images) are 

also temporarily experienced (‘piecemeal rivalry’). 

Source: Schwartz et al,, 2012. By permission of The Royal Society. 

used for viewing 3D comics or movies). Courtesy of these eye-specific 

filters, the right eye might be presented with an image of a house 

while the left receives an image of a face. Under these (extremely—and 

importantly—artificial) conditions, subjective experience unfolds in a 

surprising, ‘bi-stable’ manner. Instead of seeing (visually experiencing) 

an ongoing merger of the house and face information, subjects report 

a kind of perceptual alternation between seeing the house and seeing 

the face. The transitions themselves are not always sharp, and subjects 

often report a gradual breaking through (see, e.g., Lee et al,, 2005) of
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elements of the other image before it dominates the previous one, after 

which the cycle repeats. 

Binocular rivalry, as Hohwy et al. remind us, has proven to be a 

powerful tool for studying the neural correlates of conscious visual 

experience, because the incoming signals remain constant while the 

percept switches to and fro (Frith et al, 1999). Despite this attention, 

however, the precise mechanisms at play here are not well understood. 

Hohwy et al.'s strategy is to take a step back and to attempt to explain 

the phenomenon from first principles in a way that makes sense of 

many apparently disparate findings. In particular, they pursue what 

they dub an ‘epistemological” approach: one whose goal is to reveal 

binocular rivalry as a reasonable (knowledge-oriented) response to an 

ecologically unusual stimulus condition. 

The starting point for their story is, once again, the emerging uni- 

fying vision of the brain as an organ of prediction using a hierarchical 

generative model. Recall that, on these models, the task of the per- 

ceiving brain is to account for (to accommodate or ‘explain away’) the 

incoming or ‘driving” sensory signal by means of a matching top-down 

prediction. The better the match, the less prediction error then propa- 

gates up the hierarchy. The higher level guesses are thus acting as pri- 

ors for the lower level processing, in the fashion (as remarked earlier) of 

so-called ‘empirical Bayes'"” 

Within such a multilevel setting, a visual percept is determined 

by a process of prediction operating across many levels of a (bidirec- 

tional) processing hierarchy, each concerned with different types and 

scales of perceptual detail. All the communicating areas are locked 

into a mutually coherent predictive coding regime, and their interac- 

tive equilibrium ultimately selects a best overall (multiscale) hypoth- 

esis concerning the state of the visually presented world. This is the 

hypothesis that ‘makes the best predictions and that, taking priors into 

consideration, is consequently assigned the highest posterior prob- 

ability’ (Hohwy et al., 2008, p. 690). Other overall hypotheses, at that 

moment, are simply crowded out: they are effectively inhibited, having 

lost the competition to best account for the driving signal. 

Notice, though, what this means in the context of the predictive 

processing cascade. Top-down signals will account for (by predicting) 

only those elements of the driving signal that conform to (and hence 

are predicted by) the current winning hypothesis. In the binocular 

rivalry case, however (see Figure 1.4) the driving (bottom-up) signals 

contain information that suggests two distinct, and incompatible, states 

of the visually presented world, for example, face at time ¢ at location 

x and house at time ¢ at location x. When one of these is selected as the
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best overall hypothesis, it will account for all and only those elements 

of the driving input that the hypothesis predicts. As a result, predic- 

tion error for that hypothesis decreases. But prediction error associated 

with the elements of the driving signal suggestive of the alternative 

hypothesis is not thereby suppressed, so it is now propagated up the 

hierarchy. To suppress those prediction errors, the system needs to find 

another hypothesis. But having done so (and hence, having flipped 

the dominant hypothesis to the other interpretation), there will again 

emerge a large prediction error signal, this time deriving from those 

elements of the driving signal not accounted for by the flipped inter- 

pretation. In Bayesian terms (see Appendix 1) this is a scenario in 

which no unique and stable hypothesis combines high prior and high 

likelihood. No single hypothesis accounts for all the data, so the system 

alternates between the two semi-stable states. It behaves as a bi-stable 

system, minimizing prediction error in what Hohwy et al. describe as 

an energy landscape containing a double well. 

What makes this account different from its rivals (such as Lee et al., 

2005) is that where they posit a kind of direct, attention-mediated but 

essentially feedforward, competition between the inputs, the predic- 

tive processing account posits ‘top-down’ competition between linked 

sets of hypotheses. The effect of this competition is to selectively sup- 

press the prediction errors associated with the elements of the driving 
(sensory) signals accommodated by the current winning hypothesis 
(‘face’). But this top-down suppression leaves untouched the predic- 

tion errors associated with the remaining (house-signifying) elements 
of the driving signal. These errors are then propagated up the system. 

To explain them away the overall interpretation must switch. This pat- 

tern repeats, yielding the distinctive alternations experienced during 

dichoptic viewing of inconsistent stimuli. 
But why, under such circumstances, do we not simply experience 

a combined or interwoven image: a kind of house/face mash-up, for 
example? Although such partially combined percepts do occur, and 

may persist for brief periods of time, they are never complete (bits of 

each stimulus are missing) or stable. Such mash-ups do not constitute a 

viable hypothesis given our more general knowledge about the visual 

world. For it is part of that general knowledge that, for example, houses 

and faces do not occupy the same place, at the same scale, at the same 

time. This kind of general knowledge may itself be treated as a systemic 
prior, albeit one pitched at a relatively high degree of abstraction (such 

priors are sometimes referred to as ‘hyperpriors’ and we shall have 

more to say about them in subsequent chapters). In the case at hand, 

what is thereby captured is the fact that ‘the prior probability of both a
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house and face being co-localized in time and space is extremely small’ 

(Hohwy et al,, 2008, p. 691). This, indeed, may be the deep explanation 

of the existence of competition between certain higher level hypotheses 

in the first place—these hypotheses must compete because the system 

has learned that ‘only one object can exist in the same place at the same 

time” (Hohwy et al., 2008, p. 691). 

Despite these attractions, the binocular rivalry scenario presented 

here is incomplete. In particular, it is clear that there are strong atten- 

tional components here, whose treatment requires additional resources 

(to be introduced in chapter 2). Moreover, the active visual exploration 

of the presented scene—and in particular the fact that we can only 
visually explore the scene in ways appropriate to one ‘reading’ at a 

time—plausibly plays a major role in shaping our experiences.” Such 

augmentations would thus require the larger apparatus that we shall 

later (Part IT) dub ‘action-oriented predictive processing’. 

111 Suppression and Selective Enhancement 

To successfully represent the world in perception, if these models 

are correct, depends crucially on quashing sensory prediction error. 

Perception thus involves accommodating the driving (incoming) sen- 

sory signal by matching it with a cascade of predictions pitched at a 

variety of spatial and temporal scales. To the extent that such matching 

succeeds, well-predicted aspects of the driving sensory signal are sup- 

pressed or dampened—those aspects of the signal, as it is sometimes 
said, are ‘explained away’? 

This kind of ‘explaining away’ is important and central, but it 
needs very careful handling. It is important as it reflects one charac- 

teristic property of predictive processing models. That feature lies at 

the root of the encoding efficiencies that these models exhibit, since 

all that then needs to be passed forward through the system is the 

residual error signal (signifying as-yet-unexplained sensory informa- 

tion) which is what remains once predictions and driving signals have 

been matched.?? But there is more to the systemic unfolding that ensues 

than suppression and dampening alone. For alongside suppression, PP 

delivers sharpening and selective enhancement. 

Fundamentally, this is because PP posits a kind of duplex archi- 

tecture: one that at each level combines representations of inputs with 

estimations of error and (see chapter 2) sensory uncertainty. According 

to this proposal, what really gets suppressed, ‘explained away’ or can- 

celled out is thus the error signal, which (in these models) is depicted
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as computed by dedicated ‘error units’ These are linked to, but dis- 
tinct from, the so-called representation units that encode the causes 

of sensory inputs. By cancelling out the activity of some of the error 

units, activity in some of the laterally interacting ‘representation’ units 
(which feed predictions laterally and downward) can actually end up 

being selected and sharpened. 

In this way, the predictive processing account avoids any direct 

conflict with accounts (such as the biased-competition model of 

Desimone & Duncan, 1995) that posit top-down enhancements of selected 

aspects of the sensory signal. It avoids such conflict because: 

High-level predictions explain away prediction error and tell 

the error units to “shut up” [while] units encoding the causes of 
sensory input are selected by lateral interactions, with the error 

units, that mediate empirical priors. This selection . .. sharpens 

responses among the laterally competing representations. 

(Friston, 2005, p. 829) 

Such effects are further facilitated by attentional (‘precision-weighting’) 

mechanisms that we will meet in chapter 2. For the moment, the point 

to notice is that the PP account is consistent with both the suppression 

and the selective enhancement of (different aspects of) early cortical 

response.” 

What is most distinctive about the predictive processing proposal 

(and where much of the break from tradition really occurs) is that 

it depicts the forward flow of information as solely conveying error, 
and the backward flow as solely conveying predictions. The PP archi- 

tecture thus achieves a rather delicate balance between the famil- 

iar and the novel. There is still a cascade of feature detection, with 

potential for selective enhancement, and with increasingly complex 

features dealt with by neural populations that are more distant from 

the sensory peripheries. But the forward flow of sensory information 

is now replaced by a forward flow of prediction error. This signi- 

fies the sensory information that is as-yet-unexplained. In the more 

action-oriented terms that will occupy us later (in Parts II and III), it 

is sensory information that is not yet leveraged to guide apt engage- 

ments with the world. 

This balancing act between supression and selective enhance- 

ment threatens to be quite architecturally demanding. In standard 

implementations it requires positing the existence of two functionally 

distinct sub-populations, encoding the conditional expectations [repre- 
sentations, predictions] of perceptual causes and the prediction error 

respectively’ (Friston, 2005, p. 829). Functional distinctness need not,
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of course, imply full physical separation. But a common conjecture in 

this literature depicts superficial pyramidal cells (a prime source of for- 
ward neuro-anatomical connections) as playing the role of error units, 

passing prediction errors laterally and forwards, while deep pyramidal 

cells play the role of representation units, passing predictions (made on 

the basis of a complex generative model) laterally and downward (see, 

e.g., Friston, 2005, 2009; Mumford, 1992). 

Itisimportant to remember that ‘error neurons’, despite thelabel, can 

equally well be conceived as a variety of representation neurons—but 

ones whose functional role is to encode as yet unexplained (or, more 

broadly, unaccomodated) sensory information. What they encode is 

thus specified only relative to a prediction. For example: 

in the early visual cortex, predictor neurons code informa- 

tion about the predicted orientation and contrast at a certain 

point in the visual field, and error neurons signal mismatches 

between the observed orientation and contrast and the pre- 

dicted orientation and contrast. In IT [inferior temporal] cor- 

tex, predictor neurons code information about object category; 

error neurons signal mismatches in predicted and observed 

object category (den Ouden et al, 2012; Peelen and Kastner, 

2011). (Koster-Hale & Saxe, 2013, p. 838) 

However it may (or may not) be realized—and for a useful run-down 

of some key possibilities, see Koster-Hale and Saxe (2013)—predictive 

processing demands some form of functional separation between 

encodings of prediction and of prediction error.?* Such separation con- 

stitutes a central feature of the architecture, enabling it to combine the 

suppressive elements resulting from predictive coding with multiple 

routes to top-down signal enhancement. 

1.12 Encoding, Inference, and the Bayesian Brain 

Neural representations, should the hierarchical predictive process- 

ing account prove correct, encode ‘probability density functions’ in 

the form of a probabilistic generative model, and the flow of inference 

respects Bayesian principles (for a brief sketch, see Appendix 1) that bal- 

ance prior expectations against new sensory evidence. This (Eliasmith, 

2007) is a departure from traditional understandings of internal repre- 

sentation, and one whose full implications have yet to be fully under- 

stood. It means that the nervous system is fundamentally adapted to 
deal with uncertainty, noise, and ambiguity, and that it requires some
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(perhaps several) concrete means of internally representing uncer- 

tainty. Non-exclusive options here include the use of distinct popula- 

tions of neurons, varieties of ‘probabilistic population codes’ (Pouget 

et al, 2003), and relative timing effects (Deneve, 2008) (for a very useful 

review, see Vilares & Kording, 2011). 

Predictive processing accounts thus share what Knill and Pouget 

(2004, p. 713) describe as the ‘basic premise on which Bayesian theories 

of cortical processing will succeed or fail, namely, that ‘the brain rep- 

resents information probabilistically, by coding and computing with 

probability density functions, or approximations to probability density 
functions’ (p. 713). Such a mode of representation implies that when we 

represent a state or feature of the world, such as the depth of a visible 

object, we do so not using a single computed value but using a condi- 
tional probability density function that encodes ‘the relative probabil- 

ity that the object is at different depths Z, given the available sensory 

information’ (p. 712). 

In what sense are such systems truly Bayesian? According to 

Knill and Pouget, ‘the real test of the Bayesian coding hypothesis is in 
whether the neural computations that result in perceptual judgments 

or motor behaviour take into account the uncertainty available at each 

stage of the processing’ (2004, p. 713). That is to say, reasonable tests will 

concern how well a system deals with the uncertainties that charac- 

terize the information it actually manages to encode and process, and 

(I would add) the general shape of the strategies it uses to do so. 

There is increasing (though mostly indirect—see below) evidence 

that biological systems approximate, in multiple domains, the Bayesian 

profile thus understood. To take just one example, Weiss et al. (2002)— 

in a paper revealingly titled ‘Motion illusions as optimal percepts'— 

used an optimal Bayesian estimator (the ‘Bayesian ideal observer’) to 

show that a wide variety of psychophysical results, including many 

motion ‘illusions,’ (see 6.9 following) fall naturally out of the assump- 
tion that human motion perception implements just such an estimator 

mechanism. 

Examples could be multiplied (for a balanced review, see Knill 
& Pouget, 2004). At least in the realms of low-level, basic, and adap- 

tively crucial, computations, biological processing may quite closely 

approximate Bayes’s optimality. But what researchers find in general 
is not that we humans are—rather astoundingly—'Bayes’ optimal’ in 

some absolute sense (i.e., responding correctly relative to the absolute 
uncertainties in the stimulus), but rather, that we are often optimal, or 

near optimal, at taking into account the uncertainties that character- 

ize the information that we actually command: the information that is
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made available by the forms of sensing and processing that we actu- 

ally deploy (see Knill & Pouget, 2004, p. 713). That means taking into 
account the uncertainty in our own sensory and motor signals and 

adjusting the relative weight of different cues according to (often very 

subtle) contextual clues. Recent work confirms and extends this assess- 

ment, suggesting that humans act as rational Bayesian estimators, in 

perception and in action, across a wide variety of domains (Berniker & 

Kording, 2008; Kérding et al., 2007; Yu, 2007). 

Of course, the mere fact that a system’s response profile takes this 

kind of shape does not unequivocally demonstrate that the system is 

implementing some form of Bayesian reasoning. In a limited domain, 

even a look-up table that simply associates cues with responses could 

(Maloney & Mamassian, 2009) yield the same behavioural repertoire as 

a ‘Bayes’ optimal’ system. Nonetheless, the predictive processing story, 

if correct, would rather directly underwrite the claim that the nervous 

system approximates a genuine version of Bayesian inference.”® Some 
recent electophysiological studies lend strong support to this broad pos- 

sibility, revealing distinctive cortical response signatures for Bayesian 

updating and predictive surprise, and further suggesting that the brain 

codes and computes weighted probabilities. Summing up these studies 

the authors conclude: 

Our electrophysiological findings suggest that the brain acts as 
a Bayesian observer, i.e, that it might adjust probabilistic inter- 

nal states, which entail beliefs about hidden states in the envi- 

ronment, in a probabilistic generative model of sensory data. 
(Kolossa, Kopp, and Fingscheidt, 2015, p. 233). 

1.13  Getting the Gist 

Instead of simply representing ‘CAT ON MAT’, the probabilistic 

Bayesian brain will encode a conditional probability density func- 

tion, reflecting the relative probability of this state of affairs (and any 

somewhat-supported alternatives) given the available information. 

This estimate reflects both bottom-up influences from multiple sensory 
channels, and prior information of various kinds. It is worth pausing 

to examine some of the many ways this delicate top-down/bottom-up 

dance might unfold. 

During the early stages of processing, a PP system will avoid 

committing itself to any single interpretation, and so there will often 

be an initial flurry of error signals. Such signals plausibly account for
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major components of early evoked responses (as measured by EEG 

recordings using scalp electrodes) as competing ‘beliefs” propagate 
up and down the system. This is typically followed by rapid conver- 

gence upon a dominant theme (such as “animals in a natural scene”) 

with further details (“several tigers sitting quietly under the shade 

of a large tree”) subsequently negotiated. The set-up thus favours 

a kind of recurrently negotiated ‘gist-at-a-glance” model, where we 

first identify the general scene followed by the details. This affords a 

kind of ‘forest first, trees later’ approach (Friston, 2005; Hochstein & 

Ahissar, 2002). These early emerging gist elements may be identified 

on the basis of rapidly processed (low spatial frequency) cues, as sug- 
gested by Bar, Kassam, et al. (2006). Such coarse cues may indicate 

whether we confront (for example) a cityscape, a natural scene, or 

an underwater scene, and they may also be accompanied by early 

emerging affective gist—do we like what we are seeing? See Barrett & 

Bar, 2009 and discussion in 5.10 following. 

Thus imagine you are kidnapped, blindfold, and taken to some 

unknown location. As the blindfolds are removed, your brain’s first 

attempts at predicting the scene will surely fail. But rapidly pro- 

cessed, low spatial frequency cues soon get the predictive brain into 

the right general ballpark. Framed by these early emerging gist ele- 

ments (which might even be identified, in a trained-up system, using 

an ultra-rapid purely feedforward sweep, see Potter et al., 2014%) 
subsequent processing can be guided by specific mismatches with 

early attempts to fill in the details of the scene. These allow the 

system to progressively tune its top-down predictions, until it set- 

tles on a coherent overall interpretation pinning down detail at 

many scales of space and time. 

This does not mean, however, that context effects will always 

take time to emerge and propagate downwards. For in many (indeed, 

most) real-life cases, substantial context information is already in 

place when new sensory information arrives. An apt set of priors 

is thus often already active, poised to impact processing without 

further delay. 

This is important. The brain, in ecologically normal circumstances, 

is not just suddenly ‘turned on’ and some random or unexpected input 

delivered for processing! So there is usually plenty of top-down influ- 

ence (active prediction) in place even before a stimulus is presented.” 
Over whatever timescale, though, the endpoint (assuming we form a 

rich visual percept) is the same. The system will have settled into a 

set of states that make mutually intertwined bets concerning many 

aspects of the scene, from the general theme all the way down to more
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spatio-temporally precise information about parts, colours, textures, 

and orientations. 

1.14 Predictive Processing in the Brain 

Section 1.9 already displayed a little indirect evidence for predictive 

processing by the brain in the form of computational simulations 
that reproduced and explained observed ‘non-classical receptive field 

effects’ such as end-stopping. Another such effect (see Rao & Sejnowski, 

2002) occurs when an oriented stimulus yields a strong response from 

a cortical cell, but that response is suppressed when the surrounding 
region is filled with a stimulus of identical orientation, yet enhanced 

when the orientation of the central stimulus is orthogonal to those of 

the surrounding region. A powerful explanation of this result, Rao 
and Sejnowski (2002) suggest, is once again that the observed neural 

response here signals error rather than well-guessed content. It is thus 

smallest when the central stimulus is highly predictable from the sur- 

rounding ones and largest when it is actively counter-predicted by the 

surroundings. Similarly, Jehee and Ballard (2009) offer a predictive 

processing account of ‘biphasic response dynamics’ in which the opti- 

mal stimulus for driving a neuron (such as certain neurons in lateral 

geniculate nucleus, LGN) can reverse (e.g., from preferring bright to 

preferring dark) in a short (20 ms) space of time. Once again the switch 

is very neatly explained as a reflection of a unit’s functional role as an 

error or difference detector rather than a classical feature detector. In 

such cases, the predictive coding strategy is in full evidence because: 

Low-level visual input [is] replaced by the difference between 

the input and a prediction from higher-level structures ... 

higher-level receptive fields . .. represent the predictions of the 

visual world while lower-level areas . . . signal the error between 

predictions and the actual visual input. (Jehee & Ballard, 

2009, p. 1) 

More generally, consider the case of ‘repetition suppression’. Multiple 

studies (for a recent review, see Grill-Spector et al., 2006) have shown 

that stimulus-evoked neural activity is reduced by stimulus repeti- 

tion.”® Summerfield et al. (2008) manipulated the local likelihood of 

stimulus repetitions, showing that the repetition-suppression effect 

is itself reduced when the repetition is improbable/unexpected. The 
favoured explanation is (again) that repetition normally reduces 

response because it increases predictability (the second instance was
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made likelier by the first) and thus reduces prediction error. Repetition 

suppression thus also emerges as a direct effect of predictive process- 
ing in the brain, and as such its severity may be expected to vary (just 

as Summerfield et al. found) according to our local perceptual expecta- 

tions. In general then, the predictive coding story offers a very neat and 

unifying explanation of a wide variety of quite low-level contextual 

effects. 

There is an emerging body of supportive fMRI and EEG work dat- 

ing back to a pioneering fMRI study by Murray et al. (2002) that also 
reveals just the kinds of relationships posited by the predictive process- 

ing story. Here, as higher level areas settled into an interpretation of 
visual shape, activity in V1 was dampened, consistent with the success- 
ful higher level predictions being used to explain away (cancel out) the 

sensory data. Recent studies confirm this general profile. Alink et al. 
(2010) found decreased responses for predictable stimuli using variants 

on an apparent motion illusion, while den Ouden et al. (2010) report 

similar results using arbitrary contingencies that were manipulated 

rapidly during the course of their experiments.?? Adding fuel to these 

fires, Kok, Brouwer, et al. (2013) experimentally manipulated subjects’ 

expectations about the probable direction of motion of a simple visual 
stimulus. The studies, using auditory cues that stood in a predictive 

relationship to moving dots, showed that subject’s implicit expectations 

(as manipulated by the auditory cues) impacted neuronal activity at the 

very earliest stages of sensory processing. The effects, moreover, went 
beyond simple speeding up or sharpening of responses, altering what 

was actually subjectively perceived. The authors concluded, exactly 

in line (as they note) with predictive processing, that ‘our results sup- 

port an account of perception as a process of probabilistic inference 
... wherein integration of top-down and bottom-up information takes 

place at every level of the cortical hierarchy’ (Kok, Brouwer, et al., 2013, 

p- 16283). 
Next, consider the P300, an electrophysiological response that 

has been linked to the occurrence of unexpected stimuli. In a recent 
detailed model comparison, the varying amplitude of the P300 was 

best explained (Kolossa et al., 2013) as an expression of the residual 

errors between top-down expectation and incoming sensory evi- 

dence. Relatedly, predictive processing provides a compelling account 

of the ‘mismatch negativity’ (MMN)—a characteristic electrophysi- 

ological brain response that is also evoked by the occurrence of an 

unexpected (‘oddball’) stimulus, or by the total omission of some 

expected stimulus, within a learnt sequence. Thus (citing Hughes et 

al.,, 2001; Joutsiniemi & Hari, 1989; Raij et al., 1997; Todorovic et al., 2011;
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Wacongne etal,, 2011; and Yabe et al,, 1997), it was recently commented 

that ‘one of the most remarkable properties of the auditory system 

is that it can generate evoked responses to an absent but expected 

stimulus’ (Wacongne et al., 2012, p. 3671). Omission-based responses 

(and oddball responses more generally) thus provide further evi- 

dence for a predictive-processing-style schema in which ‘the auditory 

system [acquires] an internal model of regularities in auditory inputs, 

including abstract ones, that are used to generate weighted predic- 

tions about the incoming stimuli’ (Wacongne et al., 2012, p. 3671). Such 
responses (which are by no means restricted to the auditory modal- 

ity) fall neatly into place once we consider them as indexing tran- 
sient bursts of prediction error signalling—signalling that occurs as 

part of the normal process by which incoming signals are recognized 

(see Friston, 2005; Wacongne et al.,, 2012). The PP account here makes 

direct contact with striking features of normal human experience. 

The experiential impact of an unexpected omission (as when a note 

is missed out of a familiar sequence) can be very bit as perceptually 

striking and salient as the inclusion of an unexpected note. This is 

an otherwise puzzling effect that is neatly explained by assuming 

that the construction of perceptual experience involves expectations 

based upon our best model of what is likely to occur. We return to this 

topic in 3.5 following. 

At a more architectural level, the central role of generative model 

based prediction makes sense both of the prevalence of backward 

neural connectivity and of apparent functional differences between 

the forward and backward connections—differences that reflect, 

predictive processing suggests, the divergent functional roles of 

prediction-error signalling and probabilistic prediction (for some 
detailed discussion of these functional asymmetries, see Friston, 

2002, 2003; and for some recent experimental work on this topic, see 

Chen et al., 2009). 

1.15 Is Silence Golden? 

Early work in this broad area (such as the seminal work by Rao & 

Ballard described above) met with some puzzlement. This is perhaps 

unsurprising, since the basic story is radically different from the more 

standard picture of a feedforward (even if attention-modulated) cascade 

of simple-to-complex feature detection. The puzzlement was famously 

captured in a commentary from Christoph Koch and Tomaso Poggio 

bearing the subtitle ‘Silence is Golden’ The passage is so perfectly
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expressive of some quite common first impressions that I hope the 

reader will forgive a long extract: 

In predictive coding, the common-place view of sensory neu- 

rons as detecting certain ‘trigger’ or ‘preferred’ features is 
turned upside down in favor of a representation of objects by the 
absence of firing activity. This appears to be at odds with [data 

indicating that neurons] extending from V1 to inferior tempo- 

ral cortex, respond with vigorous activity to ever more complex 

objects, including individual faces or paperclips twisted in just 

the right way and seen from a particular viewpoint. 

In addition, what about all of the functional imaging data 

from humans revealing that particular cortical areas respond 

to specific image classes, such as faces or three-dimensional 

spatial layout? Is it possible that this activity is dominated by 

the firing of . .. cells actively expressing an error signal, a dis- 

crepancy between the input expected by this brain area and 
the actual image? (Both quotes from Koch & Poggio, 1999, p. 10) 

There are two main worries being expressed here: first, a worry that 

these accounts are abandoning representation in favour of silence, since 

well-predicted elements of the signal are quashed or ‘explained away’; 

second, a worry that the accounts thus seem in tension with strong 
evidence of increasingly complex representations tokened by activity 

in higher areas. 

Neither worry is ultimately justified. To see why not, recall the 

architectural story just outlined. Each layer, we saw, must now support 

two functionally distinct kinds of processing. For simplicity, let’s fol- 

low Friston (2005) and imagine this as each layer containing two func- 
tionally distinct kinds of cell or unit*: 

— ‘representation units’, that encode that layer’s current best 

hypothesis (pitched at its preferred level of description) and 

that feed that hypothesis down as prediction to the layer below. 

— ‘error units, that pass activation forward when local 

within-layer activity is not adequately accounted for by incom- 

ing top-down prediction from the layer above. 

That means that more and more complex representations are indeed 

formed, and used in processing, as one moves up the hierarchy. It is just 

that the flow of representational information (the predictions), at least in 

the purest versions, is all downwards (and sideways). Nevertheless, the 

upward flow of prediction error is itself a sensitive instrument, bearing
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fine-grained information about very specific failures of match. That is 

why it is capable of inducing, in higher areas, complex hypotheses (con- 
sistent sets of representations) that can then be tested against the lower 

level states. As a result, neither of the two early worries raised by Koch 
and Poggio gets a grip. There are representational populations ‘all the 

way up’, and higher-level cells can still respond to ever-more-complex 

objects and properties. But their activity is determined by the forwards 

(and lateral) flow of error signals and the states that they select. 

Koch and Poggio may, however, be hinting also at a different kind of 
concern. This is the concern that the bedrock ‘predictive coding’ image 
of the brain as ‘aiming at silence’ (by achieving perfect prediction of 

sensory inputs) can seem out of kilter with the fundamental profile of 

animal life itself! For that profile, surely, is to move and explore, forever 

searching out new inputs demanding new bouts of neural activity. The 

worry, baldly stated, is that the predictive coding strategy may seem 

like a recipe for finding a dark corner and staying there, correctly pre- 

dicting immobility and darkness until all bodily functions cease. 

Fortunately (as we shall see in detail in chapters 8 and 9) the threat 

here is entirely superficial. For the role of perception, on the accounts 
we shall explore, is simply to drive adaptively valuable action. Many 

of our moment-by-moment predictions are thus actually predictions 

(more on this in chapter 6) of restless sensorimotor trajectories, and 

their job is to keep us moving us around the world in ways that keep us 

fed and warm, and that serve our needs and projects. Among the most 

prediction-error inducing states for creatures like us are thus states 

in which all activity ceases and in which hunger and thirst begin to 

predominate. By the end of the present treatment, we shall have seen 

just how the bedrock strategy of prediction error minimization, as it 
unfolds in active, evolved, information-hungry adaptive agents, itself 

enforces all the restless, playful, searching, and exploratory forms of 

behaviour that we know and love. 

1.16 Expecting Faces 

For the present, however, let’s return to the second (more concrete) 

worry raised by Koch and Poggio—the worry that neural activity, as 

processing proceeds, does not look to be dominated by the firing of 

cells expressing error. Consider once again the standard model of per- 

ception as the product of processing via a stream of increasingly com- 

plex feature-detection, such that responses at the higher levels come to 

reflect the presence of complex, invariant items such as faces, houses,
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etc. What the predictive processing story suggests, we can now clar- 

ify, is not that we abandon that model but that we enrich it, by adding 

within each layer cells specialized for the encoding and transmission 

of prediction error. Some cells at each level are thus responding to 

states of the body and world while others are registering errors rela- 

tive to predictions about those states: predictions flowing laterally and 

downwards, from the level above. Is this correct? 

The evidence here is only just appearing, but seems to fit the ‘pre- 

dictive processing” profile. Thus consider the well-established finding 

(Kanwisher et al., 1997) of increased activity in fusiform face area (FFA) 

when shown a face rather than (say) a house. Surely, a critic might say, 

this is best explained by simply supposing that neurons in FFA have 

learnt to be active complex feature detectors for faces? It is immediately 
apparent that this is no longer straightforward, however, given that the 
PP story allows that FFA may indeed harbour units that specialize in 
the representation of faces, as well as ones that specialize in the detec- 
tion of errors (mismatches between top-down predictions reaching 

FFA and the bottom-up signal). Thus, the difference is that if the pre- 

dictive coding story is correct, FFA should also harbour error units that 

encode mismatches with expected (face) activity based upon lateral 

and top-down predictions. The predicted presence of both represen- 

tational and error units in FFA provided a nice opportunity for some 

telling empirical tests. 

Egner et al. (2010) compared simple feature detection (with and with- 

out attention) and predictive processing models of recorded responses 

in FFA. The simple feature detection model predicts, just as Koch and 
Poggio suggested, that FFA response should simply scale with the pres- 

ence of faces in the presented image. The predictive processing model, 

however, predicts something rather more complex. It predicts that FFA 

response should ‘reflect a summation of activity related to prediction 

(“face expectation”) and prediction error (“face surprise”) (Egner et al 

2010, p. 1601). That is to say, it predicts that the (low temporal resolu- 

tion) fMRI signal recorded from the FFA should reflect the activity of 

both putative kinds of cell: those specializing in prediction (face expec- 

tation’) and those specializing in detecting errors in prediction (face 

surprise’). This was then tested by collecting fMRI data from area FFA 

while independently varying both the presented features (face vs. house) 
and manipulating subject’s unconscious degree of face expectation (low, 

medium, high) and hence their proper degree of ‘face surprise” To do 

this, the experimenters probabilistically paired presentations of face/ 
house with a 250 ms preceding colour frame cue giving 25% (low), 50% 

(medium), or 75% (high) chance of the next image being a face.
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The results were clear. FFA activity showed a strong interaction 

between stimulus and face expectation. FFA response was maximally 

differentiated only under conditions of low face expectation. Indeed, 

and quite surprisingly, FFA activity given either stimulus (face OR 

house) was indistinguishable under conditions of high face expectation. There 

is a very real sense then, in which FFA might (had it first been inves- 

tigated using predictive processing paradigms) have been dubbed a 

‘face-expectation area’. 

The authors conclude that, contrary to any simple feature-detection 

model, ‘[FFA] responses appear to be determined by feature expecta- 

tion and surprise rather than by stimulus features per se’ (Egner et al,, 

2010, p. 16601). The authors also controlled (by further model compari- 

sons) for the possible role of attentional effects. But these could not, 

in any case, have made much contribution since it was face surprise, 

not face expectation, that accounted for the larger part of the BOLD 

(fMRI)* signal. In fact, the best-fit predictive processing model used a 

weighting in which face-surprise (error) units contributed about twice 

as much® to the BOLD signal as did face-expectation (representation) 

units, suggesting that much of the activity normally recorded using 

fMRI may be signalling prediction error rather than detected features. 

This is an important result. In the authors” own words: 

the current study is to our knowledge the first investigation to 

formally and explicitly demonstrate that population responses 

in visual cortex are in fact better characterized as a sum of fea- 

ture expectation and surprise responses than by bottom-up 

feature detection (with or without attention). (Egner et al., 2010, 

p. 16607) 

1.17  When Prediction Misleads 

There is, of course, a downside to all this efficient prediction-based 

response, and it is nicely illustrated by familiar visual illusions, such 

as the Hollow Face illusion. Here, the concave inner surface of a 3D 

face-mask will look—under certain condition—like a normal face: con- 

vex, with the nose extending outwards. To get a better sense of how this 

looks, try the video clips embedded in the short review at http://www. 

michaelbach.de/ot/fcs_hollow-face/. 

Better yet, experience the illusion for yourself using a real 

three-dimensional mask, of the kind you would use for Halloween. 

Take the mask and reverse it, so you are looking at the hollow inside
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ther than the convex (face-shaped) side. If the viewing distance 

irrect (don't get too close: it needs to be at least around 3 feet awa: 

1d the mask is gently illuminated from behind, it will appear as if tt 

ask is not hollow. You will ‘see” the nose sticking outwards, when i 

ct, you are looking into the concave reverse-side of the face impre: 

on. Figure 1.5 shows the appearance, under such conditions, of a rota 

ig mask. 

The hollow mask illusion, in neurotypical subjects, is powerft 

1d persistent. It is, however, robustly reduced among schizophren: 

ibjects—an effect that specific disturbances to the predictive proces: 

\g apparatus may also (see chapter 7) help explain. The hollow mas 

lusion was first used by the neuroscientist Richard Gregory (see, e.g 

regory, 1980) to illustrate the power of ‘top-down’, knowledge-drive 

ifluences on perception. Such will effects emerge directly from th 

oeration of the principles of prediction-based learning and process 

ig discussed in previous sections. Our statistically salient experienc 

ith endless hordes of convex faces in daily life installs a deep neure 

xpectation’ of convexness: an expectation that here trumps the man 

ther visual cues that ought to be telling us that what we are seeing i 

concave mask. 

  

IGURE 1.5 Hollow Mask I1lusion 

he leftmost and far right images show the hollow, concave side of a mask 

stating on a stand. When viewed from a few feet away, and illuminated 

:om the rear, the concave side appears convex. This demonstrates the power 

f top-down predictions (we ‘expect’ faces to be convex) to impact perceptual 

xperience. 

ource: Gregory (2001), by permission of the Royal Society.
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You might reasonably suspect that the hollow mask illusion, 

though striking, is really just some kind of psychological oddity. And 

to be sure, our neural predictions concerning the probable convexity of 

human faces seem especially strong and potent. But if predictive pro- 

cessing approaches are on track, this general strategy actually pervades 

human perception. Brains like ours are constantly trying to use what 

they already know so as to predict the current sensory signal, using the 

incoming signal to select and constrain those predictions, and some- 

times using prior knowledge to ‘trump’ certain aspects of the incoming 

sensory signal itself. Such trumping makes good adaptive sense, as the 

capacity to use what you know to outweigh some of what the incoming 

signal seems to be saying can be hugely beneficial when the sensory 

data is noisy, ambiguous, or incomplete—situations that are, in fact, 

pretty much the norm in daily life. 

An interesting upshot of this is that many visual illusions, as men- 

tioned in 1.12, may nonetheless be best understood as ‘optimal per- 

cepts’. In other words, given the structure and statistics of the world 

we inhabit, the optimal estimate of the worldly state (the estimate that 

represents the best possible take on the incoming signal, given what 

the system already knows) will be the one that, on some occasions, gets 

things wrong. A few local failures, then, are just the price we pay for 

being able to get things right, most of the time, in a world cloaked by 

ambiguity and noise. 

1.18 Mind Turned Upside Down 

Predictive processing turns a traditional picture of perception on its 

head. According to that once-standard picture (Marr, 1982) perceptual 

processing is dominated by the forward flow of information transduced 

from the world via various sensory receptors. Traditional perceptual 

neuroscience followed suit, with visual cortex (the most-studied exam- 

ple) being viewed as a hierarchy of neural feature detectors driven from 

the bottom up. This was a view of the perceiving brain as passive and 

stimulus-driven, taking energetic inputs from the senses and turning 

them into a coherent percept by a kind of step-wise build-up, accumu- 

lating structure and complexity along the way in a kind of Lego-block 

fashion. Such views may be contrasted with the increasingly ‘active’ 

views that have been pursued over the past several decades of neuro- 

scientific and computational research,*® including the recent explosion 

of work on intrinsic neural activity—the ceaseless buzz of spontane- 

ous, correlated neuronal activation that takes place even in the absence



52 THE POWER OF PREDICTION 

of ongoing task-specific stimulation.** Much of the brain’s activity, all 
this suggests, is both ongoing and endogenously generated. 

Predictive processing plausibly represents the last step in this 

retreat from a passive, input-dominated, view of the flow of neural pro- 

cessing. According to this emerging class of models, naturally intelli- 

gent systems do not passively await sensory stimulation. Instead, they 

are constantly active, trying to predict (and actively elicit, see Part II) 

the streams of sensory stimulation before they arrive. Before an ‘input’ 
arrives on the scene, these pro-active cognitive systems are already busy 

predicting its most probable shape and implications. Systems like that 

are already (pretty much constantly) poised to act, and all they need to 

process are sensed deviations from the predicted state. It is these cal- 
culated deviations from predicted states (“prediction errors’) that thus 

bear much of the information-processing burden, informing us of what 

is salient and newsworthy within the dense sensory barrage.® 
Action itself, as we shall see in Part II, then needs to be reconceived. 

Action is not so much a ‘response to an input’ as a neat and efficient 

way of selecting the next input, driving a rolling cycle. These hyper- 

active systems are constantly predicting their own upcoming states 

and actively moving about so as to bring some of them into being. We 

thus act so as to bring forth the evolving streams of sensory informa- 

tion that keep us viable and that serve our increasingly recondite ends. 

With action incorporated, predictive processing implements a com- 

prehensive reversal of the traditional (bottom-up, forward-flowing) 

schema. The largest contributor to ongoing neural response is the 

ceaseless anticipatory buzz of downwards-flowing neural prediction 

that drives perception and action in a circular causal flow. Incoming 

sensory information is just one further factor perturbing those restless 

pro-active seas. 

As ever-active prediction engines these kinds of brains are not, 

fundamentally, in the business of ‘processing inputs’ at all. Rather, they 

are in the business of predicting their inputs. This pro-active neural 

strategy keeps us poised for action and (as we shall later see) allows 

mobile, embodied agents to intervene on the world, bringing about the 

kinds of sensory flow that keep them viable and fulfilled. 

If these stories are on track, then just about every aspect of the 

passive forward-flowing model is false. We are not cognitive couch 

potatoes idly awaiting the next ‘input’, so much as proactive predic- 

tavores—nature’s own guessing machines forever trying to stay one 
step ahead by surfing the incoming waves of sensory stimulation.



2 

Adjusting the Volume 

(Noise, Signal, Attention) 

2.1 Signal Spotting 

If we look for them, most of us can find shifting face-forms hidden 

among the clouds. We can see the forms of insects hidden in the pat- 

terned wallpaper or of snakes nestling among the colourful swirls of 

a carpet. Such effects need not imply the ingestion of mind-altering 

substances. Minds like ours are already experts at self-alteration. When 

we look for our car keys on the cluttered desk, we somehow alter our 

perceptual processing to help isolate the target item from the rest. 

Indeed, spotting the (actual) car keys and ‘spotting’ the (non-existent) 

faces, snakes, and insects are probably not all that different, at least as 

far as the form of the underlying processing is concerned. Such spot- 

tings reflect our abilities not just to alter our action routines (e.g., our 

visual scan paths) but also to modify the details of our own percep- 

tual processing so as better to extract signal from noise. Such modi- 

fications look to play a truly major role in the tuning (both long- and 

short-term) of the on-board probabilistic prediction machine that 

underpins our contact with the world. The present chapter explores the 

space and nature of such online modifications, discusses their relations 

with familiar notions such as attention and expectation, and displays a 

53
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possible mechanism (the “precision-weighting’ of prediction error) that 

may be implicated in a wide range of signal-enhancement effects. 

2.2 Hearing Bing 

Hack number 48 in Tom Stafford and Matt Webb’s wonderfully 

engaging book Mind Hacks is called ‘Detect Sounds on the Margins 
of Certainty’. Based on previous experimental work by Merckelbach 

and van de Ven (2001), the hack invites the reader first to listen to a 

3o-second soundfile. The reader is instructed that the soundfile con- 

tains a hidden sample of Bing Crosby’s “White Christmas’, but that 

the sample is very faint and may begin in the first, second, or third 

ten-second segment of the soundfile. The intrepid reader might 
like to try this before continuing, by clicking on Hack 48 at: http:// 

mindhacks.com/book/links/. 

Merckelbach and van de Ven (2001) tried this experiment with 

undergraduate students and found that almost one-third of the stu- 

dents reported detecting the onset of the song. In fact, as you may have 

guessed by now, there is no White Christmas hidden anywhere in the 

noise. The ability of some folk to ‘detect’ the familiar song is just an 
expression (in this case, a kind of over-extension) of an ability central 

to perceptual search and perceptual awareness in general: the ability 

to discount some aspects of a signal, treating them as ‘noise’, while 

accentuating other aspects (thus treating them as ‘signal’). This abil- 

ity, deployed under the influence of the strong expectation of a weak 
‘hard-to-detect” fragment of the familiar song, allows many perfectly 

normal subjects to enjoy what is in effect an auditory hallucination. The 

effect can even be amplified, it turns out, by combinations of stress and 

caffeine (Crowe et al., 2011). 

Now consider a second kind of case: sine-wave speech. Sine-wave 

speech (Remez et al., 1981; Remez & Rubin, 1984) is a degraded replica 

of recorded speech stripped of most of the normal speech attributes 

and acoustics. The sine-wave replica preserves only a kind of skele- 

tal outline in which the core (and rather coarse) pattern of dynamic 

changes in the speech signal is coded as a set of pure tone whistles. You 

can hear an example by clicking on the first loudspeaker icon at: http:// 

www.mrc-cbu.cam.ac.uk/people/matt.davis/sine- wave-speech/. 

Chances are you will not make much of what you hear: to me it 
sounded like a string of science-fiction beeps of the kind pioneered by 
the BBC Radiophonic Workshop back in the early 1960s. Others hear 

something like the incomprehensible inflected whistlings of the moon
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mice characters from the cult UK children’s show The Clangers. But 

now click on the next loudspeaker and listen to the original sentence, 
then revisit the sine-wave replica. This time around, your experien- 

tial world has altered. It has become (more on this in later chapters) 

meaningful: a world of clearly intelligible speech. For a lovely selec- 

tion of demos like this, try: http://www.lifesci.sussex.ac.uk/home/ 

Chris_Darwin/SWS5/. 

Remember to click the SWS (Sine-Wave Speech) versions first. Once 

you know what the sentence is it becomes pretty much impossible to 

‘rehear’ it in the original fashion. An apt comparison would be hearing 

speech in a language you understand and in one you do not. It is almost 

impossible to hear speech sounds in the former case simply as sounds. 
Exposure to the original (non-sine-wave) spoken sentence helps pre- 

pare you in a similar fashion. Over time, you may even become expert 

enough at sine-wave speech perception to succeed without prior expo- 

sure to the specific acoustically normal sentence. At that point, you 

have become an expert with a more general skill (a ‘native hearer’ of 

sine-wave speech). 

Davis and Johnsrude (2007) describe the perception of sine-wave 

speech as just one instance of the much more pervasive phenomenon 

of top-down influence upon sensory processing. Such influence, if the 

accounts sketched in chapter 1 are correct, is rooted in the creation and 

deployment of probabilistic generative models busily trying to predict 

the flow of sensory input. We see such influence in all modalities and 

across modalities. A well-worn example is reproduced in Figure 2.1(a). 

At first sight, all that most people can see is a pattern of light and shadow. 

But once you have discovered the spotty, shadowed Dalmatian dog that 

knowledge alters the way you see that picture for the rest of your life. 
For a less familiar example, take a look at Figure 2.1(b). In such cases;! 

our knowledge about the world (our “prior beliefs’ as realized by genera- 

tive models commanded by the brain) plays a major role in the construc- 

tion of the percept. (It is perhaps worth repeating that the term ‘belief’ is 

widely used (in this literature) to cover any of the contents of the genera- 

tive models that guide perception and action. There is no requirement 

that such beliefs be consciously accessible to the reflective agent. Indeed, 

for the most part, they will comprise a variety of sub-personal states 

whose best expressions are probabilistic rather than sentential?). 

Other, less obvious, examples of cross-modal influence have been 

mounting up in the literature. An especially striking example is the 

finding that the perceived colour of a wine can have a large impact on 
how people (including wine experts) describe the taste of that wine 

(see Morrot et al.,, 2001; Parr et al., 2003; and Shankar et al., 2010—the
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FIGURE 2.1 Hidden Figures 

(2) Hidden in the black and white noise is an image (clear enough, once you 

spot it) of a Dalmatian dog. Clue: the head is near the centre of the image, 

inspecting the ground. 

(b) A less well-known example of the same phenomena. This time it is a cow. 

Clue: the cow has a big head; it is facing you, with its nose at the bottom of 

the picture and two black ears in the top left half. 

Source: Hidden Cow by John McCrone, CC-BY-SA-3.0. http://creativecommons.org/ 

licenses/by-sa/3.0), via Wikimedia Commons. 

latter bearing the rather wonderful title of ‘Grape Expectations’). In 

these experiments, white wines that had been artificially coloured to 
look red were described, even by experts, using red-wine descriptors 

such as prune, chocolate, and tobacco. Nor does the influence of prior 

expectations stop there. Oysters taste better, it seems, when eating is 

accompanied (even deep inside a landlocked restaurant) by sounds of 

the sea (Spence & Shankar, 2010). 

Predictive processing offers a powerful framework within which to 

approach and understand a whole pantheon of knowledge-based and 

contextual effects upon perceptual inference, since it makes what we 

know (both consciously and, more often, non-consciously) about the 

world a prime player in the construction of perceptual experience itself. 

We shall return to questions concerning the construction of conscious 

experience in chapter 7. For the moment, I want to dwell on something 

a little more abstract, but quite fundamental to the accounts on offer. 

That something is crucial to perceptual success (such as spotting the 

Dalmatian or hearing sine-wave speech), to perceptual play (such as 

finding face-forms in the clouds) and to some perceptual failures (such 

as hallucinating the sounds of “White Christmas’). It is the ability flex- 

ibly to extract signal from noise by forming and deploying focused 

and fine-grained estimates of our own perceptual uncertainty.®> That 

ability (the focus of the rest of the present chapter) lies at the heart of
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the predictive processing (PP) treatment of attention and plays a major 

role in accounting for both normal and abnormal forms of contact with 
the world. 

2.3 The Delicate Dance between Top-Down and Bottom-Up 

The perceptual problems that confront us in daily life vary greatly in the 

demands they make upon us. For many tasks, it is best to deploy large 

amounts of prior knowledge, using that knowledge to drive complex 

proactive patterns of gaze fixation, while for others it may be better to sit 

back and let the world do as much of the driving as possible. Which strat- 
egy (more heavily input-driven or more heavily expectation-driven) is 

best is also hostage to a multitude of contextual effects. Driving along a 

very familiar road in heavy fog, it can sometimes be wise to let detailed 

top-down knowledge play a substantial role. Driving fast along an unfa- 

miliar winding mountain road, we need to let sensory input take the 
lead. How is a probabilistic prediction machine to cope? 

It copes, PP suggests, by continuously estimating and re-estimating 

its own sensory uncertainty. Within the PP framework, these estima- 

tions of sensory uncertainty modify the impact of sensory prediction 

error. This, in essence, is the predictive processing model of attention. 

Attention, thus construed, is a means of variably balancing the potent 

interactions between top-down and bottom-up influences by factoring 

in their so-called ‘precision’, where this is a measure of their estimated 

certainty or reliability (inverse variance, for the statistically savvy). 

This is achieved by altering the weighting (the gain or ‘volume’, to use 

a common analogy) on the error units accordingly. The upshot of this is 

to ‘control the relative influence of prior expectations at different levels’ 

(Friston, 2009, p. 299). Greater precision means less uncertainty and is 

reflected in a higher gain on the relevant error units (see Friston, 2005, 

2010; Friston et al., 2009). Attention, if this is correct, is simply a means 

by which certain error unit responses are given increased weight, hence 

becoming more apt to drive response, learning, and (as we shall later 

see) action. More generally, this means the precise mix of top-down 
and bottom-up influence is not static or fixed. Instead, the weight given 

to sensory prediction error is varied according to how reliable (how 

noisy, certain, or uncertain) the signal is taken to be. 

We can illustrate this using our earlier example. Visual input, in 

the fog, will be estimated to offer a noisy and unreliable guide to the 

state of the distal realm. Other things being equal visual input should, 
on a bright day, offer a much better signal, such that any residual error
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should be taken very seriously indeed. But the strategy clearly needs to 

be much more finely tuned than that suggests. Thus suppose the fog 

(as so often happens) briefly clears from one small patch of the visual 

scene. Then we should be driven to sample preferentially from that 

smaller zone, as that is now a source of high-precision prediction errors. 

This is a complex business, since the evidence for the presence of that 
small zone (right there!) comes only from the (initially low-weighted) 

sensory input itself. There is no fatal problem here, but the case is worth 

describing carefully. First, there is now some low-weighted surprise 

emerging relative to my best current take on the the visual situation 

(which was something like ‘in uniformly heavy fog’). Aspects of the 

input (in the clear zone) are not unfolding as that take (that model) 

predicted. However, my fog-model includes general expectations con- 

cerning occasional clear patches. Under such conditions, I can fur- 

ther reduce overall prediction error by swopping to the ‘fog plus clear 
patch’ model. This model incorporates a new set of precision predic- 

tions, allowing me to trust the fine-grained prediction errors computed 

for the clear zone (only). That small zone is now the estimated source 

of high-precision prediction errors of the kind the visual system can 

trust to recruit clear reliable percepts. High-precision prediction errors 

from the clear zone may then rapidly warrant the recruitment of a new 

model capable of describing some salient aspects of the local environ- 

ment (watch out for that tractor!). 

Such, in microcosm, is the role PP assigns to sensory atten- 

tion: ‘Attention can be viewed as a selective sampling of sensory data 

that have high-precision (signal to noise) in relation to the model’s pre- 

dictions” (Feldman & Friston, 2010, p. 17). This means that we are con- 

stantly engaged in attempts to predict precision, that is, to predict the 

context-varying reliability of our own sensory prediction error, and that 

we probe the world accordingly. This kind of ‘predicted-precision based’ 

probing and sampling also underlies (as we will see in Part II) the PP 

account of gross motor activity. For the present, the point to notice is that 

in this noisy and ambiguous world, we need to know when and where to 

take sensory prediction error seriously, and (more generally) how best to 

balance top-down expectation and bottom-up sensory input. That means 

knowing when, where, and how far, to trust specific prediction error sig- 

nals to select and nuance the model that is guiding our behaviour. 

An important upshot is that the knowledge that makes human 

perception possible concerns not only the layered causal structure 

of the (action-salient—more on that later) distal world but the nature 

and context-varying reliability of our own sensory contact with that 

world. Such knowledge must form part and parcel of the overall
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FIGURE 2.2 The Basic Predictive Processing Schema, This Time with 

Precision-Weighting 

This is the same highly schematized view of the PP architecture shown in 

chapter 1, but with precision-weighting added to the mix. Now, the impact 

of select prediction error signals is modulated by varying estimates of their 

current reliability and salience 

Source: Adapted from Lupyan & Clark, 2014. 

generative model. For that model must come to predict both the shape 

and multiscale dynamics of the impinging sensory signal and the 

context-variable reliability of the signal itself (see Figure 2.2). The famil- 

iar idea of ‘attention’ now falls into place as naming the various ways 

in which predictions of precision tune and impact sensory sampling, 

allowing us (when things are working as they should) to be driven by 

the signal while ignoring the noise. By actively sampling where we 

expect (relative to some task) the best signal fo noise ratio, we ensure 

that the information upon which we perceive and act is fit for purpose. 

2.4 Attention, Biased Competition, and Signal Enhancement 

Attention, if these stories are on track, names the means or process 

by which an organism increases the gain (the weighting, hence the 

forward-flowing impact) on those prediction error units estimated to
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provide the most reliable sensory information relative to some cur- 
rent task, threat, or opportunity. More formally, the suggestion is that 

‘attention is the process of optimizing synaptic gain to represent the 

precision of sensory information (prediction error) during hierarchi- 

cal inference’ (Feldman & Friston, 2010, p. 2). The general idea is thus 

that patterns of neuronal activation (among the so-called ‘representa- 

tion units’) encode systemic guesses concerning task-relevant states of 

the world, while changes in the gain (i.e.,, changes in the weighting or 

‘volume’) on the associated error units® reflect the brain’s best estimate 

of the relative precision of the top-down ‘guessing” and the bottom-up 

sensory information. Precision-weighting thus delivers the system’s 

best estimate of the trustworthiness of the sensory information itself. 

This means that ‘top-down predictions are not just about the content 

of lower-level representations but also about our [the brain’s] confi- 

dence in those representations’ (Friston, 2012, p. 238). It is thought that 

these top-down estimates of precision alter the post-synaptic gain on 

prediction error units (commonly identified with superficial pyrami- 

dal cells; see, e.g.,, Mumford, 1992; Friston, 2008). Thus we read that: 

Physiologically, precision corresponds to the postsynaptic gain 

or sensitivity of cells reporting prediction errors (currently 

thought to be large principal cells that send extrinsic efferents 

of a forward type, such as superficial pyramidal cells in cortex). 
(Friston, Bastos, et al., 2015, p.1) 

In sum, these alterations in gain® track the estimated reliability (sta- 

tistically, the inverse variance) of select prediction errors. Such errors 

encode all the sensory information that remains to be explained (or 

that has not yet been leveraged for the control of action). Precision thus 

estimates the reliability of the signals that carry the news, to repeat the 

handy metaphor used in chapter 1. 

Estimating precision and altering the gain on prediction error 

accordingly brings an immediate and hugely important benefit. It allows 

the PP approach fluidly to combine the superficially contradictory 

effects (see 1.11) of signal suppression and signal enhancement. Signal 

suppression is, of course, the familiar effect of predictive coding meth- 

ods of data compression. Lower-level activity that is well-predicted by 

a winning higher-level model is quashed or ‘explained away’ (because 

there is no news there), and so no signal propagates forward through 

the system. The superficially contradictory effect is salience-based sig- 
nal enhancement. Observed effects here include facilitation (speeding 
up of evoked responses; see Henson, 2003) and sharpening (in which 

some cells cease to be active, allowing others to dominate the response; 

see Desimone, 1996). Precision-weighting allows PP to combine these
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effects in a very flexible manner, since increases in post-synaptic gain 
implement a facilitation effect, which then ‘boosts prediction errors that 

inform the best hypothesis about the cause of sensory input (Gregory, 

1980) while suppressing alternative hypotheses; namely it sharpens 

neuronal representations’ (Friston, 2012a, p. 238, italics in original). Kok, 

Jehee, and de Lange (2012) find just such sharpening effects, reveal- 

ing expectation-based enhancement in some aspects of early sensory 

response paired (just as the PP model suggests) with overall reductions 

in neural activity. Such expectation-induced sharpening was shown 

to be behaviourally potent, yielding better performance on a simple 

task involving the detection of subtle differences in the orientation of 

a stimulus. 

Such sharpening is the familiar mainstay of ‘biased competi- 
tion” models (Desimone & Duncan, 1995). Such models posit—much 

as the name suggests—a competition for upstream neuronal rep- 

resentation in which only ‘winning’ lower level cells (with small 

receptive fields) are allowed to drive higher level cells (with larger 

receptive fields). Attention, the biased competition models suggests, 

should be identified with this process of competition: a competi- 

tion whose outcome is determined both by the nature of the task 

and by the properties of the stimuli competing for the representa- 

tional resources. Many observed effects (e.g., Reynolds et al,, 1999; 

Beck & Kastner, 2005, 2008) clearly conform to the biased competi- 

tion model. Some electrophysiological (ERP) components, for exam- 

ple (see Bowman et al, 2013) are increased when a target appears 

repeatedly in the same location. Additionally (again, see Bowman 
et al.,, 2013), there are visual search experiments in which distractors, 

despite their rarity, yield little evoked response yet pre-described, 

frequently appearing, targets deliver large ones. Can such effects be 

explained directly by the attention-modulated precision-weighting 

of residual error? 

An fMRI study by Kok et al. (2012) lends elegant support to the 

predictive processing model of such effects by showing that these are 

just the kinds of interaction between prediction and attention that the 

model of precision-weighted prediction error suggests. In particu- 

lar, Kok et al. show that predicted stimuli that are unattended and 

task-irrelevant result in reduced activity in early visual cortex (the 
‘silencing’ of the predicted, as mandated by simple predictive coding) 
but that ‘this pattern reversed when the stimuli were attended and 

task-relevant” (Kok et al,, 2012, p. 2). The study manipulated spatial 
attention and prediction by using independent prediction and spa- 

tial cues (for further details, see the original paper by Kok et al) and 
found that attention reversed the silencing effect of prediction upon



62 THE POWER OF PREDICTION 

the sensory signal, in just the way the precision-weighting account 

would specify. Thus, when attention and prediction were congruent 

(when the independent attention cue selected the spatial hemifield in 

which the predicted stimulus did, in fact, occur), attention enhanced 

neural response in V1, V2, and V3 for the predicted over the unpre- 

dicted stimuli. When they were incongruent (that is, the predicted 

stimulus did not occur at the attended spatial location), no enhance- 

ment occurred, and response to the predicted stimulus was reduced 

in V1. In addition, the response to unpredicted stimuli was the same 

whether they occurred on the attended or unattended side. Finally, 

there was a large response in Vi, V2, and V3 for the unexpected 

omission of a stimulus in the attended hemifield. This whole pat- 

tern is best explained, the authors argue, by the attention-modulated 

precision-weighting of prediction error in which attention increases 

the downstream impact of selected prediction error units. Attention 

and expectation thus look to operate as distinct elements within 

the inferential cascade in the way PP suggests. Attention enhances 

(increases the gain on) the neural responses associated with select 

prediction errors, while expectation dampens those neural responses 

that are in line with the expectation. 

The ability of the PP account to encompass various forms of 

attentional enhancement has also been demonstrated using com- 
puter simulations of the Posner paradigm (Posner, 1980). In the 

Posner paradigm (see Figure 2.3) subjects fixate a central point (so 

the experiment probes so-called ‘covert attention’) and are pre- 

sented with a visual cue that often (but not always) indicates the 

location of a forthcoming target stimulus. For example, the cue 

may be valid over 80% of trials. Trials with a valid cue are called 

‘congruent trials” and trials where this is not the case (where the 
cue is invalid, and hence does not correctly predict the stimulus) 

are called ‘incongruent trials’. The paradigm thus manipulates our 

contextual expectations, since the cue creates a context in which 

the appearance of the stimulus in the cues location becomes more 

likely. The main finding, unsurprisingly, is one of facilitation: valid 

cues speed up detection of the target stimulus while targets pre- 

sented on incongruent trials are perceived more slowly, and with 

less confidence. Feldman and Friston (2010) present a detailed, 

simulation-based model in which precision-modulated prediction 
error is used to optimize perceptual inference in a way that repro- 

duces both the ERP and psychophysical responses found in human 

subjects. Valid cues establish what was sometimes known as ‘atten- 

tional set’ by increasing the gain on the prediction error units
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associated with the cued spatial location. This then constitutes a 

systemic ‘expectation’ of a good signal-to-noise ratio for informa- 

tion from that spatial region and thus speeds up the process, once 

the target appears, of recruiting the right hypothesis (roughly ‘tar- 

get there’) thus recapitulating the facilitation effect. Invalidly cued 
targets yield low-weighted early prediction error, hence take sig- 
nificantly longer to recruit the right hypothesis (‘target over there’) 

and are perceived with lower confidence. 

This general take on attention is phenomenologically compelling. 

Try to attend long and hard to a single word on this page. The expe- 

rience, or so it seems to me, is initially one of increased local clarity, 

closely followed by a state of decaying clarity while remaining alert. 

There is at that point a tendency to entrain action, perhaps using shifts 

of covert attending or micro-saccades to further explore the fixated 
word. The longer all this goes on without the emergence of any new, 
different, or clearer information the harder it becomes to sustain the 

process of attending.® Attention thus presents itself as bound up, expe- 

rientially, with both the expectation of and the search for new and bet- 

ter information.
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2.5 Sensory Integration and Coupling 

The precision-weighting of prediction error turns out to be a very 

versatile tool, and one that will play a variety of roles as our story 

unfolds. For the present I merely note, without much amplification, 

two such additional roles. The first concerns sensory integration. 

Often, when confronting the world, the brain receives sensory sig- 

nals from a variety of sources. For example, we may see and hear an 

approaching car. In such cases, the two sources of sensory input need 

to play delicately balanced roles in determining our perceptual experi- 

ence of salient (indeed, often survival-relevant!) environmental states 

such as the car’s location and speed of approach. Automatic estima- 

tions of the relative precision of the two sensory signals enable the 

brain to integrate the two sources of information, using each source in 
the best way given the larger context. Such integration depends both 

upon specific (sub-personal) expectations concerning the sight and 

sound of typical cars and also upon more general expectations such 

as the expectation (a systemic ‘hyperprior’) that whenever auditory 

and visual estimations of the spatial location of a signal source are 

reasonably close, the best overall hypothesis is that there is a single 

source—in this case, a rapidly moving car. Such hyperpriors can also 

mislead, as demonstrated by the projection of sound onto a ventrilo- 

quist’s dummy. But in ecologically central cases, they enable the opti- 

mal combination of multiple sources of sensory data. There is thus a 

potent interaction between the process of hypothesis selection and the 

precision-weighting of various sources of sensory input. 

Estimated precision also helps to determine the moment-by- 

moment flow of information between neural areas (thus helping to 

determine changing patterns of ‘effective connectivity’; see Friston, 

1995, 2011¢). This second role will prove important when we later con- 

sider the context-sensitive and task-specific recruitment of variable 

mixes of neural (and indeed extra-neural, see Part III) resources. Thus, 

to take a very simple example, it might sometimes be best to allow 

visual information to dominate when selecting a behavioural response 

(e.g., in the presence of known auditory distractors) and that can be 

achieved by assigning low-precision to auditory prediction errors and 

higher precision to visual ones.” For example, den Ouden et al. (2010) 

offer an account of variations in the strength of coupling (i.e., influence) 

between cortical areas that depicts variably precision-weighted predic- 

tion error as the key tool controlling such couplings ‘on the fly” accord- 

ing to (contextualized) task-demands. The same broad apparatus may 

also adjudicate between multiple systems (such as the prefrontal cortex
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and the dorsolateral striatal system) capable of determining online 

response. In just this vein Daw, Niv, and Dayan (2005, p. 1704) describe 

those systems as subject to a ‘Bayesian principle of arbitration ... 

according to uncertainty’ such that the sub-system currently estimated 

to provide the most accurate predictions gets to drive behaviour and 
choice. Such principles will loom large when we consider (in Part III) 

possible relations between the predictive processing framework and 

the shape and nature of the entire embodied, enculturated, and envi- 

ronmentally embedded cognitive architecture that we call ‘mind’. 

2.6 A Taste of Action 

The full role of precision (and precision expectations) in the predictive 

processing story cannot be appreciated, however, without at least pre- 

viewing the treatment of action. This is unsurprising, since (as we shall 

see) PP makes a strong proposal concerning the cognitive centrality 

of a complex looping interplay between perception and action. In fact, 

so complex, central, and looping is the interplay that perception will 

emerge (Part II) as inseparable from action, and the theoretical divi- 

sions between sensory and motor processing will themselves be called 

into question. 

All that lies before us. For present purposes, it will suffice to intro- 

duce one core element of that richer, more action-oriented story. That 

element (already hinted at in the comments about selecting actions 

above) concerns the role of action as a tool for precision-expectation-based 

sensory sampling. That is hard to parse and a bit of a mouthful, but the 

idea is both simple and astonishingly powerful. Consider a case in 

which there are two models in close competition to account for the sen- 

sory signal. One model reduces prediction error more than the other, 

but the prediction error it reduces is estimated as unreliable. The other 

model, though it reduces less absolute error, reduces error that is esti- 

mated to be highly reliable. The ‘best bet’ in such circumstances is usu- 
ally (though see Hohwy, 2012, for some important caveats) to endorse 

the model that reduced the more reliable error signals. If the two com- 

peting models were, simplistically, ‘cat in porch’ and ‘burglar in porch’? 

this could be a matter of some practical import. 

But how do we determine the reliability or otherwise of the sig- 

nal? It is here that action (a special kind of action) plays a key cogni- 
tive role. For part of the generative model that I have (very coarsely) 

glossed as ‘burglar in porch’ includes expectations concerning the 

best way to sample the environment so as to yield reliable information
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concerning that very possibility. It includes, for example, expecta- 

tions concerning the best way to scan the scene, foveating first one 

location then another, so as to reduce uncertainty concerning that very 

hypothesis. Assuming the hypothesis is correct (there is a burglar 

there) this process will yield a sequence of precise prediction errors 

that both refine and confirm my dire suspicion, revealing perhaps 

a glint of metal (a torch? a gun?) and the outline of a dark roll-neck 
sweater. The process iterates, as the hypotheses ‘torch’ and ‘gun’ now 

need to be assessed. There too, my generative model includes expec- 

tations concerning the best way to engage (sample) the sensory scene 

so as to reduce uncertainty. These expectations engage action in a 

way that is perfectly continuous (as we will see in Part II) with the 

PP account of perception. Perception and action here form a virtu- 
ous, self-fuelling, circle in which action serves up reliable signals 

that recruit percepts that both determine and become confirmed 
(or disconfirmed) in action. 

2.7 Gaze Allocation: Doing What Comes Naturally 

There is a larger story here too, concerning the way attention is dis- 

tributed during the performance of natural tasks. A natural task, as 

I shall use the term, is pretty much any well-learned task that we 

might perform during the course of our ordinary daily activities. 

Natural tasks thus include boiling the kettle, walking the dog, shop- 

ping, running, and eating lunch. What matters about such tasks 

(and what distinguishes them from many laboratory-based experi- 

mental paradigms) is that they provide the full, rich set of sensory 

cues that we have come (during learning) to expect in those specific 

situations. This matters, since it allows task-specific knowledge to 

play a much more important role driving (for example) proactive 

visual saccades in which our eyes move anticipatorily to the places 

relevant information will next be found, and opening the door to 

many other forms of active intervention whose common purpose 

is to yield better information just-in-time to guide relevant actions. 

Human performance on natural tasks cannot be explained, it now 

seems clear, by simple bottom-up models in which gaze fixation (a 

natural correlate of the sequential disposition of attention) is deter- 
mined by low-level visual® salience. This is in opposition to early 
suggestions that simple stimulus features, pre-attentively extracted, 

might drive our gaze/attention around the scene. To be sure, such 

features (a dot of red among a sea of green dots, a sudden flash, or
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a vertical line among a sea of horizontals) will capture attention. 
But attempts to define so-called ‘salience maps’ in such essentially 

bottom-up terms (e.g., Koch & Ullman, 1985) have provided scant 

leverage for explaining the disposition of gaze and attention dur- 

ing the performance of normal, everyday tasks. Using a mixture 

of real-world walking and walking in virtual (but reasonably real- 

istic) environments, Jovancevic et al. (2006) and Jovancevic-Misic 

and Hayhoe (2009) showed that simple feature-based salience 

maps failed to predict where and when gaze would shift around 

the scene. Similar results were obtained by Rothkopf, Ballard, and 

Hayhoe (2007), who showed that simple salience maps made false 
predictions and failed to explain the observed patterns of fixation in 

almost all cases. In fact: 

Humans looked at mainly the objects with only 15% of fixa- 

tions directed to the background. In contrast, the salience 

model predicted that more than 70% of fixations should have 

been directed to the background. (Tatler et al,, 2011, p. 4) 

Tatler et al. drive the point home noting that: 

In ball sports, the shortcomings of feature-based schemes 

become even more obvious. Saccades are launched to regions 

where the ball will arrive in the near future (Ballard & Hayhoe, 

2009; Land & McLeod, 2000). Crucially, at the time that the 

target location is fixated, there is nothing that visually distin- 

guishes this location from the surrounding background of the 

scene. Even without quantitative evaluation, it is clear that no 

image-based model could predict this behavior. (Tatler et al., 

2011, p. 4) 

Looking ahead, to currently empty (no relevant stimulus present) loca- 

tions is a pervasive feature of gaze allocation during the performance of 

natural tasks and has been experimentally confirmed for tasks includ- 

ing tea-making (Land et al., 1999) and sandwich-making (Hayhoe et al., 

2003). In the sandwich case (check this next time you cut a sandwich!) 

subjects look where the knife makes its first contact with the bread, 

then keep looking just ahead of the current cutting point as the knife 

moves forwards. 

Faced with this endemic failure to account for the shape of daily 

performance in natural tasks, one response, Tatler et al. note, is to keep 

the low-level salience map but add some mechanism of top-down 
modulation. Such hybrid approaches are suggested by Navalpakkam 

and Itti (2o05) and by Torralba et al. (2006). Other work seeks to
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replace the low-level salience map with other constructs such as the 

so-called ‘priority map’ (Fecteau & Munoz, 2006) that fluidly inte- 

grates low- and high-level cues in a task-specific (that is to say, prior 

knowledge-dependent) way. Most promising of all, however (or so 

I'would suggest) are approaches that fundamentally reorient the discus- 
sion, bringing perception and action into intimate coupling (Fernandes 

et al, 2014) and making uncertainty reduction the driving force behind 

gaze allocation and attentional shift. Prime examples include Sprague 

et al. (2007), Ballard and Hayhoe (2009), and Tatler et al. (2011) and the 

growing corpus of work on attention and precision-weighting reviewed 

in the present chapter.!® At the heart of all these approaches lies the 

simple but profound insight that: 

Observers have learned models of the dynamic properties 

of the world that can be used to position eye gaze in antic- 

ipation of a predicted event [and that] action control must 

proceed on the basis of predictions rather than perceptions. 
(Tatler et al., 2011, p. 15) 

Such models develop with experience. Learner drivers, Tatler et al. 

note, allocate their gaze just in front of the car as they take a cor- 

ner, while seasoned drivers look further ahead, fixating road loca- 

tions up to 3 seconds ahead of their speed of travel (Land & Tatler, 

2009). Cricketers likewise anticipate the bounce of the ball (Land 

& Mcleod, 2000). All these cases of ‘pro-active saccades’ (saccades 

that land on the right location in advance) depend on the agent com- 
manding and deploying task-specific knowledge. Such bodies of 
knowledge (which PP casts in the form of probabilistic generative 

models) reflect, first and foremost, properties of the dynamic envi- 

ronment itself. They also reflect the action capacities (including the 
response speeds, etc.) of the individual agent. That properties of the 

environment play a major role is demonstrated by the large degree of 

overlap between the scan patterns of different individuals perform- 

ing the same well-learnt tasks (Land et al,, 1999). In addition, Hayhoe 

et al. (2003) show that information is typically retrieved just-in-time 

for action, in ways that leave information in the environment until 

just the right moment (see also discussion in Clark, 2008, chapter 1, 

and in chapter 8 following). 

Precision-weighted PP accounts are ideally placed to bring all 

these elements together in a single unifying story: one that places 

neural prediction and the reduction of uncertainty centre-stage. This 

is because PP treats action, perception, and attention as (in effect)
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forming a single mechanism for the context- and task-dependent 

combination of bottom-up sensory cues with top-down expectations. 

Crucially, these top-down expectations now include expectations of 

precision, which drive the action system to sample the scene in ways 

that reduce uncertainty where, and when, it matters. Gaze allocation 

is thus driven by learnt generative models that combine expectations 

about unfolding events with action-entraining expectations concern- 

ing the best ways to sample the scene so as to reduce uncertainty at 

task-critical junctures. 

The PP account also unifies the treatment of exogenous and endog- 

enous attention, revealing low-level ‘pop-out” effects as conceptually 

continuous with high-level inner model-based effects. In the former 

case, attention is captured by stimuli that are strong, unusual (the red 

spot among the sea of green ones), bright, sudden, etc. These are all 

cases where an evolved system should ‘expect’ a good signal-to-noise 

ratio. The effect of learning is conceptually similar. Learning delivers 

a grip on how to sample the environment in task-specific ways that 

yield high-quality sensory information. This reduces uncertainty and 

streamlines performance of the task. It is this latter kind of knowledge 
that is brought to bear in endogenous attention, perhaps (see Feldman 

& Friston, 2010, pp. 17-18) by increasing the baseline firing rate of select 

neuronal populations. 

Before moving on, I should enter an important caveat concern- 

ing ‘natural tasks’ For simplicity, I have here concentrated on a few 
well-learnt (possibly over-learnt) tasks such as driving and making a 

sandwich. But the PP account also delivers fluent and rapid learning 
about new situations when those situations are built from known ele- 
ments and structures. That means that we can rapidly become ‘expert 
observers’ of (modestly) brand new scenes. For example, when watch- 

ing a theatre play we rapidly get to grips with the novel arrangements 

of people and objects on stage, learning what is plot-salient and thus 

where (and when) we most need to reduce uncertainty, pro-actively 

allocating gaze and attention accordingly. 

2.8 Circular Causation in the Perception-Attention-Action Loop 

An important upshot of all this is that the generative model that under- 

lies perception includes key action-driving expectations concerning 

prospective confirmation. That is to say, it includes (sub-personal) expec- 

tations concerning how things should unfold assuming some current
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perceptual hypothesis (the one dictating our ongoing perceptual 

awareness) is correct. Such expectations concern both what will hap- 

pen (i.e, what perceptual inputs will result) if we sample the world in 

line with the hypothesis and what signal-to-noise ratios will result. In 

the latter case, the brain is betting on what might be dubbed prospective 

precision, that is, the anticipated signal-to-noise ratio consequent upon 

sampling the scene by moving our eyes, other sensory organs, or even 

our whole body. Thus a sequence of saccades to locations expected to 

deliver high-precision information of the kind predicted by some spe- 

cific perceptual hypothesis (and not predicted by nearby rivals) pro- 

vides excellent evidence that the hypothesis is correct and warrants 

keeping it alive and ‘in the driving seat’. But should things fail to fall 

into place (should the results of the perceptual ‘experiment’ appear 
to falsify the hypothesis) those error signals can be used to recruit a 

different hypothesis, in the manner described earlier. 

This has an immediate and interesting consequence that will 

continue to occupy us as the story unfolds. It means that percep- 

tion, attention, and embodied action work together to drive the agent 

in self-fuelling cycles of active perception in which we probe the 

world according to systemic ‘beliefs’ concerning that which our own 

actions are about to reveal. This leads to what Friston, Adams, et al. 

(2012) describe as ‘the circular causality that lies behind perception’, 

namely, that: 

The only hypothesis that can endure over successive saccades 

is the one that correctly predicts the salient features that are 

sampled. ... This means that the hypothesis prescribes its own 

verification and can only survive if it is a correct representation 

of the world. If its salient features are not discovered, it will 

be discarded in favor of a better hypothesis. (Friston, Adams, 

et al, 2012, p. 16) 

‘Salient features’ are features that, when sampled, minimize uncer- 

tainty concerning the current perceptual hypothesis (they are the ones 

that, when things unfold as expected, maximize our confidence in 

the hypothesis). Active agents are thus driven to sample the world so 

as to (attempt to) confirm their own perceptual hypotheses. The cur- 

rent winning percept should then be able to ‘maintain itself by selec- 

tively sampling evidence for its own existence [correctness]” (p. 17). 

Such sampling indeed implies a kind of ‘saliency map” but it is not 
a map determined by low-level, attention-grabbing visual features" 
but by relatively high-level knowledge concerning the world and the 

distribution of salient, precise, sensory information.
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Friston, Adams, et al. demonstrate this core effect using a simple 

simulation (see Figure 2.4) in which an artificial agent samples a visual 

scene in ways driven by various perceptual hy potheses. Here, the agent 

commands three models that it tries to fit to the stimulus, settling upon 

the model that correctly predicts the sensory data consequent upon 

one pattern of saccade.? After a few early probes, the simulated agent 

sequentially fixates the points that confirm the hypothesis that the 

source of the input is an upright face. Figure 2.5 shows the system’s 

behaviour when presented with an image that fits none of its known 
models. Under those conditions, no model (no hypothesis) prescribes 

a pattern of fixations able to confirm itself, so sensory uncertainty can- 

not be quashed and no model can be selected. No percept is then in a 

position to ‘maintain itself by selectively sampling evidence for its own 
existence [correctness]’ (Friston, Adams, et al., 2012, p. 17). Under such 

unpromising conditions, the scene is sampled in a wandering fashion 

and no clear stable percept is produced. Such failures, assuming the 

brain believes it is getting high-quality (precise) sensory information 

would, however, drive increased plasticity allowing a new model to be 

acquired and applied (see section 2.12). 

Summing up, PP posits core perception-attention-action loops 

in which internal models of the world and their associated precision 

expectations play key action-driving roles. Working together these 

determine a (frequently self-fulfilling) process of exploratory, epis- 

temically mandated, sensing and acting: a process in which a win- 

ning hypothesis (a winning ‘take on the world’) causes us to sample 

the scene in ways that reflect both the hypothesis itself and our own 
context-varying states of sensory uncertainty. 

2.9 Mutual Assured Misunderstanding 

There is, however, a possible dark side to all this too. The dark side 

emerges when subtly misguided estimations of precision lead us to 

harvest sensory information in ways that work against the formation 

of a good (veridical) picture of how things are. Siegel (2012) describes 

just such a possible scenario. It is a scenario in which “Jill believes, with- 

out justification, that Jack is angry at her ... When she sees Jack, her 

belief makes him look angry to her’. In such cases, our active top-down 

model causes us to discard some elements of the signal (treating them 
as mere ‘noise’) and amplify others. Normally—as seen in the cases 

above—this leads to more accurate perception, in noisy and ambiguous 

circumstances. In the case of angry-looking Jack, however, our belief
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FIGURE 2.4 This figure shows the results of the first simulation by Friston, 

Adams, et al. (2012), in which a face was presented to an agent, whose 

responses were simulated using the PP schema described in the text. In this 

simulation, the agent had three internal images or hypotheses about the 

stimuli it might sample (an upright face, an inverted face, and a rotated face). 

The agent was presented with an upright face and its conditional expectations 

were evaluated over 16 (12 ms) time bins until the next saccade was emitted. 

This was repeated for eight saccades. The ensuing eye movements are shown 

as dots at the location (in extrinsic coordinates) at the end of each saccade in 

the upper row. The corresponding sequence of eye movements is shown in the 

insert on the upper left, where the circles correspond roughly to the propor- 

tion of the image sampled. These saccades are driven by prior beliefs about 

the direction of gaze based upon the saliency maps in the second row. Note 

that these maps change with successive saccades as posterior beliefs about the 

hidden states, including the stimulus, become progressively more confident. 

Note also that salience is depleted in locations that were foveated in the previ- 

ous saccade. These posterior beliefs provide both visual and proprioceptive 

predictions that suppress visual prediction errors and drive eye movements, 

respectively. Oculomotor responses are shown in the third row in terms of 

the two hidden oculomotor states corresponding to vertical and horizontal 

And corresponding percept 
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primes us to deploy a model that (in part by altering the precision we 

assign to various aspects of the prediction error signal) ‘discovers’ 

visual evidence for the—false and ungrounded—hypothesis that Jack 

is angry. This is just like hearing the song ‘White Christmas’ ‘hidden’ 

in the noise. The upshot is that our visual experience itself (not some 

add-on judgment) then represents Jack as looking angry, adding fuel to 

the fire of our earlier suspicions. 

Action and perception are here locked into a mutually misleading 

cycle. This is because the primed ‘angry-Jack” hypothesis gets to con- 

trol (in ways we will explore in more detail in later chapters) the actions 

that then probe the world for confirming evidence of Jack’s anger. We 

saccade around Jack’s face looking for subtle evidence, we look for 

tension in his limb movements, oddities in his choice of words, etc. 

And since we have upped the precision on signals carrying informa- 

tion about subtle ‘signs’ of anger and (thereby) reduced it on veridical 

signs of normality, we may well find the very ‘evidence” we were look- 

ing for. In a real-world setting, Teufel, Fletcher, and Davis (2010) show 

that our active top-down models of other people’s current mental states 

and intentions do indeed influence how we physically perceive them 

to be, affecting our base perception of their gaze direction, motion 

onset, form of motion, etc. (for many more examples of the effects of 

top-down knowledge upon perception, see Goldstone, 1994; Goldstone 

& Hendrickson, 2010; Lupyan, 2012). 

To cement the tragedy, the fact that Jack and Jill are both PP agents 

(hence beings whose percepts are deeply prediction-penetrated) may 

rapidly make things worse. For Jill's probes and suspicions are not 

invisible to Jack himself, and her body language is a little tense. Jack 

thinks (wrongly) ‘Perhaps Jill is angry with me?’. Now the scenario 

- 
< 

displacements. The associated portions of the image sampled (at the end 

of each saccade) are shown in the fourth row. The final two rows show the 

posterior beliefs in terms of their sufficient statistics and the stimulus catego- 

ries, respectively. The posterior beliefs are plotted here in terms of conditional 

expectations and the go% confidence interval about the true stimulus. The key 

thing to note here is that the expectation about the true stimulus supervenes 

over its competing expectations and, as a result, conditional confidence about 

the stimulus category increases (the confidence intervals shrink to the expec- 

tation). This illustrates the nature of evidence accumulation when selecting a 

hypothesis or percept that best explains sensory data. For full details of the 

experiment and results, see the original paper by Friston, Adams, et al., 2012. 

Source: From Friston, Adams, et al., 2012, by permission.
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FIGURE 2.5 This figure uses the same format as the previous figure, but 

shows the result of presenting an unknown (unrecognizable) face—the image 

of the ancient Egyptian queen Nefertiti. Because the simulated agent has no 

internal image or hypothesis that can produce veridical predictions about 

salient locations to foveate, it cannot resolve the causes of its sensory input 

and is unable to assimilate visual information into a precise posterior belief 

about the stimulus. Saccadic movements are generated by a saliency map 

that represents the most salient locations based upon a mixture of all internal 

hypotheses about the stimulus. Irrespective of where the agent looks, it can 

find no posterior beliefs or hypothesis that can explain the sensory input. 

As a result, there is a persistent posterior uncertainty about the states of the 

world that fail to resolve themselves. The ensuing percepts are poorly formed 

and change sporadically with successive saccades. 

    

Source: From Friston, Adams, et al., 2012, by permission. 

repeats, To Jack, Jill now looks a little angry and sounds a little angry. 

Jill then detects even more signs of tenseness (perhaps they are now 

real) in Jack, and the cycle of mutual (originally misplaced) prediction 

escalates. Mutual prediction, as we shall later see, can greatly enhance 

interpersonal understanding. But when coupled with the profound
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effects of expectation upon perception and action, it can also provide 

a worrying recipe for self-fulfilling psycho-social knots and tangles. 

Nor is this dark side restricted to cases of multiple interacting 

human agents. Increasingly, our best tools and technologies are in 

the business of predicting our own needs, requests, and patterns of 

use. Google anticipates search requests according to past patterns and 

information about present location, and offers advice and options even 

before we ask for them. Amazon uses powerful collaborative filtering 

techniques to make suggestions based on past purchases. Such innova- 

tions extend the realm of mutual prediction to include webs of humans 

and machines, each of which are now busily anticipating the other. 

Unless checked or controlled this could lead, as in the so-called “filter 

bubble” scenario described in Pariser (zo11), to increasingly restricted 

explorations of the space of opportunities.” 

2.10 Some Worries about Precision 

A brief sketch of the basic PP account of attention appeared in Clark 

(2013). This was a target article in the peer-review journal Behavioral 
and Brain Sciences, and as such was accompanied by a variety of com- 

mentaries from leading figures in the field. Bowman et al. (2013) 

was one such commentary. In addition to some worries concerning 

biased competition (see 2.4), Bowman et al. were concerned that the 

precision-based account seemed best suited to explaining spatial, 

rather than feature-based, attention. Feature-based attention, Bowman 

et al. noted, allows us to enhance response to a given feature even when 

it appears at an unpredicted location. Thus, to borrow their example, 

the command to find an instance of bold type may result in attention 

being captured by a nearby spatial location. If we then (as PP suggests) 

increase the precision-weighting upon prediction error from that spa- 

tial location, doesn’t that suggest that the precision-weighting of select 

prediction error signals is a consequence of attending rather than its 

causal mechanism? 

This is a nice puzzle, and it reveals something important about the 

apparatus on offer. For the resolution of the puzzle lies, I suggest, in 

the manipulation of precision-weighting at different levels of the pro- 

cessing regime. Feature-based attention corresponds, intuitively, to 

increasing the gain on the prediction error units associated with the 

identity or configuration of a stimulus (e.g., increasing the gain on units 

reporting prediction errors pertaining to the distinctive geometric pat- 

tern of a four-leaf clover). Boosting that response (by giving added



76 THE POWER OF PREDICTION 

weight to the relevant kind of sensory prediction error) should enhance 

detection of that featural cue. Once the cue is provisionally detected, 

the subject can fixate the right spatial region, now under conditions of 

‘four-leaf-clover-there’ expectation. Residual error is then amplified for 

that feature at that location, and high confidence in the presence of the 

four-leaf clover can (if you are lucky!) be obtained. Note that attend- 

ing to the wrong spatial region (e.g., due to incongruent spatial cueing) 

will actually be counterproductive in such cases. Precision-weighted 

prediction error is thus able to encompass both mere-spatial and 

feature-based signal enhancement. 

Additional worries were raised by Block and Siegel (2013) who 

suggested that predictive processing is unable to offer any plausible 

or distinctive account of very basic results such as the attentional 

enhancement of perceived contrast (Carrasco, Ling, & Read, 2004). In 

particular, Block and Siegel suggested that the PP model failed to cap- 

ture changes due to attending that precede the calculation of error, and 

that it falsely predicts a magnification of the changes that follow from 

attending (consequent upon upping the gain on some of the prediction 

error). It is worth looking at this case in a little detail. 

Carrasco, Ling, and Read (2004) report experiments in which sub- 

jects fixate a central spot with contrast gratings to the left and right. The 
gratings differ in absolute (actual) contrast. But when subjects are cued 

to attend (even covertly) to the lower contrast grating, their perception 

of the contrast there is increased, yielding the (false) judgment that, for 

example, an attended 70% (actual value) contrast grating is the same as 

an unattended 82% grating. Block and Siegel suggest that the predic- 

tive processing account cannot explain the initial effect here (the false 

perception of an 82% contrast for the covertly attended 70% contrast 

grating) as the only error signal—and this is where they misconstrue 

the story—is the difference between the stable pre-attentive 70% reg- 

istration and the post-attentive 82% one. But this difference was not 

available until after attention had done its work! Worse still, once that 

difference is available, shouldn’t it be amplified once more, as gain on 

the relevant error units is now increased? 

This is an ingenious challenge, but it is based on a revealing mis- 

construal of the precision-weighting proposal. It is not the case that PP 

posits an error signal calculated on the basis of a difference between the 

unattended contrast (registered as 70%) and the subsequently attended 

contrast (now appearing to be 82%). Rather, what attention alters is the 
expectation of precise sensory information from the attended spatial 
location. Precision is the inverse of the variance, and it is our ‘precision 

expectations’ that attention here alters. What seems to be happening,
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in the case at hand, is that the very fact that we covertly attend to the 
grating on the left (say) increases our expectations of a precise sensory 

signal. Under such conditions, the expectation of precise information 

induces an inflated weighting for sensory error and our subjective esti- 

mate of the contrast is distorted as a result." 

The important point is that the error is not computed, as Block 

and Siegel seem to suggest, as a difference between some prior (in this 

case unattended) percept and some current (in this case attended) one. 

Instead, it is computed directly for the present sensory signal itself, but 

weighted in the light of our expectation of precise sensory information 

from that location. Expectations of precision are what, according to PP, 

is being manipulated by the contrast grating experiment, and PP thus 

offers a satisfying (and distinctive) account of the effect itself. This same 

mechanism explains the general effect of attention on spatial acuity. 

Block and Siegel also argue that it ‘makes no sense to take the error 

signal to be the sensory input’, at least once an agent is awake, alert, and 

has a grip on what is around her. But the claim is not, of course, that 

the agent perceives an error signal. (Similarly, no conventional theorist 

should say that the agent typically perceives the flow of sensory infor- 
mation itself, rather than the world that it makes available.) According 

to PP, the agent perceives what is around her, but does so courtesy of the 

forward (and lateral) flow of error and the downward (and lateral) flow 

of prediction. 

In sum, predictive processing depicts attention as increasing the 

gain on select prediction errors. Attention thus forms an integral aspect 

of the inferential cascade that constitutes the normal perceptual pro- 

cess. Endogenous attention here corresponds to processes of volitional 
control that impact the gain on prediction errors associated with some 

task-relevant feature (e.g., the shape of the four-leaf clover) or some 

selected spatial location. Exogenous attention corresponds to the more 

automatic processing that ups the gain on select prediction errors dur- 

ing the fluent performance of a well-learnt task, or in response to some 

ecologically salient cue (such as a flash of light, a motion transient, or 

a sudden noise). Such ecologically salient cues tend to produce strong 

sensory signals, and such signals are implicitly ‘expected” to display a 

high signal-to-noise ratio. There is thus a kind of hyperprior in play: an 

expectation of precision for stronger signals, that plausibly mandates 

increasing the gain on associated prediction error (see Feldman & 

Friston, 2010, p. 9; see also Hohwy, 2012, p. 6). Finally, expectations of 

precision were also seen to guide exploratory actions, determining (for 

example) patterns of saccade that track the regions of the scene where 

more precise information is most likely to be found
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Uniting perception and action in a single self-fuelling loop, esti- 

mates of precision thus enable the flexible task-varying combination 

of bottom-up sensory information (conveyed by prediction error) and 

top-down generative-model-based expectation. 

2.11  The Unexpected Elephant 

Understanding the role of precision and precision expectations may 

be especially important for revealing the complex links between 

non-conscious (‘sub-personal’) prediction and the shape and flow of 

personal-level daily experience. For example, there seems to be an ini- 

tial disconnect between neural-surprise (‘surprisal the implausibility 

of some sensory state given a model of the world) and agent surprise. 
This is evident from the simple fact that the percept that, overall, best 

minimizes surprisal (hence minimizes prediction errors) ‘for’ the brain 

may well be, for me the agent, some highly surprising and unexpected 

state of affairs—imagine, for example, the sudden unveiling of a large 

and doleful elephant elegantly smuggled onto the stage by a profes- 

sional magician. The appearance of a radical disconnect here is, how- 

ever, illusory, as a slightly more detailed account reveals. 
As the magician waves away the cover, coarse rapidly processed 

visual cues recruit the hypothesis (elephant) best able to minimize 

sensory prediction error. The perception/action loop is immediately 

engaged, driving a series of visual saccades that sweep the scene in 

elephant-specific ways (e.g., foveating where the trunk should be). That 

visual search will, if the hypothesis is correct, yield high-precision con- 

firmation of that very hypothesis."” Suppose the sweep fulfils all sys- 

temic expectations. The agent now commands a reliable model that has 

survived the acid test of high-precision prediction error. The elephant 

percept is at that point the one that best respects what the cognitive sys- 

tem knows and expects about the world, and what it knows and expects 

about the results of its own interventions (here, visual saccades) upon 

the world. The elephant-on-stage percept is thus the winning hypoth- 

esis given the current combination of driving inputs, precision expecta- 

tions, and assigned precision (reflecting, as we saw, the brain’s degree 

of confidence in the sensory signal). 

Given the right driving signal and a high enough assignment of 

precision, top-level theories of an initially agent-unexpected kind 

can thus win out so as to explain away that highly weighted tide of 

incoming sensory evidence. The sight of the doleful elephant emerges 

as the best (most likely, least ‘surprisal-ing”) percept available, given
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the inputs, the priors, and the estimated precision of sensory predic- 

tion error. Nonetheless, systemic priors did not render that percept 

very likely in advance, hence (perhaps) the value to the agent of the 

actual feeling of surprise. The feeling of surprise, that is to say, might 

be a way of preserving useful information that would otherwise be 

thrown away—the information that, prior to the present evidence-led 

bout of inference, the perceived state of affairs was estimated as highly 

improbable. 

This is all (usually) good news, as it means we are not slaves to 

our expectations. Successful perception requires the brain to use stored 

knowledge and expectations (Bayesian priors) to minimize predic- 

tion error. But we remain able to see very (agent) surprising things, 

in conditions where the brain assigns high reliability to sensory pre- 

diction error (hence high reliability to the driving sensory signal). 

Importantly, that requires other high-level theories, though of an ini- 

tially agent-unexpected kind, to win out so as to explain away the 

highly weighted sensory evidence. 

2.12  Some Pathologies of Precision 

What happens, though, if this balancing act goes wrong? What hap- 

pens if the mechanisms of precision-weighting develop a glitch and 

the balance between top-down expectation and bottom-up sensing 

becomes compromised? Here, it seems to me, the predictive processing 

scenario suggests promising new ways of thinking about the large and 

varied space of human mentality. We shall see more of this in subse- 

quent chapters. But we can already glimpse the potential in an impres- 

sive body of recent work addressing delusions and hallucination in 

schizophrenia (Corlett, Frith, et al., 2009; Fletcher & Frith, 2009). 

Recall the unexpected sighting of the elephant described in the pre- 

vious section. Here, the system already commanded an apt model able 

to ‘explain away’ the particular combination of driving inputs, expec- 

tations, and precision (weighting on prediction error) that specified 

the doleful, grey presence. But such is not always the case. Sometimes, 

dealing with ongoing, highly weighted sensory prediction error may 

require brand new generative models gradually to be formed (just as in 

normal learning). This might hold the key, as Fletcher and Frith (2009) 

suggest, to a better understanding of the origins of hallucinations 

and delusion (the two so-called “positive symptoms’) in schizophre- 

nia. These two symptoms are often thought to involve two mecha- 

nisms and hence two breakdowns, one in ‘perception’ (leading to the
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hallucinations) and one in ‘belief’ (allowing these abnormal percep- 

tions to impact top-level belief). Thus Coltheart (2007) notes—correctly 

and importantly—that perceptual anomalies alone will not typically 

lead to the strange and exotic belief complexes found in delusional 

subjects. But must we therefore think of the perceptual and doxastic 
components as strictly independent? 

A possible link emerges if perception and belief formation, as the 

present story suggests, both involve the attempt to match unfolding 

sensory signals with top-down predictions. Importantly, the impact 

of such attempted matching is precision-mediated in that the sys- 

temic effects of residual prediction error vary according to the brain’s 
confidence in the signal. With this in mind, Fletcher and Frith (2009) 

canvass the possible consequences of disturbances to a hierarchical 

Bayesian system such that prediction error signals are falsely gener- 

ated and—more important—highly weighted (hence accorded undue 

salience for driving learning). 

There are a number of potential mechanisms whose complex inter- 

actions, once treated within the overarching framework of prediction 

error minimization, might conspire to produce such disturbances. 

Prominent contenders include the action of slow neuromodulators such 

as dopamine, serotonin, and acetylcholine (Corlett, Frith, et al., 2009; 

Corlett, Taylor, et al., 2010). In addition, Friston (2010, p. 132) speculates 

that fast, synchronized activity between neural areas may also play a 

role in increasing the gain on prediction error within the synchronized 

populations.” The key idea, however implemented, is that understand- 

ing the positive symptoms of schizophrenia requires understanding 

disturbances in the generation and (especially) the weighting of pre- 

diction error. The suggestion is that malfunctions within that complex 

economy (perhaps fundamentally rooted in abnormal dopaminergic 

functioning) yield wave upon wave of persistent and highly weighted 

‘false errors’ that then propagate all the way up the hierarchy forcing, 

in severe cases (via the ensuing waves of neural plasticity) extremely 

deep revisions in our model of the world. The improbable (telepa- 

thy, conspiracy, persecution, etc.) then becomes the least surprising, 

and—because perception is itself conditioned by the top-down flow of 

prior expectations—the cascade of misinformation reaches back down, 

allowing false perceptions and bizarre beliefs to solidify into a coher- 

ent and mutually supportive cycle. 

Such a process is self-entrenching. As new generative models take 

hold, theirinfluence flowsback down so thatincoming datais sculpted by 

the new (but now badly misinformed) priors so as to ‘conform to expec- 

tancies” (Fletcher & Frith, 2009, p. 348). False perceptions and bizarre
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beliefs thus form an epistemically insulated self-confirming cycle. This, 

then, is the darker side of a highly potent cognitive strategy. The pre- 

dictive processing model merges—usually productively—perception, 

belief, and learning within a single overarching economy: one within 

which dopamine along with other mechanisms and neurotransmit- 

ters controls the ‘precision’ (the weighting, hence the impact on infer- 

ence and on learning) of prediction error itself. But when things go 

wrong, false inferences spiral and feed back on themselves. Delusion 
and hallucination then become entrenched, being both co-determined 

and co-determining. We see milder versions of this everywhere, both 

in science (Maher, 1988) and in everyday life. We tend to see what we 

expect, and we use that to confirm the model that is both generating 

our expectations, and sculpting and filtering both our observations 

and our estimates of their reliability. 

The same broadly Bayesian framework can be used (Corlett, 

Frith, et al,, 2009) to help make sense of the ways in which different 

drugs, when given to healthy volunteers, can temporarily mimic vari- 

ous forms of psychosis. Here, too, the key feature is the ability of the 

predictive coding framework to account for complex alterations in 
both learning and experience contingent upon the (pharmacologi- 

cally modifiable) way driving sensory signals are meshed, courtesy 

of precision-weighted prediction errors, with prior expectancies and 

(hence) ongoing prediction. The psychotomimetic effects of ketamine, 

for example, are said to be explicable in terms of a disturbance to the 

prediction error signal (perhaps caused by AMPA upregulation) and 

the flow of prediction (perhaps via NMDA interference). This leads 
to a persistent prediction error and—crucially—an inflated sense 

of the importance or salience of the associated events, which in turn 

drives the formation of short-lived delusion-like beliefs (Corlett, Frith, 

et al, 2009, pp. 6-7; see also Gerrans, 2007). The authors go on to offer 

accounts of the varying psychotomimetic effects of other drugs (such 

as LSD and other serotonergic hallucinogens, cannabis, and dopamine 

agonists such as amphetamine) as reflecting other possible varieties of 

disturbance within a hierarchical predictive processing framework."” 

This fluid spanning of levels constitutes, it seems to me, one of the 

key attractions of the present framework. We here move from consider- 

ations of normal and altered states of human experience, via computa- 

tional models (highlighting precision-weighted prediction-error-based 

processing and the top-down deployment of generative models), to 

the implementing networks of synaptic currents, neural synchronies, 

and chemical balances in the brain. The hope is that by thus offering a 

new, multilevel account of the complex, systematic interactions among
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inference, expectation, learning, and experience, these models may one 

day deliver a better understanding even of our own agent-level experi- 

ence than that afforded by the basic framework of ‘folk psychology’. 

Such an outcome (see also chapter 7) would constitute a vindication 

of the claim (P. M. Churchland, 1989, 2012, P. S. Churchland, 2013) that 

adopting a ‘neurocomputational perspective’ might one day lead us to 

a deeper understanding of our own lived experience. 

2.13 Beyond the Spotlight 

Attention has often been depicted as a kind of mental spotlight (see, 

e.g., Crick, 1984) whose deployment reflects the competition (due to 

limited resources) for high-quality neural processing. The predictive 

processing model of attention shares some features with the spotlight 

model, while departing from it in other ways. It shares the depiction of 

attention as tied up with the search for precise (low-uncertainty) sen- 

sory information. Pointing a spotlight creates (as noted by Feldman & 

Friston, 2010) the very conditions under which high-quality sensory 

information can be obtained from a spatial location. But attention is 

not, PP suggests, itself a mechanism so much as a dimension of a much 

more fundamental resource.”® It is a pervasive dimension of the gen- 

erative models we (our brains) bring to bear to predict the flow of sen- 

sory data. But it is a special dimension, since it concerns not simply the 

nature of the external causes of the incoming sensory data (the sig- 

nal) but the precision (statistically, the inverse variance) of the sensory 

information itself. 

The generative model, by including estimates of current precisions 

and of the precisions that would result from visual saccades and other 

actions, directly entrains swathes of information-gathering behav- 

iours. It makes predictions concerning not just how the signal should 

evolve (if the world is indeed thus-and-so) but also what incoming 

signals should be actively solicited and given the greatest weight as 

processing unfolds. It is by varying such weightings that we can bias 

select sensory channels during multimodal processing, flexibly alter 

the moment-to-moment flow of information between neural areas, and 

(most generally) alter the balance of power between the bottom-up sen- 

sory signal and top-down expectations. Such alterations accomplish 

the various ‘special effects’ (seeing faces in clouds, hearing sine-wave 

speech, or even hallucinating ‘White Christmas’) described in the early 
sections of this chapter.
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Adding precision-encoded estimations of our own sensory 

uncertainty to the emerging picture also allows us to combine, in 

a fluent and flexible manner, the best of two superficially opposed 

worlds. One is the world of signal-suppression, the core feature 

of standard predictive coding. Here, expected signal elements are 

‘explained away’ and stripped of forward-flowing causal efficacy. 

The other is the world of signal enhancement and biased competi- 

tion. This is a world in which ‘mission-critical” signal elements are 

amplified and enhanced, and their forward-flowing effects magni- 

fied. By weighting forward-flowing prediction error signals accord- 

ing to their expected precision the PP framework combines the best 

of both these worlds, enhancing some responses while suppressing 

others. 

Attention, action, and perception are now joined in mutually sup- 

portive, self-fuelling loops. Weighted prediction error signals drive us 

to sample the world in ways that both reflect and test the hypotheses 

that are generating the predictions that are driving the actions. The 

resulting intimacy of perception, attention, and action forms one of the 

core themes of the present treatment and offers our best hope yet of an 

account of neural processing able to illuminate the profound cognitive 

entanglement of brain, body, and world.



3 
The Imaginarium 

3.1 Construction Industries 

Perception, our story suggests, is a process that is both constructive and 

steeped in prediction. Perception of this stripe—the kind that reveals 

a structured world of interacting distal causes—has an important 
and (mostly) life-enhancing spin-off. For such perceivers are thereby 

imaginers too: they are creatures poised to explore and experience 

their worlds not just by perception and gross physical action but also 

by means of imagery, dreams, and (in some cases) deliberate mental 

simulations. 

This is not to claim, of course, that every system that we might 

intuitively think of as in some form of sensory contact with its world 
is able to do these things. Doubtless there exist many simple systems 

(such as light-following robots or bacteria that follow chemical gradi- 

ents) that use sensory inputs to select apt responses without deploy- 

ing internally represented models to predict the shape of the incoming 

signal. Such systems would not, or so I shall argue, enjoy perceptual 
experiences as of a richly structured external world, nor would they be 

capable of mental states such as dreaming or imagining. But perceivers 

like us, if PP is correct, can use stored knowledge to generate a kind of 

84
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multilevel virtual analogue of the driving sensory signal as it unfolds 

across multiple layers and types of processing. 

The links to imagination and dreaming are then close at hand, for 

such systems command a generative model capable of reconstructing 
the sensory signal using knowledge about interacting causes in the 

world. That process of reconstruction, tuned and deployed in the pres- 

ence of the sensory signal, paves the way for processes of outright con- 

struction, able to form and evolve in the absence of the usual sensory 
flow. Nearby too are capacities to engage in what some theorists call 

‘mental time-travel: remembering (reconstructing) the past and pre- 

dicting the possible shapes of the future. Working together, these vari- 

ous ‘construction industries’ allow us to make better choices and select 

better actions. From the simple seeds of a generative-model-based 
account of online perception, there thus emerges a striking (and strik- 

ingly familiar) cognitive form. It is a form in which perception, imagina- 

tion, understanding, and memory come as a kind of cognitive package 

deal—a package deal that locates the present where it experientially 

belongs, at the productive meeting point between past influence and 

informed future choice. 

3.2 Simple Seeing 

Consider the image in Figure 3.1. This is the so-called ‘Cornsweet 

Illusion’. To most people, the central paired tiles appear to be very dif- 

ferent shades of grey—an appearance that, as the second picture reveals, 

is illusory. The illusion occurs because (as we saw in chapters 1 and 2) 

our visual experiences do not simply reflect the current inputs, but are 

greatly informed by ‘priors’ (prior beliefs, usually taking the form of 

nonconscious predictions or expectations) concerning the world. In 

this case, the prior is that surfaces tend to be equally reflectant rather 

than becoming gradually brighter or darker towards their own edges. 

The brain’s best guess is thus that the central pairing involves two dif- 

ferently reflective surfaces (two different shades of grey) illuminated 

by differing amounts of light. The illusion occurs because the image 

displays a highly atypical combination of illuminance and reflectance 

properties and the brain uses what it has learnt about typical patterns 

of illumination and reflectance to infer (falsely in this case) that the two 

tiles must be different shades of grey. In the world we actually live in, 

these particular prior beliefs or neural expectations are provably ‘Bayes 

optimal'—that is, they represent the globally best method for inferring 

the state of the world from the ambient sensory evidence (Brown &
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FIGURE 3.1 Cornsweet [llusion Set Up 

The first image (left) depicts a typical Cornsweet illusion set up. The cen- 

tres of the two tiles comprising the central pairing appear to be different 

shades of grey. The second image (right) reveals that they are in fact the same 

shade of grey. 

Source: D. Purves, A. Shimpi, & R. B. Lotto (1999). An empirical explanation of the 

Cornsweet effect. Journal of Neuroscience, 19(19), 8542-8551. 

Friston, 2012). The brain thus generates our perceptual experiences by 

combining prior knowledge (including, as we saw in chapter 2, knowl- 

edge about context) with incoming sensory evidence. 

3.3 Cross-Modal and Multimodal Effects 

This basic effect explains a surprisingly wide variety of familiar percep- 

tual phenomena. One such phenomenon is the widespread existence of 

cross- and multimodal context effects on early ‘unimodal’ sensory pro- 

cessing. The discovery of such effects constitutes one of the major find- 

ings of contemporary sensory neuroscience (see, e.g., Hupe ct al.,, 1998; 

Murray et al., 2002; Smith & Muckli, 2010). Thus, Murray et al. (2002) 

display the influence of high-level shape information on the responses 

of cells in early visual area Vi, while Smith and Muckli (2010) show 

similar effects (using as input partially occluded natural scenes) even 

on wholly non-stimulated (that is to say, not directly stimulated via the 

driving sensory signal) visual areas. In addition, Murray et al. (2004) 

showed that activation in V1 is influenced by a top-down size illusion, 

while Muckli et al. (2005) and Muckli (2010) report activity relating to 

an apparent motion illusion in Vi. Even apparently ‘unimodal’ early 

responses are influenced (Kriegstein & Giraud, 2006) by information 

derived from other modalities and hence will commonly reflect a vari- 

ety of multimodal associations. Strikingly, even the expectation that a 

relevant input will turn out to be in one modality (e.g., auditory) rather
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than another (e.g,, visual) turns out to improve performance, presum- 

ably by enhancing ‘the weight of bottom-up input for perceptual infer- 

ence on a given sensory channel’ (Langner et al., 2011, p. 10). 

This whole smorgasbord of context effects flows very naturally 

from the PP model. If so-called visual, tactile, or auditory sensory 
cortex is actually operating using a cascade of feedback from higher 

levels to actively predict the unfolding sensory signals (the ones origi- 

nally transduced using the various dedicated receptor banks of vision, 
sound, touch, etc), then we should not be in the least surprised to 

find extensive multimodal and cross-modal effects (including these 
kinds of ‘filling-in’) even on ‘early’ sensory response. One reason this 

will be so is that the notion of ‘early” sensory response is in one sense 

now misleading, for expectation-induced context effects will simply 

propagate all the way down the system, priming, generating, and 

altering ‘early’ responses as far down as V1. Any statistically valid cor- 

relations, registered within the ‘metamodal’ (or at least, increasingly 

information-integrating) areas towards the top of the processing hier- 

archy, can inform the predictions that then cascade down, through 

what were previously thought of as much more unimodal areas, all 
the way to the areas closer to the sensory peripheries. Such effects are 

inconsistent with the idea of V1 as a site for simple, stimulus-driven, 

bottom-up feature-detection using cells with fixed (context-inflexible) 

receptive fields. But they are fully consistent with (indeed, mandated 

by) models that depict V1 activity as constantly negotiated on the basis 

of a flexible combination of top-down predictions and driving sensory 

signal. Reflecting on this new vision of ‘early’ sensory processing, Lars 

Muckli writes that 

It is conceivable that V1 is, first of all, the target region for cor- 

tical feedback and then, in a second instance, a region that 
compares cortical feedback to incoming information. Sensory 

stimulation might be the minor task of the cortex, whereas its 

major task is to . . . predict upcoming stimulation as precisely as 

possible. (Muckli, 2010, p. 137) 

3.4 Meta-Modal Effects 

The visual word form area (VWFA) is an area within the ventral 

stream that responds to proper letter strings: the kind that might 

reasonably form a word in a given language. Response in this brain 

area was already known to be independent of surface details such as



88 THE POWER OF PREDICTION 

case, font, and spatial location. In an important neuroimaging (fMRI) 

study, Reich et al. (2011) found evidence that VWFA is actually track- 

ing something even more abstract than visual word form. It appears 

to be tracking word form regardless of the modality of the trans- 

ducing stream. Thus, the very same area is activated in congenitally 

blind subjects during Braille reading. The fact that the early input 

here is tactile rather than visual makes no difference to the recruit- 

ment of VWFA. This supports the idea (Pascual-Leone & Hamilton, 

2001) of such brain areas as ‘metamodal operators’ that are ‘defined 

by a given computation that is applied regardless of the sensory 

input received’. 

This fits neatly, as Reich et al. (2011, p. 365) themselves note, with the 

PP image in which higher levels of the cortical hierarchy learn to track 

the ‘hidden causes’ that account for, and hence predict, the sensory 

consequences of distal states of affairs. Reich et al. speculate that much 

activity in VWFA might thus reflect modality-transcending predictions 

about the sensory consequences of words. VWFA, that is to say, seems 

to be generating top-down predictions using modality-transcending 

models of word-hood. The meta-modality of VWFA would then 

‘explain its ability to apply top-down predictions to both visual and 

tactile stimuli” (Reich et al., 2011, p. 365). 

Another nice example, this time from the action domain, is pro- 

vided by Wolpert, Miall, and Kawato (1998) who note that elements of 

an individual’s hand-writing style are preserved even when different 

effectors (such as the right or left hand, or even the toes) are used.! 

Abstract high-level motor commands must be unpacked in different 

ways as cascading predictions get closer and closer to the effector sys- 

tems themselves. But at the higher levels, it seems, there is substantial 

motoric information encoded in effector-spanning forms. 

In sum, the PP framework offers a powerful way of accommodat- 

ing all manner of cross-, multi-, and meta-modal effects on percep- 

tion. It depicts the senses as working together to provide feedback 

to a linked set of prediction devices that are attempting to track 

unfolding states of the world across multiple spatial and temporal 

scales. This delivers a very natural account of efficient multimodal 

cue integration and allows top-down effects to penetrate even the 

lowest (earliest) elements of sensory processing. (If that sounds epis- 

temically worrying to you—perhaps because you suspect that too 

much top-down influence would make us see whatever we expect 

to see, rather than what is ‘really there’—never fear. What is actu- 

ally on offer is a very delicate balancing act indeed, as we will see in 

chapter 6.)
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3.5 Perceiving Omissions 

A further advantage of the predictive processing story (as mentioned 
in 1.14) is that it provides a powerful account of the full spectrum 
of ‘omission-related responses’. The theoretical importance of such 

responses was noticed long ago by the Soviet psychologist Eugene 

Sokolov, in pioneering studies of the orienting reflex—the immediate 
‘attending’ reaction typically provoked by unexpected changes in the 

environment. Sokolov noted that repeated exposures led to reduced 

response and dubbed this effect ‘habituation’. One might have thought 
of this as some kind of brute physical effect due to some form of 

low-level sensory adaptation. Sokolov noticed, however, that even a 

reduction in the magnitude of some habituated stimulus could engage 

‘dishabituation” and prompt a renewed response.? Sokolov concluded 

that the nervous system must learn and deploy a ‘neuronal model’ that 

is constantly matched to the incoming stimulus, since what is attracting 

the animal’s attention is now a reduction in the physical signal itself. 

An extreme version of such a scenario occurs when an expected 

signal simply fails to materialize. For example, if we hear a regular 
series of beats and then a beat is omitted, we are perceptually aware 

(quite vividly aware) of its absence. Moreover, there is a familiar sensa- 

tion of ‘almost experiencing’ the onset of the omitted item—as if we 

started to hear (or see, or feel) the very thing that, an instant later, we 

vividly notice has not occurred. 

Accounts that posit the ‘top-down’ use of a generative model as a 

means of meeting the incoming sensory signal with apt expectations 

are ideally (perhaps uniquely) well-placed to explain both respon- 

siveness to omission and the peculiar phenomenology of omission. 

A compelling example is provided by Adams et al. (2013) using simu- 

lation studies of the generation and recognition of birdsong. In these 

experiments (see Figure 3.2), a hierarchical predictive processing net- 

work responded to short sequences of simulated chirps (sequences 

displaying characteristic frequencies and volumes) using the kind of 

multilayer prediction machinery described in previous chapters. The 

simulations were then repeated but omitting part (the last three chirps) 
of the original signal. At the first missing chirp, the network responded 
with a strong burst of prediction error. This strong burst of error, the 

authors note, is generated in the complete absence of any guiding sen- 

sory input, since ‘at this point there is no sensory input to predict and 

the prediction error is generated entirely by top-down predictions’ 

(Adams et al,, 2013, p. 10). Moreover, a closer analysis of the network’s 

responses showed that, at the very moment where the first missing
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FIGURE 3.2 Omission-Related Responses 

The left-hand panels show the predicted sonograms based upon pos- 

terior expectations, while the right-hand panels show the associated 

(precision-weighted) prediction error at the sensory level. The top panels 

show a normal omission-related response due to precise top-down pre- 

dictions that are violated when the first missing chirp is not heard. This 

response is attenuated, when the (log) precision of the second level is reduced 

to two (middle row). This renders top-down predictions more sensitive to 

bottom-up sensory evidence and sensory prediction errors are resolved 

under reduced top-down constraints. At the same time, the third chirp—that 

would have been predicted on the basis of top-down (empirical) prior 

beliefs-—is missed, leading to sensory prediction errors that nearly match 

the amplitude of the prediction errors elicited by the omission. The lower 

row shows predictions and prediction errors when there is a compensatory 

decrease in sensory log precision from two to minus two. Here, there is a 

failure of sensory prediction errors to entrain high-level expectations and 

subsequent false inference that persists in the absence of any stimuli. 

Source: From Adams, Stephan, et al, 2013, by permission.
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chirp should have occurred, the system generated a transient (illusory) 

percept. This percept (the systemic best-guess at the state of the world) 

was not strong, but the timing was correct with respect to the miss- 

ing chirp. In other words, the network first dimly ‘perceived’ (imag- 

ined) the missing chirp, before responding with a strong error signal 

as soon as the actual absence of such a signal became apparent. Such 

results nicely model (Adams et al,, 2013, pp. 10-11) the so-called ‘mis- 

match negativity’—the P300° neuronal response found in EEG studies 

using oddball or omitted stimuli—a result that also makes physiologi- 
cal sense given that such studies are most sensitive to the responses of 

the kinds of cell (superficial pyramidal cells) most plausibly implicated 

as reporting prediction errors. 

In a revealing further manipulation (again, see Figure 3.2), Adams 

et al. reduced the precision of sensory prediction error at an upper 

level (level 2) of the multilayer network. The effect of this, as we saw in 

chapter 2, is to reduce the system’s confidence in its own top-down pre- 

dictions. Under these conditions, the chirp that was previously hardest 

to detect (the third chirp) is completely missed and a prediction error 

generated. However, since the system (with reduced level 2 precision) is 

now less confident in its predictions, this error is not as large as it would 

have been under normal conditions. This may correspond, the authors 

note, to the kind of reduced neuronal (and behavioural) responses to 

oddballs and omissions found in schizophrenic subjects. This account 

of such responses is interesting since it suggests that 

attenuated mismatch or violation responses in chronic schizo- 

phrenia may not reflect a failure to detect surprising events but 

reflect a failure to detect unsurprising (predictable) events. In 

other words, they may reflect the fact that every event is sur- 

prising. (Adams et al,, 2013, p. 11) 

One way a system might try to compensate for such pan-surprisingness 

is to effectively downgrade its confidence in the sensory signal itself. 
Reducing the estimated precision of the sensory signal has complex 

effects that we will further explore in subsequent chapters. In the sim- 

ple birdsong study, such a reduction resulted in the total abolition of 

omission-related response and radical failures correctly to infer the 

structure of the distal environment from the sensory signal. Under 

such circumstances, auditorily encountered songs were tracked only 

roughly, with distorted structure and frequency. This is inevitable 

since under those conditions ‘sensory information is not afforded the 

precision needed to constrain or entrain top-down predictions’ (Adams 

et al, 2013, p. 12). This corresponds to the genesis of hallucinations,
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here emerging as quasi-perceptual states that are insufficiently con- 

trolled by top-down prediction and apt estimations of our own sensory 
uncertainty. 

3.6 Expectations and Conscious Perception 

The PP model has implications (more on which in chapter 7) for the 

study of the neural underpinnings of conscious sensory awareness. 

We can creep up on this with some mundane reflections. It is 
intuitively obvious that, for example, a familiar song played using a 

poor radio receiver will sound much clearer than an unfamiliar one. 

Whereas we might have thought of this, within a simple feed-forward 

feature-detection framework, as some kind of memory effect, it now 

seems just as reasonable to think of it as a genuinely perceptual one. The 

clear-sounding percept, after all, is constructed in just the same way 

as the fuzzy-sounding percept, albeit using a better set of top-down 

predictions (priors, in the Bayesian translation of the story). That is 

to say—or so I would suggest—the familiar song really does sound 

clearer. It is not that memory later does some filling-in that affects, in 
a backward-looking way, how we judge the song to have sounded. 

Rather, the top-down effects bite in the very earliest stages of process- 
ing, leaving us little conceptual space (or so it seems to me) to depict the 

effects as anything other than enhanced-but-genuine perception. Thus 

imagine we discover a creature whose auditory apparatus is highly 

tuned to the detection of some biologically relevant sound. Imagine too 

that that tuning consists largely in a strong set of priors for that sound, 

such that the creature can detect it despite considerable noise in the 
ambient signal (a kind of cocktail party effect). Surely we would sim- 

ply describe this as a case of acute perception? Then we must say the 

same, it seems to me, of the music-lover hearing a familiar song from a 

low-quality radio. 

Can we avoid a slippery slope here, as we progressively degrade 

the driving signal and up-regulate the expectations? The lucky imagi- 

nar whose confabulations just happen perfectly to predict the external 
world is not truly perceiving her world at all. She is just a lucky guesser. 

Two factors conspire to save us from being forced to accept such 

an agent into the ranks of the true perceivers. First, we should consider 

the counterfactuals. If you were just lucky that the distal world is cur- 

rently as predicted, then were the worldly states to be different, you 

would fail to track them. This already distinguishes the lucky predictor 

from the normal predictive processing agent. Second, we must add the
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availability of attention. Attention, as we saw in the previous chapter, 

ups the gain on aspects of the error signal. That means we can indeed 

focus (if we decide to do so) on the fuzziness of the sound of the bad 

radio, upping the gain on select sensory prediction error to reveal the 

finer form of the sound-stream. The PP agent may then agree that the 
radio is past its prime and in dire need of replacement. Counterfactual 

robustness plus the availability of attention-based gain on sensory pre- 

diction error thus allows us to distinguish ‘lucky hallucinations’ from 

veridical prediction-driven percepts. 

The role of prediction in the construction of conscious perceptual 

experience is nicely demonstrated in work by Melloni et al. (2011). 

Melloni et al. show that the onset time required to form a reportable 

conscious percept varies according to our expectations—they show, 

in other words, that expectation can speed up conscious awareness. 

Using electroencephalographic (EEG) signatures, it was calculated 
that conscious perception could occur as rapidly as 100ms faster for a 

well-predicted stimulus, and hence that ‘the signatures of visibility are 

not bound to processes with a strict latency but depend on the pres- 

ence of expectations’ (Melloni et al., 2011, p. 1395). Such a result is best 

explained, Melloni et al. suggest, by appeal to a hierarchical predic- 
tive coding framework in which ‘conscious perception is the result of 

a hypothesis test that iterates until information is consistent across 

higher and lower areas’ (p. 1394). 

3.7 The Perceiver as Imaginer 

Animals capable of forming rich, world-revealing percepts are, if the 

predictive processing story is on track, animals that understand their 

worlds and that are poised to imagine them too. The argument for this 

is straightforward. An important feature of the internal models that 

power such approaches is that they are generative in nature. That is to 

say, the knowledge (model) encoded at an upper layer* must be such 

as to render activity in that layer capable of predicting the response 

profile at the layer below. That means that the model at layer N + 1 

becomes capable, when operating within the context of the larger sys- 
tem, of generating the sensory data (i.e., the input as it would there 

be represented) at layer N (the layer below) for itself. Since this story 

applies all the way down to layers that are attempting to predict 

activity in early processing areas , that means that such systems are 

fully capable of generating ‘virtual’ versions of the sensory data for 

themselves.
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This is, in one sense, unsurprising. As Hinton (and for similar com- 

ments, see Mumford, 1992) notes, ‘vivid visual imagery, dreaming, and 

the disambiguating effect of context on the interpretation of local image 
regions ... suggests that the visual system can perform top-down gen- 

eration’ (Hinton, 2007b, p. 428). In another sense, it is quite remarkable. 

It means that perception—at least, as it occurs in creatures like us—is 

co-emergent with something functionally akin to imagination. By ‘crea- 

tures like us, I here mean creatures capable of rich, world-revealing 

perception: creatures able to perceive a complex distal environment pop- 

ulated by interacting hidden causes. In my own case, such hidden causes 

include rainstorms, primroses, and poker hands. In the case of my two 

cats (Bruno and Borat), they seem to include® cat-treats, mice, and moths. 

Bruno, Borat, and Clark, I suggest, are all deploying generative models to 

capture regularities in their sensory input at multiple spatial and tempo- 

ral scales. Obviously, a simple robot that locomotes to a light source need 

not, and probably should not, deploy a multilayered generative model 

to do so. Instead, the need for generative models emerges most clearly 

when systems must deal with complex structures of hidden causes in 

domains characterized by noise, ambiguity, and uncertainty. 

The claim I wish to defend, more carefully stated, is thus that ani- 

mals® able to perceive a complex external world of interacting causes 

using the characteristic resources of prediction-driven learning will be 
animals capable of the endogenous generation of sensory-like states. 

It does not seem far-fetched to suggest that dreaming, imagining, 

and mental imagery thus became available as part and parcel of the 

very same cognitive package that delivered our grip on a structured 

(organism-salient) external world. This does not mean that every such 

animal can, by some deliberate act of will, bring such imaginings 

about. Indeed, it seems very likely that for most creatures acts of delib- 
erate imagining (which I suspect may require the use of self-cueing via 
language) are simply impossible. But creatures that are thus enabled 

to perceive a structured world possess the neural resources to gener- 

ate, from the top-down, approximations to those same sensory states. 

There thus emerges a deep duality between online perception (as 
enabled by the predictive processing architecture) and capacities for 

the endogenous generation of quasi-sensory states. 

3.8 'Brain Reading’ During Imagery and Perception 

Strong fMRI evidence for such a duality emerged in a study by Reddy 
et al. (2010). The starting point for the study was a set of well-known
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results showing that mental imagery and online visual perception 

activate many of the same early processing areas (e.g., Kosslyn et al., 

1995; Ganis et al.,, 2004). Such results have been replicated many times 

and also extended to include areas such as Lateral Occipital Cortex 

(LOCQ). This is an extra-striate area that responds strongly to shapes 

and objects, including letter-forms such as ‘X’ and ‘O, preferring them 

to simple textures or scrambled objects. Stokes et al. (2009) showed LOC 

to be active both when subjects perceived and when they imagined the 

letters ‘X’ and ‘O, 

Such results lend intuitive support to the idea of a deep computa- 

tional duality between perception and imagination, but they are also 

compatible with many weaker accounts. They speak to an overlap of 

brute geographical location (many of the same areas ‘lighting up’ dur- 

ing online perception and offline imagination and recall) but that does 

not yet establish the kind of deeper functional overlap predicted by the 
PP class of models. 

The Reddy et al. study directly addresses this issue, building upon 

recent successes in what is sometimes called ‘brain reading’. In brain 

reading (e.g., Haxby et al,, 2001; Kamitani & Tong, 2005; Norman et al,, 

2006), investigators attempt to reconstruct properties of a stimulus from 

fMRI data (the BOLD signal tracking hemodynamic response) concern- 

ing the neural activity that the stimulus evokes. That means plotting 

multivoxel” response patterns and using them to infer (to decode) prop- 

erties of the stimulus that brought them about. 

The experimenter is here in roughly the position of the biological 

brain itself. Her task—made possible by powerful mathematical and 
statistical tools—is to take patterns of neural activation® and, on that 
basis alone, infer properties of the stimulus. Such properties range 

from identifying the class to which the stimulus—which is typically 

an image—belongs (e.g., is it a face, a fruit, a tool?), to selecting which 

specific image from a predefined set evoked the response, to (most 

recently, and most impressively) actually reconstructing, as far as pos- 

sible, the presented image itself. We shall see an example of the first 

type shortly. A nice example of the second type (fMRI-based image 

selection) can be found in Kay et al. (2008) who were able to infer which 

novel natural image (from a set of 120) a subject had been perceiving 

while being scanned. An example of the third (active reconstruction) 

type can be found in Miyawaki et al. (2008). 

Interestingly, the tools and approaches used to perform the third 

task—the image reconstruction task—increasingly look to recapitu- 

late the kinds of strategies used by the biological brain itself. The most 

promising approaches thus use a Bayesian method that combines
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information in the measured response with prior information concern- 

ing the structure and even the semantic contents of natural images—for 

an example, see Naselaris et al. (2009). The use of such prior informa- 

tion (just as in predictive processing) turns out to have a large and ben- 

eficial effect upon the quality of the image reconstruction. Taking this 

one step further, van Gerven et al. (2010) use a version of the architec- 

ture used in the digit recognition example discussed in chapter 1 (a 

‘deep belief network’; see Hinton et al.,, 2006) to reconstruct perceived 

handwritten greyscale digits from the fMRI data. The authors conclude 

(p. 3139) that ‘hierarchical generative models can be used for neural 

decoding and offer a new window into the brain’. 

The Reddy et al. experiment did not, however, involve image selec- 

tion or image reconstruction. It addressed instead the much simpler 

problem of image classification. The first goal (in line with previous 
work) was to use pattern-classification techniques to decode category 

information concerning viewed images, determining whether the sub- 

ject, when scanned, was perceiving images of tools, food, faces, or 

buildings. The second goal was to use the same techniques to deter- 

mine whether subjects, when scanned, were imagining tools, food, faces, 

or buildings. Assuming this proved possible, the third and final goal 

was to determine how the voxel-level ‘codes’ for the imagined objects 

related to those for the ‘same’ object when it is actually perceived. 

For the decoding, the experimenters used a well-understood method 
(linear support vector machines) to learn the mappings between 
voxel-patterns and the four categories (food, tools, faces, and build- 

ings). This was done for both perceived and imagined objects, and 
recordings were made both from early visual areas (V1, V2) and higher 

ones (FFA, PPA, and some distributed recordings). 

Both forms of decoding (decoding what was seen and what was 

imagined) proved possible, though—and we shall return to this very 

shortly—decoding from the earliest, retinotopically mapped areas 
was possible only during actual viewing and not during imagery. In 

ventral-temporal cortex, by contrast, decoding proved possible under 

both conditions (actual viewing and imagery). Reddy et al. then 

addressed the third (and for our purposes the most interesting) ques- 
tion: what relation, if any, existed between the neural states implicated 

in the imagery condition and those implicated in the perceptual condi- 

tion. This question bears directly upon our earlier conjectures concern- 

ing the deep duality of perception and imagination. 

To address this question, Reddy et al. used an ingenious method. 

They took the trained-up classifier for perception and used it as the 

decoder under the imagery condition, and vice versa (taking the
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trained-up classifier for imagery and using it to decode online per- 

ception). Remarkably, each classifier worked for the other condition. 
In other words, it was possible to use the ‘imagery decoder’ to clas- 

sify a currently viewed item, and the ‘percept decoder’ to classify a 
merely imagined item. This suggests that the two tasks are not simply 

sharing coarse neural resources, but are sharing the fine-grained use 

of those resources too. More specifically, it shows the existence of sub- 

stantial overlap between the fine-grained® multi-voxel activation pat- 

terns (in ventral-temporal cortex) that encode the scenes when they are 

perceived and when they are merely imagined. An additional analysis 

showed that the role of the various voxels (their weighted contributions 

to classification success within a given category) was similar, and that 

the two conditions (imagery and online perception) shared key ‘diag- 
nostic voxels’ (p. 6). The authors conclude that 

The use of pattern classification techniques ... indicated that 

actual viewing and mental imagery shared the same represen- 

tations at the level of fine-grained multivoxel activation patterns 

in object-responsive ventral-temporal cortex [thus demonstrat- 
ing] a high level of similarity between the fine-grained rep- 

resentations involved in perception and imagery of natural 

object categories. (Reddy et al., 2010, p. 7) 

Such results lend strong support to the idea, central to predictive pro- 

cessing, that perception depends heavily upon a top-down generative 

capacity. 

Nonetheless, there are clearly many differences, both experiential 

and functional, between perception and processes (such as mental 

imagery and perhaps dreaming) that are being driven purely from the 

top-down. Another aspect of the Reddy et al. study, briefly mentioned 

earlier, is revealing in this regard. For despite the demonstration of 

overlapping coding for perception and imagery in ventral-temporal 

cortex, decoding from earlier (V1 and V2) retinotopically mapped 

populations, though possible under the perceptual condition, was not 

possible under the imagery condition. Otherwise put, activity in those 
early areas was fMRI-readable’ as belonging to one of the four image 
classes only when the subject was actually engaged in online view- 

ing and not when merely imagining. This may be linked (as Reddy 

et al. themselves intimate) to the fact that, on the whole, mental imag- 

ery seems less vivid and less detailed (less realistic) than online per- 

ception. A possible explanation, consistent with a body of superficially 

rather conflicting results concerning the ability of areas such as Vi1 to 

participate in mental imagery (see, e.g., Cui et al., 2007; Wheeler et al,
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2000) is that it is possible to drive V1 from the top down, but that this 

only occurs when the task itself demands a fine grain of imagined 

detail. 

Perhaps in the more typical run of things imagery (unlike rich 

forms of hallucination) involves only the higher levels of the generative 

model? A possible mechanism for modulating such effects is readily 

available within PP in the form of the precision weighting of predic- 
tion error (see chapter 2). Assigning a low precision to prediction errors 

calculated for the early (high spatial and temporal resolution) stages of 

processing means that no systemic effort is expended upon bringing 

those states into line with downward-flowing predictions. Under such 

conditions, it seems plausible that the system would generate a stable 

percept that simply ignores lower-level details, entraining them (by 

upping the relevant precision-weightings) only when the task demands. 

Online perception may also have special features. Plausibly, we 

can resolve prediction errors in online perception at a very high level 

of detail (grain) as when we attend, say, to the fine details of the pat- 

terning of a complex wallpaper or the bark of a tree.”® Such stable, rich 

granularity may simply not be available in standard cases of mental 

imagery. 

Other (‘blunter’) low-level responses may, however, be more easily 

entrained. Laeng and Sulutvedt (2014) show, surprisingly, that the act of 

imagining can even impact pupil dilation and shrinkage. In this work, 

subjects were exposed to images of triangles of varying brightness. 

During exposure, the subject’s pupils responded in the usual fashion, 

by dilating (widening) when the images were darker, and shrinking 

when they were lighter. When asked to imagine the same triangles, 

the same pupillary responses of dilation and shrinkage occurred. This 

result is striking since pupil size is something over which most subjects 

cannot exercise any form of conscious control, leading the experiment- 

ers to comument that ‘the observed pupillary adjustments to imaginary 

light present a strong case for accounts of mental imagery as a process 

based on brain states similar to those that arise in perception’ (p. 188). 

Such responses might serve, the authors suggest, to prepare the eyes for 

anticipated (perhaps potentially damaging or dangerously inadequate) 

levels of light. 

3.9 Inside the Dream Factory 

Such intimate links binding perception and imagination are sug- 

gestive with regard to dreaming too. They suggest, most obviously,
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that dream-states, like imagery, involve the top-down (generative- 

model-based) activation of many of the same states as occur during 

ordinary perception. Such a claim needs, however, to be handled with 

care. For the neural system, operating in the absence of the availability 

of ‘hypothesis-checking action’ and of ongoing driving external inputs, 

will be unable to support the same kinds of stability and richness of 

experienced detail that daily sensory engagements offer. 

In the absence of the driving sensory signal, there is no stable ongo- 

ing information (in the form of reliable, estimated-as-high-precision, 

prediction error) about low-level perceptual detail available to con- 

strain the system, and hence no pressure to create or maintain a stable 

hypothesis at the lower levels of processing. In waking life, by contrast, 
the persisting external scene is repeatedly sampled, according to preci- 

sion expectations, in ways that provide vital stabilizing pressure and 

that help create (as we saw in chapter 2) distinctive, self-sustaining per- 

cepts. In the absence of reliable sensory input, the estimated precision for 

such low-level states will be greatly reduced. Since precision-weighting 

involves promoting some aspects of the processing cascade against oth- 

ers, this implies an increase in the expected precision of other (higher 

level) states. The overall effect is thus temporarily to insulate unfolding 

internal predictions from reality testing against sensory states. In this 

way ‘internal brain dynamics become sequestered from the sensorium’ 

(Hobson & Friston, 2012, p. 87). 

During sleep, this process is accompanied by some dramatic altera- 

tions in the chemical states of the brain. The three dominant states for 

the human brain are waking, REM (Rapid Eye Movement) sleep, and 

non-REM (NREM) sleep. Each state has clear physiological, pharma- 

cological, and experiential correlates. In waking, we can occupy many 

states, from eyes-closed imagistic musing to eyes-open, alert engage- 

ment with the external environment. In REM sleep our dreams (at least 

as evidenced by subsequent report) are vivid, but their logic is weak. 

Here is a typical enough report: 

I was at a conference and trying to get breakfast but the food 
and the people in line kept changing. My legs didn’t work prop- 

erly and I found it a great effort to hold my tray up. Then I real- 
ized why. My body was rotting away and liquid was oozing 

from it. I thought I might be completely rotted before the end 

of the day, but I thought I should still get some coffee if I still 

had the strength. (Excerpt quoted in Blackmore, 2004, p. 340) 

Here is another description, this time from Helena Bonham-Carter, 

while she was expecting a baby with movie director Tim Burton: ‘I
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dreamed I gave birth to a frozen chicken. In my dream, I was very 

pleased with a frozen chicken’ (quote from Hirschberg, 2003). In NREM 

sleep, if we dream at all, the dreams (again, as evidenced by waking 

report) are more like faint and mundane thoughts or fuzzy remember- 

ings. All these states (waking, REM-sleep, NREM sleep) are correlated 

with specific patterns of neuro-chemical activity. A useful tool for dis- 

playing the pattern is Hobson’s AIM model (Hobson, 2001). The AIM 

model characterizes the different states as points in a three-dimensional 

space, whose axes are: 

1. Activation Energy 

2. Input Source 

3. Modulation 

Normal wakefulness is characterized by high activation (as measured 

by EEG for example) corresponding to fairly intense experience, exter- 

nal input sources (the brain is receiving and processing a rich stream 

of sensory signals from the world, rather than being shut down and 

largely recycling its own activity), and a distinctive mode. Modulation 

here names a balance between brain chemicals, especially amines and 

cholines. Amines are neurotransmitters such as noradrenaline and 

serotonin, whose action is known to be essential for normal waking 

consciousness (they are essential to the processes that enable us direct 

attention, reason things through, and decide to act). When these are 

shut off, and other neurotransmitters (cholines, such as acetylcho- 

line) dominate, we experience delusions and hallucinations (if we are 

awake) and vivid, uncritical dreaming (if we are asleep). In this way 

it is the amine/choline balance that mostly determines how signals 

and information (whether externally or internally generated) will be 

dealt with and processed. In REM sleep, the aminergic systems are 
deactivated and the cholinergic hyperactive. This is a highly altered 

cognitive state. Only extreme forms of psychosis or serious medical 

or recreational drug use can induce this kind of state in non-sleeping 
humans.? 

This is not to suggest (far from it) that the best state for a human 

mind would be one of almost-complete aminergic dominance. Indeed, 
the power, subtlety, and beauty of wakeful human intelligence seem to 

have much to do with the precise details of the ever-shifting balance 

between the two systems. But in normal waking the mode (defined as 

the ratio between the activity of the two systems) leans towards the 

aminergic. In REM sleep, with acetycholine dominating, experience is 

increasingly dissociative, unanchored by sensory input, and beyond 

volitional control.



THE IMAGINARIUM 101 

From the predictive processing perspective, the role of such 

changes in neuromodulatory balance is to gate (probably via shifts in 

precision-weighting; see chapter 2) the internal flow of prediction error. 

This rather neatly explains, in broad outline at least, the very different 

flavours of waking and dreaming experience. Thus, 

when we go to bed and close our eyes, the postsynaptic gain of 

sensory prediction error units declines (through reduced amin- 

ergic modulation) with a reciprocal increase in the precision 

of error units in higher cortical areas (mediated by increased 

cholinergic neurotransmission). ... The ensuing sleep state is 

one in which internal predictions are sequestered from sen- 

sory constraints. (Hobson & Friston, 2012, p. 92) 

In a similar fashion, Fletcher and Frith suggest that 

Perhaps the dream state arises from disruptions in hierarchi- 
cal ... processing such that sensory firing is not constrained by 

top-down prior information and inferences are accepted with- 

out question owing to an attenuation of the prediction-error 

signal from lower to higher levels. (Fletcher & Frith, 2009, p. 52) 

Hobson and Friston (2009, section 4.2.1) further speculate that the sleep 

state offers an opportunity for the brain to engage in ‘post-synaptic 

pruning'—removing redundant or low-strength connections so as to 

reduce the complexity of the generative model itself. The idea here 
(more on this in chapters 8 and ¢) is that reducing prediction error 

while awake and alert sometimes results in models that, although able 

to capture the sensory patterns, are nevertheless overly complex. Such 

models effectively treat too much of the signal as data and not enough 

as noise. They thus ‘overfit’ the specific data and (thereby) fail to gener- 

alize to new situations. 

Sleep, thanks to the altered balances just described, provides an 

opportunity to remedy this. During sleep, the brain’s model is insulated 

from further sensory testing but can still be improved by simplification 

and streamlining. This is because the quantity that is minimized by 

the brain is actually (as we will see in chapter 9) prediction error plus 

model complexity. During sleep, precise prediction errors are not gen- 

erated, so the balance shifts towards the reduction of model complex- 

ity. Sleep may thus allow the brain to engage in synaptic pruning so 

as to improve (make more powerful and generalizable) the knowledge 

enshrined in the generative model (see Tononi & Cirelli, 2006; Gilestro, 

Tononi, & Cirelli, 2009; Friston & Penny, 2011).® The resulting links 

between sleep and good cognitive housekeeping are intuitive and may
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offer special comfort to those that feel 7 hours is simply not enough! 
For if Hobson and Friston are right, then ‘taking the brain off-line to 
prune exuberant associations established during wakefulness may be 

a necessary price we pay for having a sophisticated cognitive system 

that can distil complex and subtle associations from sensory samples’ 

(Hobson & Friston, 2012, p. 95). 

3.20 PIMMS and the Past 

The bulk of our story so far has focused upon the use of stored knowl- 

edge to predict what might be thought of as a kind of ‘rolling pres- 

ent’. Obviously, these processes of prediction depend heavily upon past 

experiences. But that dependence does not (yet) involve the actual rec- 

ollection of past experiences. Instead, the past there exists only as it is 
crystallized into the agent-inaccessible form of altered probability den- 

sity distributions used to meet and to organize the incoming sensory 

flow. Creatures like us, however, appear to benefit from a further trick. 

This is the trick of (from time to time) being able to recall specific con- 

crete events that may be relevant to the task at hand. A crucial point of 
contact here is the observation that such ‘episodic recall” involves learnt 

associations between items and spatio-temporal contexts. Constraints 

and opportunities involved in predicting items from contexts, and con- 

texts from items, then provide tools that might (when deployed in the 

right admixtures) enable a kind of prediction-based reconstruction of 

episodic memory itself. 

Thus consider a recent predictive processing account of multiple 

memory systems due to Henson and Gagnepain (2010). Henson and 

Gagnepain’s concern is with the contrasting memory systems often 

dubbed recollection’ and ‘familiarity’. Recollection occurs when a 

subject, presented with a test item, recalls the episodic context of their 

past exposure to that item. Such a subject may report the occasion 

and modality of the original encounter or other surrounding details. 
Familiarity, by contrast, is present when a subject is unable to recall 

such details but is nonetheless aware that they have encountered that 

very item before. Familiarity and recollection are thus both different 

from (though intertwined with) the kind of semantic memory present 

simply in virtue of knowing what an object is (e.g., ‘it’s a clothes brush’). 

Recollection and familiarity look (though see Johnson et al., 2009) to 

implicate different neural sub-systems, with the hippocampus playing 

a special role in the former, and perihinal cortex (in the medial tempo- 

ral lobe) playing a key role in the latter (see, e.g., Diana et al., 2007).
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Henson and Gagnepain’s central concern is, however, not with 

these different roles per se but with patterns of between-area interac- 

tion. Their suggestion is that different patterns of interaction (different 
patterns of effective connectivity and hence of functional coupling™) 
between areas can help explain the varying behavioural and neuroim- 
aging profiles associated with recollection and familiarity. With this 

in mind, they formulate and defend PIMMS: a ‘predictive interactive 
multiple-memory system’ model. The model posits three ‘memory 

systems’ distinguished largely by the kinds of representational con- 

tent in which they specialize. They are labelled (following Tulving 

& Gazzaniga, 1995) ‘episodic’ (here associated with recollection, and 

physiologically with the hippocampus), ‘semantic’ (here associated 
with familiarity, and physiologically with perihinal cortex), and “per- 

ceptual’ (associated with occipito-temporal cortex, hence specific sen- 

sory modalities such as the visual ventral pathway). The key novelty in 

the PIMMS model is that ongoing feedback links the three systems both 
during encoding and retrieval, and that different patterns of recurrent 

interaction at both points account for the observed differences in the 

behavioural and physiological data. 

PIMMS depicts the effects of recollection and familiarity as 

explained by differing patterns of information flow within a predic- 
tive processing hierarchy in which, in the now-familiar fashion ‘the 

role of feedback from one system is to predict the activity in “lower” 

systems in this hierarchy” (Henson and Gagnepain, 2010, p. 1319). This 

hierarchy has the hippocampus at the top, the perihinal cortex below, 

and occipito-temporal cortex below that. Differing levels within the 

predictive bi-directional hierarchy come to specialize (as we have seen) 

in making predictions of different kinds, capturing regularities at dif- 

ferent spatio-temporal scales. Within such an architecture, the PIMMS 

model depicts the hippocampus as the top level, concerned to ‘opti- 

mize the mutual predictability between items (represented in perihi- 

nal cortex) and contexts (presumably represented in multiple regions 

depending on the type of context)’ (p. 1321). Such optimization—and 

this is the crucial move—renders items predictable from contexts and 

contexts predictable from items. A familiar object in a novel context 

would thus induce high prediction error, since the mutual predictabil- 

ity would be low. Hippocampal prediction error, they suggest, drives 

episodic encoding which is implemented by altering the synaptic 

weights on connections between the hippocampus and the appropri- 

ate (e.g., perihinal) cortical populations. Within the trained hierarchy, 

backwards connections then allow specifics to be predicted from con- 

texts, while forward flowing error drives both encoding and retrieval.
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Episodic and semantic memory systems, if this is correct, are 

linked in a web of mutual internal prediction. Within this web, 

context-specifying information encoded in the hippocampus 

attempts to predict item-based representations in perihinal cortex 

and more ‘perceptual’ representations in occipito-temporal cortex. 

Differing patterns of prediction error and prediction error resolu- 

tion then realize various flavours of familiarity and recollection. 

Familiarity occurs when a presented item induces low prediction 
error (hence high ‘processing fluency’, Jacoby and Dallas, 1981) in 

areas specializing in item-recognition but—importantly, though this 

is not explicitly modelled in PIMMS—where that fluency is accom- 

panied by a kind of (statistically second-order) assessment that such 

fluency is surprising.’® Recollection, by contrast, occurs when there 

is high mutual predictability linking the item to a specific context. If 

the function of the hippocampus is, as suggested, to optimize mutual 

predictability between items and contexts, various bodies of fMRI 

data (for the details, see Henson & Gagnepain, 2010, pp. 1320-1322) 

also fall neatly into place. 

The PIMMS model is both incomplete and speculative. T include 
it here simply as an illustration of some rather more general ideas 
and principles. Most important, it suggests that the surface appear- 

ance of multiple, distinct neural systems subserving different func- 

tions (here, different kinds of memory) may be subtly misleading. 

Rather than a mere motley of different systems, we may confront a 

web of statistically sensitive mutual influence that combines context 

with content, and balances specialization against integration. Within 

that web, moment-by-moment performance depends on the creation 

and maintenance of task-specific patterns of effective connectivity 

(here linking semantic, perceptual, and episodic sub-systems; see 

Figure 3.3). Such patterns may themselves be consequent upon the 

estimated (task-relevant) precision of various prediction errors. In 

this way, the calculation and use of precision-weighted prediction 

error may constitute a general principle of neural functioning, serv- 
ing not merely to drive and nuance perceptual recognition but to 

select and orchestrate whole ensembles of neural” (and sometimes 

extra-neural; see Part III) resources. 

3.11  Towards Mental Time Travel 

Mental time-travel (Suddendorf & Corballis, 1997, 2007) occurs when 

an agent recalls events from the past or imagines events in the future.
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FIGURE 3.3 PIMMS Model of Memory 

Encoding, storage, and retrieval are parallel and interactive. Recollection and 

familiarity entail interactions between these multiple memory systems. 

Source: Henson & Gagnepain, 2010. 

Such capacities may be based, Suddendorf and Corballis argue, in a 

more general capacity to imagine experiences using what Hassabis 

and Maguire (2009, p. 1263) describe as ‘the construction system of the 

brain’. Such an approach is attractive and fits neatly with two converg- 

ing themes in cognitive neuroscience. The first is the contemporary 

view of memory as a reconstructive process in which current goals 

and context, as well as previous episodes of recall, contribute greatly to 
what is recalled. The second is the wealth of imaging data suggesting 

substantial—though by no means total—overlap between the neural 

machinery used to recall the past and to imagine the future (see Okuda 

et al, 2003; Szpunar et al., 2007; Szpunar, 2010; Addis et al., 2007). Such 

overlap is nicely dramatized by Ingvar (1985) whose talk of ‘remem- 
bering the future’ highlights the role of neural structures implicated 

in episodic memory for imagining possible future scenarios. Episodic 
memory, as we just saw, is the kind of remembering that involves 

in some sense ‘re-living’ a past experience (as when we remember
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a specific, perhaps painful, encounter with a neighbour’s dog). It is usu- 

ally contrasted (Tulving, 1983) with ‘semantic memory’, which concerns 

concepts, features, and properties (dogs usually have four legs, bark, 

and come in a wide variety of shapes and forms). Semantic memory 

is also rooted in our past experience, but it shapes our current grip on 

the world rather than mentally transporting us backwards or forwards 

in time. 

Further evidence for shared neural substrates for mental time 

travel into the past and into the future comes from work on mem- 

ory impairments. Certain forms of amnesia are correlated with 

problems in imagining the future. Hassabis et al. (2007) report that 

four out of five hippocampal amnesics were impaired in imagining 

novel events—asked to construct new versions of everyday scenes, 

their efforts produced less detail, and that detail was less well orga- 

nized into coherent spatial structure. Schacter et al. (2007) report 

that a specific pattern of age-related deterioration in recall (sparse- 

ness of episode-specific detail; see Addis et al., 2008) marches in step 

with a similar pattern in age-related future thinking. Such evidence 

leads them to defend a ‘constructive episodic simulation hypothesis’ 

implicating a shared neural system that supports the ‘flexible recom- 

bination of details from past events into novel scenarios’. It is this 

future-oriented system, rather than episodic memory per se that, they 

suggest, is the true bearer of adaptive value. The brain, they conclude, 

is ‘a fundamentally prospective organ that is designed to use informa- 

tion from the past and the present to generate predictions about the 

future’ (Schacter et al,, 2007, p. 660). This may be the deep reason why 

episodic memory is fragile, patchy, and reconstructive since ‘a mem- 

ory system that simply stored rote records would not be well-suited 

to simulating future events’ (Schacter and Addis, 2007a, p. 27; see also 

Schacter and Addis, 2007b). 

Schacter and Addis, like Suddendorf and Corballis, are especially 

interested in the relations between episodic memory and a certain 

form of ‘personal, episodic” future thinking: one in which we mentally 

project ourselves ahead in time by simulating our own possible future 

experiences. I think we may now flag this as another important and 

distinctive manifestation of what already looks, from the PP perspec- 

tive, to be a quite fundamental alignment between perception, recall, 
and imagination. Such alignment flows directly, or so I have been argu- 

ing, from the basic prediction-and-generative-model-based perspective 

on perception: a perspective that may thus offer an even broader frame- 

work within which to conceptualize the relations between recall (of 

various kinds) and imagination (of various kinds).
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More generally, what seems to be emerging is a view of memory 

as intimately bound up with constructive processes of neural pre- 

diction and (hence) imagination. As one leading theorist of memory 

comments: 

If memory is fallible and prone to reconstructive errors, that 

may be because it is oriented towards the future at least as 

muchastowardsthepast. . .similar neural systems are involved 

in both autobiographical memory and future thinking, and 

both rely on a form of imagination. (Fernyhough, 2012, p. 20) 

3.12 A Cognitive Package Deal 

PP offers an attractive ‘cognitive package deal in which perception, 

understanding, dreaming, memory, and imagination may all emerge as 

variant expressions of the same underlying mechanistic ploy—the ploy 

that meets incoming sensory data with matching top-down prediction. 

At the heart of the package lies the ability to use downwards connec- 

tions to self-generate perception-like states. The very same ‘perceptual’ 

machinery, driven from the top-down but insulated from entrainment 
by the driving sensory signal, then accounts for imagery and dream- 

ing, and may pave the way for ‘mental time-travel” as we assemble cues 
and contexts able to reconstruct the past and preconstruct the future. 
This also paves the way for more deliberate forms of reasoning, as we 
shall later see. 

The resulting intimacy among some of our core mental facul- 

ties is striking. Perception (rich, world-revealing perception) occurs 

when the probabilistic residue of past experience meets the incom- 

ing sensory signal with matching prediction. Such prediction may 

be thin and unidimensional, or richly structured—capturing multi- 

modal regularities at many temporal and spatial scales. In its most 

sophisticated expressions, it may involve the reconstruction (or 

imaginative preconstruction) of rich webs of spatio-temporal con- 

text. Local, parochial perception thus phases gently into richer and 

richer forms of understanding, apt to support new forms of agency 
and choice. In place of any sharp distinction between perception and 

various forms of cognition, PP thus posits variations in the mixture 

of top-down and bottom-up influence, and differences of tempo- 

ral and spatial scale within the internal models that are structur- 

ing the predictions.”® Creatures thus endowed have a structured grip 

on their worlds: a grip that consists not in the symbolic encoding of
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quasi-linguistic ‘concepts’ but in the entangled mass of multiscale 

probabilistic expectations used to predict the incoming sensory 

signal. 

Such a picture is, however, radically incomplete. The crucial 

task—to which we now turn—is to locate the neural engines of predic- 

tion where they truly really belong: nested within the larger organiza- 
tional forms of the active body, and enmeshed in the transformative 

structures of our material, social, and technological worlds.



Part 11 

EMBODYING PREDICTION



4 
Prediction-Action Machines 

Try to feel as if you were crooking your little finger, whilst keeping it 

straight. In a minute it will fairly tingle with the imaginary change of 

position; yet it will not sensibly move, because it’s not really moving 

is also a part of what you have in mind. Drop this idea, think of the 
movement purely and simply, with all brakes off, and presto! it takes 

place with no effort at all. 

—William James! 

4.1 Staying Ahead of the Break 

To surf the waves of sensory stimulation, predicting the present is sim- 

ply not enough. Instead, we are built to engage the world. We are built 

to act in ways that are sensitive to the contingencies of the past, and 

that actively bring forth the futures that we need and desire. How does 

a guessing engine (a hierarchical prediction machine) turn prediction 

into accomplishment? The answer that we shall explore is: by predict- 

ing the shape of its own motor trajectories. In accounting for action, 

we thus move from predicting the rolling present to predicting the 

near-future, in the form of the not-yet-actual trajectories of our own 

limbs and bodies. These trajectories, predictive processing suggests, 

are specified by their distinctive sensory (especially proprioceptive) 

consequences. In ways that we are about to explore, predicting these 

(non-actual) sensory states actually serves to bring them about. 

Such predictions act as self-fulfilling prophecies. Expecting the 

flow of sensation that would result were you to move your body so as 

to keep the surfboard in that rolling sweet spot results (if you happen 

to be an expert surfer) in that very flow, locating the surfboard right 

where you want it. Expert prediction of the world (here, the dynamic 
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ever-changing waves) combines with expert prediction of the sensory 

flows that would, in that context, characterize the desired action, so as 

to bring that action about. This is a neat trick. It intersects with power- 

ful yet frugal computational models of motor control, and it has exten- 

sions and implications that will occupy us for the next several chapters. 

Those extensions and implications range all the way from accounts of 
agency and experience to accounts of the disturbed or atypical states 

found in schizophrenia and autism. 

As these accounts of action and agency unfold, a curious thing 

happens. Approaches that once looked like competitor-templates for 

understanding mind and behaviour emerge as complementary aspects 

of a single overarching cognitive ploy. Revisiting familiar themes 

from this perspective, we discover that computationally frugal solu- 
tions stressing embodiment, action, and the exploitation of bodily and 

environmental opportunities emerge quite naturally from a predictive 

processing (PP) framework involving cascading inference, internal 

generative models, and ongoing estimations of our own uncertainty. 

Such approaches are often presented? as deeply opposing visions of the 

human (and animal) mind. But from the vantage point on offer they 

are increasingly revealed as coordinated (and mutually coordinating) 

elements in a single adaptive ensemble. 

4.2 Ticklish Tales 

Why can't you tickle yourself? That was the question famously asked 

by Blakemore, Wolpert, and Frith (1998).> Their answer, drawing upon 
a substantial body of previous work on sensorimotor learning and 

control,* invoked two basic elements each of which appeared (in less 

restricted forms) in the account of perception pursued in Part L. 

The first basic element is the (now familiar) idea of a generative 
model, here appearing as a ‘forward model of the motor system’ used 

to predict the sensory consequences of self-generated movement. The 

second is a version of the ‘predictive coding’ proposal according to 
which the systemic impact of well-predicted sensory inputs is reduced 

or eliminated. Putting these together for the special case of attempted 

self-tickling suggested a simple but compelling schema in which the 

‘attenuation of self-produced tactile stimulation is due to the sensory 
predictions made by an internal forward model of the motor system’ 

(Blakemore, Wolpert, and Frith (2000), p. R11). 

The would-be self-tickler, Blakemore et al. argued, commands a 

‘forward model’ of the likely sensory consequences of her own motor
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commands. When she sets out to self-tickle, a copy of the motor com- 

mand (known as the ‘efference copy’; Von Holst, 1954) is processed 

using the forward model. This model captures (or ‘emulates’; see 
Grush, 2004) the relevant biodynamics of the motor plant, enabling a 
rapid prediction of the likely feedback from the sensory peripheries. It 

does this by encoding the relationship between motor commands and 

predicted sensory outcomes. The motor command is captured using 

the efference copy which, fed to the forward model, yields a prediction 

of the sensory outcome (sometimes called the ‘corollary discharge’). 

Comparisons between the actual and the predicted sensory input were 

thus enabled, and these offered a potential source of useful information 

for distinguishing self-induced motion (the sensory outcomes of which 

would be very precisely predicted) from sensory effects rooted in the 

operation of external factors and forces. Such comparisons would also 

enable the nervous system to dampen or even remove the components 

of sensory feedback attributable to our own self-induced movements, 

as seems to occur when we perceive the visual scene as essentially 

stable despite the rather large ongoing sensory fluctuations caused by 

movements of the head and eyes (for a classic discussion, see Sperry, 

1950).° If, as seems intuitive, the feeling of ticklishness requires a cer- 
tain element of surprise (not concerning the mere fact of being tickled, 

so much as the detailed ongoing shape of the stimulation), we now have 

the bones of an explanation of the elusiveness of the self-induced tickle. 

The barrier to self-tickling, this suggests, is akin to the barrier to 

telling yourself a joke: funny as it may be, the punch-line is just never 

going to be enough of a surprise. By deploying a precise model of the 
mapping from our own motor commands to sensory (bodily) feedback, 

we deprive ourselves of the ability to self-stimulate in a sufficiently 
unpredictable fashion and we dampen our own sensory responses to 

the ongoing stimulation. 

Such dampening is indeed widely observed. Some fish, for exam- 

ple, generate electrical fields and sense disturbances in those fields 

indicating the presence of prey (Sawtell et al., 2005; Bell et al.,, 2008). To 

do so, they need to discount the much larger disturbances created by 

their own movements. The solution, once again, looks to involve the 

use of a predictive forward model and some form of attendant sensory 

attenuation. 

The same pair of mechanisms (forward-model-based predic- 

tion and the dampening of resulting well-predicted sensation) have 

been invoked to explain the unsettling phenomenon of ‘force escala- 

tion” (Shergill, Bays, Frith, & Wolpert, 2003). In force escalation, physi- 

cal exchanges (playground fights being the most common exemplar)



114 EMBODYING PREDICTION 

mutually ramp up via a kind of step-ladder effect in which each person 

believes the other one hit them harder. Shergill et al. describe experi- 

ments that suggest that in such cases each person is truthfully report- 

ing their own sensations, but that those sensations are skewed by the 

attenuating effects of self-prediction. Thus, ‘self-generated forces are 
perceived as weaker than externally generated forces of the same mag- 

nitude’ (Shergill et al., 2003, p. 187). This was shown using experiments 

in which an external device applied a force to a subject’s (left index) 

fingertip, and the subject was then asked to match the force to which 

they had just been exposed by using their right index finger to push on 

their left one (via a force transducer allowing accurate measurement of 

the force applied). Subjects repeatedly overestimated the force required 

to obtain a match (hence the paper’s memorable title “Two Eyes for an 

Eye’). The discrepancy was striking: ‘Despite the stimuli being identical 

at the level of peripheral sensation, the perception of force is reduced 

by about a half when the force is self-generated” (Shergill et al., 2003, 

p- 187). It is easy to imagine the snowballing effects of such diminished 

perception of self-generated forces when two agents engage in (what 
they each believe to be) a tit-for-tat exchange of blows or, for that matter, 

other kinds of physical interaction. 

One way to improve accuracy in such cases is to require the sub- 

ject to respond using a more indirect method, thus bracketing the 

precise forward modelling (and attendant sensory dampening) that 

accompanies normal bodily action. When asked to match the force 

by using their finger to move a joystick controlling force output, sub- 

jects were better able (Shergill et al,, 2003, p. 187) to match the original 

force. A similar manipulation is available for the would-be self-tickler. 

Blakemore, Frith, and Wolpert (1999) used a robotic interface (as shown 

in Figure 4.1) both to interpose time-delays and to vary the trajectory of 

motion linking the subject’s own action to the resulting stimulation. As 

these delays and variations increased, so too did the subjects’ ‘ticklish- 

ness rating’ for the resulting stimulation. Such manipulations attempt 

to outwit the precise forward model, forcing the subject to react as if to 

an unpredictable external stimulus. 

Interestingly, the normal dampening of self-predicted sensations 

is disturbed in schizophrenia. Schizophrenic subjects perform more 

accurately than neurotypical ones on the force-matching task (Shergill 
et al,, 2005) and are also more capable of ‘self-tickling’ (Blakemore et al., 

2002). They are also, as we noted earlier, less susceptible to the Hollow 

Face illusion described in 1.17. The reduction of sensory attenuation 

in schizophrenia may help explain the emergence, in schizophrenic 

subjects, of various delusions concerning agency, such as the feeling
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FIGURE 3.1 Diagram of Experimental Setup 

A tactile stimulus constituting a piece of foam attached to the end of a robotic 

manipulator was positioned above the subjects’ right palm. The subjects 

gripped a cylindrical object with the thumb and index finger of their left 

hand. This object was held directly above the tactile stimulus and was 

attached to a second robotic device. In the externally produced tactile stimu- 

lus condition, the right robot was programmed to produce the sinusoidal 

(smooth, repetitive, oscillating) tactile stimulus movement on the subjects’ 

right hand. In all the self-produced tactile stimulus conditions, the subjects 

were required to move the object held in their left hand sinusoidally which, 

via two robots, produced the same movement of the tactile stimulus above 

their right hand. Delays and trajectory perturbations could be introduced 

between the movement made by the left hand and the resultant movement of 

the right robot. 

Source: From Blakemore, Frith, & Wolpert, 1999. 

that your actions are under the control of another agent (Frith, 2005). 

Under-attenuated sensations resulting from self-produced movements 

will be unusually ‘surprising’, and hence may be misattributed to exter- 

nal influences. More generally still, there is a negative correlation, in 

normal subjects, between the amount of sensory attenuation and the 

tendency to form delusional beliefs (Teufel et al., 2010). 

4.3 Forward Models (Finessing Time) 

Why bother to develop a forward model in the first place? Not, presum- 

ably, as an evolved mechanism for force escalation or a defence against 
the dubious practice of self-tickling. Instead, the use of a forward model
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turns out to be essential to overcome a variety of signalling delays that 

would otherwise impede fluid motion. This is because: 

Delays are present in all stages of sensorimotor system, from the 

delay in receiving afferent sensory information, to the delay in 

our muscles responding to efferent motor commands. Feedback 

of sensory information (that we take to include information 

about the state of the world and consequences of our own 

actions) is subject to delays arising from receptor dynamics as 

well as conduction delays along nerve fibers and synaptic relays. 

The upshot, according to Franklin and Wolpert, is that: 

we effectively live in the past, with the control systems only 

having access to out-of-date information about the world and 

our own bodies, and with the delays varying across different 

sources of information. (Both quotes from Franklin & Wolpert, 
2011, pp. 425—426) 

Forward models provide a powerful and elegant solution to such prob- 

lems, enabling us to live in the present and to control our bodies (and 

well-practiced tools; see Kluzik et al,, 2008) without much sense of ongo- 

ing struggle or effort. Such models, moreover, can be learnt and cali- 

brated using the kinds of prediction-based learning scheme reviewed in 
the opening chapters, since forward models can be trained and updated 

using prediction errors, that is by comparing the predicted and actual 

outcome of a motor command’ (Wolpert & Flanagan, 2001, p. 729). 

Why, finally, should the sensations that succumb to fine-grained 
prediction using such forward models be attenuated and those that 

escape such prediction be enhanced? The standard answer (which we 

touched on earlier) is that self-prediction enables us to filter the barrage 

of sensory data, enhancing that which is externally generated, deliver- 

ing stable percepts in the face of small motions of the head and eye, 
and dampening responses to more predictable, and perhaps thus less 

ecologically pressing, stimuli (see, e.g., Wolpert & Flanagan, 2001). Thus 

Stafford and Webb (2005), summing up the evolutionary rationale for 

the kinds of model-based dampening effect revealed by the tickling 

and force escalation cases, comment that: 

Our sensory systems are constantly bombarded with sensory 

stimulation from the environment. It is therefore important to 

filter out sensory stimulation that is uninteresting—such as 
the results of our own movements—in order to pick out, and 

attend to, sensory information that carries more evolutionary
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importance, such as someone touching us. ... The predictive 

system protects us and tickling may just be an accidental con- 

sequence. (Stafford & Webb, 2005, p. 214) 

In a similar vein Blakemore, Frith, and Wolpert, summing up the 

role of model-based dampening during self-produced movement 

suggest that: 

prediction-based modulation acts as a filter on incoming sen- 
sory signals that can enhance the afference-to-reafference ratio 

(akin to increasing the signal-to-noise ratio). This modulation 

of incoming sensory input might have the effect of accentuat- 

ing features of importance (for example, those due to external 

events). (Blakemore, Frith, & Wolpert, 1999, pp. 555-556) 

These are, of course, versions of the rationale that motivates the much 

more general ‘predictive processing’ proposal itself. That proposal, 

grounded in the bedrock of hierarchical generative models and made 
flexible by the additional ploy (see chapter 2) of precision-weighting 

prediction error, provides a larger framework able to absorb and repro- 

duce many key insights from classical work on forward models and 
motor control. More importantly, though, it reproduces them in a way 

that reveals a much richer network of connections between perception 

and action, and that (as we'll later see) repairs a revealing problem with 

the accounts we have just been considering. 

The problem with those accounts is that attenuating prediction 

error using veridical predictions from the forward model does not 

sufficiently explain the sensory attenuation itself. If prediction error is 

attenuated by top-down predictions emanating from a forward model, 

then, once these predictions are in place, the sensory stimulations 

should still be registered perceptually. Successfully predicting, for 

example, the flow of visual states as I saccade around a highly famil- 

iar scene does not in any way render me experientially blind! A more 

complete solution (as we will see in chapter 7) turns not solely upon the 

role of the forward model but also upon another (less explored) effect 
of variable precision weighting.® For the moment, however, our concern 

is with some core issues concerning motor control itself. 

4.4 Optimal Feedback Control 

Motor control, at least in the dominant ‘internal model based’ formula- 

tions, requires the development and use not simply of a forward model
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but also of a so-called inverse model (Kawato, 1999). Where the forward 

model maps current motor commands to predicted sensory effects, 

the inverse model (also known as a controller) ‘performs the oppo- 

site transformation ... determining the motor command required to 

achieve some desired outcome’ (Wolpert, Doya, & Kawato, 2003, p. 595). 

According to these ‘auxiliary forward model’ (Pickering & Clark, 2014) 

accounts, the action command sends efference copy to a forward model 

of the action. In such a model, action commands are given as input, and 

the projected sensory consequences of those commands are generated 

as output. This forward model could simply involve a look-up table, 

but is more likely to involve calculations (e.g., approximations to the 

laws of mechanics), which are in general computed before the action 

is performed. As a simple analogy, I turn my radiator up from ‘off’ to 
half-way. Well before the radiator heats up, I predict (based on repeated 

experience with my central heating) that it will take 5 minutes to heat 

by 10°C (using very simple equations, e.g., increase of 2°C per minute, 

for each 30° turn). I can act upon the prediction right away (e.g., take 

my coat off) or compare the prediction with the results, and learn from 

any discrepancy via my inverse model (e.g., turn the knob further). Such 

accounts (‘Auxiliary Forward Model’ architectures, see Figure 4.2) thus 

posit two distinct models: an inverse model (or optimal control model) 

that converts intentions into motor commands, and a forward model 

that converts motor commands into sensory consequences (which 

are compared with actual outcomes for online error correction and 

learning). 
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FIGURE 4.2 Auxiliary Forward Model (AFM) Architecture 

In this architecture, the output of the inverse model is a motor command, 

copied to the forward model, which is used to estimate sensory feedback. 

Source: From Pickering & Clark, 2014.
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Learning and deploying an inverse model appropriate to some task 

is, however, generally much more demanding than learning the for- 

ward model and requires solving a complex mapping problem (link- 

ing the desired end-state to a nested cascade of non-linearly interacting 

motor commands) while effecting transformations between varying 

co-ordinate schemes (e.g., visual to muscular or proprioceptive, see, 

e.g., Wolpert, Doya, & Kawato, 2003, pp. 594—596). 

Recent work on ‘optimal feedback control’ (for a review, see 

Franklin & Wolpert, 2011, pp. 428—429) represents a sophisticated and 

successful development of this framework. It makes extensive use of 
so-called ‘mixed cost-functions” as a means of selecting one trajec- 

tory or movement from the many (indeed, infinitely many) that would 

achieve a goal, and it combines feedforward and feedback control strat- 

egies in an efficient way (for some nice examples, see Todorov, 2004; 

Harris & Wolpert, 2006; Kuo, 2005). In particular, such strategies allow 

the planning and the execution of movement to be accomplished at the 

same time, since ‘a feedback control law is used to resolve moment-by- 

moment uncertainties, allowing the system to best respond to the cur- 

rent situation at each point in time’ (DeWolf & Eliasmith, 2011, p. 3). 

This differs from more traditional approaches in which planning and 

execution are distinct processes. 

Another advantage of the feedback control strategy is that it identi- 

fies a ‘redundant sub-space” within which variability does not affect 

task completion. The feedback controller only bothers to correct devia- 

tions that move the system outside this space of allowable variation. 

This is the so-called ‘minimum intervention principle’ of Todorov 

(2009). Such systems are also able to make maximal use of their own 

intrinsic or ‘passive’ dynamics. We shall return to this topic in Part 

I, but the key point is that they can compute the cost of an action 

as the difference between what the system would do (how the motor 

plant would behave) with and without the control signal. Completing 

this list of virtues, extensions of the paradigm allow for the combina- 

tion of pre-learnt control sequences to deal with novel circumstances 

by ‘quickly and cheaply creating optimal control signals from previ- 

ously learned optimal movements’ (DeWolf & Eliasmith, 2011, p. 4). 

The upshot is a kind of compositional grammar for pre-learnt motor 

commands. Operating in hierarchical settings (in which higher levels 

encode compressed representations of trajectories and possibilities) 

such systems are able to control extremely complex behaviours using 

efficient and recombinable neural resources. Formally, optimal feed- 

back control theory (see especially Todorov & Jordan, 2002; Todorov, 

2008) displays the motor control problem as mathematically equivalent
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to Bayesian inference (see Appendix 1). Very roughly—again, see 

Todorov 2008 for a detailed account—you treat the desired (goal) state 

as observed and perform Bayesian inference to find the actions that get 

you there. For our purposes, all that matters about Bayesian inference 

here is that it is a form of probabilistic reasoning that takes into account 

the uncertainty of the data, combining that with prior beliefs about the 
world and about the motor system (as encoded by a generative model) 

in order to deliver (here, relative to some cost function) optimal control 

(see, e.g., Franklin & Wolpert, 2011, pp. 427-429). 

This mapping between perception and action emerges also in some 

recent work on planning (e.g., Toussaint, 2009). The idea, closely related 

to these approaches to simple movement control, is that in planning 

we imagine a future goal state as actual then use Bayesian inference to 

find the set of intermediate states (which can now themselves be whole 

actions) that get us there. There is thus emerging a fundamentally uni- 

fied set of computational models which, as Toussaint (2009, p. 28) com- 

ments, ‘do not distinguish between the problems of sensor processing, 

muotor control, or planning’. Such theories suggest that perception and 

action are in some deep sense computational siblings and that: 

The best ways of interpreting incoming information via per- 

ception, are deeply the same as the best ways of controlling 

outgoing information via motor action ... so the notion that 

there are a few specifiable computational principles governing 
neural function seems plausible. (Eliasmith, 2007, p. 380) 

4.5 Active Inference 

The PP model introduced in Part I combines very naturally (while sug- 
gesting some provocative twists) with these emerging approaches to 

action and to motor control.? Work on optimal feedback control exploits 
the fact that the motor system (like visual cortex) displays complex 

hierarchical structure. Such structure allows complex behaviours to 

be specified, at higher levels, in compact ways whose implications can 

be progressively unpacked at the lower levels. The intuitive difference, 

however, is that in the case of motor control we imagine a downwards 

flow of information, whereas in the case of visual cortex, we imagine an 

upwards flow. Vision, on that intuitive picture, takes complex energetic 
stimuli and maps them onto increasingly compact encodings, whereas 

motor control takes some compact encoding and progressively unpacks 

it into a complex set of muscle commands. Descending pathways in
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motor cortex, this traditional picture suggests, should correspond func- 

tionally to ascending pathways in visual cortex. This is not, however, 

the case. Within motor cortex the downwards connections (descending 

projections) are ‘anatomically and physiologically more like backwards 

connections in the visual cortex than the corresponding forward con- 

nections’ (Adams et al,, 2012, p. 1). This is suggestive. Where we might 

have imagined the functional anatomy of a hierarchical motor system 

to be some kind of mirror-image of that of the perceptual system, the 

two seem much more closely aligned.” The explanation, PP suggests, 

is that the downwards connections are, in both cases, taking care of 

essentially the same kind of business: the business of predicting sen- 

sory stimulation. 

PP, as we saw in Part I, already subverts the traditional picture with 

respect to perception. The compact higher-level encodings are now part 

of an apparatus trying to predict the plays of energy across the sensory 

surfaces. The same story applies, PP suggests, to the motor case. The dif- 

ference is that motor control is, in a certain sense, subjunctive. It involves 

predicting the non-actual proprioceptive trajectories that would ensue 

were we performing some desired action. Reducing prediction errors 

calculated against these non-actual states then serves (in ways we are 

about to explore) to make them actual. We predict the proprioceptive 

consequences of our own action and this brings the action about. 

The upshot is that the downwards (and lateral) connections, in 

both motor and sensory cortex, are carrying complex predictions, and 

the upwards connections carrying prediction errors. This explains the 

otherwise ‘paradoxical’ (Adams, Shipp, & Friston, 2013, p.611) fact that 

the functional circuitry of motor cortex does not seem to be inverted 

with respect to that of sensory cortex. Instead, the very distinction 

between motor and sensory cortex is eroded—both are in the business 
of top-down prediction, though what kind of thing they are predicting 

is (of course) different. Motor cortex here emerges, ultimately, as a mul- 

timodal sensorimotor area issuing predictions in both proprioceptive 

and other modalities. 

The core idea (Friston, Daunizeau, et al,, 2010) is thus that there 

are two ways in which biological agents can reduce prediction error. 

The first (as seen in Part I) involves finding the predictions that best 

accommodate the current sensory inputs. The second is by performing 

actions that make our predictions come true—for example, moving around 
and sampling the world so as to generate or discover the very percep- 

tual patterns that we predict. These two processes can be constructed 

(we shall see) using the same computational resources. In the normal 

course of events, they work seamlessly together, as seen in microcosm
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in the discussion of gaze allocation in chapter 2 (2.6 to 2.8). The upshot 

is that: 

the perceptual and motor systems should not be regarded as 

separate but instead as a single active inference machine that 
tries to predict its sensory input in all domains: visual, audi- 

tory, somatosensory, interoceptive and, in the case of the motor 

system, proprioceptive. (Adams, Shipp, & Friston, 2013, p. 614) 

‘Active Inference’ (Friston, 2009; Friston, Daunizeau, et al., 2010) then 

names the combined mechanism by which perceptual and motor 

systems conspire to reduce prediction error using the twin strate- 

gies of altering predictions to fit the world, and altering the world 

to fit the predictions. This general schema may also—perhaps more 

transparently—be labelled ‘action-oriented predictive processing’ 

(Clark, 2013). In the case of motor behaviours, the key driving predic- 

tions now have a subjunctive flavour. They are, Friston and colleagues 

suggest, predictions of the proprioceptive patterns that would ensue 

were the action to be performed. ‘Proprioception’ names the inner 

sense that informs us about the relative locations of our bodily parts 

and the forces and efforts that are being applied. It is to be distin- 

guished from exteroceptive (i.e, standard perceptual) channels, such 

as vision and audition, and from interoceptive channels informing us 

of hunger, thirst, and the states of the viscera. Predictions concerning 

the latter will play a large role when we later consider the construc- 
tion of feelings and emotions. For the moment, however, our concern is 

with simple motor action. To make such action come about, the motor 

plant behaves (Friston, Daunizeau, et al.,, 2010) in ways that cancel out 

proprioceptive prediction errors. This works because the propriocep- 

tive prediction errors signal the difference between how the bodily 
plant is currently disposed and how it would be disposed were the 

desired actions being performed. Proprioceptive prediction error will 

thus persist until the actual disposition of the motor plant is such as to 

yield (moment-by-moment) the projected proprioceptive inputs. In this 

way, predictions of the unfolding proprioceptive patterns that would 

be associated with the performance of some action actually bring that 

action about. This kind of scenario is neatly captured by Hawkins and 

Blakeslee (2004), who write that: 

As strange as it sounds, when your own behaviour is 

involved, your predictions not only precede sensation, they 

determine sensation. Thinking of going to the next pattern in 

a sequence causes a cascading prediction of what you should
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experience next. As the cascading prediction unfolds, it gen- 

erates the motor commands necessary to fulfil the predic- 

tion. Thinking, predicting, and doing are all part of the same 

unfolding of sequences moving down the cortical hierarchy. 

(Hawkins & Blakeslee, 2004, p. 158) 

Friston and colleagues go further, however, by suggesting that (precise) 

proprioceptive predictions directly elicit motor actions. This means 

that motor commands have been replaced by (or as I would rather 

say, implemented by) proprioceptive predictions. According to active 

inference, the agent moves body and sensors in ways that amount to 

actively seeking out the sensory consequences that their brains expect. 

Perception, cognition, and action—if this unifying perspective proves 

correct—work together to minimize sensory prediction errors by selec- 

tively sampling and actively sculpting (by motion and by intervention) 

the stimulus array. 

This erases any fundamental computational line between percep- 

tion and the control of action. There remains, to be sure, an obvious 

(and important) difference in direction of fit. Perception here matches 

neural; hypotheses; to sensory inputs, and involves ‘predicting the 

present’, while action brings unfolding proprioceptive inputs into line 

with neural predictions. The difference, as Anscombe (1957) famously 

remarked,” is akin to that between consulting a shopping list to select 

which items to purchase (thus letting the list determine the contents 

of the shopping basket) and listing some actually purchased items 

(thus letting the contents of the shopping basket determine the list). 

But despite this difference in direction of fit, the underlying form of 

the neural computations is now revealed as the same. Indeed, the main 

difference between motor and visual cortex, on this account, lies more 

in what kind of thing (for example, the proprioceptive consequences of 

a trajectory of motion) is predicted rather than how it is predicted. The 

upshot is that: 

The primary motor cortex is no more or less a motor cortical 

area than striate (visual) cortex. The only difference between 

the motor cortex and visual cortex is that one predicts retino- 

topic input while the other predicts proprioceptive input from 

the motor plant. (Friston, Mattout, & Kilner, 2011, p. 138) 

Perception and action here follow the same deep logic and are imple- 

mented using versions of the same computational strategy. In each case, 

the systemic imperative remains the same: the reduction of ongoing 

prediction error. In perception, this occurs when a top-down cascade
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successfully matches the incoming sensory data. In action, it occurs 

when physical motion cancels out prediction errors by producing the 

trajectory that yields some predicted sequence of proprioceptive states. 

Action thus emerges as a kind of self-fulfilling prophecy in which neu- 

ral circuitry predicts the sensory consequences of the selected action. 

Those consequences do not immediately obtain, however, so prediction 

error ensues: error that is then quashed by moving the body so as to 

bring about the predicted sequence of sensations. 

These ways of putting things can, however, make it sound as if per- 

ception and action are unfolding separately, each busily pursuing their 

own direction of fit. This would be a mistake. Instead, PP agents are 

constantly attempting to accommodate the sensory flux by recruiting 

an interwoven mesh of percepts and apt world-engaging actions. Our 
percepts, if this is correct, are not action-neutral ‘hypotheses’ about 

the world so much as ongoing attempts to parse the world in ways apt 

for the engagement of that world. To be sure, not all prediction errors 

can be resolved by actions—some must be resolved by getting a bet- 

ter grip on how things are. But the point of that exercise is to put us 

in touch with the world in a way that will enable us to select better 

actions. This means that even the perceptual side of things is deeply 

‘action-oriented’. This is unsurprising since the only point of percep- 

tual inference is to prescribe action (which changes sensory samples, 

which entrain perception). What we thus encounter is a world built of 

action-affordances. This will emerge more clearly in the remainder of 

the text. For the moment, the point to notice is that prediction error, 

even in the so-called ‘perceptual’ case, may best be seen as encoding 

sensory information that has not yet been leveraged for the control of 

apt world-enaging action. 

4.6  Simplified Control 

These prediction-based approaches to the control of action share many 

key insights with the important work on forward models and optimal 

feedback control described earlier. In common is the core emphasis on 

the prediction-based learning of a forward (generative) model able to 

anticipate the sensory consequences of action. In common too (as we 

shall later see in more detail) is a distinctive angle upon the experience 

of agency: one that traces that experience, just as the ‘tickling tales” had 
already started to suggest, in part to the delicacy of the match between 

prediction and the actual sensory flow. But active inference as it is 

being developed by Friston and others (see, e.g., Friston, 2011a; Friston,
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Samothrakis, & Montague, 2012) differs from these approaches in two 

key respects. 

First, active inference dispenses with the inverse model or control- 

ler and along with it the need for efference copy of the motor com- 

mand. Second, it dispenses with the need for cost or value functions 

as a means of enforcing speed, accuracy, energetic efficiency, and so 

on! This all sounds quite dramatic, but in practice it amounts mostly 

to a reallocation of existing duties: a reallocation in which cost or value 

functions are ‘folded in’ to the context-sensitive generative models that 

simultaneously prescribe recognition and action. Nonetheless this real- 

location is conceptually attractive. It fits neatly with important insights 

from real-world robotics and the study of situated action, and may help 

us to think better about the space of solutions to complex problems of 

action selection and motor control. 

Action is here reconceived as a direct consequence of expecta- 

tions (spanning multiple temporal and spatial scales) about trajecto- 

ries of motion. The upshot is that ‘the environment causes prior beliefs 

about motion ... while these beliefs cause the sampled environment’ 

(Friston & Ao, 2012, p. 10). Such approaches highlight a kind of circular 

causality that binds what the agent knows (the probabilistic ‘beliefs™ 

that figure in the generative model) to actions that select inputs that 

confirm those very beliefs. Our expectations here ‘cause the sampled 

environment’, as Friston and Ao put it, but only in the metaphysically 

innocent sense of driving actions that selectively disclose predicted 

sensory stimulations. 

It is in this way that the agent by action calls forth the very world 

that she knows? This, as we shall see in Part III, brings action-oriented 

predictive processing into close and productive contact with work on 

self-organizing dynamical systems, offering a new take on core elements 

of the so-called ‘enactivist’ vision: a vision in which minds are active 

constructors of the very worlds they reveal. At short timescales, this is 

just the process of active sampling described earlier. We sample the scene 

in ways that reflect and seek to confirm the grip upon the world that 

structured the sampling. This is a process that only the ‘fit" hy potheses 

(assuming that is understood in a suitably action-oriented manner) sur- 

vive. At longer timescales (see Part III) this is the process by which we 

build designer environments that install new predictions that determine 

how we behave (how we sample that very environment). We thus build 

worlds that build minds that expect to act in those kinds of worlds. 

For the moment, however, the most important thing to notice is 

that the forward-motor model is now simply part of a larger and more 

complex generative model associating predictions with their sensory
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consequences. Motor cortex here specifies not motor commands, tra- 

ditionally understood, but rather the sensory consequences of move- 

ments. Of special importance here are predictions about proprioceptive 

sensory consequences that implicitly minimize various energetic costs. 

Subject to the full cascade of hierarchical top-down processing, a sim- 
ple motor command then unfolds into a complex set of predictions 
concerning proprioceptive effects. These drive behaviour, and they 

cause us to sample the world in the ways that the current winning 

‘hypothesis’ dictates. Such predictions can be couched, at the higher 

levels, in terms of desired states or trajectories specified using extrinsic 

(world-centred, limb-centred) coordinates. This is possible because the 

required translation into intrinsic (muscle-based) coordinates is then 

devolved to what are essentially classical reflex arcs set up to quash 

proprioceptive prediction errors. Thus: 

if motor neurons are wired to suppress proprioceptive predic- 

tion errors in the dorsal horn of the spinal cord, they effectively 

implement an inverse model, mapping from desired sensory 

consequences to causes in intrinsic (muscle-based) coordinates. 

In this simplification of conventional schemes, descending 
motor commands become topdown predictions of propriocep- 

tive sensations conveyed by primary and secondary sensory 

afferents. (Friston, 20114, p. 491) 

The need for a distinct inverse model/optimal control calculation now 

seems to have disappeared. In its place we find a more complex for- 

ward model mapping prior beliefs about desired trajectories to sensory 

consequences, some of which (the ‘bottom level’ proprioceptive ones) 

are automatically fulfilled using classical reflex arcs. Nor, as mentioned 

earlier, is there any need for efference copy in these schemes. This is 

because descending signals are already (just as in the perceptual case) 

in the business of predicting sensory consequences. So-called ‘corollary 

discharge’ (encoding predicted sensory outcomes) is thus endemic and 

pervades the downwards cascade since ‘every backward connection in 

the brain (that conveys topdown predictions) can be regarded as cor- 

ollary discharge, reporting the predictions of some sensorimotor con- 

struct” (Friston, 2011a, p. 492). 

4.7 Beyond Efference Copy 

This proposal may, on first encounter, strike the reader as quite radical. 

Isn't an appreciation of the functional significance of efference copy one
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of the major success stories of contemporary cognitive and computa- 

tional neuroscience? In fact, most (perhaps all) of the evidence often 

assumed to favour that account is, on closer examination, simply evi- 

dence of the pervasive and crucial role of forward models and corol- 

lary discharge—it is evidence, that is to say, for just those parts of the 

traditional story that are preserved (and in fact are made even more 

central) by PP 

For example, Sommer and Wurtz’s influential (2008) review paper, 

whose focus is on the mechanisms that allow us to distinguish the 

sensory effects of our own movements from those due to environ- 

mental change, makes very little mention of efference copy as such. 

Instead, it makes widespread use of the more general concept of cor- 

ollary discharge—though as those authors also note, the two terms 

are often used interchangeably in the literature. A more recent paper, 

Waurtz et al. (2011), mentions efference copy only once, and then does 

so only to merge it with discussions of corollary discharge (which then 

occurs 114 times in the text). Similarly, there is ample reason to believe 

(just as the standard story suggests) that the cerebellum plays a special 

role here, and that that role involves making or optimizing perceptual 

predictions about upcoming sensory events (Bastian, 2006; Roth et al, 

2013; Herzfeld & Shadmehr, 2014). But such a role is, of course, entirely 

consistent with the PP picture. The moral, I suggest, is that it is the 

general concept of forward models and corollary discharge, rather than 

the more specific one of efference copy as we defined it earlier, that cur- 

rently enjoys the clearest support from both experimental and cogni- 

tive neuroscience. 

Efference copy figures prominently, of course, in one particular set 

of computational proposals. These proposals concern (in essence) the 
positioning of forward models and corollary discharges within a puta- 

tive larger cognitive architecture involving multiple paired forward 

and inverse models. In these ‘paired forward-inverse model” architec- 

tures (see, e.g, Wolpert & Kawato, 1998; Haruno, Wolpert, & Kawato, 

2003) motor commands are copied to a stack of separate forward mod- 
els used to predict the sensory consequences of actions. But acquir- 

ing and deploying such an architecture, as even its strongest advocates 

concede, poses a variety of extremely hard computational challenges 

(see Franklin & Wolpert, 2011). The PP alternative neatly sidesteps 

many of those costs. 

The PP proposal is that a subset of predicted sensory consequences 

(predicted proprioceptive trajectories) are acting as motor commands 

already. As a result there are no distinct motor commands to copy, 

and no efference copies as such. But one could, I suggest, equally well
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describe those forward-model-based predictions of proprioceptive tra- 

jectories as ‘implicit motor commands” motor commands that operate 

(in essence—more on this below) by specifying results rather than by 

specifying fine-grained limb and joint control. These implicit motor 

commands (proprioceptive predictions) also influence the even-wider 

range of predictions concerning the exteroceptive sensory conse- 

quences of upcoming actions. 

Much of the functionality that is normally attributed to the action 
of efference copy is thus preserved, including the forward-model-based 

explanation of core phenomena such as the finessing of time delays 

(Bastian, 2006) and the stability of the visual world despite eye move- 

ments (Sommer & Wurtz, 2006, 2008). The difference is that the heavy 

lifting that is usually done by the use of efference copy, inverse models, 
and optimal controllers is now shifted to the acquisition and use of 
the predictive (generative) model (i.e., the right set of prior probabi- 

listic ‘beliefs’). This is potentially advantageous if (but only if) we can 
reasonably assume that these beliefs ‘emerge naturally as top-down 

or empirical priors during hierarchical perceptual inference’ (Friston, 
20113, p. 492). The computational burden thus shifts to the acquisi- 

tion of the right set of priors (here, priors over trajectories and state 
transitions), that is, it shifts the burden to acquiring and tuning the 

generative model itself. 

4.8  Doing Without Cost Functions 

The second important difference (from the ‘optimal feedback control’ 

schema) is that active inference sidesteps the need for cost or value 

functions as a means of selecting and sculpting motor response. Once 

again, it does this (Friston, 2011a; Friston, Samothrakis, & Montague, 

2012) by, in essence, folding these into the generative model whose 

probabilistic predictions combine with sensory inputs to yield 

behaviours. 

Simple examples of cost or value functions (that might be applied 

to sculpt and select motor behaviours) include minimizing ‘jerk” (the 

rate of change of acceleration of a limb during some behaviour) and 

minimizing rate of change of torque (for these examples, see Flash & 

Hogan, 1985, and Uno et al,, 1989, respectively). Recent work on optimal 

feedback control, as noted earlier, minimizes more complex ‘mixed cost 

functions’ that address not just bodily dynamics but also systemic noise 

and the required accuracy of outcomes (see Todorov, 2004; Todorov & 

Jordan, 2002).
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Such cost functions (as Friston, 2011a, p. 496, observes) help 

resolve the many-one mapping problem that afflicts classical 

approaches to motor control. There are many ways of using one’s 

body to achieve a certain goal, but the action system has to choose 
one way among the many. Such devices are not, however, needed 

within the framework on offer, since ‘in active inference, these prob- 

lems are resolved by prior beliefs about the trajectory (that may 

include minimal jerk) that uniquely determine the (intrinsic) con- 

sequences of (extrinsic) movements’ (Friston, 2011a, p. 496). Simple 

cost functions are thus folded into the expectations that determine 

trajectories of motion. 

But the story does not stop there. For the very same strategy here 

applies to the notion of desired consequences and rewards at all lev- 

els. Thus we read that ‘crucially, active inference does not invoke any 

“desired consequences”. It rests only on experience-dependent learn- 

ing and inference: experience induces prior expectations, which guide 

perceptual inference and action’ (Friston, Mattout, & Kilner, 2011, 

p. 157). Apart from a certain efflorescence of corollary discharge, in 

the form of downward-flowing predictions, we here seem to confront 

something of a desert landscape: a world in which value functions, 

costs, reward signals, and perhaps even desires have been replaced by 

complex interacting expectations that inform perception and entrain 

action.”” But we could equally say (and I think this is the better way 

to express the point) that the functions of rewards and cost functions 

are now simply absorbed into a more complex generative model. They 

are implicit in our sensory (especially proprioceptive) expectations 

and they constrain behaviour by prescribing their distinctive sensory 

implications. 

Intrinsically rewarding ‘appetitive’ stimuli (to take the most obvi- 

ous example) are thus not to be eliminated from our ontology—instead, 

they are simply reconceived as stimuli that, once identified, ‘elicit oblig- 

atory volitional and autonomic responses’ (Friston, Shiner, et al., 2012, 

p. 17). Conceptually, what matters here is that behaviours are depicted 

as brought about by the interaction of our beliefs (sub-personal webs of 

probabilistic expectation) with the environment. Reward and pleasure 

are then consequences of some of those interactions, but they are not (if 

this—admittedly quite challenging—part of the story is correct) causes 

of those interactions. Instead, it is the complex expectations that drive 
behaviour, causing us to probe and sample the world in ways that may 

often deliver reward or pleasure. In this way ‘reward is a perceptual 

(hedonic) consequence of behavior, not a cause’ (Friston, Shiner, et al, 

2012, p. 17).
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Notice that there is no overall computational advantage to be gained 

by this reallocation of duties. Indeed, Friston himself is clear that: 

there is no free lunch when replacing cost functions with prior 
beliefs [since] it is well-known [Littman et al.,, 2001] that the 

computational complexity of a problem is not reduced when 

formulating it as an inference problem. (Friston, 2011a, p. 492) 

Nonetheless it may well be that this reallocation (in which cost func- 
tions are treated as priors) has conceptually and strategically impor- 

tant consequences. It is easy, for example, to specify whole paths or 

trajectories using prior beliefs about (you guessed it) paths and trajecto- 

ries! Scalar reward functions, by contrast, specify points or peaks. The 

upshot is that everything that can be specified by a cost function can 

be specified by priors over trajectories, but not vice versa, and (more 

generally) that cost functions can usefully be treated as consequences 

rather than causes. 

Related concerns have led many working roboticists to argue 

that explicit cost-function-based solutions are inflexible and biologi- 
cally unrealistic, and should be replaced by approaches that entrain 

actions in ways that implicitly exploit the complex attractor dynamics 

of embodied agents (see, e.g., Thelen & Smith, 1994; Mohan & Morasso, 

2011; Feldman, 2009). One way very roughly to imagine this broad class 

of solutions (and for a longer discussion, see Clark, 2008, chapter 1) is 

by thinking of the way you might control a wooden marionette simply 

by moving the strings attached to specific body parts. In such cases, 

‘the distribution of motion among the joints is the “passive” conse- 

quence of the ... forces applied to the end-effectors and the “compli- 

ance” of different joints’ (Mohan & Morasso, 2011, p. 5). Such solutions 

aim (in line with PP) to ‘circumvent the need for kinematic inversions 

and cost-function computations’ (Mohan, Morasso, et al,, 2013, p. 14). As 

proof of principle, Mohan, Morasso, et al. implemented and tested their 

ideas in a series of robotic simulations using the humanoid iCub robot, 

noting that in these experiments action itself is driven by a kind of 
internal forward-model-based simulation. All this suggests a tempting 

confluence between the PP approach and the pursuit of computation- 

ally frugal means of motor control. We shall have more to say about this 

kind of story in chapter 8. 

Solutions that make maximal use of learnt or inbuilt ‘synergies’ 

and the complex biomechanics of the bodily plant can be very fluently 
implemented (see Friston, 2011a; Yamashita & Tani, 2008) using the 

resources of active inference and (attractor-based) generative models. 

For example, Namikawa et al. (2011) show how a generative model with
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multi-timescale dynamics enables a fluent and decomposable (see also 

Namikawa & Tani, 2010) set of motor behaviours. In these simulations: 

Action per se, was a result of movements that conformed to 

the proprioceptive predictions of ... joint angles [and] ... per- 

ception and action were both trying to minimize prediction 

errors throughout the hierarchy, where movement minimized 
the prediction errors at the level of proprioceptive sensations. 

(Namikawa et al., 2011, p. 4) 

Another example (that we briefly met earlier) is the use of 

downward-flowing prediction to avoid the need to transform desired 

movement trajectories from extrinsic (task-centred) to intrinsic (e.g., 

muscle-centred) coordinates: an ‘inverse problem’ that is said to be 

complex and ill-posed (Feldman, 2009; Adams, Shipp, & Friston, 

2013, p. 8). In active inference the prior beliefs that guide motor action 

already map predictions couched (at high levels) in extrinsic frames of 

reference onto proprioceptive effects defined over muscles and effec- 
tors, simply as part and parcel of ordinary online control. In this way: 

Active inference dispenses with this hard [inverse] problem by 

noting that a hierarchical generative model can map predic- 

tions in extrinsic coordinates to an intrinsic (proprioceptive) 

frame of reference. This means the inverse problem becomes 

almost trivial—to elicit firing in a particular stretch receptor 

one simply contracts the corresponding muscle fibre. In brief, 

the inverse problem can be relegated to the spinal level, ren- 

dering descending afferents from M1 [primary motor cortex] 
predictions as opposed to commands— and rendering M1 part 

of a hierarchical generative model, as opposed to an inverse 

model. (Adams, Shipp, & Friston, 2013, p. 26) 

Motor commands are thus replaced (see Figure 4.2) by descending pro- 

prioceptive predictions, whose origins may lie at the highest (multi- 

modal or meta-modal) levels but whose progressive (context-sensitive) 

unpacking proceeds all the way to the spinal cord, where it is finally 

cashed out via classical reflex arcs (see Shipp et al, 2013; Friston, 

Daunizeau, et al., 2010). 

By reconceiving cost functions as implicit in bodies of expectations 

concerning trajectories of motion, such solutions avoid the need to solve 

difficult (often intractable) optimality equations during online process- 

ing.'® Moreover, courtesy of the more complex generative model, these 

solutions fluidly accommodate signalling delays, sensory noise, and 

the many-one mapping between goals and motor programs. Arguably,
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then, more traditional approaches that involve the explicit computation 

of costs and values make unrealistic demands on online processing, 

fail to exploit helpful (e.g. passive dynamic) characteristics of the physi- 

cal plant, and lack biologically plausible implementations. 

These various advantages come, however, at a familiar cost. For 

here too the PP story shifts much of the burden onto the acquisition 

of those prior ‘beliefs'—the multilevel, multimodal webs of probabi- 

listic expectation that together drive perception and action. The PP 

bet is, in effect, that this is a worthwhile trade-off since PP describes a 

biologically plausible architecture maximally suited to installing and 

subsequently tuning the requisite suites of generative-model based 

prediction through embodied interactions with the world. 

We can now summarize the main differences between these 

approaches to motor control. PP posits a single integrated forward 

model (see Figure 4.3) driving action, where more standard approaches 

(Figure 4.2) depict the action-related forward model as a kind of addi- 

tional resource. According to the more standard (‘auxiliary forward 

model, see Pickering & Clark, 2014) account, the forward model is 

quite distinct from the apparatus that actually drives online action. It 

is a (simplified) model of some of the effects of that apparatus. Such a 

model is free to depart considerably in form from whatever governs the 

true kinematics of the agent. Furthermore, the outputs of the forward 

model do not actually cause movements: they are just used to finesse 
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Source: From Pickering & Clark, 2014.
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and predict outcomes, and in learning. According to the PP (‘Integral 

Forward Model, see Pickering & Clark, 2014) account, however, the 

forward model itself controls our motor acts, via a web of descending 

predictions that determine set points for reflexes. 

4.9 Action-Oriented Predictions 

Notice that many of the probabilistic representations inhering in the gen- 

erative model will now be, in the terms of Clark (1997), ‘action-oriented’. 

They will represent how things are in a way that, once suitably modu- 

lated by the precision-weighting of prediction error, also prescribes (in 

virtue of the flows of sensation they predict) how to act and respond. 
They are thus representations (as we shall see in more detail in 

chapters 8-10 following) of affordances—environmental opportunities 

for organism-salient action and intervention. Action, within such a 

schema, provides a powerful form of prediction-based structuring of 

the information flow (Pfeifer et al., 2007; Clark, 2008). Action is also con- 

ceptually primary, since it provides the only way (once a good world 

model is in place and aptly activated) to actually alter the sensory signal 

so as to reduce prediction error.” An agent can reduce prediction error 
without acting, by altering what she predicts. But only action can reduce 

error by systematically changing the input itself. These two mechanisms 

must work in delicate harmony to ensure behavioural success. 

This very broad story about action, it is worth noticing, could be 

accepted even by those who may wish to reject the rather particular 

model in which proprioceptive predictions play the role of motor com- 

mands—perhaps because they wish to retain the more familiar appa- 

ratus of efference copy, cost functions, and paired forward and inverse 

models. For all that the broader view of prediction and action here 
asserts is that (i) action and perception each depend upon probabilis- 

tic hierarchical generative models and (ii) perception and action work 

together, in regimes characterized by complex circular causal flow, so 

as to minimize sensory prediction errors. Action and perception, such 

a view suggests, are similarly and continuously constructed around the 

evolving flow of prediction error. This, I suggest, is the fundamental 

insight about action suggested by work on the predictive brain. The 

direct exploitation of proprioceptive predictions as motor commands 

simply provides one possible neuronal implementation of this much 

broader schema—albeit one that Friston and colleagues consider to be 

highly plausible® given known facts concerning the physiology of the 

motor system (Shipp et al.,, 2013).
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4.170 Predictive Robotics 

With this in mind, it is worth scouting some broader applications of 

prediction-based processing routines as tools for the acquisition of 

motor and cognitive skills by mobile robots. Much of this work has been 

conducted within the paradigm of ‘cognitive developmental robotics’ 

(CDR)" (see Asada et al., 2001, 2009). The core idea here is that the artifi- 

cial control structure that acts as the agent’s ‘brain’ should develop by a 

process of ongoing embodied interaction with the agent’s environment 

(including other agents).” Thus, we read that: 

The key aspect of CDR is its design principle. Existing 

approaches often explicitly implement a control structure in 

the robot’s ‘brain’ that was derived from a designer’s under- 

standing of the robot’s physics. According to CDR, the struc- 

ture should reflect the robot’s own process of understanding 

through interactions with the environment. (Asada et al, 

2001, p. 185) 

Let’s take simple motor learning first. Park et al. (2012) describe 

work using the humanoid robot AnNAO. In this work, simple motor 

sequences are learnt using prediction error minimization within a 

hierarchical (Bayesian) system. The robot begins by ‘experiencing’ 

random movements similar fo so-called ‘motor babbling” (Meltzoff 

& Moore, 1997) in human infants. In motor babbling, the infant 

explores its personal space of action by, in effect, randomly issuing 

motor commands and then sensing (seeing, feeling, sometimes tast- 

ing) what happens. Such learning, as noted by Caligiore et al. (2008) 

in another robotic study in this area, is an instance of what Piaget 

(1952) called the ‘primary circular-reaction hypothesis” according 

to which early random self-experimentation sets up associations 

between goals, motor commands, and sensory states enabling the 

later emergence of effective goal-directed action. Standard forms of 

Hebbian learning (Hebb, 1949) can mediate the formation of such 

links, resulting in the acquisition of a forward model associating 

actions and their expected sensory consequences.” Park et al. (2012) 

then piggy-backed upon such early learning, training their robot 

to produce three target action sequences. These were trajectories 

of motion defined using a sequence of desired action states plotted 

as sequences of inner state-transitions. The robot was able to learn 

and reproduce the target action sequences and did so despite the 

presence of potentially confusing overlaps between sub-trajectories 

within the trained sequences.



PREDICTION FOR ACTION 135 

In phase two of this experiment, the robot used a hierarchical 

(multilayer) system in which higher layers end up learning about 

longer sequences, and movements result from the combination of 
top-down prediction and bottom-up sensing. The most probable 

transition at a given level is thus impacted by top-down information 
concerning the longer sequence of which the movement is a part. 

Using this layered approach, the robot was able to learn a simpli- 

fied version of ‘object permanence’, predicting the position of a visu- 

ally presented object (a moving dot) even when it was temporarily 

occluded by another object. 

Phase three extended the story to encompass (a very simple ver- 

sion of) learning by motor imitation. This is an extremely active area 

in both robotics and cognitive computational neuroscience (for nice 

introductions, see Rao, Schon, & Meltzoff, 2007; Demiris & Meltzoff, 

2008). Park et al. used two identical humanoid robots (this time 

built using the DARwin-OP? robotic platform) that were placed so 

that each of their visual systems captured the actions of the other. 

One robot acted as teacher, moving its arms so as to produce a 

pre-programmed motor routine. The other robot (the ‘infant’) had 

to learn this routine from observation alone. This proves possible 

because the infant robot was trained to develop a ‘self-image” link- 
ing visual images of its own gross motions to sequences of internal 

action commands. Once this (thin) self-image is in place, observed 

motions from the teacher robot can be matched to the memorized 

self-image and thus linked to internal action commands (Figure 4.4). 

This routine will only work, however, insofar as the target system 

(the teacher) is sufficiently ‘like’ the learner (the ‘infant’). This ‘like 

me’ assumption (Meltzoff, 2007a, b) may later be relaxed as the 

agent’s generative model increases in complexity and content, but it 

may be necessary to get the imitation learning process going at the 

outset (for some excellent discussion and a variety of further robotic 

studies, see Kaipa, Bongard, & Meltzoff, 2010). 

Prediction-based learning thus provides an especially potent 

resource for bridging between simple sensorimotor skills and higher 
cognitive achievements such as planning, imitation, and the offline 

simulation of behaviour (see chapter 5). 

4.11  Perception-Cognition-Action Engines 

Readers familiar with the science-fiction book (or the movie) Ender’s 

Game will recall how what at first seemed to be mere simulations were
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FIGURE 4.4 Structure of Imitation Learning 

(@) The target system (left robot) produces image sequence (v*) from internal 

state sequence (y). The agent system (right robot) follows by mapping the 

image sequence (v*) to the memorized self-image of (vi) whose internal 

action states x is known. The target’s visual sequence produces a sequence of 

internal action states in agent. The agent trains this sequence to build action 

sequences (z) and reproduces the action to real motor state u. (b) The agent 

secs visual images of target robot (up), and the motor state of the agent is 

derived from the image (down). 

Source: From Park et al., 2012.
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clandestinely being used to drive physical starships in a real battle situ- 

ation. This, it seems to me, is one way to think of the core PP proposal 

concerning action. For action, if this aspect of the story is on track, 

comes about as a direct result of forward-model-based simulations. 

Action-oriented extensions of the basic predictive processing story, as 

the opening quote from William James suggests, thus have much in 

common with what are sometimes known as ‘ideomotor’ accounts of 

action. According to such accounts (Lotze, 1852; James, 1890) the very 

idea of moving, when unimpeded by other factors, is what brings the 

moving about. In other words: 

In the ideomotor view, in a sense, causality, as present in the 

real world, is reversed in the inner world. A mental represen- 

tation of the intended effect of an action is the cause of the 

action: here it is not the action that produces the effect, but the 

(internal representation of the) effect that produces the action. 
(Pezzulo et al., 2007, p. 75) 

In the approach favoured by Friston and colleagues, this emerged as 

the idea that we learn to associate our own movements with their dis- 

tinctive proprioceptive consequences. Actions are thus controlled and 
enabled by proprioceptive prediction, quashing proprioceptive predic- 

tion error by moving the body to fit the predictions. 

Such approaches make extensive use of the forward-model con- 
struct from classical work on motor control, but now recast as part 

and parcel of a more encompassing generative model. This repli- 

cates the many benefits of the use of forward models while treat- 

ing motor control using the very same apparatus that (in Part I) was 

invoked to explain perception, understanding, and imagination. The 

‘cognitive package deal’ announced at the end of chapter 3 is thus 

enriched, with motor control flowing from the same core architecture 

of generative-model-based sensory prediction. This hints at the pos- 

sibility of shared computational machinery for action generation and 

for reasoning about possible actions (either our own or those of other 

agents)—a theme that will loom large in the next chapter. 

This is an attractive package, but it brings with it a cost. It is now 

our acquired expectations (the complexes of sub-personal prediction 
implied by a generative model) that carry most of the explanatory, and 

computational, burden. This may, however, turn out to be an empow- 

ering rather than a limiting factor. For PP describes a biologically 

plausible architecture just about maximally well-suited to installing 

the requisite suites of prediction through embodied interactions with 
the training environments that we encounter, perturb, and—at several
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slower timescales—actively construct. This is an especially potent rec- 

ipe since much of ‘higher cognition’, or so I shall later (Part III) argue, is 

made possible only by our history of encounters with the increasingly 

exotic sensory flows created by our own culturally crafted ‘designer’ 

environments. 

The emerging picture is one in which perception, cognition, and 

action are manifesations of a single adaptive regime geared to the 

reduction of organism-salient prediction error. Once-crisp boundaries 

between sensory and motor processing now dissolve: actions flow from 

percepts that predict sensory signals some of which entrain actions that 

recruit new percepts. As we engage the world with our senses, percepts 

and action recipes now co-emerge, combining motor prescriptions 

with rolling efforts at knowing and understanding. Action, cognition, 

and perception are thus continuously co-constructed, simultaneously 

rooted in the cascading predictions that constitute, test, and maintain 

our grip upon the world.



5 
Precision Engineering;: 

Sculpting the Flow 

5.1 Double Agents 

The image of the brain as a probabilistic prediction machine places con- 

text and action centre stage. It requires us to abandon the last vestiges 

of the ‘input-output’ model according to which environmental stimuli 

repeatedly impinge upon a richly organized but essentially passive sys- 

tem. In its place we find a system that is constantly active, moving rest- 

lessly from one state of expectation to another, matching sensory states 

with predictions that harvest new sensory states in a rolling cycle. 

Within this complex, shifting nexus, action leads a kind of double 
life. Actions (like any other regularity in the world) need to be under- 

stood. But our own actions are also consequences, if the story rehearsed 

in chapter 4 is correct, of the sensory expectations encoded in the gen- 

erative models we deploy. This yields an opportunity. Perhaps our pre- 

dictions of other agents can be informed by the very same generative 

model that structures our own patterns of action and response? We 

may sometimes grasp the intentions of other agents, this suggests, by 

deploying appropriately transformed versions of the multilayered sets 

of expectations that underlie our own behaviour. Other agents are thus 

treated as context-nuanced versions of ourselves.! This offers insight 

139
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into the development and deployment of ‘mirror neurons” and (more 

generally) ‘mirror systems” neural resources implicated both in the 

performance of actions and in the observation of the ‘same’ actions 

when performed by others. 

The present chapter explores this strategy, using it as a core illustra- 

tion of something much more general and powerful—the use, within 

PP, of altered assignments of precision to reconfigure patterns of effec- 
tive connectivity within the brain. 

5.2 Towards Maximal Context-Sensitivity 

We can start by considering familiar cases of context-sensitive response, 

such as that illustrated in Figure 5.1. 

fuck and W wond, up- o bl 
Tho sl wond, was canciled 
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e ® Went  event “» went event 
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T 
sentie Jack and Jil} went up the hill 

FIGURE 5.1 Schematic Illustrating the Role of Priors in Biasing toward 

One Representation of an Input or Another 

(Leff) The word ‘event’ is selected as the most likely cause of the visual input. 

(Right) The word ‘went’ is selected as the most likely word that is (1) a reason- 

able explanation for the sensory input and (2) conforms to prior expectations 

based on semantic context. 

Source: Friston, 2002.
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In Figure 5.1, we effortlessly read the top sentence as ‘Jack and Jill 

went up the hill’ despite the fact that the word ‘went’ is badly rendered. 

It is, in fact, structurally identical with the better rendered word form 
‘event’ in the second sentence. This fact is, however, only evident upon 

quite close inspection. This is due to the strong influence of top-down 

priors that are helping to determine the best overall ‘fit, reconciling 

the sensory evidence with our probabilistic expectations. In ignoring 

(courtesy of strong predictions from the level above) the structural 

deformity of ‘went’ in the top sentence, ‘'we tolerate a small error at the 

lower level to minimize overall prediction error’ (Friston, 2002, p. 237). 

For another example of such top-down influence on perceptual appear- 

ances, see Figure 5.2. 

Such effects are familiar enough. They are examples of the kind 

of context-sensitivity displayed by early artificial neural networks 

constructed using the connectionist ‘interactive activation” paradigm.? 

Within the predictive processing paradigm, such context-sensitivity 

becomes (in a sense to be pursued below) pervasive and ‘maximal’? 

  

121314 

FIGURE 5.2 Another Example in which Local Contextual Cues Set Up 

Prior Expectations 

In the context of reading the A, the B hypothesis makes the raw visual data 

most probable. In the context of reading the 12, the 13 hypothesis makes the 
very same raw visual data most probable. For some further discussion of this 
example, see Lupyan & Clark, in press. 
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This is due to the combination of hierarchical form with flexible 

‘precision-weighting’, as introduced in chapter 2. That combination 

renders context-sensitivity fundamental, systematic, and endemic in 

ways that have major implications (see also Phillips & Singer (1997), 

Phillips, Clark, & Silverstein (2015)) for neuroscience and for our under- 

standing of the nature and origins of intelligent response. To creep 

up on this, reflect that (in the simple example given above): ‘If we 

recorded from the “went” unit under top-down expectation of “event”, 

we might conclude it was now selective for “event”’ (Friston, 2002, p. 

240). Downwards-flowing influence, in the PP setting, thus has a major 

impact on the selectivity of lower level response (for some more exam- 

ples, see Friston & Price, 2001). As a result, ‘the representational capacity 

and inherent function of any neuron, neuronal population, or cortical 

area is dynamic and context-sensitive [and] neuronal responses, in any 

given cortical area, can represent different things at different times’ 
(Friston & Price, 2001, p. 275). 

The PP architecture here combines, in a pervasive and fluent way, 

two of the most striking characteristics of neural organization. The 

two characteristics are functional differentiation (sometimes mislead- 

ingly called ‘specialization’) and integration. Functional differentia- 

tion means that local neural assemblies will come to exhibit different 

‘response profiles” where these reflect ‘a combination of intrinsic local 

cortical biases and extrinsic factors including experience and the 

influence of functional interactions with other regions of the brain’ 

(Anderson, 2014, p. 52). These response profiles will help determine the 

kinds of task for which the assembly might be recruited. But this, as 

Anderson rightly stresses, need not imply specialization in the more 

standard sense of (for example) there being regions that specialize in 

fixed tasks such as face recognition or mind reading. Integration (of 

the rather profound kind exhibited by the neural economy) means that 
those functionally differentiated areas interact dynamically in ways 
that allow transient task-specific processing regimes (involving tran- 

sient coalitions of neural resources) to emerge as contextual effects 

repeatedly reconfigure the flow of information and influence. 
Such effects become pervasive and systematic as a direct result of 

the hierarchical organization implied by the basic PP model. In that 

model multiple functionally differentiated subpopulations exchange 

signals to find a best overall hypothesis, with the signals from each 

higher population providing rich contextualizing information for 
the level or levels directly below, based on its own probabilistic pri- 

ors (‘expectations’). This downwards (and lateral) flow of prediction 

makes large differences, as we just saw, to the moment-by-moment



SCULPTING THE FLOW 143 

responsiveness of the units that receive it. Moreover, as we saw in 

chapter 2, the efficacy of specific top-down or bottom-up influences is 

itself modifiable by systemic estimates of precision that raise or lower 

the gain on specific prediction error signals. This means that the pat- 

terns of downwards-flowing influence are (in ways we are about to 
explore) themselves dynamically reconfigurable according to task and 

context. The upshot is that flows of prediction and prediction error 
signals implement a flexible, dynamically reconfigurable cascade in 

which contextual information from every higher level can play a role in 

sculpting selectivity and response ‘all the way down'. 

5.3 Hierarchy Reconsidered 

Recall that, in the standard implementation of PP* higher level ‘rep- 

resentation units’ send predictive signals laterally (within level) and 

downwards (to the next level down) thus providing priors on activity 

at the subordinate level. In this way backwards (top-down) and lat- 
eral connections combine to ‘exert a modulatory influence on lower or 

equivalent stages of cortical transformations and define a hierarchy of 
cortical areas’ (Friston & Price, 2001, p. 279). This kind of cortical hier- 

archy supports (as we saw in chapter 1) the bootstrapping-style learn- 

ing that induces empirical priors.® Such a hierarchy is simply defined by 

these patterns of interaction. The core requirement is only that there be 

a reciprocally connected structure of feedback and feedforward con- 

nections with asymmetric functional roles. In a little more detail, what 

is required is that neuronal populations exchange signals using dis- 

tinct feedforward, feedback, and lateral connections, and that within 

those webs of influence functionally asymmetric resources handle 

predictions and prediction error signals. 

In a seminal study, Felleman and Van Essen (1991) describe an 

anatomical hierarchy (for Macaque visual cortex) whose structure 

and features map nicely onto those required by this broad schema 

(for discussion, see Bastos et al., 2012, 2015). Such a hierarchy leaves 

plenty of room for additional—and functionally salient—complexity. 

For example, the notion of local recurrent signal exchange between 

adjoining hierarchical levels is consistent with the existence of 

multiple parallel streams delivering what Felleman and Van Essen 

(1991) dubbed ‘distributed hierarchical processing’. In such schemes 

multiple areas may coexist at a single ‘level’ of the hierarchy, and 

there may also be long-range connections that entirely skip some 

intervening levels.
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The ground-breaking studies by Felleman and Van Essen wert 

mited, however, by the absence of a measure of hierarchical distance 

his introduced substantial indeterminacy into the ordering of area: 

\at emerged from the work (see Hilgetag et al.,, 1996, 2000), a shortfal 

\at has since been remedied using new data on connectivity (Baronu 

‘al,, 2000). More recently, Markov et al. (2013, 2014) used neural tracing 

ata and network models to explore the web of inter-area and feed 

rward/feedback connections in Macaque visual cortex. Their studie: 

1ggest that feedback and feedforward connections are indeed bott 

1atomically and functionally distinct, and that feedforward and feed 
ick pathways ‘obey well-defined distance rules’ (Markov et al., 2014 

38), thus confirming the basic PP requirements of hierarchical struc 

ire and feedback/feedforward functional asymmetry. 

Nonetheless, these studies also introduce substantial complexi 

2s to any simple image of feedback and feedforward connections in 

xed cortical hierarchy, revealing networks of connections that display 

‘bow-tie’ structure combining high-density local communications (iz 
kind of ‘core’—the knot at the centre of the bow-tie shown in Figur 

3) with sparser long-range connections to rest of the cortex. Thes 

ng-range connections allow densely connected local processing 

ackets (‘modules’) to enter into temporary task- and context-varying 

valitions (see Park & Friston, 2013; Sporns, 2010, Anderson, 2014} 

  

  

Q Occipital Q Parietal @ Temporal Q Frontal . Prefrontal 
    

‘GURE 5.3 Bow-Tie Representation of the High-Density Cortical Matrix 

urce: Markov et al,, 2013, by permission.
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Such organizational forms are also consistent with a higher level rich 

club’ organization (Van den Heuvel & Sporns, 2011) in which certain 

well-connected local ‘hubs’ are themselves heavily mutually intercon- 

nected (rather like an exclusive country club for movers and shakers). 

What emergesis a daunting picture of multiscale dynamical complexity. 

This is important. The simple image of processing within a 

cortical hierarchy may seem to imply a rigid, fixed, serial, flow of 

information—a kind of neural stepladder with an inevitably problem- 

atic ‘top level” end point. The PP architecture, it is worth stressing, has 

very different implications. Unlike traditional feedforward models (of 

the kind rightly critiqued by Churchland et al., 1994), the PP architec- 

ture supports an ongoing, concurrent two-way flow of information. 

This means that processing at any given higher level is not ‘waiting’ 

for processing at the level below to finish before beginning to exert its 

influence. Moreover, the perceptual processing hierarchy is probably 

best imagined (Mesulam, 1998; Penny, 2012) as a kind of sphere (see 

Figure 5.4) rather than a stepladder. Sensory stimulations perturb the 

sphere at the peripheries and are met by a constellation of predictions 

whose recruitment is context- and task-dependent. Within the sphere, 

there are structures and structures-of-structures. But the evolving flow 

  

  
FIGURE 5.4 Cortical Architecture Depicting Multimodal Areas in the 

Centre and Unimodal Sensory Processing Regions on the Periphery 

Visual regions are shown at the bottom and auditory regions are on the right. 

Source: Penny, 2012, and based upon Mesulam, 1998.
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of information and influence is not fixed. Instead, PP suggests (as we 

shall shortly see) a variety of potent mechanisms for reconfiguring pat- 

terns of moment-by-moment ‘effective connectivity” according to task 

and context. The PP use of hierarchy is thus highly consistent with a pic- 
ture of the brain as a complex ever-active dynamical system: one whose 

moment-by-moment signal-passing structure is context-sensitive, fluid, 

multiply reconfigurable, and constantly changing at many interacting 

structural and temporal scales (Singer, 2013; Bastos et al., 2012, 2015). 

Flexible precision-weighting provides, as we shall soon see in more 

detail, the key systemic tool that allows the combination of a bedrock 

two-way hierarchical model with the context-sensitive generation of 

‘hypotheses’, and with context-variable patterns of inter-level (and 
inter-area) influence. 

Within such a constantly active system, higher levels are often 

depicted (see, e.g., Sherman & Guillery, 1998) as ‘modulating’ the activ- 

ity at lower levels. It is increasingly unclear, however, if ‘modulation’ 

is really the best way of describing the many quite dramatic ways in 

which ongoing probabilistic prediction here impacts the flow of pro- 

cessing and response. Recent evidence suggests that when two areas 

are hierarchically proximate (such as Vi/Vz) ‘feedback connections 

can drive their targets just as strongly as feedforward connections’ 

(Bastos et al., 2012, p. 698). Within the PP framework, this means that 

top-down predictions are capable, under the right circumstances, of 

forcing downstream response in ways that can radically revise, or even 

undo, ‘driving’ feedforward influence. At the same time, the notion of 
‘modulation” remains in some ways apt, insofar as the functional role 

of downwards (and laterally) flowing prediction is to provide essential 

contextualizing information. 

5.4 Sculpting Effective Connectivity 

Basic context effects, within the PP framework, flow inevitably from 

the use of higher level probabilistic expectations to guide and nuance 

lower level response. This guidance involves expectations concern- 

ing the most likely patterns of unfolding activity at the level below. 

But such expectations, as we saw in chapter 2, are intertwined with 

context-based assessments of the reliability and salience of different 

aspects of the sensory information itself. These assessments of reliabil- 

ity and salience determine the weighting (precision) given to different 

aspects of the prediction error signal at different levels of processing. 

This provides a powerful means of sculpting the larger patterns of
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‘effective connectivity’ that modify the internal flow of influence and 

information according to task and context. 

‘Effective connectivity® names ‘the influence one neural system 

exerts over another’ (Friston, 1995, p. 57). It is to be distinguished from 

both structural and functional connectivity. ‘Structural connectivity’ 

names the gross pattern of physical linkages (the web of fibres and syn- 

apses) that—perhaps working in concert with more diffuse ‘volume 

signalling’ mechanisms (Philipides et al.,, 2000, 2005)—allow neurons 

to interact across space and time. ‘Functional connectivity’ describes 

observed patterns of temporal correlation between neural events. The 

closely related notion of ‘effective connectivity’ then aims to reflect 

short-term patterns of causal influence between neural events, thus 

taking us beyond simple observations of undirected—and sometimes 

uninformative—correlation. One useful way to think about the relation 

between functional and effective connectivity is thus to conceive of: 

the [electrophysiological] notion of effective connectivity ... as 
the experiment and time-dependent, simplest possible circuit 

diagram that would replicate the observed timing relation- 

ships between the recorded neurons. (Aertsen & Preissl, 1991, 

quoted in Friston, 1995, p. 58) 

Functional and effective connectivity patterns alter rapidly as we per- 

form our cognitive tasks. Structural change, by contrast, is a slower’ 

process, since it is, in effect, reconfiguring the reconfigurable network 

itself (by altering the underlying communicative skeleton that supports 

other, more rapid, forms of momentary reconfiguration). 

In recent years, the use of neuroimaging paired with new analytic 

techniques has made the study of the patterns of effective connectiv- 

ity increasingly viable. Such techniques include structural equation 

modelling, applications of ‘Granger causality’, and Dynamic Causal 

Modelling (DCM).® In a rather satisfying twist, DCM (Friston et al, 

2003; Kiebel et al., 2009) takes the same core strategy used (if PP is cor- 

rect) by the brain to model the world and applies it to the analysis of 

the neuroimaging data itself. DCM relies upon a generative model to 

estimate (infer) the neural sources given some set of imaging data, 

and uses Bayesian estimation to reveal changing patterns of effective 
connectivity. In this way DCM first estimates intrinsic connections 

between sources, then the changes in connections due to some form of 

external (typically experimental) perturbation. 

Nonlinear extensions of DCM (Stephan et al., 2008) allow the esti- 

mation not just of how effective connectivity changes with experimen- 

tal manipulations (alterations of task and context) but of how those new
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patterns of effective connectivity are brought about, that is, ‘how the 

connection between two neuronal units is enabled or gated by activity 

in other units’ (Stephan et al,, 2008, p. 649). Such gating involves what 

Clark (1997, p. 136) dubbed ‘neural control structures’, where these may 

be defined as any neural circuits, structures, or processes whose role is 

to control the shape of the inner economy rather than (directly) to track 

external states of affairs or control bodily action. In just this vein, Van 

Essen et al. (1994) suggest an analogy with the division of processes in a 

modern factory, where much effort and energy must be spent to ensure 

the proper internal trafficking of materials before the construction of 

any actual products. 

Neural gating hypotheses come in many forms, including the pos- 

tulation of special populations of information-routing ‘control neu- 

rons’ (Van Essen et al, 1994), the canny use of re-entrant processing 

(Edelman, 1987; Edelman & Mountcastle, 1978), and the development 

of ‘convergence zones’ (Damasio & Damasio, 1994). The latter are essen- 

tially hubs in which many feedback and feedforward loops converge, 

and which are thus able to ‘direct the simultaneous activation of ana- 

tomically separate regions’ (p. 65). Such conjectures fit naturally with 

an emerging body of work that demonstrates the surprising extent to 

which ‘large-scale brain systems can reconfigure their functional archi- 

tecture in a context-dependent manner’ (Cocchi et al., 2013, p. 493; see 

also Cole et al,, 2011; Fornito et al., 2012). 

Within the PP framework, gating is principally achieved by the 

manipulation of the precision-weighting assigned to specific prediction 

errors. The primary effect of this (as we saw in chapter 2 above) is to sys- 

tematically vary the relative influence of top-down versus bottom-up 

information by increasing the gain (‘'volume’) on selected error units. 

This provides a way to implement a rich set of attentional mechanisms 

whose role is to bias processing so as to reflect estimates of the reliabil- 

ity and salience of (different aspects of) both the sensory signal and the 

generative model itself’® But those same mechanisms offer a promising 

means of implementing fluid and flexible forms of large-scale gating 

among cortical populations. To see this, we need only note that very 

low-precision prediction errors will have little or no influence upon 
ongoing processing and will fail to recruit or nuance higher level rep- 

resentations. Altering the distribution of precision-weightings thus 

amounts, in effect, to altering the ‘simplest circuit diagram’ (Aertsen & 

Preissl, 1991) for current processing. The neural mechanisms of atten- 

tion are here identical with the neural mechanisms that alter patterns 

of effective connectivity.



SCULPTING THE FLOW 149 

This is an intuitive result (see also Van Essen et al., 1994), especially 

if we consider that the specific means by which such alterations may 

be effected are many, and that their detailed functional implications 

may vary in different parts of the brain. Possible implementing mech- 

anisms for the precision-weighting of prediction error (which, in PP, 

amounts to the control of post-synaptic gain) include the action of vari- 

ous ‘modulatory neurotransmitters” such as dopamine, serotonin, ace- 

tylcholine, and noradrenalin (Friston, 2009). Frequencies of oscillation 

must also play a major role (see Engel et al., 2001; Hipp et al., 2011). For 

example, synchronized pre-synaptic inputs Jook to result in increased 

post-synaptic gain. In particular, it has been suggested that ‘Gamma 

oscillations can control gain by affording synchronized neuronal dis- 

charges a greater influence on the firing rate of downstream neurons’ 

(Feldman & Friston, 2010, p. 2). These mechanisms also interact, since 

(to take just one example) gamma oscillations respond to acetylcho- 

line. In general, it seems possible that bottom-up signalling (which in 

predictive processing encodes prediction error and is hypothesized to 

originate in superficial pyramidal cells) may be communicated using 

gamma-range frequencies while top-down influence may be conveyed 

by beta frequencies (see Bastos et al,, 2012, 2015; Buffalo et al., 2011). 

Thus, while the notion of sculpting patterns of effective connectivity 

by means of ‘precision-weighted prediction error’ is simple enough, the 

mechanisms that implement such effects may be multiple and complex, 

and they may interact in important but as yet underappreciated ways. 

Further support for this general idea (the idea of precision-based 

reconfiguring of large-scale patterns of effective connectivity) was 

recently provided by an fMRI study analyzed using nonlinear DCM. 

In this study (den Ouden et al., 2010), specific prediction error signals in 

one (striatal) neural area modified the coupling between other (visual 

and motor) areas. In this experiment, auditory cues (high or low ‘beeps’) 

differentially predicted visual targets in ways that altered over time. 

The subjects’ task was rapidly to discriminate (with a motor response) 

the visual stimuli predicted (in ways that varied over time) by the audi- 

tory cues. Speed and accuracy increased (as one would expect) with 

predictability. Using DCM (and assuming a Bayesian learning model 

that provided the best fit, taking model complexity into account, to the 

data; see den Ouden et al,, 2010, p. 3212), the experimenters found that 

failures of prediction (caused by the changing contingencies) systemat- 

ically altered the strength of the visuomotor coupling in a way that was 

‘gated by the degree of prediction error encoded by the putamen’ and 

that ‘prediction error responses in the putamen [modulate] informa- 

tion transfer from visual to motor areas . .. consistent with .. . a gating
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role of the striatum’ (both quotes, p. 3217). The amount and precision 

of prediction error computed by the striatum thus delicately controls 

the strength (efficacy) of the visuomotor connection, orchestrating the 

moment-by-moment interplay between visual and motor regions. This 

is an important result, demonstrating that ‘trial-by-trial prediction 

error responses in a specific region modulate the coupling among other 
regions’ (den Ouden et al,, 2010, p. 3217). 

The most important effect of ongoing activity within a predictive 

hierarchy is thus that it supports a vision of the brain as restless: almost 

constantly in some (changing) state of active expectation whose impli- 

cations for the flow and processing of sensory input we are only just 

beginning to appreciate. 

5.5 Transient Assemblies 

The PP architecture, we have seen, combines functional differen- 

tiation with multiple (pervasive and flexible) forms of informational 

integration. This suggests a new slant upon the vexed notion of cog- 

nitive ‘modularity’ (see, e.g., Fodor, 1983, and for discussion, Barrett 

& Kurzban, 2006; Colombo, 2013; Park & Friston, 2013; Sporns, 2010, 

Anderson, 2014). Changing patterns of influence among neural pop- 
ulations (and between larger scale regions) are here determined by 

precision-weighted prediction error signals, hence by estimates of both 

the salience and the relative uncertainty associated—for a given task 

at a given time—with activity in different neural regions and different 

neuronal populations. Such systems display great context-sensitivity 

while benefiting from a kind of emergent ‘soft modularity’. Distinctive, 

objectively identifiable,'® local processing organizations now emerge 
and operate within a larger, more integrative, framework in which func- 

tionally differentiated populations and sub-populations are engaged 

and nuanced in different ways so as to serve different tasks (for more 

on this general multiuse picture, see Anderson, 2010, 2014). 

PP thus implements an architecture ideally suited to support- 

ing the formation and dissolution of what Anderson (2014) nicely 

dubs TALoNS—Transiently Assembled Local Neural Subsystems. 

TALoNS act in some ways like modules or components. But they are 

formed and reformed ‘on the fly’, and their functional contributions 
vary according to their location within larger webs of processing. 

PP implements just such a fully flexible cognitive architecture and 

offers a picture of neural dynamics that is highly sensitive, at mul- 

tiple timescales, both to varying task-demands and to the estimated
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reliability (or otherwise) of specific bodies of top-down expectation 

and bottom-up sensory input." 

Neural representations here ‘become a function of, and dependent 

upon, input from distal cortical areas’ (Friston and Price, 2001, p. 280). 

This is a potent source of flexibility, since the flow of input from such 

areas is itself subject to rapid restructuring by prediction error signals 

elsewhere in the brain. When these features combine, the result is an 

architecture in which there are distinct, functionally differentiated, 

components and circuits but whose constantly shifting dynamics are 

(to borrow a phrase from Spivey, 2007) ‘interaction dominated’. The 

highly negotiable flows of influence thus constructed are themselves 

action-responsive (enforcing various forms of ‘circular causation” link- 

ing perception and action), and the space of dynamical possibilities is 

further enriched (as we shall see in Part III) by all manner of bodily 

and worldly tricks for structuring our own inputs and restructur- 

ing problem spaces. The representational economy thus supported is 

firmly grounded in sensorimotor experience yet benefits (as we shall 

soon see) from various forms of abstraction consequent upon hierar- 

chical learning. The result is a dauntingly complex system: one that 
combines a deeply context-flexible processing regime with a rich web 

of brain-body-world loops to yield negotiable and hugely (almost 

unimaginably) plastic flows of information and influence. 

5.6  Understanding Action 

That burgeoning complexity is nowhere more evident, it seems to me, 

than in our abilities to make sense of our own and others” actions. 

Human infants, around the age of 4, possess not only a sense of them- 

selves as individual agents with specific needs, wants, and beliefs but 

also a sense of others as distinct agents with their own needs, wants, and 

beliefs. How might this be achieved? The discovery of ‘mirror neurons’ 

has seemed, to many, to deliver a substantial part of the answer. It may 
be, however, that the existence of mirror neurons is more of a symptom 

than an explanation, and that flexible, context-sensitive, predictive pro- 

cessing provides a more fundamental mechanism. Understanding the 

actions of others, if this is correct, is just one manifestation of a much 

more general capacity for flexible, context-sensitive response. 

Mirror neurons were first discovered in area F5 (a premotor area) 

of the macaque monkey (Di Pellegrino et al,, 1992; Gallese et al., 1996; 

Rizzolatti et al., 1988, 1996). These neurons responded vigorously when 

the monkey performed a certain action (examples include taking an
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apple from a box, or picking up a raisin using a well-aimed precision 

grip). The experimenters were surprised to see, however, that those 

same neurons also responded vigorously when the monkey merely 

observed the same kind of action being performed by another agent. 

Neurons with this dual profile have also been found in monkey pari- 

etal cortex (Fogassi et al, 1998, 2005). In addition ‘mouth mirror neu- 

rons’ (Ferrari et al, 2003) respond when a monkey sucks juice from a 

dispenser (a syringe) and when the monkey sees a human perform- 

ing the same action. At a larger scale, ‘mirror systems’ (overlapping 

resources used for generating, observing, and imitating actions) have 

been found in humans brains using neuroimaging techniques such 

as fMRI (Fadiga et al.,, 2002; Gazzola & Keysers, 200g; Iacoboni, 2009; 

lIacoboni et al., 1999; lacoboni et al., 2005). 

Mirror neurons (and the larger ‘mirror systems’ in which they par- 

ticipate) captured the imagination of cognitive scientists because they 

suggested a way to use knowledge of the ‘meaning’ of our own actions 

as a kind of lever for understanding the actions of others. Thus, sup- 

pose we grant that, when I reach for the raisin using a precision grip, 

I know (in some simple, first-order way) that my action is all about 

getting and ingesting the attractive morsel. Then, if the very same 

sub-populations of mirror neurons fire when I see you reaching for 

the raisin using just such a precision grip, perhaps I thereby become 

informed about your goals and intentions—your desire, to be blunt, for 

that raisin. Such a window into the minds of others agents would be 

very useful, enabling me better to anticipate your next moves and per- 

haps even to derail them, acquiring the raisin for myself by some rapid 

intervention. In some such way, mirror neurons have been thought to 

offer a ‘fundamental mechanism’ for explaining what Gallese, Keysers, 

and Rizzolatti (2004) call our ‘experiential understanding of others’ 

actions’ and especially (see Rizzolatti & Sinigaglia, 2007) their goals 

and intentions. 

‘Experiential understanding’ here names some kind of deep, 

primary, or ‘embodied” understanding that enables us to appreciate 

the meaning of an observed action by a process of ‘direct matching’ 

(Rizzolatti & Sinigaglia, 2007) or ‘resonating’ (Rizzolatti et al,, 2001, 

p- 661) involving my own motor representations of the same actions. 

Observing your action leads me, if this is correct, to simulate or par- 

tially activate the goal/motor act routine that (in me) would lead to the 
observed activity. In this way, it is claimed, ‘we understand the actions 

of others by means of our own “motor knowledge” [and] this knowl- 
edge enables us immediately to attribute an intentional meaning to the 

movements of others’ (Rizzolatti & Sinigaglia, 2007, p. 205).
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None of this, however, can be quite as simple as that makes it sound. 

This is because performing that task involves solving an especially 

complex version of the so-called ‘inverse problem’. This is the problem 

(a simple version of which we already encountered in 4.4) of taking an 

outcome-specifying input (here, the observation of a sequence of motor 

movements made by another agent) and using it to find the commands 

(here, the neural states specifying various high-level goals and inten- 

tions) that gave rise to it. The problem, as usual, is the multiplicity of 

possible mappings between observed movements and the high-level 

states (encoding goals and intentions) that gave rise to them. Thus, ‘if 

you see someone in the street raise their hand, they could be hailing a 

taxi or swatting a wasp” (Press, Heyes, & Kilner, 2011). Or, to repeat the 

colourful example from Jacob and Jeannerod (2003), is the man in the 

white coat holding the knife to a human chest intending to perform a 

grisly murder or a life-saving operation—is it Dr Jekyll or Mr Hyde? 

Such intentions are not transparently present in motor sequences alone, 

since there is no unique mapping between such sequences and the 

intentions behind them. Jacob and Jeannerod (see also Jeannerod, 2006, 

p- 149) thus worry that simple movement-based matching mechanisms 

must fail to get a grip on what they call ‘prior goals and intentions”. 

What this suggests is that whatever mechanism might under- 

lie the posited process of ‘direct matching” or ‘resonating’, it can- 

not be one that relies solely on the feedforward (‘bottom-up’) flow 

of sensory information. Instead, the path from the basic observed 

kinematics to the appreciation of the agent’s intention must be very 

flexibly mediated by the prior state of the system. One way to achieve 

this is by meeting the incoming stream of sensory information 

using downwards-flowing activity that reflects what the observer 

already knows about the larger context in which the other agent’s 

movements are being produced. Now recall the picture (chapter 4) 

of self-produced action. When we act, if that picture is correct, we 

predict the flow of sensory data that will result. That prediction 

involves a process of multilevel ‘settling” in which many neural areas 

exchange signals until a kind of overall concord (minimizing error 

at all levels) is achieved. Such concord is doubtless imperfect and 

temporary, since error is never zero and the brain is constantly in 

flux. But while it is (more or less) achieved, there is harmonization 

between areas encoding information about basic movement com- 

mands (low-level kinematics), resulting multimodal sensory inputs, 

and our own ongoing goals and purposes. Those goals and purposes, 

likewise, are encoded as a distributed pattern across many levels of 

processing, and must encompass both ‘local” goals such as turning
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a switch, and more distal ones such as illuminating the room, and 

even more distal ones, such as lighting up the room. It is this whole 

web of mutually supportive structure, distributed across many neu- 

ral areas, whose probable configurations are specified by the learnt 
generative model that enables us to predict the sensory consequences 

of our own actions. 

The PP take on mirror system activity should now be coming into 

clearer view. For suppose we deploy that same generative model (but 

see 5.8 for some tweaks and caveats) to meet the stream of sensory 

information specifying another agent’s activity? Then here too, the 

brain will be forced to find a set of mutually consistent activity, span- 

ning many neural areas, accommodating both prior expectations and 

the sensory evidence. Applying this picture to the puzzle case of Jekyll 

and Hyde, Kilner et al. (2007) note that: 

In this scheme, the intention that is inferred from the obser- 

vation of the action now depends upon the prior information 

received from a context level. In other words, if the action was 

observed taking place in an operating theatre there would be 

a large prediction error for the intention ‘to hurt” and a smaller 

prediction error for the intention ‘to cure’. The prediction error 
would be the same at all other levels of the hierarchy for the 

two intentions. By minimising the overall prediction error the 

MNS [Mirror Neuron System]| would infer that the intention 

of the observed movement was to cure. Therefore, the MINS is 

capable of inferring a unique intention even if two intentions 

result in identical movements. (Kilner et al., 2007, p. 164) 

In the absence of all context-specifying information, no mechanism (of 

course) can distinguish the intention of curing from that of hurting. PP 

provides, however, a plausible mechanism (illustrated in Figure 5.5) for 

allowing what we already know (enshrined in the generative model 

used to predict the sensory consequences of our own actions) to make 

context-reflecting inferences concerning the intentions behind the 

actions of other (similar) agents.? 

5.7 Making Mirrors 

All this suggests a somewhat deflationary view of mirror neurons 
themselves. The deflationany view (Heyes, 2001, 2005, 2010) depicts the 

‘mirroring property’ of individual neurons as, in essence, a direct result 

of processes of associative learning. According to this account, ‘each
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FIGURE 5.5 Examples of the Predictive Coding Account of the Mirror 

Neuron System (MNS) 

Here we consider four levels of attribution in an example hierarchy of the 

MNS: kinematics, goal, intention, and context. In (a) an action-observation is 

considered in the absence of a context, in (b) the identical action is observed 

but now in the context of an operating theatre. The bars depict the level 
degree of prediction error. In (a) both intentions predict identical goals and 

kinematics and therefore the prediction error is identical in both schemes. In 

this case, the model cannot differentiate between the intentions causing the 

action. In (b) the context causes a large prediction error for the goal ‘to hurt’ 

and a small prediction error for the goal ‘to cure’. In this case, the model can 

differentiate between the two intentions. 

Source: Kilner et al., 2007, p. 164. 

mirror neuron is forged through sensorimotor experience-—correlated 

experience of observing and executing the same action’ (Heyes, 2010, 

p- 576). 
Such experience abounds, since we often observe an action which 

we ourselves are executing. Thus: 

whenever a monkey performs a grasping action with visual 

guidance, the activation of motor neurons (involved in the 

performance of grasping) and visual neurons (involved in the 

visual guidance of grasping) is correlated. Through associative 

learning, this correlated activation gives the grasping motor 

neurons additional, matching properties; they become mirror 
neurons, firing not only when grasping is executed, but also 

when it is observed. (Heyes, 2010, p. 577)
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In the same way, we may reach for the cup and observe the hand shap- 

ings that result, or blow the trumpet and hear the sound that emerges. 

Under such conditions (see Figure 5.6), the correlated activity of 

motor and sensory neurons causes some neurons to become multiply 

tuned, responding both to execution and to passive observation. Such 

Before learning 
  

       
    

During learning 

  

After learning 
  

  

  

FIGURE 5.6 Associative Sequence Learning 

Before learning, sensory neurons (S1, S2, and Sn), which are responsive to 

different high-level visual properties of an observed action, are weakly and 

unsystematically connected (dashed arrows) to some motor neurons (M1, 

M2, and Mn), which discharge during the execution of actions. The kind of 

learning that produces mirror neurons occurs when there is correlated (ie., 

contiguous and contingent) activation of sensory and motor neurons that are 

each responsive to similar actions. 

Source: Press, Heyes, & Kilner, 2011; photo of father and baby ©Photobac/Shutterstock.com.
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associations inform the generative model that we use to produce and 

understand our own actions, and that is then available for use when we 

observe the actions of other (sufficiently similar) agents. 

This shows (see Press, Heyes, & Kilner, 2011) just how mirror neu- 

rons and mirror systems may contribute to the flexible understanding 

of the actions of other agents. They do so not by directly (but mysteri- 

ously) specifying the goals or intentions of others but by participating 

in the same bidirectional multilevel cascades that enable us to predict 

the evolving sensory signal across many spatial and temporal scales. 

When error is minimized at all levels, the system has settled on a com- 

plex distributed encoding that encompasses low-level sensory data, 

intermediate goals, and high-level goals: Jekyll is seen as wielding the 

scalpel in such-and-such a manner, intending to cut, and hoping to 

cure. 

5.8 Whodunit? 

There is, however, a complication (but within it hides an opportu- 

nity). When I reach for the coffee cup, my cascading neural prediction 

includes, as a major component, the multiple proprioceptive sensations 

of strain and extension characteristic of that very reach. These pre- 

dictions, as we saw in chapter 4, are (PP claims) what bring the reach 

about. But such predictions should not be carried over, willy-nilly, to 

the case where I am observing the motions of another agent. 

There are two broad solutions to this kind of puzzle. The first 

involves the creation of abrand-new model (generative model fragment) 

dedicated to predicting the target events.”” This is an expensive solu- 
tion, though it is one that may be forced upon us from time to time (e.g,, 

if I am observing the behaviour of some hugely alien being or a bacte- 
rium). It would be more efficient, however, to make maximal use of any 

overlap between the generative model that constructs my own actions 

and the one needed to make sense of the actions of others. This is not 

(conceptually, at least) as hard as it sounds, for we have already secured 

the main tool required. That tool is once again the precision-weighting 

of aspects of the prediction error signal. Precision-weighting, we have 

seen, implements a swathe of mechanisms for both automatic and 
effortful attending, and for varying the balance between ‘top-down’ 

expectation and ‘bottom-up’ sensory evidence. But it also, as we saw in 

5.4, provides a general and flexible means for contextual gating, allow- 

ing different neuronal populations to form soft-assembled coalitions 

(patterns of effective connectivity) responsive to current needs, goals,
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and circumstances. Given this tool, differences between the predic- 

tions apt for the case of self-generated action and those apt for observ- 

ing and understanding other agents can be systematically dealt with by 

altering our precision expectations, and thus treating the various self/ 
other distinctions as just further layers of context. 

The prime targets for such alteration are our own proprioceptive 

predictions. Given some cues that inform me that am watching another 

agent, the precision-weighting (the gain) on proprioceptive prediction 

error relative to those aspects of the observed scene should be set low.* 

For according to PP it is the minimization of proprioceptive prediction 

error that directly drives our own actions, as those high-precision pre- 

dictions become fulfilled by the motor plant. With the gain on proprio- 

ceptive prediction error set low, we are free to deploy the generative 

mode] geared to the production of our own actions as a means both 

of predicting the visual consequences of another’s actions and under- 

standing their intentions."” Under such conditions, the complex inter- 

dependencies between other aspects of the generative model (those 

relating high-level aims and intentions to proximal goals and to the 

shape of the unfolding movements) remain active, allowing prediction 
error minimization across the cortical hierarchy to settle on a best over- 

all guess concerning the intentions ‘behind’ the observed behaviour. 
The upshot is that ‘we can use the same generative model, under 

action or observation, by selectively attending to visual or propriocep- 

tive information (depending upon whether visual movement is caused 

by ourselves or others)” (Friston, Mattout, & Kilner, 2011, p. 156). By con- 

trast, when engaged in self-generated action, the precision-weighting 

on the relevant proprioceptive error must be set high. When proprio- 

ceptive prediction error is highly weighted yet suitably resolved by a 
stack of top-down predictions (some of which reflect our goals and 

intentions), we feel that we are the agents of our own actions. Core 

aspects of the much-discussed ‘sense of agency” (in normal subjects, 

with well-functioning proprioceptive systems) depend upon this, and 

mistakes in both the generation of prediction errors and the assign- 

ment of precision-weighting to such errors are increasingly thought to 

underlie many illusions of action and control, as we shall see in detail 

in chapter 7. 
More generally, the implication is that the neural representations 

that underlie our own intentional motor actions and those that are 

active when we model the motor behaviour of other agents are sub- 
stantially the same, and that ‘exactly the same neuronal representation 

can serve as a prescription for self-generated action, while, in another 

context, it encodes a perceptual representation of the intentions of
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another’ (Friston, Mattout, & Kilner, 2011, p. 150). The clear differ- 

ences in functionality are here traced not to the core representations 

but to the estimations of precision that nuance their effects, reflect- 

ing the different contexts in play. Mirroring properties may thus be 

consequences of the operation of a hierarchical predictive processing 

regime that posits shared representations for perception and action 

and within which ‘the brain does not represent intended motor acts 

or the perceptual consequences of those acts separately; the constructs 

represented in the brain are both intentional and perceptual [having] 

both sensory and motor correlates’ (p. 156). Such representations are 

essentially meta-modal high-level associative complexes linking goals 
and intentions to sensory consequences. Those states have differing 

constellations of modality-specific implications (some proprioceptive, 

some visual, etc.) according to the context in which they occur: impli- 

cations that are implemented by varying the precision-weighting of 
different aspects of the prediction error signal. 

5.9 Robot Futures 

This same broad trick could be used to allow us—as in the mental 
time-travel cases introduced in chapter 3—to imagine our own future 

courses of action, in ways that might serve planning and reasoning. For 

here too, a similar problem arises. Take some animal that commands a 

rich and powerful generative model enabling it to predict the sensory 

signal across many temporal and spatial scales. Such an animal already 

seems well-placed to use that model ‘offline’ (see Grush, 2004) so as to 
engage in mental time-travel (see chapter 3) imagining possible future 

unfoldings and selecting an action accordingly. But the deep intimacy 

of perception and action here breeds a striking problem. For accord- 

ing to the process model outlined earlier, predicting the propriocep- 

tive consequences of a certain trajectory of arm motion (to take a very 

simple example) is how we bring that trajectory about. 

The solution, once again, may lie in the canny (learnt) deployment 

of precision-weighting. Suppose we again lower the weighting on (select 

aspects of) the proprioceptive error signal, while simultaneously enter- 
ing a high-level neural state whose rough-and-ready folk-psychological 

gloss might be something like ‘the cup is grasped’. Motor action is 

entrained by high-precision proprioceptive expectations and cannot 

here ensue. But here too, all the other intertwined elements in the gen- 

erative model remain poised to act in the usual way. The result should 

be a ‘mental simulation’ of the reach and an appreciation of its most
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FIGURE 5.7 Covert Loops 

Covert loops allow for the running of imaginary actions that produce a 

sequence of ‘fictive actions” and hence of predictions relative to future (rather 

than present) states of affairs. 

Source: Pezzulo, 2012. 

likely consequences. Such mental simulations provide an appealing 

way of smoothing the path from basic forms of embodied response to 

abilities of planning, deliberation, and ‘offline reflection’® Such simu- 

lations constitute what Pezzulo (2012) describes as a ‘covert loop”. The 

covert loop (see Figure 5.7): 

works off-line via the suppression of overt sensory and motor 

processes (in the active inference framework, this requires the 

suppression of proprioception). This permits running imagi- 

nary actions that produce a sequence of fictive actions and of 

predictions relative to future (rather than present) states of 

affairs. Fictive actions and predictions can be optimized via 

free energy [prediction error] minimization but without overt 

execution: they are not just “mind wandering” but are truly 

controlled towards goals specified at higher hierarchical levels. 

Prospection and planning are thus optimization processes that 

support the generation of distal and abstract goals (and asso- 

ciated plans), beyond current affordances. (Pezzulo, 2012, p. 1) 

Here too, the core idea remains independent of the full process 

model in which motor commands are implemented by proprioceptive 

predictions. More fundamental than this is the notion that action pro- 

duction, action understanding, and the capacity to simulate possible 
actions might all be supported by context-nuanced tweaks to a single 

generative model grounded in the agent’s own sensorimotor repertoire. 
This idea has been studied, in microcosm, using a variety of sim- 

ulations. Thus, Weber et al. (2006) describe a hybrid generative/pre- 

dictive model of motor cortex that provides just this kind of multiple
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unctionality. In this work, a generative model that enables a robot 

o perform actions doubles as a simulator enabling it to predict pos- 

ible chains of perception and action. This simulation capacity is 

hen used to enable a simple but challenging behaviour in which the 
'obot must dock at a table in a way that enables it to grasp a visually 

letected object. Since most modes of table docking are inappropriate 

o the task, this provides a nice opportunity to base docking behav- 

our upon the results of the robot’s own ‘mental simulations’ (see 

figure 5.8). 

Related ideas are pursued by Tani et al. (2004) and by Tani (2007). 

fani and colleagues describe a set of robotic experiments using ‘recur- 

ent neural networks with parametric biases’ (RNNPBs): a class of 

ietworks that implement prediction-based hierarchical learning. The 

suiding idea is that prediction-based hierarchical learning here solves a 

  
IGURE 5.8 The Robot from Weber et al. (2006), Performing the 

Jocking’ Action 

[ote that it cannot reach the orange fruit if it approaches the table at an angle, 

ecause of its short gripper and its side columns. This corresponds perhaps 

» situations where fingers, arm, or hand are in an inappropriate position for 

rasping. 

»urce: Weber et al., 2006.
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crucial problem. It allows a system to combine a real sensorimotor grip 

on dealing with its world with the emergence of higher level abstrac- 

tions that (crucially) develop in tandem with that grip. This is because 

learning here yields representational forms, at higher processing levels, 

that allow the system to predict the regularities that are governing the 
neural patterns (themselves responding to energetic stimulations at the 

sensory peripheries) present at the lower levels. 

These are all examples of ‘grounded abstractions’ (for this gen- 
eral notion, see Barsalou, 2003; Pezzulo, Barsalou, et al., 2013) that 

open the door to more compositional and strategic operations, such 

as solving novel motor problems, mimicking the observed behaviour 

of other agents, engaging in goal-directed planning, and pre-testing 

behaviours in offline imagery. Such grounded abstractions do not 

float free of their roots in embodied action. Instead, they constitute 

what might be thought of as a kind of ‘dynamical programming 

language’ for those interactions: a language in which, for example, 

‘continuous sensory-motor sequences are automatically segmented 

into a set of reusable behavior primitives’ (Tani, 2007, p. 2). Tani 

et al. (2004) show that robots equipped (as a result of learning-driven 

self-organization) with such primitives are able to deploy them so 

as to imitate the observed behaviour of another. In another experi- 

ment, they show that such primitives also facilitate the mapping of 

behaviours onto simple linguistic forms, so that a robot can Jearn to 
follow a command to, for example, point (using its body), push (using 

its arm), or hit (with its arm) in ways that target designated objects 

or spatial locations. 

This set of studies is further extended in Ogata et al. (2009), who 

tackle the important problem of viewpoint translation using an 

RNNPB simulation in which one robot views and then imitates the 
object-manipulation behaviour of another agent, applying a set of learnt 
transformations to its own self-model. In this experiment in ‘cognitive 

developmental robotics’, ‘the other individual is regarded as a dynamic 

object that can be predicted by projecting/translating a self-model’ 

(Ogata et al., 2009, p. 4148) 

Such demonstrations, though restricted in scope, are revealing. 

The emergence of ‘reusable behaviour primitives’ shows that features 
such as compositionality, reusability, and recombinability (features 

once associated with the brittle, chunky symbol structures of classical 

Artificial Intelligence) can arise quite naturally as a result of probabilis- 

tic prediction-driven learning in hierarchical settings. But the resulting 

abstractions are now richly grounded in the past experience and sen- 

sorimotor dynamics of the agent.
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5.10 The Restless, Rapidly Responsive, Brain 

Context, it seems, is everything. Not just ‘Jekyll versus Hyde’ but even 

‘self versus other” are here emerging as manifestations of a capacity 
to reshape and nuance our own processing routines according to the 

context in which we find ourselves. But context, of course, must itself 

be recognized, and it is usually recognized in context! 

There is no unfortunate regress here. In the typical case, we are pro- 
vided with many reliable cues (both external and internal) that recruit 

the correct subsets of neural resources for fine-tuning by means of the 

residual prediction error signal. Clear external cues (the operating the- 
atre cues, in the case of Jekyll versus Hyde) are the obvious example. 

But my own ongoing neural state (encoding information about my 

goals and intentions) provides another type of cue, already setting up 

all manner of contextualizing influence, as will the many fine-grained 
effects of my own bodily motion upon the play of sensory informa- 

tion (see O'Regan & Noe, 2001). Two further ingredients complete the 

picture. One is the availability of ultra-rapid forms of ‘gist processing’ 

able to deliver contextualizing cues within a few hundred milliseconds 

of encountering a new scene. The other, which cannot really be over- 

stressed, is the ongoing activity of the restless ever-expecting brain. 

We saw, way back in chapter 1 (section 13), how the PP schema 

favoured a recurrently negotiated ‘gist-at-a-glance’ model, where we 
first identify the general scene followed by the details. We stressed too 

that the guiding hand of context is (in ecologically normal cases) seldom 

absent from our mindset. We are almost always in some more-or-less 

apt state of sensory expectation. The brain thus construed is a restless, 
pro-active (Bar, 2007) organ, constantly using its own recent and more 

distant past history to organize and reorganize its internal milieu in 

ways that set the scene for responses to incoming perturbations. 

Moreover, even in the rare cases where we are forced (perhaps due 

to some clever experimental design) to process a succession of unre- 

lated sensory inputs, there are canny tricks and ploys that support 

ultra-rapid extraction of the broad meaning or ‘gist’ of the scene. Such 
ultra-rapid gist extraction can deliver, even in otherwise elusive cases, 

the context relative to which apt precision expectations may be calcu- 

lated: context that thus forges networks of effective connectivity able 

to corral new, soft-assembled coalitions of neural resources that both 

select and nuance the models used to meet the forward flow of sensory 

information. 

Ultra-rapid gist extraction is by no means the sole preserve of 

the visual modality. But the mammalian visual system is especially
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well-understood, and here benefits from the combined resources of 

two rather different processing streams: the fast magnocellular path- 
way, whose projections from V1 constitute the so-called ‘dorsal visual 

stream’, and the slower parvocellular pathway, whose projections from 

V1 create the so-called ‘ventral visual stream’. These are the streams 

made famous by Milner and Goodale (see, e.g, Milner & Goodale, 

2006) in their ‘dual visual systems’ account. Within the context of a 

prediction-driven neural economy, it is thought that these streams 

provide, respectively: 

A fast, coarse system that initiates top-down predictions based 

on partially processed visual input, and a slower, finer sub- 

system that is guided by the rapidly activated predictions and 

refines them based on slower arriving detailed information. 
(Kveraga et al., 2007, p. 146) 

There is also a third, konicellular stream, though its role remains 

unclear at the time of writing (see Kaplan, 2004). The magnocellu- 

lar and parvocellular streams each display the kind of hierarchical 

organization described earlier. But they are also densely and repeat- 

edly cross-connected, creating a dazzling web of forward, backward, 

and sideways influence (DeYoe & van Essen, 1988) whose combined 

effect is (Kveraga et al. suggest) to allow the low-spatial frequency 
information rapidly processed by the dorsal stream to provide 

context-suggesting information to guide object and scene recognition. 

These early stages of rapid ‘guessing’ yield rough and ready ‘analo- 

gies’ (in the vocabulary of Bar, 2009) for the present input. By this the 
authors mean only that the rapidly processed cues support the retrieval, 

based on past experience, of a kind of high-level skeleton: a skeleton 
that can (in most cases) suggest just enough about the likely form and 

content of the scene to allow the fluent use of residual error rapidly 

to reveal whatever additional detail the task demands (see Figure 5.9). 

Such skeleton contents are not restricted to simple facts concerning 

the nature of the scene (city scene, office scene, animal-in-motion, etc.) 

but will include (Barrett & Bar, 2009) rapidly retrieved elements of the 

‘affective gist’ of the scene or event, based upon our previous affective 

reactions. In this way: 

When the brain detects visual sensations from the eye in the 

present moment, and tries to interpret them by generating a 

prediction about what those visual sensations refer to or stand 

for in the world, it uses not only previously encountered pat- 
terns of sound, touch, smell and tastes, as well as semantic
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FIGURE 5.9 Using Low Spatial Frequency Information for Rapid 

Guessing 

In parallel to the bottom-up systematic progression of the image details along 

the visual pathways, there are quick projections of low spatial frequency 

(LSF) information, possibly via the magnocellular pathway. This coarse but 

rapid information is sufficient for generating an ‘initial guess’ about the 

context and about objects in it. These context-based predictions are validated 

and refined with the gradual arrival of higher spatial frequencies (HSFs) (Bar, 

2004). MPFC, medial prefrontal cortex; OFC, orbital frontal cortex; RSC, retro- 

splenial complex; PHC, parahippocampal cortex; IT, inferior temporal cortex. 

The arrows are unidirectional in the figure to emphasize the flow during the 

proposed analysis, but all these connections are bidirectional in nature. 

Source: From Bar, 2009, by permission. 

knowledge. It also uses affective representations—prior expe- 
riences of how those external sensations have influenced inter- 

nal sensations from the body. (Barrett & Bar, 2009, p. 1325) 

As processing proceeds, affect and content are here co-computed: inter- 

twined throughout the process of settling upon a coherent, temporarily 

stable interpretation of the scene. To experience the world, this sug- 

gests, is not merely to settle upon a coherent understanding span- 

ning many spatial and temporal scales. It is to settle upon a coherent,
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multilevel, affectively rich understanding. Such understandings are 
directly poised to entrain appropriate actions and responses. As we 

pass from context to context, our brains are constantly active attempt- 

ing to prepare us to process and respond to each situation. That means 

activating a succession of ‘mindsets’ (Bar, 2009, p. 1238) using coarser 

cues to recruit more detailed guesses, and priming rich bodies of stored 
knowledge concerning the nature and shape of the opportunities for 

action and intervention that may be on offer. 

The prediction-based account here makes contact, Bar (2009) notes, 

with two other major research traditions in recent cognitive science. 

The first concerns the automatic activation (by simple cues such as a 

word or facial expression) of stereotypes that impact behaviour (see, 

e.g., Bargh et al,, 1996, and, for a rich retrospective, Bargh, 2006). Here, 

the link is straightforward: the rapid and automatic activation of broad 

sets of predictions provides a mechanism capable of subsuming these 

effects, along (as we have seen) with many others. 

The second, which is a little less straightforward, concerns the 

so-called ‘default network’. This is a set of neural regions said to be 

robustly active when we are not engaged in any specific task (when 

we are allowing our minds to wander freely, as it were) and whose 

activity is suppressed when attention is focused upon specific ele- 

ments of the external environment (see Raichle & Snyder, 2007; 

Raichle et al., 2001). One possible interpretation of this ‘resting state 

activity” profile is that it reflects the ongoing process of building and 

maintaining a kind of background, rolling ‘mindset” preparing us 
for future bouts of action and choice. Such ongoing activity would 

reflect our overall world model and include our agent-specific sets 

of ‘needs, goals, desires, context-sensitive conventions and attitudes’ 

(Bar, 2009, p. 1239). This would provide the baseline sets of expecta- 

tions that are themselves already active when we process even the 

roughest, coarsest sets of sensory cues from the external (or indeed 

the internal) environment. Such ongoing endogenous activity is func- 

tionally potent and has been invoked (to take a different example) to 

explain why subjects respond differently to the very same stimulus® 

in ways that are systematically linked to spontaneous pre-stimulus 

neuronal activity (Hesselmann et al., 2008). Putting all this together 
we arrive at a picture in which the brain is never passive, not even 

before the arrival of the coarse cues that drive ultra-rapid gist rec- 

ognition. The ‘resting state’, thus construed, is anything but restful. 

Instead, it too reflects the ceaseless activity of the neural machinery 

whose compulsive prediction-mongering maintains us in constant 

yet ever-changing states of expectation.?
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5.11  Celebrating Transience 

PP depicts a complex but rapidly reconfigurable cognitive architecture 

in which transient coalitions of inner (and outer, see Part 1II) resources 

take shape and dissipate under the influence of multiple mechanisms 

of neural gain control. Such mechanisms implement neural gating’ 

regimes in which the flow of influence between brain areas is dynami- 

cally alterable, and in which the relative influence of top-down and 

bottom-up information may be constantly varied according to esti- 

mations of our own sensory uncertainty.” The result is an architec- 
ture able to combine functionally differentiated circuits with highly 

context-sensitive (and ‘interaction-dominated’) modes of processing 

and response. 

Underlying this potent combination are complex, acquired bodies 

of ‘precision expectations” whose role is to alter the patterns of influ- 

ence that obtain between various systemic elements. In the case of 

observing and understanding other agents, the most important role of 

these precision expectations is to down-weight proprioceptive predic- 

tion error, allowing multilevel prediction to unfold without directly 

entraining action. Such down-weighting may also provide a means of 

‘virtual exploration’, allowing us to imagine non-actual scenarios as a 

guide to reasoning and choice. 

Most importantly (and most generally) variable precision- 

weightings sculpt and shift the large-scale flow of information and 

influence. They thus provide a means for repeatedly reconfiguring 

patterns of effective connectivity, so that the ‘simplest circuit dia- 
gram’ underlying neural response is itself a moving target, con- 

stantly altering in response to rapidly processed cues, self-generated 

action, changing task demands, and alterations in our own bodily 

(e.g. interoceptive) states. The brain thus construed is a morphing, 
buzzing, dynamical system forever reconfiguring itself so as better 

to meet the incoming sensory barrage.



6 

Beyond Fantasy 

6.1 Expecting the World 

If brains are probabilistic prediction machines, what does that sug- 

gest about the mind-world relation? Would it mean, as some have sug- 
gested, that we experience only a kind of ‘virtual reality’ or ‘controlled 
hallucination’? Or are we, courtesy in part of all that prediction-heavy 

machinery, put more directly in touch with what might (opaquely and 

problematically) be called ‘the world itself’? What is the relation, more- 

over, between what we seem to perceive, and the probabilistic inner 

economy? We seem to perceive a world of determinate objects and 
events, a world populated by dogs and dialogues, tables and tangos. 

Yet underlying those perceptions (if our stories are on track) are encod- 

ings of complex intertwined distributions of probabilities, including 
estimations of our own sensory uncertainty. 

Approaching such questions without due regard for the impor- 

tance of action and our own action repertoires would lead us very 

badly astray. For it is the guidance of world-engaging action, not the 

production of ‘accurate’ internal representations, that is the real pur- 
pose of the prediction error minimizing routine itself. This changes 

the way in which we should think about both the mind-world relation 
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znd the shape and reach of the probabilistic inner economy. Knowing 
sur world must now fall into place as part of a larger systemic matrix 

whose pivot and core is embodied action and the kinds of fast, fluent 

response needed for adaptive success. Exploring PP in this larger set- 

zing is the task of the rest of this book. 

5.2 Controlled Hallucinations and Virtual Realities 

Chris Frith, in his wonderful (2007) book on the predictive, Bayesian 

hrain, writes that: 

Our brains build models of the world and continuously mod- 

ify these models on the basis of the signals that reach our 

senses. So, what we actually perceive are our brain’s models of 

the world. They are not the world itself, but, for us, they are as 

good as. You could say that our perceptions are fantasies that 

coincide with reality. (Frith, 2007, p. 135) 

This recalls the slogan that we met back in chapter 1, that ‘perception is 

controlled hallucination’! It is controlled hallucination, so the thought 

goes, because it involves using stored knowledge to generate a ‘best 

multilevel top-down guess’. This is the guess, defined across multiple 

spatial and temporal scales, that best accounts for the incoming sen- 

sory signal. In just this vein, Jakob Hohwy writes that: 

One important and, probably, unfashionable thing that this 

theory tells us about the mind is that perception is indirect . .. 

what we perceive is the brain’s best hypothesis, as embodied 

in a high-level generative model, about the causes in the outer 

world. (Hohwy, 2007a, p. 322) 

In a later work, Hohwy describes this relationship using the notion of a 

‘virtual reality’. Conscious experience, Hohwy suggests: 

arises as the upshot of the brain’s appetite for making the best 

sense it can of the current sensory input, even if that means 

weighting prior beliefs very highly. This fits with the idea that 

conscious experience is like a fantasy or virtual reality con- 

structed to keep the sensory input at bay. It is different from 

the conscious experience that is truly a fantasy or virtual real- 

ity, which we enjoy in mental imagery or dreaming, because 

such experiences are not intended to keep sensory input at bay.
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But it is nevertheless at one remove from the real world it is 

representing. (Hohwy, 2013, pp. 137-138) 

There is something right about all this and something (or so I shall 

argue) profoundly wrong. What is right is that the accounts on offer 
depict perception as in some sense an inferential process (as originally 

proposed by Helmholtz, 1860; see also Rock, 1997): one that cannot help 

but interpose something (the inference) between causes (such as sensory 

stimulations or distal objects) and effects (percepts, experiences). Such 

processes can go wrong, and the resulting states of fantasy, delusion, 

and error have often be taken as compelling evidence for an ‘indirect’ 

view (see, e.g., Jackson, 1977) of our perceptual contact with the world. 

Moreover, the bulk of our normal, successful, daily perceptual 

contact with the world—if the prediction machine models are on the 

mark—is determined as much by our expectations concerning the 

sensed scene as by the driving signals themselves. Even more strik- 

ingly, the forward flow of sensory information? here consists only in the 

propagation of error signals, while richly contentful predictions flow 

downwards and sideways, interacting in complex non-linear fashions 

via the web of reciprocal connections. A key result of this pattern of 

influence, as noted back in chapter 1, is much greater efficiency in the 

use of neural encodings, because: ‘An expected event does not need 

to be explicitly represented or communicated to higher cortical areas 

which have processed all of its relevant features prior to its occurrence’ 

(Bubic et al, 2010, p. 10). In ecologically normal circumstances, the 

role of moment-by-moment perceptual contact with the world is thus 

‘merely’ to check and when necessary correct the brain’s best guessing 

concerning what is out there. This is a challenging vision. It depicts our 

(mostly non-conscious) expectations as a major source® of the contents of 

our perceptions: contents that are, however, constantly being checked, 

nuanced, and selected by prediction error signals sensitive to the evolv- 

ing sensory input. 

Despite all this, I think we should resist the claim that what we 

perceive is best understood as a kind of hypothesis, model, fantasy, 

or virtual reality. The temptation to think so, it seems to me, rests on 

two mistakes. The first mistake is to conceive of inference-based routes 

to adaptive response as introducing a kind of representational veil 

between agent and world. Instead, it is only the structured probabilis- 
tic know-how distilled from prediction-driven learning that enables us 
to see through the veil of surface statistics to the world of distal interacting 

causes itself. The second mistake is a failure to take sufficient account 

of the role of action, and of organism-specific action repertoires, in both
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selecting and constantly testing the ongoing stream of prediction itself. 

Rather than aiming to reveal some kind of action-neutral image of an 

objective realm, prediction-driven learning delivers a grip upon affor- 

JIances: the possibilities for action and intervention that the environment 

makes available to a given agent.® Taken together, these points suggest 

that the probabilistic inference engine in the brain does not constitute 

a barrier between agent and world. Rather, it provides a unique tool for 

encountering a world of significance, populated by human affordances. 

6.3 The Surprising Scope of Structured Probabilistic Learning 

It is a natural consequence of prediction-based learning that the learner 

uncovers (when all is working correctly) the weave of interacting distal 

causes that—given her action repertoire and interests—characterizes 

the interact-able environment in which learning occurs. In this way 

prediction-based learning brings into view a structured external world, 

built of persisting (though often temporally evolving) objects, proper- 

ties, and complex nested causal relations. As a result, ‘the recognition 

system “inherits” the dynamics of the environment and can predict its 

sensory products accurately’ (Kiebel, Daunizeau, & Friston, 2009, p. 7). 

The full power and scope of hierarchical prediction-driven learn- 

ing in active agents remains to be determined. It is limited by time, 

by data, and—perhaps most important—by the nature of the neural 

approximations involved. It is already clear, however, that tractable 

forms of hierarchical prediction-driven inference are able to uncover 

deep structure and even the kinds of abstract, high-level regularities 

that once seemed to cry out for the provision of large quantities of innate 

knowledge. The general principle at work here is by now familiar. We 

assume that the environment generates sensory signals by means of 

nested interacting (distal) causes and that the task of the perceptual 

system is to invert this structure by learning and applying a hierarchi- 

cal generative model so as to predict the unfolding sensory stream. The 

flow of sensation (bound, as we saw, in constant circular causal com- 

merce with the flow of action) is predictable just to the extent that there 

is spatial and temporal pattern in that flow. But such pattern is a func- 

tion of properties and features of the world and of the needs, form, and 
activities of the agent. Thus, the pattern of sensory stimulation reach- 

ing the eye from, say, an observed football game is a function of the 

lighting conditions, the structured scene, and the head and eye move- 

ments of the observer. It is also a function of a variety of more abstract 

interacting features and forces, including the patterns of offense and
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defence characteristic of each team, the current state of play (there are 

strategic alterations when one team is far behind, for example), and so 

on. The beauty of the various waves of work in computational neurosci- 

ence and machine Jearning described in previous chapters is that they 

begin to show how to learn about such complex stacks of interacting 

causes without requiring (though they may readily exploit) extensive 

prior knowledge. This should fundamentally reconfigure our think- 
ing about the debate between nativism and empiricism, and about the 

nature and possibility of ‘carving nature at the joints’. 

Thus consider Tenenbaum et als (2011) account of Hierarchical 

Bayesian Models (HBMs).* An HBM is one in which multiple layers of 

processing are interanimated in an especially potent way, with each 

layer attempting to account for the patterns of activation (encoding 

some probability distribution of variables) at the level below. This, of 

course, is precisely the kind of architecture described, at the so-called 

‘process’ level,” by hierarchical predictive coding. When such a system 

is up and running, mini-hypotheses at all the multiple levels settle into 

the mutually consistent set that best accounts for the incoming sensory 
signal, taking into account what the system has learnt and the pres- 

ent sensory evidence, including, we saw, the system’s best estimation 

of the reliability of that evidence. In the Bayesian terms introduced in 

chapter 1, each layer is learning ‘priors’ on the level below. This whole 

multilayer process is tuned by the incoming sensory signals and imple- 

ments the strategy known as ‘empirical Bayes’ allowing the system to 

acquire its own priors from the data, as learning proceeds. 

Such multilayer learning has an additional benefit, in that it lends 

itself very naturally to the combination of data-driven statistical learn- 

ing with the kinds of systematically productive knowledge representa- 

tion long insisted upon by the opponents of early work in connectionism 

and artificial neural networks.® HBMs (unlike those early forms of con- 

nectionism) implement processing hierarchies suitable for represent- 

ing complex, nested, structured relationships (for some nice discussion, 

see Friston, Mattout, & Kilner, 2011; Tani, 2007; and the discussion in 

5.9). To see this in microcosm, recall SLICE", the idealized stratiography 

program described in the Introduction. SLICE* effectively embodied 

a productive and systematic body of knowledge concerning geologi- 
cal causes. For SLICE* can produce the full set of geological outcomes 

allowed by the possible combinations and recombinations of hidden 

causes represented in its generative model. 

By combining the use of multilayer generative models with pow- 

erful forms of statistical learning (indeed, using that learning to 

induce those very models), we thus secure many of the benefits of both
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early connectionist (‘associationist’} and more classical (‘rule-based’) 

approaches. Moreover, there is no need to fix on any single form of 

knowledge representation. Instead, each layer is free to use whatever 

form of representation best enables it to predict and (thus) account for 

the activity at the level below” In many cases, what seems to emerge 

(as Tenenbaum et al. are at pains to stress) are structured, produc- 

tive bodies of knowledge that are nonetheless acquired on the basis 

of multistage learning driven by statistical regularities visible in the 

raw training data. Early learning here induces overarching expecta- 

tions (e.g., very broad expectations concerning what kind of things 

matter most for successful categorization within a given domain). 
Such broad expectations then constrain later learning, reducing the 

hypothesis space and enabling effective learning of specific cases. 

Using such routines, HBMs have recently been shown capable of 

learning the deep organizing principles for many domains, on the basis 

of essentially raw data. Such systems have learnt, for example, about the 

so-called ‘shape bias’ according to which items that fall into the same 

object-category (like cranes, balls, and toasters) tend to have the same 

shape: a bias that does not apply to substance categories such as gold, 

chocolate, or jelly (Kemp et al, 2007). They have also learnt about the 

kind of grammar (context-free or regular) that will best account for 
the patterns in a corpus of child-directed speech (Perfors et al., 2006), 

about the correct parsing into words of an unsegmented speech stream 

(Goldwater, Griffiths, & Johnson, 2009), and generally about the shape of 

causal relations in many different domains (e.g, diseases cause symp- 

toms, and not vice versa, Mansinghka et al., 2006). Recent work has also 

shown how brand new categories, defined by new causal schemas, can 

be spawned when assimilation to an existing category would require an 

overly complex—hence effectively ‘ad hoc'—mapping (Griffiths, Sanborn, 

et al, 2008). Such approaches have also been shown (Goodman et al, 

2011) to be capable of rapidly learning highly abstract domain-general 

principles, such as a general understanding of causality, by pooling evi- 

dence obtained across a wide range of cases. Taken together, this work 

demonstrates the unexpected power of learning using HBMs.* Such 
approaches allow systems to infer the high-level structure specific to a 

domain, and even the high-level structures governing multiple domains, 

by exposing an apt multilevel system to raw data. 

An important point to notice is that HBMs here allow the learner to 

acquire the schematic relations characteristic of a domain before ‘filling 

in’ the details concerning individual exemplars. In this way, for example:
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a hierarchical Bayesian model of grammar induction may be 

able to explain how a child becomes confident about some 

property of a grammar even though most of the individual 

sentences that support this conclusion are poorly understood. 

(Kemp et al., 2007, p. 318) 

Similarly, the shape bias for objects may be learnt before learning 

the names of any of the individual objects. The bias emerges early as 

the best high-level schema, and once in place it enables rapid learn- 

ing about specific exemplars falling into that group. This is possible in 

cases where ‘a child has access to a large number of ... noisy observa- 

tions [such that] any individual observation may be difficult to inter- 

pret but taken together they may provide strong support for a general 

conclusion” (Kemp et al., 2007, p. 318). Thus, the authors continue, one 

might have sufficient evidence to suggest that visual objects tend to 

be ‘cohesive, bounded, and rigid (cf. Spelke, 1990)’ before forming any 

ideas about individual concrete objects such as balls, discs, stuffed toys, 

and so on. 

This is, of course, precisely the kind of early learning pattern that is 

easily mistaken as evidence of the influence of innate knowledge about 

the world. The mistake is natural since the high-level knowledge is tai- 

lored to the domain and allows subsequent learning to proceed much 

more easily and fluently than might otherwise be expected. But instead 

of thus relying on rich bodies of innate knowledge, HBM-style learners 

are capable of inducing such abstract structuring knowledge from the 

data. The central trick, as we have seen, is to use the data itself in a kind 

of multistage manner. First, the data is used to learn priors that encode 

expectations concerning the large-scale shape of the domain (what 

Tenenbaum et al., 2011, call the form of structure’ within the domain). 

Suitably scaffolded by this structure of large-scale (relatively abstract) 

expectations, learning about more detailed regularities becomes pos- 

sible. In this way, HBMs actively unearth the abstract structural expec- 

tations that enable them to use raw data to learn finer and finer grained 

models (supporting finer grained sets of expectations). 
Such systems—like PP systems more generally—are also able to 

induce their own so-called ‘hyperpriors’ from the data. Hyperpriors 

(here used interchangeably with ‘overhypotheses’, see Kemp et al., 2007) 

are essentially ‘priors upon priors’ embodying systemic expectations 

concerning very abstract (at times almost ‘Kantian’) features of the 

world. For example, one highly abstract hyperprior might demand that 

each set of multimodal sensory inputs has a single best explanation. 

This would enforce a single peak for the probabilistic distributions
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consequent upon sensory stimulation, so that we always saw the world 

as being in one determinate state or another, rather than (say) as a 

superposition of equiprobable states. Such a hugely abstract hyperprior 

might be a good candidate for innate specification. But it might equally 

well be left to early learning, since the need to use sensory input to 

drive actions, and the physical impossibility of acting in two very dif- 

ferent ways at once, could conceivably” drive an HBM to extract even 

this as a general principle governing inference. 

HBMSs, and the various process models (including PP) that might 
implement them, absolve the Bayesian theorist of the apparent sin 

of needing to set the right priors in advance of successful learning. 

Instead, in the manner of empirical Bayes, a multilayer system can 

learn its own priors from the data. This also delivers maximal flex- 

ibility. For although it is now easy to build abstract domain-structure 

reflecting knowledge (in the form of various hyperpriors) into the sys- 

tem, it is also possible for the system to acquire such knowledge, and to 

acquire it in advance of the more detailed learning that it both stream- 

lines and makes possible. Innate knowledge thus conceived remains 

partially ‘developmentally open’ in that aspects of it can be smoothed 
and refined, or even completely undone, by data-driven learning using 

the same multilayer process (for some nice discussion, see Scholl, 2005). 
Of course, as King Lear famously commented, ‘nothing will come 

of nothing’, and, as hinted above, even the most slimline learning sys- 

tem must always start with some set of biases.!>? More important, our 

basic evolved structure (gross neuroanatomy, bodily morphology, 

etc.) may itself be regarded as a particularly concrete set of inbuilt 

(embodied) biases that form part of our overall ‘model” of the world 

(see Friston, 2011b, 2012¢, and discussion in 8.10). Nonetheless, mul- 

tilayer Bayesian systems have proven capable of acquiring abstract, 

domain-specific principles without building in many of the rather spe- 

cific kinds of knowledge (e.g., about the importance of shape for learn- 

ing about material objects) that were previously thought essential for 

fluent learning in different domains. Such systems can acquire, some- 

times from raw sensory data, knowledge of quite abstract organizing 

principles—principles that then allow them to make increasingly sys- 

tematic sense of that very data. 

6.4 Ready for Action 

The discussion in 63 is, however, radically incomplete. It is radically 

incomplete because most current work on HBMs treats knowing the
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world on the model of passive perception. But perception and action, as 

constructed using the PP schema, were seen to be both co-determined 

and co-determining (see chapters 2, 4 and 5 above). In these broader 

frameworks, what we do depends upon what we perceive, and what 

we perceive is constantly conditioned by what we do. This results in 

the rather specific forms of circular causality described in 2.6 and in 

chapter 4. Here, high-level predictions entrain actions that both test 

and confirm the predictions, and that help sculpt the sensory flows 

that recruit new high-level predictions (and so on, in a rolling cycle of 

expectation, sensory stimulation, and action). 

How should we think of this rolling cycle? The wrong model, it 

seems to me, would be to depict the rolling cycle as a slightly fancy 

(because circular) version of the classical sense-think-act cycle in 

which sensory stimulation must be fully processed, and a struc- 

tured world of external objects revealed, before actions are selected, 

planned, and (ultimately) executed. Such a ‘sense-think-act’ vision 

has informed much work in cognitive psychology and cognitive sci- 

ence. It is nicely described (and then roundly rejected) by Cisek (2007) 

who notes that: 

According to this view, the perceptual system first collects sen- 

sory information to build an internal descriptive representation 

of objects in the external world (Marr 1982). Next, this informa- 

tion is used along with representations of current needs and 

memories of past experience to make judgments and decide 

upon a course of action (Newell & Simon 1972; Johnson-Laird 

1988; Shafir & Tversky 1995). The resulting plan is then used 

to generate a desired trajectory for movement, which is finally 

realized through muscular contraction (Miller et al. 1960; Keele 

1968). In other words, the brain first builds knowledge about the 

world using representations which are independent of actions, 

and this knowledge is later used to make decisions, compute 

an action plan and finally execute a movement. (Cisek, 2007, 

p- 1585) 

There are many reasons to be wary of such a model (see Clark, 1997; 

Pfeifer & Bongard, 2006, and further discussion in Part III following). But 

among the most compelling is the need to be ready to respond fluently 

to unfolding—and potentially rapidly changing—situations. Such readi- 

ness seems ecologically mandated for creatures who must be poised to 

grasp opportunities and avoid dangers at short notice, and who may be 

acting in competition with others, including (at times) their own con- 

specifics. Creatures equipped with ever-active, predictive brains are, of
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course, already (quite literally) ‘ahead of the game’ as brains like that 

are—as we have seen—constantly guessing the ongoing stream of sen- 

sory input, including the inputs that should result from their own next 

actions and worldly interventions. But the story does not end there. 

One powerful strategy, which combines very neatly (or so I shall 

argue) with the image of the ever-active predictive brain, involves 

rethinking the classical sense-think-act cycle as a kind of mosaic: a 
mosaic in which each shard combines elements of (what might clas- 
sically be thought of as) sensing and thinking with associated pre- 

scriptions for action. At the heart of this mosaic vision (whose roots 

lie in the active vision paradigm, see Ballard, 1991; Churchland et al, 

1994) lies the simultaneous computation of multiple probabilistically 

infected ‘affordances” multiple possibilities for organism-salient action 

and intervention. 

The flagship statement of this view is the ‘affordance competition 

hypothesis’ (Cisek, 2007; Cisek & Kalaska, 2010). Such a view is moti- 
vated by a large set of otherwise anomalous neurophysiological data 

(for a full review, see Cisek & Kalaska, 2010) including: 

1. The chronic failure to find inner representations of the world of 

the kind predicted by a full ‘passive reconstruction’ model in 

which the goal of, for example, visual processing is to generate a 

single rich, unified, action-neutral representation of the scene apt 

for subsequent use in planning and decision-making. 

2. The pervasive effects of attentional modulation, resulting in the 

enhancement and suppression of different aspects of ongoing neu- 

ral activity according to task and context (so that neural response 

seems geared to current behavioural needs rather than to the con- 

struction of an action-neutral encoding of the state of the external 

world). 

3. Increasing evidence that neural populations involved in ongoing 

planning and decision-making are also involved in motor control, 

and (more generally) that regional cortical responses fail to respect 

the classical theoretical divisions between perception, cognition 
(e.g., reasoning, planning, and deciding), and motor control. 

Thus, large bodies of work in visual neuroscience suggest that multiple 

different bodies of information are continuously computed in parallel 

and partially integrated when (but only when and to whatever extent) 

some current action or response demands. A familiar example here is 

the separation of visual information into distinct (though overlapping) 

ventral and dorsal streams: streams linked, it is increasingly clear, by 

ongoing, task-sensitive, patterns of informational exchange (see, e.g.,
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Milner & Goodale, 1995, 2006; Schenk & Mcintosh, 2010; Ungerleider & 

Mishkin, 1982). Within the neural economy, such fractionation and par- 

tiality seems to be the rule, not the exception, characterizing processing 

within each stream as well as between the streams, and in other parts 

of the brain (see, e.g., Felleman & Van Essen, 1991; Stein, 1992). 

There is also ample evidence for the pervasive effects of attention, 

reflecting context and task, as well as internal context in the form of 

interoceptive states such as hunger and boredom. Such effects have 

been shown to modulate neural responses at every level of the cortical 

hierarchy and in some sub-cortical (e.g., thalamic) areas too (Boynton, 

2005; Ito & Gilbert, 1999; O’Connor et al,, 2002; O’'Craven et al., 1997; 

Treue, 2001). 

Finally, increasing and highly suggestive evidence challenges the 

view of core cognitive capacities (such as planning and deciding) as neu- 
rophysiologically distinct from the circuitry of sensorimotor control. 

For example, decisions concerning eye movements and the execution of 

eye movements recruit highly overlapping circuits in lateral intrapari- 

etal area (LIP), frontal eye fields (FEF), and the superior colliculus—the 

latter being, as Cisek and Kalaska (2011, p. 274) nicely note, ‘a brainstem 

structure that is just two synapses away from the motor neurons that 

move the eye’ (for these results, see Coe et al.,, 2002; Doris & Glimcher, 

2004; and Thevarajah et al, 2009, respectively). In the same vein, a 

perceptual decision task (one in which the decision is reported by an 
arm movement) revealed marked responses within premotor cortex 

corresponding to the process of deciding upon a response (Romo et 

al,, 2004). Quite generally, wherever a decision is to be reported by (or 

otherwise invokes) some motor action, there looks to be an entwin- 

ing of perceptuo-motor processing and decision-making, leading Cisek 

and Kalaska to suggest that ‘decisions, at least those reported through 

actions, are made within the same sensorimotor circuits that are 

responsible for planning and executing the associated action’ (Cisek & 

Kalaska, 2011, p. 274). In cortical associative regions such as posterior 

parietal cortex (PPC), Cisek and Kalaska go on to argue, activity does 

not seem in any way to respect the traditional divisions between per- 

ception, cognition, and action. Instead we find neuronal populations 

that trade in shifting and context-responsive combinations of perceiv- 

ing, deciding, and acting, and in which even single cells may partici- 

pate in many such functions (Andersen & Buneo, 2003). 

Further support for such a view is provided by Selen et al. (2012). 
In this study subjects were shown a display of moving dots (a ‘dynamic 

random dot display’) and asked to decide whether the dots were mostly 

moving to the left or to the right. Such decisions are known to depend
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very sensitively upon both the coherence and the duration of the motion 

of the dots, and the experimenters varied these parameters while prob- 

ing the subjects” decision states by requiring decisions at unpredictable 

times after stimulus onset. The subjects’ task was to respond as soon as 

the display stopped and to do so by means of a motor response (moving 

a handle to a target). At that time, a small perturbation was applied to 
the subject’s elbow, causing a stretch reflex response which was mea- 

sured using electromyography (EMG), a technique that records the 
electrical potentials associated with muscular activity. This provided 

a quantifiable measure of the state of the motor response effector (the 

arm) at the time of the probe. Importantly, the decision task itself here is 

remarkably well-behaved, so that subjects’ choices are tightly linked to 
the fine details of the evolving evidence (the precise mixes of coherence 
and duration displayed by the moving dots). The experimenters showed 

that the changing muscular reflex gains and the decision variable (rep- 

resenting the integrated effects of coherence and duration) co-evolved 

in a way quite incompatible with classical ‘sequential flow” models. In 

sequential flow models the motor action reporting a decision is taken 

to be independent from, and computed subsequent upon, the decision 

itself. By contrast, Selen et al. found that the reflex gains at each moment 

reflected the evolving decision state itself. The results fitted very neatly 

with the notion (more on which below) of an ‘affordance competition” in 

which both possible motor responses are being simultaneously pre- 

pared, and in which ‘the human brain does not wait for a decision to be 

completed before recruiting the motor system but instead passes partial 

information to prepare in a graded fashion for a probable action out- 

come’ (Selen et al,, 2012, p. 2277). The reflex gains, that is to say, ‘do not 

simply reflect the outcome of the decision but instead are privy to the 
brain’s deliberations as a decision is being formed’ (p. 2284). 

The presence of continuous flow from the decision process to the 
motor system makes sense if we assume that the overall goal is to be 

as pro-actively ready as possible to perform whichever response the 

evolving evidence suggests. Such pro-active readiness, to be genuinely 

useful, must necessarily be multiple and graded. It must allow many 
possible responses to be simultaneously partially prepared, to degrees 

dependent upon the current balance of evidence—including estima- 

tions of our own sensory uncertainty—as more and more informa- 

tion is acquired (for a similar story applied to phonological choice, see 

Spivey et al.,, 2005, see also Spivey et al., 2008). 

In a revealing closing comment, Selen et al. speculate that this may 

flow not simply from the pragmatic advantages of such action-readiness 

but also from a ‘deeper connection between the brain’s apparatus for
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evaluating evidence and the control of motor functions, adding that 

‘the flow demonstrated in our experiment may be part of a larger bidi- 

rectional interplay between the brain processes that underlie deci- 

sion making and motor control’ (p. 2285). Similarly, Cisek and Kalaska 
comment that: 

The distinctions among perceptual, cognitive, and motor 

systems may not reflect the natural categories of neural com- 

putations that underlie sensory-guided behavior [and that] 

the framework of serial information processing may not be 

the optimal blueprint for the global functional architecture 

of the brain. (Cisek & Kalaska, 2010, p. 275) 

As an alternative blueprint, Cisek and Kalaska explore the ‘Affordance 

Competition Hypothesis’ (introduced by Cisek, 2007) according 

to which: 

the brain processes sensory information to specify, in paral- 

le], several potential actions that are currently available. These 

potential actions compete against each other for further pro- 

cessing, while information is collected to bias this competition 

until a single response is selected (Cisek, 2007, p. 1585) 

The idea here is that the brain is constantly computing—partially and 

in parallel—a large set of possible actions and that such partial, paral- 
lel, ongoing computations involve neural encodings that fail to respect 

familiar distinctions between perceiving, cognizing, and acting. The 
reason for this is that the neural representations involved are, as Cisek 

and Kalaska (2011, p. 279) put it, ‘pragmatic’ insofar as ‘they are adapted 

to produce good control as opposed to producing accurate descriptions 

of the sensory environment or a motor plan’. All this makes good eco- 

logical sense, allowing time-pressed animals to partially “‘pre-compute’ 

multiple possible actions, any one of which can then be selected and 

deployed at short notice and with minimal further processing. 

Large bodies of neurophysiological data lend support to such a 

view. For example, Hoshi and Tanji (z007) found activity in monkey 

premotor cortex correlated with the potential movements of either 

hand in a bimanual reaching response task in which the monkey had 

to wait upon a cue signalling which hand to use (see also Cisek & 

Kalaska, 2005). Similar results have been obtained for the preparation 

of visual saccades (Powell & Goldberg, 2000) and using behavioural 

and lesion studies of reaching behaviour in human subjects (Castiello, 

1999; Humphreys & Riddoch, 2000). In addition, as we saw in the previ- 

ous section, there is intriguing evidence that ‘decisions about actions
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emerge within the same populations of cells that define the physical 

properties of those actions and guide their execution” (Cisek & Kalaska, 

2011, p. 282). 

The picture that here emerges is one of neural encodings that are 
fundamentally in the business of action control. Such encodings rep- 

resent how the world is in ways that are entwined, at multiple lev- 

els, with information about how to act upon the world. Many such 

‘action-oriented” (see Clark, 1997) takes upon the world are being 
prepared, the Affordance Competition hypothesis suggests, at every 

moment, although only a few make it beyond the threshold for control 

of actual motor response.® 

6.5 Implementing Affordance Competition 

All of these insights are neatly accommodated, or so I shall now sug- 

gest, using the distinctive resources of the predictive processing model 

of neural organization. To do so, we leverage three key properties of the 

predictive processing framework. The first concerns the probabilistic 

nature of the representations that support perception and action. The 

second concerns the computational intimacy of perception, cognition, 

and action. The third concerns the distinctive forms of circular causal 

interaction between organism and environment that result. Affordance 

competition then emerges as a natural consequence of probabilistic 

action-oriented prediction. 

Recall (1.12) that the probabilistic Bayesian brain encodes condi- 

tional probability density functions, reflecting the relative probability 

of some state of affairs given the available information. At every level, 

then, the underlying form of representation remains thoroughly proba- 

bilistic, encoding a series of deeply intertwined bets concerning what 

is ‘out there” and (our current focus) how best to act. Multiple compet- 

ing possibilities for action are thus constantly being computed, though 

only winning (high precision) proprioceptive predictions get to act as 

motor commands as such. 
In the model of action suggested by Friston and colleagues (see 

chapters 4 and 5), high precision proprioceptive prediction errors bring 

about motor actions. The very same neural populations that would be 

involved (when proprioceptive prediction error is given high preci- 

sion) in the generation of action may thus be deployed ‘offline” (again, 
see chapter 5) as a means of generating motor simulations suitable for 

reasoning, choice, and planning. This provides a compelling account 

of the many overlaps between the neural populations implicated in
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the control of action and those involved in reasoning, planning, and 
imagination. In planning, however, we must attenuate or inhibit the 

descending prediction errors that would normally (on the active infer- 

ence model) drive our muscles. This effectively insulates us from the 

world allowing us to use hierarchical generative models to predict in 

a counterfactual (‘what if") mode. Issues concerning sensory attenua- 

tion will also loom large (as we will see in chapter 7) in the context of 
self-made acts and attributions of agency. 

Finally, and perhaps most important, action (recall chapter 4) now 

involves a potent form of circular causality in which the representa- 

tions that are recruited to account for current sensory stimulations 

simultaneously determine actions that result innew patterns of sensory 

stimulation, that recruit new motor responses, and so on. This means 

that we confront—exactly as the Affordance Competition hypothesis 

suggests—an economy in which multiple competing probabilistic bets 

are constantly being made, within what is essentially a circularly causal 

perception-action machine. 

PP thus implements the distinctive circular dynamics described by 

Cisek and Kalaska using a famous quote from the American pragma- 

tist John Dewey. Dewey rejects the ‘passive’ model of stimuli evoking 

responses in favour of an active and circular model in which ‘the motor 

response determines the stimulus, just as truly as sensory stimulus 

determines movement’ (Dewey, 1896, p. 363). This idea is nicely clari- 

fied in another quote from elsewhere in the same article, where Dewey 

writes of seeing as an ‘unbroken act” which: 

is as experienced no more mere sensation than it is mere motion 

(though the onlooker or psychological observer can interpret it 

into sensation and movement), it is in no sense the sensation 

which stimulates the reaching; we have, as already sufficiently 
indicated, only the serial steps in a coordination of acts. But 

now take a child who, upon reaching for bright light (that is, 

exercising the seeing-reaching coordination) has sometimes 

had a delightful exercise, sometimes found something good to 
eat and sometimes burned himself. Now the response is not only 

uncertain, but the stimulus is equally uncertain; one is uncertain only 

so far as the other is. The real problem may be equally well stated 

as either to discover the right stimulus, to constitute the stimu- 

lus, or to discover, to constitute, the response. (Dewey, 1896, 

p- 367, emphasis in original) 

Dewey’s descriptions elegantly prefigure the complex interplay, high- 
lighted by predictive processing, between altering our predictions
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w0 fit the evidence (‘perception’) and seeking out the evidence to fit 

our predictions (‘action’). But it also suggests (rightly, I think) that we 

really ought not to conceive these, within the predictive processing 

rramework, as competing strategies.* Rather, the two strands con- 
stantly work hand in hand to reveal a world that is, in a certain sense, 

constituted in action. For actions now disclose evidence that leads to 

more actions, and our experience of the world is constituted by this 

ongoing cycle. 

These circular causal loops play two, often overlapping, roles. 

One role is, of course, pragmatic. A high-level perceptual state as of 

an oncoming vehicle on the wrong side of the road will recruit motor 
commands that rapidly move the steering wheel, resulting in new 

perceptual states that (according to their content) must fine-tune, or 

attempt to negate the selected course of action. The other role is epis- 

temic. Movements of the head and eyes are rapidly deployed to test and 

confirm the hypothesis (oncoming vehicle on collision course) itself. 

Only hypotheses able to withstand such automatically generated tests 

will be maintained and strengthened (see Friston, Adams, et al., 2012). 

In this way we sample the world so as to minimize uncertainty about 

our own predictions. 

To see how this looks in practice, reflect that early, ambiguous 

flurries of sensory stimulation will generate prediction errors that 
recruit multiple competing perceptual hypotheses. These hypotheses 

are not, however, action-neutral. Instead, each hypothesis already 

speaks to the two forms of action just described. Each hypothesis, 

that is to say, includes information about how to act upon the world 

so as to confirm or disconfirm the hypothesis, and (courtesy of the 

context-reflecting bodies of precision expectations) about how to 

behave in the world supposing the hypothesis proves correct. Subject 

to various constraints of task and timing, a good strategy will be to 

allow the most promising hypothesis to launch some cheap epistemic 

action (such as a rapid sequence of saccades) able to confirm or dis- 

confirm the hypothesis. As such cycles unfold, perceiving will be inti- 

mately bound up with various forms of motor planning and action 

selection, resulting in the distinctive neurophysiological signatures 

described earlier. 

Spivey (2007) paints a rich picture of such continuous circular 
causal webs and depicts their dynamics as one of constant journeying 

towards ever-changing, never-quite reached stable end-points. By way 

of illustration, Spivey asks us to consider the interactions between eye 

movements (motor productions, albeit on a fast, small, scale) and the 

cognitive processes that might be said—in some ways misleadingly,
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as we are about to see—to guide them. In real-world settings, Spivey 

notes: 

the brain does not achieve a stable percept, then make an eye 

movement, then achieve another stable percept, then make 

another eye movement, and so on. The eyes often move during 

the process of attempting to achieve a stable percept. This means 

that before perception can finish settling into a stable state, ocu- 

lomotor output changes the perceptual input by placing new 

and different information on the foveas. (Spivey, 2007, p. 137) 

Visual perception is thus constantly conditioned by visuomotor action, 

and visuomotor action is constantly conditioned by visual perception. 

As far as successful behaviour is concerned, what counts are the per- 

ceptuomotor trajectories that result. It is these trajectories, not the sta- 

bility or even the veracity of the percepts spun off along the way, that 

constitute agentive behaviour and that determine the success or failure 

of our attempts to engage the world. 

In sum, perceptuomotor trajectories emerge and are maintained 

within circular causal webs. Within those webs, estimated uncertainty 

and the demands of action mediate strong forms of affordance compe- 

tition. This is because estimations of precision, and the pragmatic and 

epistemic actions they imply, function (Cisek & Kalaska, 2011, p. 282) 

to ‘enhance the most behaviorally salient information in the environ- 

ment to bias sensorimotor systems towards the most behaviorally rel- 

evant possible actions’. Precision estimations position a hypothesis to 

gain control of behaviour, at which point it must become self-fuelling 

(engaging confirmatory circular causal commerce) or perish. Precision 

estimations, working in the context of lateral (within level) inhibition 

among competing hypotheses, position a hypothesis to gain control of 

behaviour, at which point it must become self-fuelling (engaging confir- 

matory circular causal commerce) or perish. All this delivers, I suggest, 

a particularly clear and vibrant sense in which many neural represen- 

tations must be ‘pragmatic’, as well as establishing a larger framework 
in which affordance competition emerges as a natural consequence of 

probabilistic action-oriented prediction. 

6.6 Interaction-Based Joints in Nature 

All this has implications for the debates concerning the nature of our 

perceptual contact with the world. Probabilistic prediction-driven 

learning provides a mechanism able (when all is going well) to see past
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superficial noise and ambiguity in the sensory signal, revealing the 
shape of the distal realm itself. In that (restricted) sense it provides a 

powerful mechanism for ‘carving nature at the joints”. But many of those 

joints, it now seems clear, are interaction-based: they are defined with 

respect to an active organism characterized by specific needs and possi- 

bilities for action and intervention. Our perceptual ‘take’ on the world is 

thus constantly conditioned by our own ‘action repertoire’ (Konig et al., 
2013) in interaction with our needs, projects, and opportunities. 

This simple (but profound) fact results in large reductions of com- 
putational complexity by helping to select, at any given moment, what 

features to process, and what things to try to predict. From the huge 
space of possible ways of parsing the world given the impinging ener- 
getic flux, our brains try to predict the patterns that serve our needs 

and that fit our action repertoires. This may well result (as we will see 

in detail in chapter 8) in the use of simple models whose power resides 

precisely in their failing to encode every detail and nuance pres- 
ent in the sensory array. This is not a barrier to true contact with the 

world—rather, it is a prerequisite for it. For knowing the world, in the 

only sense that can matter to an evolved organism, means being able to 

actin that world: being able to respond quickly and efficiently to salient 
environmental opportunities. 

Among the many things that brains like ours need to predict, 
an important subset concerns the sensory consequences of our own 
actions. Once this is taken on board, the intimacy of sensory and motor 

processing is, as Konig et al. (2013) note, unsurprising. Moreover, the 

sensory consequences of our own actions are deeply informed by basic 

facts about our embodiment, such as our size, the placement of sensors 

and the reach of effectors, and so on. Such influence is dramatically dis- 

played by an analysis (Betsch et al., 2004; Einhduser et al., 2009) of the 

statistical structure of the visual inputs obtained (using a head-mounted 

camera) from the perspective of a freely moving cat exploring some 

outdoor environments. The same gross external realm, when explored 

(see Figure 6.1) from the perspective of the cat, produced sequences of 
natural images whose statistical structure included a predominance of 

horizontal contours, altered spatial distribution of contrast, and various 

effects attributable to the surprising speed of cat head movements. 
The statistics of natural scenes, as those scenes are encountered in 

action by a given type of animal, also become written in the patterns 

of cortical activity (both spontaneous and evoked) that the animal 

displays. This has been neatly demonstrated by Berkes et al. (2011) in 

work on the V1 activity of awake ferrets. This activity was analyzed at 

various stages during the development of the ferrets, and under three
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GURE 6.1 The World from a Cat’s Perspective 

) The cat is exploring an outside park area on one of its walks. The cable, 

sisted with the leash, connects to the VCR in the backpack. (b—e) Four 

pical pictures taken from the videos are shown. (b) The horizon divides 

e image into a bright, low-contrast upper image region (sky) and a darker, 

wer region of high contrast {stones). (c) The cat’s view of the pond shows 

chly detailed plant structures and low-contrast water regions. (d) On close 

spection by the cat, blades of grass are evenly spread over the entire image. 

) During a walk in the nearby forest the upper half is dominated by dark, 

rtically oriented trees in front of the bright sky. The lower half of the image 

presenting the forest floor consists of many objects (branches, leaves) 

ranged in all possible orientations. 

urce: Betsch et al. 2004. 

nditions: viewing movies of natural scenes, in darkness, and view- 

ig movies of unnatural scenes. The study found that the similarity 

stween spontaneous and evoked response increased dramatically 

ith age, but only in respect of responses evoked by natural scenes. 

his pattern of results is best explained, the authors argue, by a ‘pro- 

ressive adaptation of internal models to the statistics of natural stimuli 

‘the neural level” (Berkes et al., 2011, p. 83). In other words, the ferret’s 

»ontaneous neural activity patterns slowly adapt, over developmental 

me, to reflect the ‘prior expectations of [an] internal model” (p. 87).
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Adopting the Bayesian perspective, the authors suggest that spontane- 

ous cortical activity reflects the multilevel structure of prior expecta- 

tions that constitute the inner model, and stimulus-evoked activity the 

posterior probability—the probability that some specific combination 

of environmental causes gave rise to the sensory input, hence the ani- 

mal’s ‘best guess’ at the current state of the world. This diagnosis was 

reinforced by tests on mature ferrets exposed to movies of unnatural 

scenes, where much greater divergences between spontaneous and 
evoked activity were recorded. Spontaneous cortical activity, Berkes 

et al. conclude, here shows all the hallmarks of a gradually adapting 

internal model of the ferret’s world. 

How might such a model be used to guide action? Within PP, 

selection from within the action repertoire of a given agent is accom- 

plished by context- and task-reflecting assignments of precision. Such 

assignments control synaptic gain according to estimations of the 

uncertainty of sensory signals. In particular (see Friston, Daunizeau, 

Kilner, & Kiebel, 2010, and discussion in chapters 4 and 5) the precision 

weighting of proprioceptive prediction error is thought to implement 

a kind of ‘motor attention’ that is necessarily involved in the prepa- 

ration of any motor action. Attention thus acts to ‘boost the gain of 

proprioceptive channels during motor preparation’ (Brown, Friston, & 

Bestmann, 2011, p. 2). At the same time, it is the precision-weighting 

upon all aspects of sensory prediction error that together deter- 

mines which sensorimotor loops win the competition for the con- 

trol of behaviour. The upshot, exactly in line with the Affordance 
Competition hypothesis, is to select one among the various behav- 

ioural responses already suggested (hence partially activated) by cur- 

rent context and organismic state. Mechanisms that implement the 

precision-weighting of proprioceptive prediction error thus serve to 

select ‘salient representations that have affordance [i.e.] sensorimotor 

representations that predict both perceptual and behavioural conse- 

quences’ (Friston, Shiner, et al., 2012, p. 2). What we do is determined, 

this model suggests, by precise (highly weighted) prediction errors 

that help select among (while simultaneously responding to) compet- 

ing higher level hypotheses, each of which implies a whole swathe of 

sensory and motor predictions. Such high-level hypotheses are intrin- 

sically affordance-laden: they represent both how the world is and 

how we might act in that very world (they are thus a species of what 

Millikan (1996) has called Pushmi-pullyu representations” states hav- 

ing both descriptive and imperative contents). Perception, by recruit- 

ing salient affordance-laden representations, puts us in touch with 

a world already parsed for action and intervention.
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Plausibly, it is only because the world we encounter must be parsed 

for action and intervention that we encounter, in experience, a relatively 

unambiguous, determinate world at all. Subtract the need for action 

and the broadly Bayesian framework can seem quite at odds with the 
phenomenal facts about conscious perceptual experience: our world, it 

might be said, does not look as if it is encoded as an intertwined set of 

probability density distributions. Instead, it looks unitary and, on a clear 

day, unambiguous. In the context of an active world-engaging system, 

however, such an outcome makes adaptive sense. For the point of all 

that probabilistic betting is to drive action and decision, and action and 

decision lack the luxury of being able to keep all options indefinitely 

alive. Instead, affordance competition must be repeatedly resolved 

and actions selected. Precision-weighted prediction error provides a 

tool for biasing processing by selecting the most salient sensorimotor 

representations—the ones most apt to drive behaviour and response. 

Biological systems, as mentioned earlier, may be informed by 

a variety of learned or innate ‘hyperpriors’ concerning the general 

nature of the world. One such hyperprior might be that the world is 

usually in one determinate state or another. To implement this, the 

brain might use a form of probabilistic representation in which, despite 
the presence of continual competition, each distribution has a single 

peak (meaning that each overall sensory state has a single best expla- 

nation). One fundamental reason that our brains appear only to enter- 

tain unimodal (single peak) posterior beliefs may thus be that—at the 

end of the day—these beliefs are in the game of informing action and 

behaviour, and we can only do one thing at one time. The use of such a 

representational form would amount to the deployment of an implicit 

formal hyperprior” (formal because it concerns the form of the proba- 

bilistic representation itself) to the effect that our uncertainty can be 

described using such a unimodal probability distribution. Such a prior 
makes adaptive sense, given the kinds of brute fact about action men- 

tioned above (e.g., we can only perform one action at a time, choosing to 

grasp the pen for writing or for throwing, but not both at once). 

6.7 Evidentiary Boundaries and the Ambiguous Appeal to Inference 

Prediction error minimization takes place behind what Hohwy (2013, 

2014) describes as an ‘evidentiary boundary.” Our agentive access to 

the world, he argues, is bounded by the prediction error minimizing 

routine as it is applied to the flow of interoceptive, exteroceptive, and 

proprioceptive signals. Such consdierations lead Hohwy to depict PP as
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imposing a firm and neurocentric boundary upon the cognizing mind. 

Thus we read that: 

PEM should make us resist conceptions of [the mind-world] 

relation on which the mind is in some fundamental way 

porous to the world, or viewed as embodied, extended or enac- 

tive. Instead, the mind appears to be secluded from the world, 

it seems to be more neurocentrically skull-bound than embod- 

ied or extended, and action itself is more an inferential process 

on sensory input than enactive coupling with the body and 

environment. (Hohwy 2014, p.1) 

Howhy (2013, pp. 219—221, 2014) offers a variety of interlocking con- 

siderations meant to support this vision of the secluded, neurocentric 

mind. At the heart of them all lies the observation that prediction error 

minimizing routines are defined over sensory signals so that “from 

inside the skull the brain has to infer the hidden causes of its sensory 

input” (Hohwy 2013, p.220). The guiding theme is thus one of inferen- 

tial seclusion—the mind, it is argued, is that which operates behind 

the veil of transduced sensory information, inferring complex ‘hidden 

causes’ as the best explanation of changing (and partially self-induced) 

patterns of sensory stimulation. By contrast, Hohwy suggests: 

Views of mind and cognition that emphasize openness, 

embodiment, and active extension into the environment seem 

to be biased against this inferential conception of the mind. 
(Hohwy 2014, p.5) 

But embodied views are not, of course, biased against the (surely 

unassailable) claim that something important is being done by the brain 

when agents engage their worlds in the kinds of ways distinctive of 
flexible, adaptive, intelligent response. So where might the putative ten- 

sion lie? It lies principally in the notion, repeatedly stressed by Hohwy, 

that what the brain does is best construed as a form of inference. But 

here we need to be very careful indeed. For the notion of inference in 

play here is actually far less demanding than it initially appears. 

To see this, consider what was at issue in early debates concern- 

ing vision and the embodied mind. Here, according to a typical review 
paper published in the mid-1990's: 

The key insight . .. is that the task of vision is not to build rich 

inner models of a surrounding 3-D reality, but rather to use 

visual information efficiently and cheaply in the service of 

real-world, real-time action. (Clark 1999, p. 345)
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One alternative—mostly pursued by research programs in ‘ecolog- 

ical psychology’—is to use sensing as a channel allowing us to lock-on 

to simple invariants in the sensory flow.* Used in this way, sensing 

delivers an action-based grip upon the world, rather than an action- 

neutral reconstruction apt for detached reasoning. Such a grip may 

intrinsically involve organismic action as when—to take the famous 

example from McBeath and Shaffer (1995)—the baseball outfielder runs 

s0 as to keep the image of the ball stationary on the retina. By thus act- 

ing in ways that continuously cancel out any apparent optical accelera- 

tion, the outfielder ensures (see Fink, Foo, and Warren 2009} that she 

will meet the ball where it descends to the pitch. In such cases, behav- 

ioural success is not the outcome of reasoning defined over a kind of 

inner replica of the external world. Rather, it is the outcome of percep- 

tion/action cycles that operate by keeping sensory stimulations within 

certain bounds. 

Such cases will occupy us further in chapter 8. What mat- 

ters for present purposes is that these kinds of strategy are radically 

non-reconstructive. They do not use sensing, moment-by-moment, to 

build an inner model that recapitulates the structure and richness of 

the real-world, and that is thus able to stand-in for that world for the 

purposes of planning, reasoning, and the guidance of action. Instead, 

here-and-now behaviour is enabled by using sensing in the special way 

described above—as a channel to enable the organism to co-ordinate 

its behaviours with select aspects of the distal environment. 

Such non-reconstructive roles for perception are often cast in bald 

opposition to the inferential, secluded vision. Thus Anderson (2014) 

describes non-reconstructive approaches as an alternative to main- 

stream (inferential, reconstructive) approaches in which perception is 

cast as analogous to scientific inference and in which: 

from incomplete and fragmentary data, one generates hypoth- 

eses (or models) for the true nature of the world, which are 

then tested against and modified in light of further incoming 

sensory stimulation. (Anderson 2014, p. 164) 

Such traditional approaches, Anderson continues, depict cognition 

as “post-perceptual. . . . representation-rich, and deeply decoupled from 

the environment”. 

Non-reconstructive accounts of the role of sensing suggest a viable 
alternative and one that, Anderson suggests, significantly alters our 

understanding of our own epistemic situation. Instead of engaging the 

world on the basis of a rich inner model constructed behind the closed 
doors of sensing, non-reconstructive solutions show how to achieve 

behavioural goals by maintaining a delicate dance between sensing
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and action. One signature of this kind of grip-based non-reconstructive 

dance is that it suggests a potent reversal of our ordinary way of think- 

ing about the relations between perception and action. Instead of see- 

ing perception as the control of action, it becomes fruitful to think of 
action as the control of perception (Powers 1973, Powers et al.,, 2011). 
Thus (re)-conceived, the problem becomes “not ... choosing the right 

response in light of a given stimulus but . . . choosing the right stimulus 

in light of a given goal” (Anderson, 2014, p. 182-3). 

But, as Hohwy himself correctly notes, there is absolutely nothing 
in the PP vision that conflicts either with this vision of actions whose 

role is to harvest perceptions or (more generally) with the idea of 
non-reconstructive strategies as one means of promoting behavioural 

success. Such strategies are, in fact, quite naturally accommodated 

since the best ways to minimize long-term prediction error will often 

be both frugal and action-involving. Thus we read that: 

It is a mistake to think that just because the brain only does 

inference, it must build up its internal model like it was a fol- 

lowing a sober physics textbook. As long as prediction error is 

minimized on average and over the long run, it doesn’t matter 

which model is doing it. For this reason a model that predicts 
linear optical trajectories is entirely feasible and can easily 

be preferable to a more cumbersome series of computations. 

This is particularly so if it is a less complex model, with fewer 

parameters, since prediction error in the long run is helped by 

minimal complexity. (Hohwy, 2014, p. 20) 

This is revealing. Hohwy here (and elsewhere") recognizes that often, 
the PP framework will stand opposed to more ‘intellectualist” stories that 

depict moment-by-moment behavioural success as the product of infer- 

ences defined over rich internal models whose role is to allow the cognizer 

to ‘throw away the world". Instead, the role of the inner model is, in many 

cases, to spot the contexts in which some more frugal, action-involving, 

procedure will work (for lots more on this hybrid picture, see chapter 8). 

This means that ‘inference’, as it functions in the PP story, is not com- 

pelled to deliver internal states that bear richly reconstructive contents. 

It is not there to construct an inner realm able to to stand in for the full 

richness of the external world. Instead, it may deliver efficient, low-cost 

strategies whose unfolding and success depend delicately and continu- 

ously upon the structure and ongoing contributions of the external realm 

itself, as exploited by various forms of action and intervention. 

Relatedly, Hohwy frequently speaks of PP-style systems as seek- 
ing out the hypotheses that best explain the sensory information. Heard 
in one way, this is again correct. The prediction error minimizing
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system must find the multilevel set of neuronal states that best accom- 

modate (as I will now put it) the current sensory barrage. But this, 

[ suggest, is far preferable to talk of ‘finding the right hypothesis” as 

such talk again invites unwanted and potentially misleading baggage. 

Accommodating the current sensory barrage may take many forms, 

some of which involve low-cost methods of selecting actions that 

re-shape the sensory signal or function to maintain it within pre-set 

bounds. Accommodating the incoming signal thus need not imply 

anything like settling upon a description of the external situation, or 

finding a proposition or set of propaositions that best describes or pre- 

dicts that incoming signals. Indeed, at the most fundamental level, the 

task of PP systems is not to retrieve apt descriptions. The fundamental 

task, using prediction errors as the lever, is to find the neural activity 

patterns that most successfully accommodate current sensory states by 

means of world-enaging action. 

6.8 Don't Fear the Demon 

Why does Hohwy, despite often stressing the importance of a 

‘non-intellectualist” reading of PP, insist that it promotes a neurocen- 

tric, secluded vision of the mind? The reason seems to be that he links 

the secluded, inferential vision to something quite different and (I shall 

argue) rather alien to much of the discussion in hands-on embodied 

cognitive science. He links it to the mere possibility of evil-demon style 

global skepticsm—the possibility that we might be fooled into believ- 

ing we are embodied agents acting in a real world, when ‘really” we 

are merely brains being fed whatever sequence of sensory signals 

is needed to maintain the illusion. It is this mere possibility that, in 

Hohwy'’s treatment, suffices to establish a robust ‘veil of tranduction’ 

which positions the world as we know it on the far side of an important, 

agent-impermeable, evidentiary boundary. 

Thus, in response to the suggestion that PP is consistent with (and 

indeed actively predicts) the use of fast and frugal strategies that use 

sensing in the special way described above, Hohwy writes that 

the incoming visual signal drives action but ... this driving in 

fact does rely on a veil of transduction, namely the evidentiary 

boundary within which there is ample inference, and beyond 

which lies nothing but inferred causes. (2014, p. 21). 

To demonstrate this, Hohwy invokes the spectre of Cartesian (evil 

demon-style) skepticism. But this, it seems to me, is something of a red
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herring, The skeptical claim is simply the claim that, were the play of 

sensory stimulations being received and (apparently) harvested by the 

brain to remain fixed, so too would our experience of the world. For 

all we know, then, our physical bodies might be hanging immobile 
in some Matrix-like energy web, kept alive and fed whatever sensory 

stimulations are required to make it seem as if we are running to catch 

flyballs and arguing about the powers of evil demons. But this mere 

possibility (even if it is accepted) in no way casts doubt upon the key 

claims associated with work in embodied cognitive science. Consider 

running to catch that flyball. This (in the Matrix/vat) would involve 

feeding the brain the complex, action-sensitive unfolding sensory 

streams that would normally ensue were an embodied agent actually 

running so as to cancel the optical acceleration of the ball. The mere fact 

that this is what would be required supports what really matters here, 

which is the non-reconstructive account of fly-ball interception. 

What the skeptical challenges suggest is thus a very different sense of 

‘inferential seclusion’ from the one at issue in debates between reconstruc- 

tive and non-reconstructive approaches to perception and action. For those 

debates (the ones about the shape of the perception-action nexus) were 

not about whether we might be fooled, by some clever manipulation, into 

misconstruing our own worldly situation. Instead, they were about how 

best to understand, from within our current scientific perspective, the role 

of the sensory stream in enabling apt forms of world-engaging action. At 
issue was the question whether apt actions are always and everywhere 

computed by using sensing to get enough information into the system 

to allow it to plot its response by exploring a rich, internally represented 

recapitulation of the distal world. Non-reconstructive approaches (much 

more on which in chapter 8) demonstrate the viability of alternative, more 

computationally frugal, behaviourally interactive, solutions. They do not 

imply—nor do they seek to imply—the falsity of the skeptical hypothesis. 

That is an orthogonal question that would demand a full philosophical 

treatment in its own right.® 

The image of the mind as secluded behind an inferential cur- 

tain is thus importantly ambiguous. If it means only that the world, 

insofar as we know and experience it, is that which is both experien- 

tially specified and actively engaged by the ongoing flow of (partially 
self-induced) sensory stimulations, then PP indeed mandates a certain 

kind of seclusion. But seclusion, in this rather limited sense, does not 

imply the richly reconstructive model of perception according to which 

our actions are selected by processes of reasoning defined over the con- 

tents of rich inner models whose role is to replace the external world 

with a kind of inner simulacrum.”
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The mere fact that neural processing is organized around predic- 

tion error minimization routines thus puts no real pressure upon the 

claim that lies at the heart of recent work on the embodied mind. For 

what that work most fundamentally rejects is the richly reconstructive 

model of perception. The appearance of conflict arises from an ambi- 

guity in the notions of inference and seclusion themselves. For these 

notions may seem to imply the presence of a rich inner recapitulation 

of the distal environment, with a consequent downgrading of the role 

of action and upgrading of the role of reasoning defined over that inner 

model. Nothing in PP, however, mandates this. Instead, PP strongly 

suggests that brains like ours will, wherever possible, exploit simple 

strategies that rely heavily on world-engaging action, delivering new 

sensory stimulations just-in-time to support behavioral success. Such 

strategies are the focus of chapter 8. 

6.9 Hello World 

The PP schema does not merely fail to impose any worrisome bar- 

rier® between the agent and the world. It also provides the necessary 

means to bring a structured world into view in the first place. Thus 

consider the perception of sentence structure during speech process- 

ing. Here too (see, e.g., Poeppel & Monahan, 2011) we may rely upon 

stored knowledge to guide a set of guesses about the shape and content 

of the present sound stream: guesses that are constantly compared to 

the incoming signal, allowing residual errors to decide between com- 

peting guesses and (where necessary) to reject one set of guesses and 

replace it with another. Such extensive use of existing knowledge (driv- 

ing the guessing) has, as we have seen, many advantages. It enables us 

to hear what is said despite noisy surroundings, to adjudicate between 

alternate possibilities each consistent with the bare sound stream, and 

so on. It is plausibly only due to the deployment of a rich probabilis- 

tic generative model that a hearer can recover semantic and syntac- 

tic constituents from the impinging sound stream. Would that mean 

that perceived sentence structure is ‘an inferred fantasy about what lies 

behind the veil of input’? Surely not. In recovering the right set of inter- 

acting distal causes (subjects, objects, meanings, verb-clauses, etc.) we 

see through the brute sound stream to the multilayered structure and 

complex purposes of the linguistic environment itself. 

We must tread carefully though. When we (as native speakers) 

encounter such a sound stream, we hear a sequence of words, separated 

by gaps. The sound stream itself, however, is perfectly continuous, as a
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spectrogram quite dramatically reveals. Those gaps are added by the lis- 

tener. What we encounter in perception is in that sense a construct. But it 

is a construct that tracks real structure in the signal source (other agents 

producing strings of distinct meaningful words). The predictive brain 

here lets us see through the noisy, sensory signal to uncover the humanly 

relevant aspects of the world giving rise to the waves of sensory stimu- 

lation. This may be a rather good picture of what perception, on the PP 

model, quite generally does. If so, then the world we encounter in percep- 

tion is no more (and no less) a virtual reality or fantasy than the structures 

of words we hear in an uttered sentence spoken in our native tongue. 

Predictive processing here allows us to see through the sensory 

signal to the human-relevant aspects of the distal world. Seen in this 

light, the predictive processing story shares much (or so it seems to 

me) with so-called ‘direct’ {e.g., Gibson, 1979) views of perception. For 

it delivers a genuine form—perhaps the only genuine form that is 

naturally possible—of ‘Openness to the world”. Against this, however, 

it must be conceded that extensive reliance on the top-down cascade 

sometimes makes veridical perception quite heavily dependent upon 

prior knowledge. 

I'shall not attempt further to adjudicate this delicate issue here (see 
Crane, 2005). But if a label is required, it has been suggested that the 

implied metaphysical perspective may most safely be dubbed ‘not-indi- 

rect perception’? Perception of this stripe is ‘not-indirect’ since what we 

perceive is not itself a hypothesis (or model, or fantasy, or virtual real- 

ity). Instead, what we perceive is (when all is going well) the structured 

external world itself. But this is not the world ‘as it is’, where that implies 

the problematic notion (see also 9.10) of a world represented indepen- 

dent of human concerns and human action repertoires. Rather, it is a 

world parsed according to our organism-specific needs and action rep- 

ertoire. The world thus revealed may be populated with items such as 

hidden but tasty prey, poker hands, handwritten digits, and structured, 

meaningful, sentences. 

Nor is there any sense in which the objects of perception are here 

being treated as anything like ‘sense data’ (Moore, 1913/1922), where 

these were conceived as proxies intervening between the perceiver and 

the world. The internal representations at issue function within us and 

are not encountered by us. They make it possible for us to encounter the 

organism-salient world under the ecologically common conditions of 

noise, uncertainty, and ambiguity. We encounter our world in percep- 

tion, all this suggests, because brains like ours are statistical engines 

able to lock on to non-linearly interacting causes whose signatures may 

sometimes be deeply buried among the sensory noise and energetic
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flux. The result is that the agent-salient structure of the distal realm 

becomes reflected in both the large-scale shape and (see chapter 9) the 

spontaneous activity patterns of the neural architecture itself.”> What 

is thus revealed is not, however, a distal realm of some action-neutral 

kind. Instead, it is a world distilled from the statistics of the sensory bar- 

rages induced by specifically human (and individual, see Harmelech & 

Malach, 2013) forms of action and intervention. 

6.10 Hallucination as Uncontrolled Perception 

Content fixation in these accounts is (epistemically) externalist in 
nature. Perceptual states function to estimate organism-salient proper- 

ties and features of the distal environment (including, for these pur- 

poses, states of our own bodies and the mental states of other agents). 

But such states are individuated by reference to the world actually sam- 

pled. To see this, consider the case (Hinton, 2005) of a trained-up neural 

network whose high-level internal states are ‘clamped), that is, forced by 

the experimenter into some specific configuration. Activity then flows 

downwards in a generative cascade, resulting in a state of (if you will) 

experimenter-induced hallucination. But what is the content of that 

state? What is represented, Hinton argues, is best captured by asking 

how the world would have to be were such a cascade to constitute veridi- 

cal perception. A perceptual state, as here depicted, is thus nothing but 

‘the state of a hypothetical world in which a high-level internal repre- 

sentation would constitute veridical perception’ (Hinton, 2005, p. 1765). 

These considerations suggest a twist upon the notion of percep- 

tion as ‘controlled hallucination’. For it would be better, I suggest, to 

describe hallucination as a kind of ‘uncontrolled (hence mock) percep- 

tion’. In hallucination, all the machinery of perception is brought to 
bear, but either without the guidance of sensory prediction error at all, 

or (see 2.12 and chapter 7) with malfunctioning prediction error cir- 

cuitry. In such cases the agent really does enter a state of what Smith 
(2002, p. 224) calls ‘mock sensory awareness’. 

Finally, notice that perceptual content, as delivered by active, 

affordance-sensitive prediction, is now inherently organized and 
outward-looking. By this I mean that it reveals—and cannot help but 

reveal—a structured (and thus in some weak sense ‘conceptualized’®) 

external world. It is an external arena populated by the distal, caus- 

ally interacting items and forces whose joint action best explains (given 

prior knowledge) the current suite of sensory stimulation. This delivers 

just the kind of grip on the world that an intelligent agent must possess
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if she is to act appropriately. When such an agent sees the world, they 

see a determinate structure of distal, interacting causes apt for action 
and intervention by the kind of creature that they are. The so-called 

‘transparency’ of perceptual experience*—the fact that, in normal 

daily perception, we seem to see tables, chairs, and bananas rather than 

proximal excitations of our sensory surfaces such as the play of light 

on the retina—falls quite naturally out of such models. We seem to 

see dogs, cats, goals, tackles, and winning poker hands, because these 

feature among the interacting, nested, structures of distal causes that 

matter for human choice and action. 

6.11  Optimal Illusions 

Of course, things can (and do) sometimes go wrong. The human mind, 

as Paton et al. (2013, p. 222) eloquently argue, is ‘always precariously 

hostage to the urge to rid itself of prediction error [and this] forces 

very improbable and fantastical perceptions upon us when the world 

does not collaborate in its usual, uniform way". It is surprisingly easy, 

for example, to induce (even in fully alert, normal adults) the illusion 

that a rubber hand, placed on the table in front of you, is your own. 

The illusion is created by ensuring that the subject can see someone 

tapping the realistic rubber hand, while (just out of sight) their own 

hand is being tapped in exact synchrony (Botvinick & Cohen, 1998). 

Ramachandran and Blakeslee (1998) describe a similar illusion, in 

which a blindfold subject’s arm is extended and their finger made to 

tap the nose of another subject seated just in front of them, while their 
own nose is tapped in perfect synchrony, using an intermittent rhythm, 

by the experimenter. Here too, the predictive, Bayesian brain may be 

fooled into generating a false percept—in this case, that you have a two 

foot long nose! There are many ways in which such mistakes may come 

about, involving differing balances between prior expectations and 

the driving sensory signal (for some nice discussion, see Hohwy, 2013, 

chapters 1 and 7). But for present purposes, all that matters is that a 

key role is played (as the experimental manipulations clearly reveal) by 

the facts concerning temporal synchrony. To ‘explain away’ prediction 
error when the sensory signal starts to reveal such unexpected (ecolog- 

ically rare, hence usually highly informative) synchronies, strange and 

implausible percepts are generated. What, then, does this tell us about 

our ordinary, daily, perceptual contact with the world? 

In one sense it seems to suggest (as Paton et al. argue), a certain fra- 
gility in the routines that the brain uses to track and engage the external
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world. Those routines can indeed be hijacked and coerced in ways that 

mislead.”” A good question to ask, however, is: ‘What would be the cost, 

for some given perceptual error, of avoiding that error?’ For it may be 

that the cost, in many cases, would be vast swathes of error elsewhere 

in our perceptual (or more generally, in our mental) lives.” Weiss et al. 

(2002), as we noted back in chapter 1, used an optimal Bayesian estima- 

tor to show that a wide variety of motion ‘illusions” are directly implied 

by the assumption that human motion perception implements an opti- 

mal estimator. They conclude that ‘many motion “illusions” are not 

the result of sloppy computation by various components in the visual 

system, but rather a result of a coherent computational strategy that is 

optimal under reasonable assumptions’ (Weiss et al., 2002, p. 603). This 

suggests that sometimes, at least, even ‘illusory’ perceptual experiences 

constitute an accurate estimation of the most likely real-world source or 

property, given noisy sensory evidence and the statistical distribution, 

within some relevant sample, of real-world causes. A few local anoma- 

lies may thus be the price we pay for globally optimized performance 

(Lupyan, in press). 

This is an important finding that has now been repeated in many 

domains, including the sound-induced flash illusion (Shams et al, 

2005), ventriloquism effects (Alais & Burr, 2004), and the impact of 

figure-ground convexity cues in depth perception (Burge et al,, 2010). 

Additionally, Weiss et al.s (2002) Bayes-optimal account of a class of 

static (fixation-dependent) motion illusions has now been extended 

to account for a much wider set of motion illusions generated in the 

presence of active eye movements during smooth pursuit (see Freeman 

et al, 2010, and discussion in Ernst, 2010). Perceptual experience, even 

in these illusory cases, thus looks to be veridically tracking statistical 

relations between the sensory data and its most probable real-world 

sources. This again suggests that the intervening mechanisms intro- 

duce no worrisome barrier between mind and world. Going slightly 

off the rails every now and then is simply the price we pay for mostly 

getting things right. 

Or consider, to take one last, and rather more contentious, case, the 

‘size-weight illusiont. This has been invoked (Buckingham & Goodale, 

2013) as a challenge to the supposed generality of optimal cue integration 

in human psychophysics. In the size-weight illusion, similar-looking 

objects appear weight-adjusted so that we judge the smaller one to feel 

heavier than the larger despite their identical objective weights (a pound 

of lead feels heavier, indeed, than a pound of feathers). Buckingham 

and Goodale survey recent work on the size-weight illusion noting that 

although Bayesian treatments do manage to get a grip on the lifting
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behaviour itself, they fail to explain the subjective comparison effect 

which some describe as ‘anti-Bayesian’ since prior expectancies and 

sensory information there seem contrasted rather than integrated 

(Brayanov & Smith, 2010). This provides evidence, they suggest, for 

a more fractured and firewalled cognitive economy: one displaying 

‘independent sets of priors for motor control and perceptual/cognitive 

judgments, which ultimately serve quite different functions’ (p. 209). 

There is, however, an intriguing (though still highly specula- 

tive) alternative. Zhu and Bingham (2011) show that the perception of 

relative heaviness marches delicately in step with the affordance of 
maximum-distance throwability. Perhaps, then, what we have simply 

labelled as the experience of ‘heaviness’ is, in some deeper ecological 

sense, the experience of optimal weight-for-size to afford long-distance 

throwability? If that were true, then the experiences that Buckingham 

and Goodale describe re-emerge as optimal percepts for throwabil- 

ity, albeit ones that we routinely misconceive as simple but erroneous 

perceptions of relative object weight. What looks from one perspective 

to be a fragmented, fragile, and disconnected cognitive economy may 

thus, on deeper examination, turn out to be a robust, well-integrated 

(though by no means homogeneous) mechanism adapted nof to deliver 

simple action-neutral descriptions of the world but to put us in contact 
with action-relevant structure in the environment. 

6.12 Safer Penetration 

Such considerations also help reveal why the rampant ‘penetration’ 

of lower level processing by higher level predictions and expectations 

presents no deep threat to our epistemic situation. The worry here (see 

Fodor, 1983, 1988) is that what we (think we) perceive may—courtesy 

of all that top-down influence—become too easily infected by what we 

expect to perceive, and that this would undermine the basis of scientific 

investigation itself. We want our observations to be positioned to test 

our theories and expectations, not to simply fall into line with them! 

Fortunately for us, Fodor argues, perception is not thus penetrable, as 

evidenced (Fodor claims) by the persistence of visual illusions even 

after we learn of their illusory status. For example, the equal lines of the 
classic version of the Muller-Lyer illusion® still look unequal in length, 

even once we have measured them for ourselves. Fodor takes this as 

evidence that perception in general is ‘cognitively impenetrable’, that is, 

not directly affected by higher level knowledge of any kind (Pylyshyn, 

1999).
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The correct diagnosis, we can now see, is actually rather different. 

What we ought to be saying is that perception is penetrable by 

top-down influence when (and only when) such penetration has earned 

its keep over a sufficiently wide range of training instances. The deep 

reason that many illusions persist despite countervailing linguaform 

knowledge is because the task of the perceptual system is to minimize 

what Lupyan (in press) usefully describes as ‘global prediction error’. 

Relative to the full set of circumstances that the perceptual system has 

needed to deal with, the hypothesis that the lines are of unequal length 

is the best hypothesis (Howe & Purves, 2005). From that more global 

perspective, our susceptibility to the illusion is not really a cognitive 

failure at all. For were the system to overturn the many delicately inter- 

laced layers of intermediate-level processing that deliver this verdict, 

the result would be failures of veridical perception in many other (more 
ecologically normal) circumstances. 

Thereis no threat here to our epistemic situation. In general, our per- 

ceptual systems are well-calibrated as devices for mediating between 
sensory stimulation and action, and their deliverances (though subject 

to alteration by extensive re-training) are not simply overthrown by 

our endorsement of sentences such as ‘yes, the two lines are indeed of 

equal length’. Endorsing such a sentence (see Hohwy, 2013) does not 

adequately account for the full spectrum of lower level predictions 

and prediction error signals that construct that particular percept, so 

it is unable to overturn the long-term learning of the system. Where 

simple exposure to sentences will most plausibly make a difference to 

perceptual experience is rather in cases where the sensory evidence 

is ambiguous. In such cases (and see 9.8) hearing a sentence might tip 

the system into an interpretation of the scene—an interpretation that 

genuinely affects how the scene appears to the agent (for an example of 

this kind, see Siegel, 2012, and discussion in 2.9). 

In sum, top-down influences of various kinds may impact process- 
ing at every lower level, but only when those patterns of impact are 

globally (not merely locally) productive. The upshot is that: 

Perceptual systems are penetrable to the extent that such 

penetration minimizes global prediction error. If allowing 

information from another modality, prior experience, expecta- 

tions, knowledge, beliefs, etc., lowers global prediction error, 

then such information will be used to guide processing at the 
lower levels. For example, if hearing a sound can disambigu- 

ate an otherwise ambiguous visual input. ... then we should 

expect sound to influence vision. If knowledge that a particular
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collection of lines can be interpreted as a meaningful symbol 

can improve visual processing, then such knowledge will be 

brought to bear on lower-level visual processes. (Lupyan, in 

press, p. 8) 

This is good news for science. It enables us to be open to the sensory 

evidence that might discredit our own theory, while also enabling us 

to become expert perceivers, able to spot the faint trace that signifies 

the action of a Higgs boson against a daunting backdrop of noise and 

ambiguity. 

6.13 Who Estimates the Estimators? 

Finally, what about severe forms of mental disruption, such as the delu- 

sions and hallucinations characteristic of schizophrenia and various 
other forms of psychosis? In cases such as these, the delicately balanced 

mechanisms that normally serve to balance sensory input, top-down 

expectation, and neural plasticity have gone badly awry. If the hypoth- 

eses scouted in 2.12 are on track, systemic malfunctions (perhaps 

rooted in abnormal dopaminergic signalling) here disrupt the pro- 

duction and weighting of the prediction error signal itself. This is an 

especially challenging form of disruption, since (as we saw) persistent, 

highly weighted prediction error will appear to signal salient exter- 

nal structure, threats, and opportunities. Unresolved, it will thus drive 

the system to alter and adapt the generative model, initiating a vicious 

cycle in which false percepts and false beliefs co-emerge, lending each 

other spurious support. 

Worse still, there is no easy way (as Hohwy 2013, p. 47 rightly 

notes) for the system itself to assess the reliability of its own pre- 

cision assignments. For precision-weighting on prediction error 

already reflects systemic estimations of the reliability or otherwise of 

signals at every level of processing. Obviously, no system can afford 

to engage in endless spirals of ‘computational self-doubt’ in which it 
attempts to estimate its confidence in its own assignments of confi- 

dence, the reliability of its own assessments of reliability, and so on. 
Moreover, it is unclear what types of evidence a system would need 
to use to compute such meta-meta-measures, given that what is at 

issue is now the reliability of both the evidence and of measures of 

confidence in that evidence.? 

Problems with precision, we may conclude, will be unusually 

resistant to any form of rational self-correction. This is, of course,
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exactly the (otherwise rather baffling) profile found in many forms 

of psychosis. Disruptions of precision estimation render probabilistic 

predictive contact with the world both unreliable and extremely hard 
to correct. Such complex disturbances are the subject matter of the 

next chapter. 

6.14 Gripping Tales 

Perception, if the probabilistic prediction machine vision is correct, is 

an active process involving the rolling (sub-personal) prediction of our 
own evolving neural states. Such a thoroughly inward-looking process 

of self-prediction may have seemed initially unpromising as a model 

of how perception reaches out to the world. If the arguments scouted 
in the present chapter are correct, however, it is the pressure actively to 

accommodate our own changing sensory states that delivers our grip 

upon a structured, organism-salient, external world. 

In active animals, that grip is not rooted in some kind of 

action-neutral image of an objective external reality. Instead, to 

minimize prediction error is to minimize failures to identify the 

affordances for action that the world presents. Here, a good strat- 

egy is to deliver (at every moment) a partial grip upon a number of 

competing affordances: an ‘affordance competition’ that is plausibly 

resolved only as and when action requires. As this process unfolds, 

processes of decision and action-preparation are continuously inter- 

twined, as multiple responses are prepared in ways graded by the 

changing probabilities of their expression. Our perceptual grip on 

the world, all this suggests, is fundamentally interaction-based: it 

is a grip forged in the presence of, and dedicated to the service of, 

world-engaging action. 

Such a grip is not perfect. It leaves us vulnerable to illusions, 
mistakes, and even wholesale disruptions of the kinds characteristic 

of schizophrenia and other forms of psychosis. Does this mean that 

even the properly functioning system affords contact with merely a 

‘virtual reality’? In the end, we should probably not worry too much 

about the words we use here. But the implication of deep and abid- 

ing disconnection is misleading. Rather than spawning some kind of 
virtual reality rudely interposed between the mind and the world, the 

well-functioning perceptual system disperses the fog of surface sta- 

tistics and partial information. What is revealed is a world of salient, 

meaningful patterns shaped by human needs and possibilities.



/ 
Expecting Ourselves 

(Creeping Up On Consciousness) 

7.1 The Space of Human Experience 

We have covered a large and varied territory. Our story began with 

the neat trick of learning about the world by trying to predict our own 

changing sensory states. We went on to explore the use of that trick 
(in a multilevel setting) to inform perception, imagination, action, and 

simulation-based reasoning about the world and about other agents. 
We saw how ongoing estimations of the relative uncertainty associated 

with activity in different neural populations could further transform 

the power and scope of such a story, rendering the flow of process- 

ing dynamically reconfigurable and delivering context-sensitivity on a 

truly grand scale. And we have begun the crucial and continuing task 
of understanding how active, embodied agents put such resources to 

use by creating and maintaining perception-action cycles that reflect 

organismic needs and environmental opportunities. Thus enhanced 

our story has, I believe, the resources required to illuminate the full 

spectrum of human thoughts, experiences, and actions. 

To make good on such a claim—or perhaps even to make such a 

claim genuinely intelligible—we now need to bring this quite theoreti- 

cal, large-scale picture into closer contact with the shape and nature of 

203
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human experience. We need, if you will, to begin to recognize ourselves 

in the swirl of ongoing, multilevel prediction. At that point, many of 

the more practical—and humanly significant—aspects of our picture 

begin to emerge, revealing something of the complex space of human 

minds. Within that space, a few key principles and balances (involving 

prediction error and its delicate role in the unfolding of action) may 

determine the shape and nature of both normal and atypical forms of 

human experience. 

There is no way, of course, that I can fully deliver on this. Sadly, but 

unsurprisingly, a convincing account of the full spread of human expe- 

rience and its mechanistic (and sociocultural) roots lies significantly 

out of reach. But an emerging literature offers some promising hints, a 
few simplified models, and a smattering of intriguing (but speculative) 

proposals. What, then, can predictive processing hope to tell us about 

consciousness, emotion, and the varieties of human experience? 

7.2 Warning Lights 

As this chapter unfolds, the spotlight falls upon a wide range of cases 
in which human experience becomes structured, disturbed, or subtly 

inflected in ways that can be illuminated (or so I shall suggest) by appeal 

to the distinctive apparatus of predictive processing. In each case, one 

aspect of the PP apparatus plays a central role. That aspect, once again, 

is the precision of specific prediction error signals, and hence the esti- 

mated reliability of different bodies of evidence: evidence that includes 

exteroceptive sensory signals, interoceptive and proprioceptive sen- 

sory signals, and the whole multilevel spectrum of prior beliefs. Such 

estimates of reliability (equivalently, of uncertainty) provide, as we 
have repeatedly seen in previous chapters, a crucial added dimension- 

ality to these accounts, enabling the impact of specific prediction error 

signals to be altered according to task, context, and background infor- 

mation. More generally still, these estimates of precision constitute a 

fundamentally metacognitive ploy. Such estimates are metacognitive,! 

since they involve estimates (mostly non-conscious and sub-personal) 

of the certainty or reliability of our own mental states and processes. 

But this is a metacognitive ploy that is arguably a fundamental part 

of the basic apparatus of perception and action rather than something 
emerging only with advanced, ‘high-level) reasoning. 

Estimating the reliability (or otherwise) of our own prediction error 

signals is clearly a delicate and tricky business. For it is the prediction 

error signal that, as we have frequently noted, gets to ‘carry the news’.
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Here, however, the brain’s task is to settle upon the correct weighting 

of the prediction error signal itself. Estimating the reliability of some 
(putative) item of news is never easy, as anyone who has encountered 

widely differing reports of the same event in different media knows! 

A common strategy, when confronted with this familiar difficulty, is 
to privilege some specific news source, such as your favourite paper, 

channel, or blog. But suppose that, unbeknownst to you, ownership 

of the source changed hands overnight. Streams of information that 
you are pre-inclined to take very seriously indeed are now (let’s imag- 

ine) seriously misleading. That feed from your chosen reliable source 
is now seriously tainted, and in ways you have never expected. Rather 

than believe this, you may now choose to explore many otherwise 

unlikely options (‘Martians really have landed: The White House press 

office says so’) that you would otherwise have ignored or immediately 

rejected. Such, in broad outline, is the distinctive shape of an emerg- 

ing class of accounts of a variety of atypical mental states, as we shall 

shortly see. These accounts locate the crucial failures as failures of 

precision-estimation, hence as failures of the very mechanisms whose 

task is to estimate the reliability of our own information sources. Such 

failures (as we shall see) can have very complex and varying effects 

according to which aspects of the complex economy of priors and sen- 

sory evidence are most affected. 

To get the general flavour, consider the ‘warning lights’ scenario? 

described in Adams et al. (2013). I quote the case in full, as it neatly 

captures several factors that will prove important for our subsequent 

discussion: 

Imagine the temperature warning light in your car is too sen- 

sitive (precise), reporting the slightest fluctuations (prediction 

errors) above some temperature. You naturally infer that there 

is something wrong with your car and take it to the garage. 

However, they find no fault—and yet the warning light con- 
tinues to flash. Your first instinct may be to suspect the garage 

has failed to identify the fault—and even to start to question 

the Good Garage Guide that recommended it. From your point 

of view, these are all plausible hypotheses that accommodate 
the evidence available to you. However, from the perspective 

of somebody who has never seen your warning light, your 
suspicions would have an irrational and slightly paranoid 

flavor. This anecdote illustrates how delusional systems may 

be elaborated as a consequence of imbuing sensory evidence 

with too much precision. (Adams et al,, 2013, p. 2)



206 EMBODYING PREDICTION 

Adams et al. add then that: 

The primary pathology here is quintessentially metacognitive 

in nature: in the sense that it rests on a belief (the warning light 

reports precise information) about a belief (the engine is over- 

heating). Crucially, there is no necessary impairment in form- 
ing predictions or prediction errors—the problem lies in the 
way they are used to inform inference or hypotheses. 

Two brief comments upon all this, before proceeding to some actual 

cases. First, it will do no obvious good to add layers upon layers of com- 

plexity here. Suppose we fitted the car with a further device: a warn- 

ing light malfunction warning light! All we have done is pushed the 

problem further back. If both lights flash, we now have to determine 

which one carries the most reliable news. If just one flashes, the infor- 

mation it conveys may still be reliable or not, for all we know. At some 

point (though not necessarily the same point for all tasks and at all 

times) the regress of trusting has to stop. And wherever that is, it may 

form the starting point for self-reinforcing spirals of false or mislead- 

ing inference. Second, notice that what precision-weighting provides 

is essentially a means of sculpting patterns of inference and action, 

and as such it is strangely neutral concerning the intuitive difference 

between increasing the precision upon (say) a prior belief or decreasing 

the precision upon the sensory evidence. What matters is just the rela- 

tive balance of influence, however that is achieved. For it is that relative 

balance that determines agentive response. 

7.3 The Spiral of Inference and Experience 

Recall the PP account (Fletcher & Frith, 2009) of the emergence of delu- 

sions and hallucination (the so-called “positive symptoms’) in schizo- 
phrenia sketched in 2.12. The basic idea was that both these symptoms 

might flow from a single underlying cause: falsely generated and highly 

weighted (high-precision) waves of prediction error. The key distur- 

bance is thus a disturbance in metacognition—for it is the weighting 

(precision) assigned to these error signals that makes them so function- 

ally potent, positioning them to drive the system into plasticity and 

learning, forming and recruiting increasingly bizarre hypotheses so 

as to accommodate the unrelenting waves of (apparently) reliable and 

salient yet persistently unexplained information. The resulting higher 

level hypotheses (such as telepathy and alien control) appear bizarre 

and unfounded to the external observer, yet from within now constitute
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the best, because the only, explanation available—much like suspicions 

about the Good Garage Guide in the warning light example rehearsed 

above. Once such higher level stories take hold, new low-level sensory 

stimulation may be interpreted falsely. When these new priors domi- 

nate, we may thus experience hallucinations that appear to confirm or 
consolidate them. This is no stranger, at root, than prior expectations 

making a hollow mask look solidly convex (see 1.17) or white noise 

sound like “White Christmas’ (see 2.2). At that point (Fletcher & Frith, 

2009, p. 348), false inferences supply false percepts that lend spurious 

support to the theories that gave rise to them, and the whole cycle 

becomes perniciously self-confirming. 
What about the ‘obvious” higher level explanation, which a friend 

or doctor might even suggest to an affected agent, namely, that the agent 

herself is cognitively compromised? This should indeed constitute an 

acceptable high-level explanation, yet it is one that severely affected 

subjects find unconvincing. In this context, it is worth noting that pre- 

diction error signals are not objects of (or realizers of) experience. The 

‘red warning light” in the analogy is thus not an experience of a predic- 

tion error signal. The PP suggestion is not that we experience our own 

prediction error signals (or their associated precisions) as such. Instead, 

those signals act within us to recruit the apt flows of prediction that 

reveal a world of distal objects and causes. Persistent unresolved pre- 

diction error signals may, however, yield amorphous feelings of ‘salient 

strangeness’, in which subjects find themselves powerfully affected by 

what (to others) seem like mere accidental coincidences, and so forth. 

Within a hierarchical setting, this amounts (Frith & Friston, 2012) to 

an ongoing disturbance at the lower levels whose only resolution lies 

in bizarre, counter-evidence resistant, top-level theorizing. This fits, 

Frith and Friston suggest, with first-person reports such as those of 

Chadwick (1993), a trained psychologist who suffered an episode of 

paranoid schizophrenia. Chadwick recalls that he ‘had to make sense, 

any sense, out of all these uncanny coincidences’ and that he ‘did it 

by radically changing [his] conception of reality’. Commenting on this, 

Frith and Friston write that: 

In our terminology, these uncanny coincidences were false 
hypotheses engendered by prediction errors with inappro- 

priately high precision or salience. To explain them away 

Chadwick had to conclude that other people, including radio 

and television presenters, could see into his mind. This was 

the radical change he had to make in his conception of reality. 

(Frith & Friston, 2012, section 8)
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7.4  Schizophrenia and Smooth Pursuit Eye Movements 

Such conjectures are both interesting and plausible. But a major attrac- 

tion of the PP account is that it also provides a compelling account of 

a variety of other, less dramatic but equally diagnostic, features. One 
such feature concerns some anomalies in the ‘smooth pursuit eye 

movements’ displayed by schizophrenic subjects. The background to 

this work is a robust pattern of differences between normal and schizo- 

phrenic subjects during the smooth pursuit of temporarily visually 

occluded targets. 

Smooth pursuit eye movements® may be contrasted with saccadic 

eye movements. Human eyes are able to saccade around a visual scene, 

jumping from target to target in quick bursts. But when a moving object 

is present, the eyes can ‘lock on’ to the object, smoothly tracking it 

through space (unless it is moving too quickly, in which case so-called 

‘catch-up saccades’ are initiated). Smooth pursuit eye movements are 

able to track slowly moving objects, keeping their image upon the high 

resolution fovea. In smooth pursuit (see Levy et al,, 2010), the eyes move 

at less than 100 degrees per second and (within those bounds) eye 

velocity closely matches the velocity of the target. A common example, 

still in use as a handy neurological indicator during physical examina- 

tions, is following the doctor’s moving finger with your eyes, without 

moving your head or body, as she moves it to and fro in front of you. 

(You can perform the same routine on your own, holding your hand 

out at arm’s length and tracking the tip of your forefinger as you move 

your hand left and right. If your eyes are jerky under such conditions, 

you would score low on a ‘field sobriety test’ and might be suspected 

of being under the influence of alcohol or, for that matter, ketamine.) 

Smooth pursuit eye movements involve two phases: an initiation 

phase and a maintenance phase (distinguished by open and closed 

loop feedback, respectively). During the maintenance phase, the quan- 

tity known as ‘pursuit gain’ (or equivalently, as ‘maintenance gain’) 

measures the ratio of the eye velocity to the target velocity. The closer 

to 1.0 this is, the greater the correspondence between the velocity of 

the target and that of the eye. Under such conditions, the image of the 

target remains stable on the fovea. When the two diverge, catch-up (or 

back-up) saccades may occur, bringing the two back into line. 
Schizophrenic subjects robustly display a variety of impairments 

to smooth pursuit (also known as ‘eye tracking dysfunctions’) espe- 

cially when the pursued target becomes occluded from view or changes 

direction. According to the authoritative review by Levy et al. (2010), 

‘eye tracking dysfunction (ETD) is one of the most widely replicated
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behavioral deficits in schizophrenia and is over-represented in clini- 

cally unaffected first-degree relatives of schizophrenia patients’ (Levy 

etal, 2010, p. 311). 

In particular, we will focus (following Adams et al, 2012) on three 

differences that robustly distinguish the performance of normal and 
schizophrenic subjects. They are: 

1. Impaired tracking during visual occlusion. Schizophrenic sub- 

jects produce slower tracking and this is especially marked when 
the tracked item becomes occluded (obscured from view). Thus, 

whereas the pursuit gain of a neurotypical subject is around 85%, it 

averages around 75% in the schizophrenic population. More strik- 

ingly still, when a moving target becomes temporarily occluded 

from view, neurotypical subjects are able to track with a gain of 

60-70%, while schizophrenic subjects track at 45-55% (see Hong 

et al.,, 2008; Thaker et al., 1999, 2003). 

2. Paradoxical improvement. When a target unexpectedly changes 

direction, schizophrenic subjects briefly outperform neurotypical 

ones, producing a better matching target/eye velocity for the first 

30 ms of the new trajectory (see Hong et al., 2005). 

3. Impaired repetition learning. When a target trajectory is repeated 

several times, neurotypical subjects achieve optimal performance, 

whereas schizophrenic subjects do not (see Avila et al., 2006). 

This whole complex of otherwise puzzling effects (the paradoxical 

improvement as well as the twin deficits) emerge simultaneously as a 

result of a single disturbance to an economy of hierarchical prediction 

and precision-weighted prediction error, as we shall next see. 

7.5 Simulating Smooth Pursuit 

Adams etal. (2012) review a large swathe of evidence suggesting that the 

predictive components of smooth pursuit eye movements are the most 

sensitive to schizotypal disturbance, and hence provide greater insight 

(and diagnostic potential) than simple measures of maintenance gain 

per se. For example (Nkam et al., 2010), smooth pursuit of a randomly 

moving stimulus is indistinguishable between schizotypal and neuro- 

typical subjects. Once motion becomes to some degree predictable, dif- 

ferences begin to appear. But they become increasingly marked as the 

predictive component increases. When the moving object is temporar- 

ily occluded from view, the predictive component is large, and the dif- 
ferences between the two populations are (as we saw earlier) greatest.
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To highlight the predictive component, a measure known as ‘mean 

predictive gain” was introduced (Thaker et al,, 1999). Mean predictive 

gain is the average gain during periods of occlusion. Occlusion also 

results, in all subjects, in a period of deceleration of the eye followed by 

an increase back towards the target velocity. To allow for this, ‘residual 

predictive gain’ measures the mean predictive gain minus that period 

of general deceleration. In a large sample, spanning both severe and 

less severe sub-types of schizotypal subjects, all showed diminished 

residual predictive gain, as did symptom-free schizotypal relatives. By 

contrast, only severely affected individuals showed diminished main- 

tenance gain in general. 

Such evidence reveals strong links between the most distinctive 

patterns of effect upon schizotypal smooth pursuit and the predictabil- 

ity of the moving stimulus. The more predictively demanding the task, 

the greater the divergence from neurotypical patterns of response and 

tracking. In this respect, the evidence concerning smooth pursuit falls 

neatly into place as part of a larger mosaic of results and conjectures 
concerning schizotypal responses to certain illusions, the well-known 

work on ‘self-tickling” (chapter 4), and delusions of control. We shall 

return to all of these topics in subsequent sections. 
To explore the possible effects of disturbance to a predictive pro- 

cessing system on smooth pursuit eye movements, Adams et al. (2012) 
deployed a simplified hierarchical generative model involving linked 

equations for sensing and the control of motion. Heuristically,* the 

model ‘believes’ that its gaze and the target object are both attracted 

to a common point defined in extrinsic coordinates lying on a single 

(horizontal) dimension. Thus, ‘the generative model ... is based upon 

the prior belief that the centre of gaze and target are attracted to a com- 

mon (fictive) attractor in visual space’ (Adams et al,, 2012, p. 8). Such 

simple heuristics can support surprisingly complex forms of adaptive 

response. In the case at hand, the simulated agent, operating under the 

influence of that heuristic ‘belief’, displays smooth pursuit even in the 
presence of occluding objects. Pursuit continues despite the interven- 

ing occluding object because the network now acts as if a single hidden 

cause is simultaneously attracting both eye and target. Importantly, 

however, the generative model also includes sufficient hierarchical 

structure to allow the network to represent target motion involving 

periodic trajectories (i.e., the frequency of periodic motion of the tar- 

get). Finally (and crucially) each aspect and level of processing involves 

associated precision expectations encoding the simulated agent’s con- 

fidence about that element of the evolving signal: either the sensory 

input itself, or expectations concerning the evolution of the sensory
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‘nput over time—in this case, expectations concerning periodic motion 

of the target. 
This model, simplified though it is, captures many key aspects of 

normal smooth pursuit eye movements. In the continued presence of 

the moving target, the eye tracks smoothly after a short delay. When 

a target is occluded for the first time, the system loses its grip on the 

hidden motion after about 100 ms, and must produce a catch-up sac- 

cade (which is only approximately modelled) when the target emerges. 

But when the same sequence is repeated, tracking notably improves. At 

that point, the second level of the network can anticipate the periodic 

dynamics of the motion and is able to use that knowledge to provide 

apt context-fixing information to the level below, in effect making the 
lack of ongoing sensory stimulation (while the target is occluded) less 

surprising. These results provide a good qualitative fit with data from 

human subjects (e.g., Barnes & Bennett, 2003, 2004). 

7.6 Disturbing the Network (Smooth Pursuit) 

Recall the three distinctive features (7.4) of smooth pursuit eye move- 

ments in schizophrenic subjects. These were impaired tracking during 

visual occlusion, paradoxical improvement with unexpected changes 

of trajectory, and impaired repetition learning. Each of these effects, 

Adams et al. (2012) argue, can be traced to a single underlying deficit in 

a prediction-based inner economy: the same deficit, in fact, that (see 4.2) 

was invoked to explain schizophrenic performance on force-matching 

tasks, and the much-remarked improvement in the ability to self-tickle 

(see, e.g., Blakemore et al., 1999; Frith, 2005; Shergill et al., 2005; and dis- 

cussion in chapter 4). 

Thus suppose that schizophrenia, somewhere near the beginning 

of a long and complex causal chain, actually involves a weakening (see 

Adams, Stephan, et al., 2013) of the influence of prior expectations rela- 

tive to the current sensory evidence. This may strike the reader as odd. 
Surely, I hear you say, the opposite must be the case, for these subjects 

appear to allow bizarre high-level beliefs to trump the evidence of their 

senses! It seems increasingly possible, however, that the arrows of cau- 

sality move in the other direction. A weakened influence of prior expec- 

tations relative to the sensory input may result, as we shall later see, in 

anomalous sensory experiences in which (for example) self-generated 

action appears (to the agent) to have been externally caused. This in 

turn may lead to the formation of increasingly strange higher level the- 

ories and explanations (see Adams, Stephan, et al., 2013).
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An important factor impacting the crucial balance between sen- 

sory evidence and higher level beliefs is an agent’s capacities to reduce 

(attenuate) the precision of sensory evidence during self-produced 

movements. Such a capacity is (for reasons we shall explore shortly) 

functionally crucial. Weakening of this capacity (i.e., reduced sensory 
attenuation®) would explain, as remarked in chapter 4, schizophrenic 
subjects’ better-than-normal® abilities to self-tickle and to accurately 

match an experienced force with a self-generated one. In exploring 

these issues, it is important to bear in mind that it is the balance between 

the precision of lower and higher levels states that is functionally sig- 

nificant, so increasing the precision (hence increasing the influence) 

of low-level sensory prediction errors and decreasing the precision 

(hence decreasing the influence) of errors associated with higher level 

predictions will amount—at least as far as the inferential process is 
concerned—to the same thing. 

In the case of smooth pursuit eye movements, reducing the preci- 

sion on prediction errors at higher levels (specifically, at the second 

level in the simple simulation of Adams et al,, 2012) of the process- 

ing hierarchy results in the specific constellation of effects described 

earlier. To show this, Adams et al. lowered the precision upon pre- 

diction error at the second level of the simulated smooth pursuit net- 

work sketched in 7.5. The immediate effect of this was to reduce the 

impact of prediction errors concerning the periodic motion of the 

target. At lower speeds, while the moving object is in sight, the two 

networks show the same behaviour, since the reduced higher level 

precision’ network (RHLP-net for short) then relies upon the sensory 

input to guide the behaviour. But when the object is occluded, such 

reliance is impossible and the RHLP network is impaired relative 

to its ‘neurotypical’ cousin. As the number of cycles increases, this 

effect becomes increasingly pronounced. This is because impaired 

precision at the second level results not just in a reduction in the 

immediate influence of expectations concerning motion relative to 

that of the sensory input but also in an impaired ability to learn—in 

this case, an inability to learn, from continued exposure, about the 

frequency of periodic motion (see Adams et al.,, 2012, p. 12). Finally, 

the RHLP net also showed a subtle pattern of ‘paradoxical improve- 

ment’, outperforming the neurotypical net when an unoccluded tar- 

get unexpectedly changes direction. This whole pattern of effects 

flows very naturally from the presence of reduced higher level 

precision, since under such conditions the net will do worse when 
well-constructed predictions improve performance (e.g., behind the 

occluder and at higher speeds), better when predictions mislead



EXPECTING OURSELVES 213 

.e.g., when an expected trajectory is suddenly altered), and will be 

impaired in learning from experience. 

The kind of disturbance modelled here is physiologically (Seamans 

& Yang, 2004) and pharmacologically (Corlett et al.,, 2010) plausible. If 

precision is indeed encoded by mechanisms that affect the gain on 

error reporting superficial pyramidal cells, and if higher level (visual 

or ocular) error reporting cells are found especially (as it seems likely) 

in the frontal eye fields of the prefrontal cortex, then the kinds of dopa- 

minergic, NMDA, and GABAergic receptor abnormalities reported in 

the literature provide a clear route by which higher level precision, 

implemented as synaptic gain in PFC, might become impaired.” Such 

abnormalities would selectively impair the acquisition and use of 

higher level expectations, reducing both the benefits and (under rare 

conditions) costs associated with the use of contextual information to 

anticipate sensory input. 

7.7 Tickling Redux 

The explanatory apparatus that so neatly accounts for the disturbances 

to smooth pursuit eye movements also suggests important amend- 

ments to the standard account of enhanced schizophrenic capacities for 

self-tickling sketched in chapter 4. The most revealing aspect of these 

amendments, as we shall see, is that they better connect the sensory 

effects to both motor impairments and the emergence of delusional 
beliefs, thus explaining a complex constellation of observed effects 

using a single mechanism. 

Schizophrenic subjects, recall, show enhanced capacities for 

self-tickling when compared with neurotypical controls. Self-produced 

tickles, that is to say, are rated as more genuinely ticklish by the schizo- 

phrenic subjects than by neurotypical controls (Blakemore et al., 2000). 

This effect is genuinely at the level of the sensations involved and is 

not merely some anomaly of verbal reporting, as evidenced by schizo- 

phrenic performance on the force-matching task (see 4.2) in which ver- 

bal report is replaced by attempting to match a reference force. Here, 

neurotypical agents, as remarked earlier, ‘over-match’ the reference 

force, delivering greater self-generated forces in ways that lead (in 

multiagent scenarios) to ongoing escalations of applied pressure. This 

effect is reduced in schizophrenic subjects who perform the task more 

accurately (Shergill et al., 2005). Here too, then, there is a kind of “para- 

doxical improvement” in which the schizotypal percept is more accu- 

rate than that of a neurotypical subject. Neurotypical subjects display
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sensory attenuation for many forms of self-generated stimuli includ- 
ing the pleasantness and intensity of self-generated touch (rated as less 

pleasant and less intense than the same stimulation when provided 

by alternative means) and even for self-generated visual and auditory 

stimuli (Cardoso-Leite et al., 2010; Desantis et al., 2012). Quite gener- 

ally, then, self-produced sensation is attenuated (reduced) in the neu- 
rotypical case, and this attenuation is ifself reduced in schizophrenic 

subjects. 

A possible explanation, and one that simultaneously accounts 

for the emergence of characteristic delusional beliefs about agency, is 

offered by Brown et al. (2013) (see also Adams et al., 2013; Edwards et al, 

2012). The more standard explanation (the one we met in chapter 4) is 

that an accurate forward model normally allows us to anticipate our 

own self-applied forces, which seem weaker (attenuated) as a result. 

Should such a model be compromised, the effects of our own actions 

will (the standard model suggests) seem more surprising, hence more 

likely to be attributed to external causes leading to the emergence 

of delusions concerning agency and control. Brown et al. note three 

important shortfalls of this standard account: 

1. The link between successful prediction and reduced intensity of 

a percept (e.g, in the force-matching or tickling tasks) is unclear. 

Well-predicted elements of a signal, as we saw in chapters 1-3, are 

‘explained away’ and hence exert no pressure to select a new or 

different hypothesis. But this says nothing about the intensity or 
otherwise of the perceptual experience that the current winning 

hypothesis delivers. 

2. Manipulating the predictability of a self-generated sensation 

does not seem to impact the degree of sensory attenuation expe- 
rienced (Baess et al.,, 2008). In other words, the magnitude of pre- 

diction error looks unrelated to the degree of sensory attenuation 

experienced. 

3. Most significantly, sensory attenuation occurs even for stimuli that 

are externally generated (e.g., by the experimenter) as long as they 

are applied to a body-part that is either undergoing self-generated 

motion or that the agent expects to move (Voss et al., 2008). Such 

attenuation in respect of externally applied stimulations cannot 
be explained, Voss et al. note, by the normal apparatus of forward 

models and efference copy. Instead, they provide ‘evidence for 

predictive sensory attenuation based on higher-level motor prepa- 

ration alone, excluding explanations based on both motor com- 

mand and (re-)afferent mechanisms’ (Voss et al., 2008, p. 4).
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~0 accommodate these findings , Brown et al. first draw our attention 

20 a somewhat perplexing complication for the PP account of action 

described in chapter 4. Movement ensues, if that story is correct, when 

:he sensory (proprioceptive) consequences of an action are strongly 

credicted. Since those consequences (specified as a temporal trajectory 

2f proprioceptive sensations) are not yet actual, prediction error occurs, 

which is then quashed by the unfolding of the action. This is ‘active 

‘nference’ in the sense of Friston (2009) and Friston, Daunizeau, et al. 

2010). But notice that movement will only occur if the body alters in 

‘ine with the proprioceptive predictions rather than allowing the brain 

-0 alter its predictions to conform to the current proprioceptive state 

which might signal e.g that the arm is currently resting on the table). In 

such cases there is an apparent tension between the recipe for percep- 

zion (alter sensory predictions to match signals from the world) and the 

recipe for action (alter the body/world to match sensory predictions) 

This may seem surprising, given that PP claimed to offer an attrac- 

tively unified account of perception and action. But, in fact, it is this 

very unity that now makes trouble. For action, this account suggests, is 

under the control of perception, at least insofar as bodily movements 

are specified not by distinct high-level ‘motor commands’ but implic- 

itly—Dby the trajectory of proprioceptive signals that would characterize 

some desired action. The shape of our movements is thus determined, 

PP here suggests, by predictions concerning the flow of proprioceptive 

sensations as movements unfold (see Friston, Daunizeau, et al., 2010; 

Edwards et al, 2012). Those predicted proprioceptive consequences 

are then brought about by a nested series of unpackings culminating 

in simple ‘reflex arcs—fluid routines that progressively resolve the 

high-level specification into apt muscle commands. 

The tension between action and perception is now revealed. For 

another way to quash proprioceptive prediction error is by altering the 

predictions to conform to the actual sensory input (input that is cur- 

rently specifying ‘hand resting on table’) rather than by bringing the 

predicted proprioceptive flow into being by moving the body. To avoid 

immobility, the agent needs to ensure that action, contingent upon the 

predicted proprioceptive states associated with (say) reaching for the 

beer mug, wins out over veridical perception (signalling that the hand 

is currently immobile). 

There are two (functionally equivalent) ways this might be 

achieved. Either the precision associated with the current sensory input 

(specifying that the hand is immobile on table) needs to be reduced, or 

the precision associated with the higher level representation (specify- 

ing the trajectory to the beer mug) needs to be increased. As long as the
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balance between these is correct, movement (and mug grasping) will 

ensue. In the next two sections, we consider what happens if that bal- 

ance is altered or disturbed. 

7.8 Less Sense, More Action? 

Brown, Adams, et al. (2013) offer a series of simulations that (just as in 

the experiments reported in 7.6) explore the consequences of altering 

the precision-modulated balance between sensory input and higher 

level prediction. The basic scenario here is one in which a given somato- 

sensory input (e.g., one involving a sensation of touch) is generated 

ambiguously and could be the result of a self-generated force, an exter- 
nally imposed force, or some mixture of the two. To identify the origin 

of the somatosensory stimulation, the system (in this simplified model) 
must use proprioceptive information (information about muscle ten- 

sions, joint pressures, and so on) to distinguish between self-generated 
and externally generated inputs. Proprioceptive predictions origi- 

nating from higher levels of processing are (in the usual manner of 
active inference) positioned to bring about movement. Finally, variable 

precision-weighting of sensory prediction error enables the system to 

attend to current sensory input to a greater or lesser degree, flexibly 

balancing reliance upon (or confidence in) the input with reliance upon 

(or confidence in) its own higher level predictions. 

Such a system (for the full implementation, see Brown, Adams, 

et al, 2013) is able to generate a bodily movement when (but only when) 

the balance between reliance upon current sensory input and reliance 

upon higher level predictions is correct. At the limit, errors associ- 

ated with the higher level proprioceptive predictions (specifying the 

desired trajectory) would be accorded a very high weighting, while 

those associated with current proprioceptive input (specifying the 

current position of the limb or effector) would be low-weighted. This 

would deliver extreme attenuation of the current sensory information, 

allowing errors concerning the predicted proprioceptive signals to 

enjoy functional primacy, becoming a self-fulfilling prophecy as the 

system moves so as to quash those highly weighted errors. 
As sensory attenuation is reduced, however, the situation 

changes dramatically. At the opposite extreme, when sensory preci- 

sion is much higher than that associated with higher level prediction, 

there is no attenuation of the current sensory input and no movement 

can ensue. Brown et al. explored this balance using many different 

runs of the simulation, showing (as would now be expected) that ‘as
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the prior precision increases in relation to sensory precision, prior 

beliefs are gradually able to incite more confident movement’ (p. 11). 

In the active inference setting, then, ‘sensory attenuation is neces- 

sary if prior beliefs are to supervene over sensory evidence, during 

self-generated behavior” (p. 11). This is already an interesting result, 

since it provides a fundamental reason for the kinds of sensory 

attenuation noted in 77, including attenuation, during self-generated 

movement, in respect even of externally generated inputs (the case 

most resistant to explanation by the standard forward-model-based 

account). 

Importantly, less confidence in sensory prediction error means less 

confidence in beliefs about the causes of such error. Brown, Adams, 

et al. (2013, p. 11) describe this state as one of ‘transient uncertainty’ 

due to a ‘temporary suspension of attention [recall that attention, in PP 

is implemented by increased precision-weighting of prediction error] 

to sensory input’. The upshot is that externally generated sensations 

will in general be registered much more forcefully than internally gen- 

erated ones. In the context of self-generated movements, higher level 

predictions are able to entrain movements only courtesy of the attenu- 

ation (reduced precision) of current sensory inputs. A somatosensory 

state, when externally produced, will thus appear more intense (less 

attenuated) than the very same state when produced by means of 

self-generated action (see Cardoso-Leite et al., 2010). If a subject is then 

asked to match an externally generated force with an internally gener- 

ated one (as in the force-matching task rehearsed earlier), force escala- 

tion will immediately follow (for some compelling simulation studies 

of this effect, using the apparatus of active inference described above, 

see Adams, Stephan et al., 2013). 

In sum, action (under active inference) requires a kind of targeted 

dis-attention in which current sensory input is attenuated so as to allow 

predicted sensory (proprioceptive) states to entrain movement. At first 

sight, this is a rather baroque (Heath Robinson / Rube Goldberg -like) 

mechanism? involving an implausible kind of self-deception. According 

to this story, it is only by downplaying genuine sensory information 

specifying how our bodily parts are actually currently arrayed in space 

that the brain can ‘take seriously” the predicted proprioceptive infor- 

mation that determines movement, allowing those predictions to act 

(as we saw in chapter 4) directly as motor commands. Whether this 

part of the PP story is correct, it seems to me, is one of the larger open 

questions hereabouts. On the plus side, however, such a model helps 

make sense of familiar (but otherwise puzzling) phenomena, such as 

the impairment of fluent motor action by deliberate acts of attention
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(choking’), and a variety of somatic delusions and disorders of move- 

ment, as we shall now see. 

7.9 Disturbing the Network (Sensory Attenuation) 

Assuming (for the sake of argument) that the story just rehearsed is 

correct, we can now ask ourselves what would happen if this capac- 

ity for targeted dis-attention is impaired or damaged? Such a system 

would be unable to attenuate the impact of ascending sensory predic- 

tion errors. Impaired capacities for attenuation will tend (we saw) to 

prevent self-generated movement. The situation is nicely summarized 

by Edwards et al. who note that: 

If the precision of high-level representations supervenes, then 
proprioceptive prediction errors will be resolved through clas- 

sical reflex arcs and movement will ensue. However, if pro- 

prioceptive precision is higher, then proprioceptive prediction 

errors may well be resolved by changing top-down predic- 

tions to accommodate the fact that no movement is sensed. In 

short, not only does precision determine the delicate balance 

between sensory evidence and prior beliefs in perception, 

through exactly the same mechanisms, it can also determine 

whether we act or not. (Edwards et al., 2012, p. 4) 

If sensory attenuation is impaired, the higher level predictions that 

would normally result in movement may indeed be formed, but will 

now enjoy reduced precision relative to the sensory input, rendering 

them functionally inert or (at the very least) severely compromised.’ 

This pattern of effects, Brown, Adams, et al. (2013, p. 11) argue, 

might also underlie the everyday experience of ‘choking’ while 

engaged in some sport or delicate (but well-practiced) physical activity 

(see Maxwell et al., 2006). In such cases, the deployment of deliberate 

attention to the movement seems to interfere with our own capacities 

to produce it with fluency and ease. The problem may be that attending 

to the movement increases the precision of current sensory information 

with a consequent decrease in the influence of the higher level proprio- 

ceptive predictions that would otherwise entrain fluid movement. 

At high levels of impairment (of the normal process of sensory 
attenuation), movement becomes impossible and the system—although 

biomechanically sound—is incapable of movement. This was demon- 

strated by Brown et al. using a simple simulation in which systemic 

confidence or certainty about sensory prediction error was varied.
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Movement required the precision of higher level proprioceptive pre- 

dictions to be high relative to that of the sensory evidence. When the 
reverse was the case, movement was blocked. Under such conditions, 

the only way to restore movement is to artificially inflate the precision 

of the higher level states (i.e., to increase the precision of prediction 

errors at the higher level). Weakened sensory attenuation is now over- 

come and movement enabled. This is because the higher level predic- 

tions (that unpack into a trajectory of proprioceptive states implied by 

some target action) now enjoy increased precision relative to that of 
the (still unattenuated) current sensory states. At a certain point (as 

demonstrated in the simulation studies by Adams, Stephan, et al, 

2013) this will allow movement to occur yet abolish the force-matching 

illusion (and presumably enable self-tickling, were that part of the 

simulation!)—the combination characteristic of schizophrenic subjects. 

This remedy, however, brings with it a cost. For the system, though 

now able to self-generate movements, becomes prone to a variety of 

‘somatic delusions’. This is because those over-precise (unattenuated) 

sensory prediction errors still need to be explained. To do so, the simu- 

lated agents studied by Adams, Stephan, et al. (2013; and by Brown, 

Adams, et al., 2013) infer an additional external force—a ‘hidden exter- 

nal cause’ for what is, in fact, a purely self-generated pattern of sen- 

sory stimulation. This agent ‘believes that when it presses its finger on 

its hand, something also pushes its hand against its finger’ (Brown, 

Adams, et al,, 2013, p. 14). We ‘expect’ the sensed consequences of our 

own actions to be attenuated relative to similar sensory consequences 

when induced by external forces. But now (despite being, in fact, the 

originator of the action) the simulated agent fails to attenuate those sen- 

sory consequences, unleashing a flow of prediction error that recruits a 

new—but delusional—hypothesis. This establishes a fundamental link 

between the observed failures of sensory attenuation in schizophrenia 
and the emergence of false beliefs concerning agency. 

7.10  ‘Psychogenic Disorders” and Placebo Effects 

A very similar pattern of disturbed inference, again consequent upon 

alterations to the delicate economy of precision-weighting, may explain 
certain forms of ‘functional motor and sensory symptoms’. This names 
a constellation of so-called ‘psychogenic’ disorders in which there are 

abnormal movements or sensations, yet no apparent ‘organic’ or physi- 

ological cause. Following Edwards et al. (2012), I use the term ‘func- 

tional motor and sensory symptoms’ to cover such cases: cases that are
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sometimes described as ‘psychogenic’, ‘non-organic’, ‘unexplained’, or 

even (in older parlance) ‘hysterical’? The suggestions that follow are 

equally applicable (though they are there associated with more positive 

outcomes) to an understanding of the potency and scope of ‘placebo 

effects’ (see Biichel et al., 2014; Atlas & Wager 2012; Anchisi and Zanon 

2015). 

Functional motor and sensory symptoms are surprisingly common 

and are diagnosed in around 16% of neurological patients (Stone et al., 

2005). Examples included organically unexplained cases of ‘anaesthe- 

sia, blindness, deafness, pain, sensorimotor aspects of fatigue, weak- 

ness, aphonia, abnormal gait, tremor, dystonia and seizures’ (Edwards 

et al,, 2012, p. 2). Strikingly, the contours of the problems that afflict 

these patients often follow ‘folk” notions of the demarcation of bodily 

parts (e.g., where a paralysed hand stops and an unparalysed arm 

begins') or of the visual field. Another example is: 

‘tubular’ visual field defect, where patients with a functional 

loss of their central visual field report a defect of the same 

diameter, whether it is mapped close to them or far away. This 

defies the laws of optics, but may fit with (lay) beliefs about the 

nature of vision. (Edwards et al,, 2012, p. 5) 

Similarly, so-called ‘whiplash injury’ following motor accidents 

turns out to be very rare in countries where the general population is 

unaware of the anticipated ‘shape’ of this injury (Ferrari et al., 2001). 

But where the injury is well-publicized, Edwards et al. (zo12, p. 6) 

note ‘the expectation in population surveys of the medical conse- 

quences of minor traffic accidents mirrors the incidence of whiplash 

symptoms”. 

The role of expectations and prior beliefs in the etiology of such 

(genuinely physically experienced) effects is further evidenced by their 

manipulability. Thus: 

In a related study of low back pain after minor injury in 
Australia, a state-wide campaign to change expectations 

regarding the consequences of such injury led to a sustained 

and significant reduction in the incidence and severity of 

chronic back pain (Buchbinder and Jolley, 2005). (Edwards 

etal, 2012, p. 6) 

One route by which prior beliefs might impact both sensory and motor 

performances is via the distribution of attention. Functional motor and 

sensory symptoms are already associated, in a long and compelling lit- 

erature, with alterations in the flow and distribution of bodily attention
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and more specifically with introspective tendencies and a kind of 

‘body-focused attentional bias’ (see Robbins & Kirmayer, 1991, and 

reviews by Brown, 2004, and Kirmayer & Tailefer, 1997). Attempting to 

tie this large literature together, Brown identifies, as a leading thread, 
‘the repetitive reallocation of high-level attention on to symptoms’. It is 
natural to suppose that the allocation of attention, in such cases, is an 

effect rather than a cause. However, both the tendency to ‘track’ folk 

notions of sensory and motor physiology and the diagnostic signs used 

to identify cases of functional motor and sensory symptoms speak 

against this. For example, ‘if a patient with functional leg weakness 

is asked to flex their unaffected hip, their unattended “paralysed” hip 

will automatically extend; this is known as Hoover’s sign (Ziv et al,, 

1998)" (Edwards et al, 2012, p. 6). In a wide range of cases, functional 

sensory and motor symptoms are thus ‘masked’ when subjects are not 

attending to the affected element. 

Such linkages between functional motor and sensory symptoms 

and abnormalities in the allocation of attention are especially sugges- 

tive when considered within the predictive processing framework. 

Within that framework, attention corresponds, as we have noted on 

many occasions, to the weighting of prediction error signals at vari- 

ous processing levels according to their estimated precision (inverse 

variance). This weighting determines the balance between top-down 

expectation and bottom-up sensory evidence. That same balance, if the 
class of models we have been pursuing is on track, determines what is 

perceived and how we act. This opens up a space in which to explore a 

unified model of the etiology of functional symptoms in both the sen- 

sory and motor domain. 

7.11  Disturbing the Network (‘Psychogenic” Effects) 

The fundamental problem leading to functional motor and sensory 

symptoms, Edward et al. suggest, may be a disturbance to the mecha- 

nisms of precision-weighting at (in the first instance) intermediate’ lev- 

els of sensorimotor processing. Such a disturbance (itself as ultimately 

biological as any other physiological malfunction) would consist in the 

overweighting of prediction error at that intermediate level, leading to 

a kind of systemic overconfidence in that specific set of probabilistic 

expectations, and hence in any bottom-up sensory inputs that seem to 

conform to them. 

Suppose this were to occur against the backdrop of some salient 

physical event, such as an injury or a viral infection. Such events
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frequently (but not always, see below) precede the onset of functional 

motor or sensory symptoms (Stone et al., 2012). Under such conditions: 

salient sensory data arising from these precipitating events 

are afforded excessive precision (weight) . . . this instantiates an 

abnormal prior belief at anintermediate level in the cortical hier- 

archy trying to explain or predict those sensations—and that 

abnormal belief or expectation is rendered resistant to extinc- 

tion through the unusually high levels of precision (synaptic 

gain) enjoyed during its formation. (Edwards et al., 2012, p. 6) 

Precipitating events are not, however, a necessary condition (given 

the model) for functional motor and sensory symptoms. Thus sup- 
pose that, for whatever reason, some sub-personal, intermediate-level 

expectation of a sensation or bodily movement (or equally, some 
expectation of a lack of sensation or bodily movement) is formed. 

That intermediate-level prediction now enjoys enhanced status, due 

to the disturbed (inflated) precision of prediction error reporting 

at that level. Now, even random noise (fluctuations within normal 

bounds) may be interpreted as signal, and the stimulus (or lack of 

stimulus) ‘detected’. This is simply the “White Christmas” effect that 

we have now encountered many times in the text. In other words, 

from the predictive processing perspective ‘there might only be a 

quantitative—not qualitative—difference between “somatic amplifi- 
cation” and the generation of completely false perceptions’ (Edwards 

etal, 2012, p. 7). 

To complete the picture, notice that the precise prediction errors 

that select and ‘confirm’ the intermediate-level hypotheses serve to 

reinforce the intermediate-level prior, hence self-stabilizing the mis- 

leading pattern of somatic inference. At the same time, higher level 

networks must try to make sense of these apparently confirmed, but 

actually pathologically self-produced, patterns of stimulation (or lack 

of stimulation). No higher level explanation, in terms of, for example, 

some expected percept or sensation, or a systemic decision to move or 

to not move, is available. The higher levels, one might say, were not pre- 

dicting the movement or sensation, even though it originated from the 

system itself. To make sense of this, new causes—such as basic iliness or 

neurological injury—are inferred. In short, there occurs what Edwards 

et al. (2012, p. 14) describe as a ‘misattribution of agency, where experi- 

ences that are usually generated in a voluntary way are perceived as 

involuntary’. The self-produced sensations are now classed as symp- 

toms of some elusive biological dysfunction. And indeed they are: but 

the dysfunction might also, and perhaps more properly, be thought of
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as cybernetic: as an imbalance in the complex inner economy of evi- 

dence, inference, and control. 

The same broad story applies, as mentioned earlier, to so-called 

‘placebo effects’. Recent decades have seen an increasing apprecia- 

tion of the power and scope of such effects (for reviews, see Benedetti, 

2013; Tracey, 2010). Expectancy, quite general, demonstrably affects the 

behavioural, physiological, and neural outcomes of treatment and does 

so both in the context of inert (classic placebo) treatments and in the 

context of real treatments (Bingel et al,, 2011; Schenk et al, 2014). In a 

recent review article on ‘placebo analgesia’ (though the authors prefer 

to speak of ‘placebo hypoalgesia’, thus stressing expectancy-based pain 

reduction rather than pain elimination), it is suggested that: 

the ascending and descending pain system resembles a recur- 

rent system that allows for the implementation of predictive 

coding—meaning that the brain is not passively waiting for 

nociceptive [painful] stimuli to impinge upon it but is actively 
making inferences based on prior experience and expectations. 

(Buchel et al., 2014, p. 1223) 

The suggestion is that top-down predictions of pain relief are com- 

bined, at multiple levels of the neural hierarchy, with bottom-up sig- 

nals, in a way modulated (as always) by their estimated precision—the 

certainty or reliability assigned to the predictions. This provides a very 

natural account of the documented impact of complex rituals, visibly 
sophisticated interventions, and patient confidence in doctors, practi- 

tioners, and treatments.* 

7.12  Autism, Noise, and Signal 

Disturbances to that same complex economy of evidence, inference, and 

expectation might (Pellicano & Burr, 2012) help explain the origination of 

the so-called ‘non-social symptoms’ of autism. These are symptoms man- 

ifest in the sensory rather than the social domain. The social symptoms 

include the well-known difficulties in the recognition of other agents’ 

emotions and intentions and aversion to many forms of social interaction. 

Non-social symptoms include hypersensitivity to sensory—especially 

unexpected sensory—stimulation, repetitive behaviours and highly 
regimented, restricted interests and activities. For a sketch of the whole 

constellation of social and non-social elements, see Frith (2008). 

A key finding in the perceptual domain (Shah & Frith, 1983) was 

the enhanced capacity of autistic subjects to find an element (such as a
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triangle) when it occurs ‘hidden” within the context of a larger mean- 

ingful figure (e.g., a picture of a pram). The capacity consistently to out- 

perform neurotypical subjects on this ‘embedded figures’ task led to 

the suggestion (Frith, 1989; Happé & Frith, 2006) that autistic subjects 

display ‘weak central coherence’, that is, a processing style that fore- 

grounds parts and detail at the expense of an easy grip upon the larger 
context in which they occur. The hypothesis of a significant perceptual 

processing difference between autistic and neurotypical populations is 

further supported, Pellicano and Burr note, by studies showing autistic 
subjects to be less susceptible to some visual illusions (e.g., the Kanizsa 

triangle illusion, the hollow mask illusion, which we met in chapter 1,55 

and the tabletop illusion, see Figure 7.1). Autistic subjects are also more 

likely to possess absolute pitch, are better at many forms of visual dis- 

crimination (see Happé, 1996; Joseph et al,, 2009; Miller, 1999; Plaisted 

et al, 1998a,b), and are less susceptible to the hollow mask illusion 

(Dima et al., 2000). 

Given this body of evidence, some authors (Mottron et al., 2006; 

Plaisted, 2001) have explored the idea that autism involves abnormally 

strengthened or enhanced sensory experience. Such accounts have 

been presented as alternatives to the notion of weak central coher- 

ence, or weakened influence of top-down expectations. Notice however 

that from a broadly Bayesian perspective, this apparent opposition 

(© 

  

FIGURE 7.1 Autistic Subjects Are Less Susceptible to Illusions in Which 

Prior Knowledge is Used to Interpret Ambiguous Sensory Information 

Examples of such illusions include (a) the Kanizsa triangle. The edges of the 

triangle are not really there, but would be for the most probable physical 

structure: a white triangle overlaying three regular circles. (b) The hollow-face 

illusion. A strong bias (or ‘prior’) for natural concave faces offsets competing 

information (such as shadows) and causes one to perceive a concave, hollow 

mask (right) as a normal convex face (left). (c) Shepard’s table illusion. The 2D 

images of the parallelograms are in fact identical. However, the image is consis- 

tent with many 3D shapes, the most probable being real tables slanting at about 

458: to be consistent with the identical 2D images, the table-tops need to be of 

very different dimensions. 

Source: Pellicano & Burr, 2012.
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loses some of its force since what really matters (see Brock, 2012) is 

the achieved balance between top-down and bottom-up modes of 

influence. 

Taking the Bayesian perspective, Pellicano and Burr depict autistic 

perception as involving a disturbance to systemic abilities to deal with 

sensory uncertainty due to an attenuated influence of prior knowl- 

edge.® The upshot of such weakened influence is a positive capacity 

to treat more incoming stuff as signal and less as noise (leading to 

the enhanced capacities to spot hidden figures and to recognize the 

true contours of the sensory data). But this means, in turn, that huge 

amounts of incoming information are treated as salient and worthy of 

attention, thus increasing effortful processing and incurring signifi- 

cant emotional costs. For example, where a neurotypical child learns 

to recognize objects under a wide variety of lighting conditions and 

can use the shadows cast by objects as a source of useful informa- 

tion, such situations prove challenging to autistic subjects (Becchio 

et al, 2010). Instead of falling into place as a predictable pattern of 

sensory stimulation associated, in current context, with the presence 

of a certain object, shadows may be treated as sensory data in need of 

further explanation. In other words, the influence of top-down predic- 

tions (priors) may usually serve—exactly as the predictive processing 

model suggests—to strip the sensory signal of much of its ‘newswor- 

thiness’. Weakened influence of this kind (described by Pellicano and 

Burr as ‘hypo-priors™) would result in a constant barrage of infor- 

mation demanding further processing and might plausibly engender 

severe emotional costs and contribute to the emergence of a variety 

of self-protective strategies involving repetition, insulation, and 

narrowing of focus. 

Such an account, it seems to me, holds out promise not just as a 

means of accommodating the ‘non-social symptoms’ of autism but also 

as a potential bridge between those symptoms and disturbances to 

fluid social engagement and interpersonal understanding. The more 

complex the domain, one might reasonably suspect, the greater the 

impact of attenuated priors upon inference and (hence) upon perfor- 

mance and response. The social domain is highly complex (frequently 

involving the appreciation of perspectives upon perspectives, as when 

we know that John suspects that Mary is not telling the truth). It is, 

moreover, a domain in which context (as every soap opera fan knows) 

is everything and in which the meaning of small verbal and non-verbal 

signs must be interpreted against a rich backdrop of prior knowledge. 

The kind of signal/noise imbalance described earlier might thus result 

in especially marked difficulties with both social interaction and (as a
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result) social learning. In just this vein, Van de Cruys et al. (2013) sug- 

gest that: 

The taxing experience in autism (cf. sensory overload) may 

result from a perceptual system that continuously signals pre- 

diction errors, indicating that there always remains something 

to be learnt still and that attentional resources are needed. The 

accompanying negative feelings could cause these patients 

to avoid the most variable or unpredictable situations where 

context-dependent high-level predictions are more important 

than concrete perceptual details. This may be the case for 

social interaction in particular. The overwhelming prediction 
errors cause these patients (or their caregivers) to externalize 

and enforce predictability through exact routines and patterns 

in their daily activities. (Van de Cruys et al,, 2013, p. 96) 

Van de Cruys et al. suggest, however, that rather than simply think- 

ing in terms of attenuated priors, it might be fruitful to focus upon 

the mechanisms by which the impact of priors at different levels are 

modulated. This corresponds, within the predictive processing frame- 
work, to the modulation of precision according to the demands of task 

and context. In support of this proposal, the authors cite various evi- 

dence showing that autistic subjects can construct and deploy strong 

priors but may have difficulties applying them. This might follow if 

those priors were constructed to fit a signal that, from a neurotypical 

perspective at least, actually includes a lot of noise but is being treated 

as precise. There is, however, no deep conflict between this account and 

the more general sketch by Pellicano and Burr, since the assignment 

of precision to prediction errors at various levels of processing itself 

requires estimations of precision. It is the weakened influence of these 

estimations (technically, these are hyperpriors) that then explains the 

gamut of effects rehearsed above (see Friston, Lawson, & Frith, 2013). 

Both autism and schizophrenia may thus involve (different but related) 

disturbances to this complex neuromodulatory economy, impacting 

experience, learning, and affective response. 
In sum, variations in the (precision-modulated) tendency to treat 

more or less of the incoming sensory information as ‘news’, and more 

generally in the ability flexibly to modify the balance between top-down 

and bottom-up information at various stages of processing, will play a 
major role in determining the nature and contents of perceptual expe- 

rience. Some variation along these dimensions may also be expected 

in the general population also and might contribute to differences of 

learning style and of preferred environment. We thus glimpse a rich,
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multidimensional space in which to begin to capture both the wide 

variation seen amongst autistic subjects and within the neurotypical 

population. 

7.13  Conscious Presence 

The accounts of schizophrenia, autism, and functional motor and 

sensory symptoms just rehearsed move seamlessly between compu- 

tational, neuroscientific, and phenomenological description. This fluid 

spanning of levels is, we have seen, one of the hallmarks of the predic- 

tive processing stable of models. Can we use this apparatus to shed 

light on other aspects of human experience? 

One such aspect is the feeling of ‘conscious presence’’® Using hier- 

archical predictive processing as a theoretical framework, Seth et al. 

(2011) sketch a preliminary theoretical account of this feeling, which 

may be glossed as the feeling of being truly present in some real-world 

setting. The account, though speculative, is consistent with a wide 

variety of pre-existing theory and evidence (for a summary, see Seth 

et al,, 2011; for some important developments, see Seth, 2014; and for a 

review, Seth, 2013). 

Alteration or loss of the sense of reality of the world is known as 

‘derealization” and of the self, ‘depersonalization’, and the occurrence 

of either or both symptoms is labelled Depersonalization Disorder 

(DPD) (see Phillips et al,, 2001; Sierra & David, 2011). DPD patients may 

describe the world as seeming to be cut off from them, as if they were 

seeing it in a mirror or behind glass, and symptoms of DPD often occur 

during the early (prodromal) stages of psychoses such as schizophre- 

nia, where a general feeling of ‘strangeness or unreality’ may precede 

the onset of positive symptoms such as delusions or hallucinations 

(Moller & Husby, 2000). 

The feeling of presence results, Seth et al. suggest, from the suc- 

cessful suppression (by successful top-down prediction) of intero- 

ceptive sensory signals. Interoceptive sensory signals are signals (as 

the name suggests) concerning the current inner state and condition 

of the body—they thus constitute a form of ‘inner sensing’ whose 

targets include states of the viscera, the vasomotor system, muscular 

and air-supply systems, and many more. From a subjective viewpoint, 

interoceptive awareness manifests as a differentiated array of feel- 

ings including those of ‘pain, temperature, itch, sensual touch, muscu- 

lar and visceral sensations . .. hunger, thirst, and “air hunger”’ (Craig, 

2003, p. 500). The interoceptive system is thus mostly concerned with
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pain, hunger, and the states of various inner organs, and is distinct 

from both the exteroceptive system which includes vision, touch, and 

audition, and from the proprioceptive system" that carries information 

about relative limb positions, effort, and force. Finally, it is thought that 

anterior insular cortex (AIC) plays a special role in the integration and 

use of interoceptive information, and (more generally) in the construc- 

tion of emotional awareness—perhaps by encoding what Craig (2003, 

p- 500) describes as ‘a meta-representation of the primary interoceptive 

activity’, 

Seth et al. invoke two interacting sub-mechanisms, one concerned 

with ‘agency’ and implicating the sensorimotor system, and the other 

with ‘presence’” and implicating autonomic and motivational systems 

(see Figure 7.2). The agency component here will be familiar from some 

of our earlier discussions as it is based upon the original (Blakemore et 
al., 2000; see also Fletcher & Frith, 2009) model of the disturbed sense 

of agency in schizophrenia. That account (see 4.2) invoked a weakened 

capacity to predict (with sufficient precision) the sensory consequences 

of our actions as a prime component in the origination of feelings of 

alien control and so on. But the account is compatible with the recent 

refinements (7.7-7.9) suggesting that the primary pathology may actu- 

ally be a failure to attenuate the impact of ascending sensory prediction 

errors. The compatibility (for present purposes) is assured since what 

matters functionally speaking is the balance between the precision 

assigned to downwards-flowing prediction and to upward-flowing 

sensory information—a balance that could be disturbed either by over- 
estimating the precision of certain lower level signals (hence failing to 

attenuate the impact of the current sensory state), or by underestimat- 

ing the precision of relevant higher level predictions. 

The sense of presence arises, Seth et al. suggest, from the inter- 

action of the systems involved in explaining away exteroceptive and 
proprioceptive error and systems involved in another type of predic- 

tion: prediction of our own complex interoceptive states. A key site here, 

Seth et al. speculate, may be the AIC since this area (as noted above) 

is thought to integrate various bodies of interoceptive and exterocep- 

tive information (see Craig, 2002; Critchley et al,, 2004; Gu et al., 2013). 

The AIC is also known to participate in the prediction of painful or 

affect-laden stimulations (see Lovero et al., 2009; Seymour et al., 2004; 

and recall the discussion in 7.9). AIC is also activated by seeing mov- 

ies of people scratching, and its level of activation correlates with the 

extent of ‘itch contagion’ experienced by the viewers (Holle et al., 2012), 

suggesting that interoceptive inference can be socially as well as physi- 

ologically driven (see Frith & Frith, 2012).
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FIGURE 7.2 Seth’s Model of Interoceptive Inference 

In the model, emotional responses depend on continually updated predic- 

tions of the causes of interoceptive input. Starting with a desired or inferred 

physiological state (which is itself subject to update based on higher level 

motivational and goal-directed factors), generative models are engaged which 

predict interoceptive (and exteroceptive) signals via corollary discharge. 

Applying active inference, prediction errors (PEs) are transcribed into actions 

via engagement of classical reflex arcs (motor control) and autonomic reflexes 
(autonomic control). The resulting prediction error signals are used to update 

the (functionally coupled) generative models and the inferred/desired state 

of the organism. (At high hierarchical levels these generative models merge 

into a single multimodal model.) Interoceptive predictions are proposed to 

be generated, compared, and updated within a ‘salience network’ (shaded) 

anchored on the anterior insular and anterior cingulate cortices (AIC, ACC) 

that engage brainstem regions as targets for visceromotor control and relays 

of afferent interoceptive signals. Sympathetic and parasympathetic outflow 

from the AIC and ACC are in the form of interoceptive predictions that 

enslave autonomic reflexes (e.g., heart/respiratory rate, smooth muscle behav- 

iour), just as proprioceptive predictions enslave classical motor reflexes in PP 

formulations of motor control This process depends on the transient attenua- 

tion of the precision of interoceptive (and proprioceptive) PE signals. Lightly/ 

darkly shaded arrows signify top-down/bottom-up connections. 

Source: Seth, 2013. 

The suppression of AIC activity by successful top-down predic- 

tions of the ebb and flow of interoceptive states results, Seth et al. sug- 

gest, in the sense of presence (or at least, in the absence of a sense 

of non-presence, see note 18). Whereas DPD results, they argue, from 

pathologically imprecise interoceptive predictions. Such imprecise
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(hence functionally emaciated) downward-flowing predictions will 

fail to explain away the incoming streams of interoceptive informa- 

tion, leading to the generation of persistent (but ill-founded) flurries of 

prediction error. This may manifest subjectively as a hard-to-explain 

sense of strangeness arising at the meeting point between exterocep- 

tive and interoceptive expectations. Eventually, in severe cases, the 

ongoing attempt to explain away such persistent error signals may 

lead to the emergence of new but bizarre explanatory schemas (delu- 

sional beliefs concerning our own embodiment and agency). The Seth 

et al. account is thus structurally isomorphic to the account of Fletcher 

and Frith (2009), as described in chapter 2. 

There is increasing evidence, moreover, for an interoceptive- 

inference-based account of the more general experience of body owner- 

ship (EBO), where this just means the experience of ‘owning and identi- 
fying with a particularbody’ (Seth, 2013, p. 565). Here too, the suggestion 

is that EBO may be the result of an inferential process involving ‘mul- 

tisensory integration of self-related signals across interoceptive and 
exteroceptive domains’ (Seth, 2013, pp. 565-566). Clearly, our own body 

is a hugely important part of the world upon which we must maintain 

some kind of grip if we are to survive and flourish. We must build 
and maintain a grip upon our own bodily position (where we are), our 

bodily morphology (current shape and composition), and our internal 
physiological condition (as indexed by states of hunger, thirst, pain, 

and arousal). To do so, Seth (2013) argues, we must learn and deploy a 

generative model that isolates ‘the causes of those signals “most likely 

to be me” across interoceptive and exteroceptive domains’. This is not 

as hard as it sounds, for our own body is uniquely positioned to gener- 
ate a variety of time-locked multimodal signals as we move, sense, and 

act in the world. These include both exteroceptive and interoceptive 

signals, which alter together in ways that are closely determined by our 

own movements. Thus: 

Among all physical objects in the world, it is only our body 

that will evoke (ie, predicts) this kind of multisensory 

sensation—[a] congruence of multisensory input that has ... 

been called ‘self-specifying” (Botvinick, 2004). (Limanowski & 

Blankenburg, 2013, p. 4) 

The importance of bodily sensations in this constructive process is evi- 

denced in a number of well-known studies involving the so-called ‘rub- 

ber hand illusion’ (Botvinick & Cohen, 1998) mentioned in 6.11. Recall 

that in these studies a visible artificial hand is stroked in time with a 

subject’s real hand. Attending to the visually presented artificial hand
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induces a transient sense of ownership of the hand—one that translates 

into genuine fear when the hand is suddenly menaced with a ham- 
mer. Our experience of our own body, all this suggests, is the ongoing 

product of a generative model that infers bodily location and compo- 
sition from the time-locked barrage of multimodal sensory informa- 
tion. Given the ecological implausibility of feeling a delicately timed 

sequence of touches on a visible but non-owned hand, we downgrade 

some elements of the signal (those specifying the precise spatial location 

of the actual hand) so as to arrive atf a best overall hypothesis—one that 
now incorporates the rubber hand as a bodily part. Such effects, Seth 

notes, are remarkably robust and have since been extended into face 

perception and whole-body ownership (Ehrsson, 2007; Lenggenhager 

et al,, 2007; Sforza et al., 2010). 

Extending these studies to incorporate interoceptive (rather than 

simply tactile) sensory evidence, Suzuki et al. (2013) used a virtual 

reality headset to make a displayed rubber hand ‘pulse’ (by changing 

colour) in time or out-of-time with subjects” own heartbeats. Synchrony 

between the interocepted cardiac rhythm and the visual pulse increased 

the sense of rubber-hand ownership (see Figure 7.3). This exciting result 

provides the first clear-cut evidence that: 

statistical correlations between interoceptive (e.g., cardiac) and 

exteroceptive (e.g., visual) signals can lead to updating of pre- 

dictive models of self-related signals through minimization 

of prediction error, just as may happen for purely exterocep- 

tive multisensory conflicts in the classic RHI [Rubber Hand 

Ilusion]. (Seth, 2013, p. 6) 

Our ongoing sense of our own embodiment, all this suggests, 

depends upon accommodating the full (interoceptive and exterocep- 

tive) sensory barrage using a generative model whose dimensions cru- 

cially track aspects of ourselves—our bodily array, our spatial location, 

and our own internal physiological condition. 

7.14 Emotion 

These same resources may be deployed as the starting point for a 

promising account of emotion. At this point, the proposal draws 

(with a twist) upon the well-known James-Lange model of emotional 

states as arising from the perception of our own bodily responses to 

external stimuli and events (James, 1884; Lange, 1885). The idea there, 

in a nutshell, was that our emotional ‘feelings’ are nothing but the
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FIGURE 7.3 Interoceptive Rubber-Hand Illusion 

(a) Participants sat facing a desk so that their physical (left) hand was out 

of sight. A 3D model of the real hand was captured by Microsoft Kinect 

and used to generate a real-time virtual hand that was projected into the 

head-mounted display (HMD) at the location of the augmented-reality (AR) 

marker. Subjects wore a front-facing camera connected to the HMD, so they 

saw the camera image superimposed with the virtual hand. They also wore a 

pulse-oximeter to measure heartbeat timings and they used their right hand 

to make behavioural responses. (b) Cardio-visual feedback (left) was imple- 

mented by changing the colour of the virtual hand from its natural colour 

towards red and back, over 500 ms either synchronously or asynchronously 

with the heartbeat. Tactile feedback (middle) was given by a paintbrush, 

which was rendered into the AR environment. A ‘proprioceptive drift’ (PD) 

test (right), adapted for the AR environment, objectively measured perceived 

virtual hand position by implementing a virtual measure and cursor. 

The PD test measures the perceived position of the real (hidden) hand by ask- 

ing the participant to move a cursor to its estimated location (c) The experi- 

ment consisted of three blocks of four trials each. Each trial consisted of two 

PD tests flanking an induction period, during which either cardio-visual or 

tactile-visual feedback was provided (120 s). Each trial ended with a question- 

naire presented in the HMD. (D) PD differences (PDD, post-induction minus 

pre-induction) were significantly larger for synchronous versus asynchro- 

nous cardio-visual feedback in the ‘cardiac still’ (without finger movements), 

but not the ‘cardiac move’ condition (with finger movements). PDDs were
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perceptions of our own varying physiological responses. According 

to James: 

the bodily changes follow directly the perception of the exciting fact, 

and ... our feeling of the same changes as they occur is the emo- 

tion. Common sense says, we lose our fortune, are sorry and 

weep; we meet a bear, are frightened and run; we are insulted 

by a rival, become angry and strike. The hypothesis here to be 

defended says that this order of sequence is incorrect ... and 

that the more rational statement is that we feel sorry because 

we cry, angry because we strike, afraid because we tremble . .. 

Without the bodily states following on the perception, the lat- 
ter would be purely cognitive in form, pale, colorless, destitute 

of emotional warmth. We might then see the bear, and judge 
it best to run, receive the insult and deem it right to strike, but 

we should not actually feel afraid or angry. (James, 1890/1950, 

p- 449) 

In other words, it is our interoceptive perception of the bodily changes 

characteristic of fear (sweating, trembling, etc.) that, for James, consti- 

tutes the very feeling of fear, giving it its distinctive psychological fla- 
vour. The feeling of fear, if James is right, is essentially the detection of 

a physiological signature that has already been induced by exposure to 

the threatening situation. 

Such an account is promising, but far from adequate as it stands. 

For it seems to require a one-to-one mapping between distinct emo- 

tional states and distinctive ‘brute-physiological’ signatures, and it 

seems to suggest that whenever the physiological state is induced and 

detected, the same emotional feeling should arise. Neither of these 

implications (see Critchley, 2005) is borne out by observation and exper- 

iment. The basic James-Lange story has, however, been extended and 

refined in important work such as Critchley (2005), Craig (2002, 2009), 

Damasio (1999, 2010), and Prinz (2005). Recent work by Seth (2013) and 

by Pezzulo (2013) continues this trajectory of improvement, adding an 

important ‘predictive twist. A neglected core component, Seth and 

also significantly larger for synchronous versus asynchronous tactile-visual 

feedback (‘tactile’ condition), replicating the classical RHI. Each bar shows the 

across-participant average and standard error. (E) Subjective questionnaire 

responses that probed experience of ownership showed the same pattern 

as PDDs, whereas control questions showed no effect of cardio-visual or 

tactile-visual synchrony. 

Source: Adapted from Seth (2013) by permission.
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Pezzulo each suggest, is the match (or mismatch) between a cascad- 

ing series of top-down predictions of our own interoceptive states, and 

the forward-flowing information contained in (interoceptive) sensory 
prediction error. Such interoceptive predictions, this story suggests 

‘arise from multiple hierarchical levels, with higher levels integrating 

interoceptive, proprioceptive, and exteroceptive cues in formulating 
descending predictions’ (Seth 2013, p. 567). 

These interoceptive, proprioceptive, and exteroceptive predictions 

are constructed differently in different contexts, and each provides ongo- 

ing guidance to the other. A single inferential process here integrates all 

these sources of information, generating a context-reflecting amalgam 

that is experienced as emotion. Felt emotions thus integrate basic infor- 

mation (e.g., about bodily arousal) with higher-level predictions of prob- 

able causes and preparations for possible actions. In this way: “the close 
interplay between interoceptive and exteroceptive inference implies that 

emotional responses are inevitably shaped by cognitive and exterocep- 

tive context, and that perceptual scenes that evoke interoceptive predic- 

tions will always be affectively coloured” (Seth 2013, p. 563). 

The Anterior Insular Cortex is—as remarked earlier—remarkably 

well-positioned to play a major role in such a process. Emotion and sub- 

jective feeling states arise, this story suggests, as the result of multilevel 

inferences that combine sensory (interoceptive, proprioceptive, and 

exteroceptive) signals with top-down predictions to generate a sense 

of how things are for us and of what we might be about to do. Such a 

sense of ‘action-ready being’ encompasses our background physiologi- 

cal condition, estimations of current potentials for action, and the per- 

ceived state of the wider world. 

This provides a new and natural way of accommodating large 

bodies of experimental results suggesting that the character of our 

emotional experience depends both on the interoception of brute 
bodily signals and higher level ‘cognitive appraisals’ (see Critchley & 
Harrison, 2013; Dolan, 2002; Gendron & Barrett, 2009; Prinz, 2004). An 

example of a brute bodily signal is generic arousal as induced by—to 

take the classic example from Schachter and Singer (1962)—an injection 

of adrenaline. Such brute signals combine with contextually induced 

‘cognitive appraisals’ leading us to interpret the very same bodily ‘evi- 

dence’ as either elation, anger, or lust according to our framing expecta- 

tions. Those experiments proved hard to replicate,” but better evidence 

comes from recent studies that subtly manipulate interoceptive feed- 

back—for example, studies showing that false cardiac feedback can 
enhance subjective ratings of emotional stimuli (see Valins 1966; Gray 

et al,, 2007; and discussion in Seth 2013).
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The ‘predictive twist” thus allows us to combine a core insight of the 
James-Lange theory (the idea that interoceptive self-monitoring is a key 

component in the construction of emotional experience) with a fully 

integrated account of the role of other factors, such as context and expec- 
tation. Previous attempts to combine these insights have taken the form 

of so-called ‘two-factor” theories, where these depict subjective feeling 

states as essentially hybrid states involving two components—a bodily 

feeling and a ‘cognitive’ interpretation. It is worth stressing that the 

emerging predictive processing account of emotion is not a ‘two-factor’ 

theory as such. Instead, the claim is that a single, highly flexible process 

fluidly combines top-down predictions with all manner of bottom-up 

sensory information, and that subjective feeling states (along with the 

full range of exteroceptive perceptual experiences) are determined by 

the ongoing unfolding of this single process.” 
Such a process will involve distributed patterns of neural activity 

across multiple regions. Those patterns will themselves change and 

alter according to task and context, along with the relative balances 

between top-down and bottom-up influence (see especially chapters 

2 and 5). Importantly, that same process determines not just the flow 

of perception and emotion, but the flow of action too (chapters 4-6). 

PP thus posits a single, distributed, constantly self-reconfiguring, 

prediction-driven regime as the common basis for perception, emo- 

tion, reason, choice, and action. The PP account of emotion thus 

belongs, it seems to me, in the same broad camp as so-called ‘enactiv- 

ist” accounts (see Colombetti, 2014; Colombetti & Thompson, 2008; and 

discussion in chapter g) that reject any fundamental cognition/emo- 

tion divide and that stress continuous reciprocal interactions between 

brain, body, and world. 

7.15  Fear in the Night 

Pezzulo (z013) develops an account that is in many ways complemen- 

tary to those of Seth (2013), and Seth et al. (2011). Pezzulo’s target is 

the apparently irrational experience of ‘fear in the night’. Here is the 

vignette with which Pezzulo opens his treatment: 

It’s a windy night. You go to sleep a bit shocked because, say, 

you had a small car accident or just watched a shark attack 

horror movie. During the night, you hear a window squeak- 

ing. In normal conditions, you would attribute this noise to the 

windy night. But this night the idea that a thief or even a killer 

is entering your house jumps into your mind. Normally you
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would have immediately dismissed this hypothesis, but now it 

seems quite believable despite the fact that there have been no 

thefts in your town in the last few years; and you suddenly find 

yourself expecting a thief coming out from the shadows. How 

is this possible? (Pezzulo, 2013, p. 902) 

The explanation, Pezzulo argues, once again involves interoceptive 

prediction. Thus suppose we consider only the exteroceptive sensory 

evidence. Given our priors, the wind hypothesis then provides the best 
way of ‘explaining away’ the sensory data. And even if we add some 

small biasing or priming effects stemming from seeing the accident 

or from viewing the movie, this alone seems unlikely to alter that out- 

come. The sounds of creaking doors and the sight of moving shadows 

are surely still best accommodated by the simple hypothesis of a windy 

but otherwise safe and normal situation. 

Things alter, however, once we add the effects of interoceptive pre- 

diction to the mix. For now we have two sets of sensory evidence in 

need of explanation. One set comprises the current sights and sounds 

just mentioned. Another set, however, comprises the kinds of complex 

multidimensional interoceptive information (including motivational 

information, in the form of interoceptive states registering hunger, 

thirst, etc.) described in 7.13. Let’s assume that viewing the accident 

or horror movie—and perhaps recalling it just before bed—results in 
altered bodily states such as increased heart rate and galvanic skin 

response, and other internal signs of generalized arousal. There are 

now two co-occurring streams of sensory evidence to be ‘explained 

away’. Furthermore (and this, it seems to me, is the crucial move in 

Pezzulo’s account), one of those streams of evidence—the interocep- 

tive stream—is typically known with great certainty. The streams of 

interoceptive evidence that reveal our own bodily states (such as hun- 
ger, thirst, and generalized arousal) are normally accorded high reli- 

ability, so prediction errors associated with those states will enjoy high 

precision and great functional efficacy.” At this point, the Bayesian bal- 
ance tilts, Pezzulo argues, more strongly towards the alternative (ini- 

tially seemingly implausible) hypothesis of a thief in the night. For this 

hypothesis explains both sets of data and is highly influenced by the 
interoceptive data—the data that is estimated as highly reliable.? 

This account thus offers—like that of Seth (2013)—a kind of Bayesian 

gloss on the James-Lange model according to which aspects of felt emo- 
tion involve the perception of our own bodily (visceral, interoceptive) 

states. Adding the predictive dimension now allows us to link this 

independently attractive proposal to the full explanatory apparatus of
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~ierarchical predictive processing. The relevant aspects of felt emotion, 

seth and Pezzulo each suggest, depend upon the combination of our own 

‘nteroceptive and exteroceptive expectations and the incoming interocep- 

-ive and exteroceptive sensory streams. The various checks and balances 

:hat this involves are, moreover, themselves determined by ongoing esti- 

mations of (1) the relative reliability of the various types of sensory signal, 
and (2) the relative reliability of top-down expectations and bottom-up 

sensory information. All this is occurring (if the account in chapter 6 is 

on the mark) within an economy that is fundamentally action-oriented, 

involving estimations of multiple probabilistic affordances—multiple 
graded potentials for action and intervention. Such affordances, we may 

now speculate, will be selected and nuanced in part by interoceptive 

signals, enabling what Lowe and Ziemke (2011) call ‘action-tendency 

prediction-feedback loops” looping interactions in which emotional 
responses reflect, select, and regulate bodily states and actions. The 

upshot is a hugely complex cognitive-emotional-action-oriented econ- 

omy whose fundamental guiding principles are simple and consis- 

tent: the multilevel, multi-area, flow of prediction, inflected at every 

stage by changing estimations of our own uncertainty. 

7.16 A Nip of the Hard Stuff 

Reflections upon uncertainty, prediction, and action are essential, 

I believe, if we are to begin to bridge the daunting gap between the 

world of lived human experience and a cognitive scientific under- 

standing of the inner (and outer) machinery of mind and reason. To 

be sure, the uncertainty-based discussions of schizophrenia, autism, 

functional sensory and motor systems, DPD, emotion, and ‘fear in the 

night” reported in the present chapter are at best tentative and pre- 

liminary. But they begin to suggest, in broad outline, ways to connect 

our neurophysiological understandings, via computational and ‘sys- 

tems level” theorizing, to the shape and nature of human experience. 

Perhaps most significantly of all, they do all this in a way that begins to 

bring together (perhaps for the very first time) an understanding of the 

perceptual, motoric, emotional, and cognitive dimensions of various 

neuropsychological disturbances—superficially distinct elements that 

are now bound together in a single regime. 

The picture that emerges is one that sits extremely well with lived 

human experience. It does so, I suggest, precisely because it binds 

together many of the elements (perceptual, cognitive, emotional, and 

motoric) that previous cognitive scientific theorizing has tended to
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pull apart. In our lived experience what we encounter is first and fore- 

most a world worth acting in: a world of objects, events, and persons, 

presented as apt for engagement, permeated by affect, desire, and the 

rich web of conscious and non-conscious expectations.? To understand 

how this complex economy actually operates, how it responds to vari- 

ous disturbances, and how it supports large individual variations even 

within neurotypical” experience, a key tool is the realization that this 

complex flow is tempered at every level by estimated uncertainty. Here, 

PP suggests, systems encoding the estimated precision or reliability of 

prediction error signals play a crucial, and surprisingly unified, role.” 

Such models leave many important questions unresolved. For 

example, is the primary pathology in the case of schizophrenic subjects 

really a failure to attenuate the impact of sensory prediction error, or 

is it some causally antecedent weakening of the influence of top-down 

expectations? From a Bayesian perspective, the results are indistin- 

guishable since what matters (as we have now frequently remarked) 

is rather the balance between top-down expectation and bottom-up 

sensing. But from a clinical perspective, such options are importantly 

distinct, implicating different aspects of the neural implementation. 

Moreover, it was also suggested that one result of failures of low-level 

sensory attenuation might actually be artificially inflated precision at 

higher levels, so as to enable movement (but at the cost of increased 

exposure to various delusions of agency and control). The delicate sys- 

tem of uncertainty-based checks and balances may thus be disturbed 

in many different ways, some of them hard to associate with distinct 

behavioural outcomes. 

Exploring the many ways to alter or disturb that delicate system of 

check and balances offers, however, a golden opportunity to account 

for a wide variety of conditions (including the large variation in ‘neu- 

rotypical’ response) using a single theoretical apparatus and a single 

bridging notion: hierarchical action-oriented predictive processing 

with disturbances to estimations of uncertainty. We may thus be enter- 
ing (or at least spotting on the not-too-distant horizon) a golden age 

of ‘computational psychiatry” (Montague et al., 2012) in which superfi- 

cially different sets of symptoms may be explained by subtly different 

disturbances to core mechanisms implicated in perception, emotion, 

inference, and action. Such disturbances, PP suggests, are mostly dis- 

turbances of (multiple and varied) mechanisms of attention and tar- 

geted dis-attention. Foregrounding attention in all its varieties hints at 

future bridges with many existing forms of therapy and intervention, 

ranging from Cognitive Behavioural Therapy, to meditation, and the 

surprisingly potent role of patients” own outcome expectations.
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Using this integrated apparatus might we, inch-by-inch and 

phenomenon-by-phenomenon, begin to solve the so-called ‘hard 

problem’ of conscious experience itself—the mystery (Chalmers, 

1996; Levine, 1983; Nagel, 1974) of why it feels like this (or indeed, 

like anything at all) to be a human agent immersed in a world of 

sights, sounds, and feelings? It is far too early to say, but it feels like 

progress.”® Much of that progress, we saw, depends upon a swathe 

of recent empirically informed conjecture concerning the role of 

‘interoceptive inference’—roughly, the prediction and accommoda- 

tion of our own internal bodily states. Taken together, and mixed 

liberally with the rich PP account of prediction, action, and imagi- 

nation, these deliver a startlingly familiar vision: the vision of a 

creature whose own bodily needs, condition, and sense of physical 

presence forms the pivot-point for knowing, active encounters with a 

structured and inherently meaningful external world. This multilay- 
ered texture, in which a world of external causes and opportunities 
for organism-salient action is presented to a creature in a way con- 

stantly intermingled with a grip upon its own bodily condition may 

lie at the very heart of that ever-elusive, and ever-familiar, beast that 

we call ‘conscious experience’. 

The world thus revealed is a world tailored for action, structured 

by complex, multilevel patterns of interoceptive, proprioceptive, and 

exteroceptive expectation, and nuanced by targeted attention and esti- 

mated uncertainty. This is a world in which unexpected absences are 

every bit as salient (as newsworthy relative to our best multilevel pre- 

diction) as that which is real and present. It is a world of structure and 

opportunity, constantly inflected by external and internal (bodily) con- 

text. By bringing this familiar world back into view, PP offers a unique 

and promising approach to understanding agency, experience, and 

human mattering.
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The Lazy Predictive Brain 

8.1  Surface Tensions 

‘Fast, Cheap, and Out of Control” was the name of a 1997 documentary 

by Errol Morris, part of which was devoted to work in what was (at 

that time) the fairly new discipline of behaviour-based robotics. The 

movie took its name from the title of a famous 1989 paper’ in which 

Rodney Brooks and Anita Flynn reviewed many of the emerging 
principles of work in this field: work that aimed to address the thorny 
problems confronting mobile autonomous (or semi-autonomous) 

robots. What was most striking about this new body of work was its 

radical departure from many deeply entrenched assumptions about 

the inner roots of adaptive response. In particular, Brooks and oth- 

ers were attacking what might be dubbed ‘symbolic, model-heavy’ 

approaches in which successful behaviour depends upon the acquisi- 

tion and deployment of large bodies of symbolically coded knowledge 

concerning the nature of the operating environment. Instead, Brooks’ 

robots got by using a number of simpler tricks, ploys, and stratagems 
whose combined effect (in the environments in which they were to 
operate) was to support fast, robust, computationally inexpensive 

forms of online response. 

243
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The most extreme versions of Brooks” approach proved intrinsi- 

cally limited and did not (perhaps unsurprisingly) scale up well to 

confront truly complex, multidimensional problem spaces (for some 

discussion, see Pfeifer & Scheier, 1999, chapter 7). Nonetheless, Brooks’ 

work was part of the vanguard of hugely productive and important 
waves of work addressing the many ways in which intelligent agents 

might make the most of the many opportunities made available by 

their own bodily forms, actions, and the persisting, manipulable struc- 

ture of the environment itself (see Clark, 1997; Clark, 2008; Pfeifer & 

Bongard, 2008). 

This poses something of a puzzle. For on first encounter, work 

on hierarchical predictive processing can look rather different—it can 

seem to be stressing the burgeoning multilevel complexity of stored 

knowledge rather than the delicate, opportunistic dance of brain, body, 

and world. Such a diagnosis would be deeply misguided. It would 
be misguided because what is on offer is, first and foremost, a story 

about efficient, self-organizing routes to adaptive success. It is a story, 

moreover, in which those efficient routes may—and frequently do— 

involve complex patterns of body- and world-exploiting action and 

intervention. Properly viewed, PP thus emerges as a new and pow- 

erful tool for making organized (and neurocomputationally sound) 

sense of the ubiquity and power of the efficient problem-solving ploys 
celebrated by work on the embodied mind. Strikingly, PP offers a sys- 

tematic means of combining those fast, cheap modes of response with 

more costly, effortful strategies, revealing these as simply extreme 

poles on a continuum of self-organizing dynamics. As a kind of 

happy side-effect, attention to the many ways PP embeds and illumi- 

nates the full spectrum of embodied response also helps expose the 

fundamental flaw in some common worries (the ominous-sounding 

‘darkened room’ objections) concerning the overarching vision of a 

prediction-driven brain. 

8.2  Productive Laziness 

A recurrent theme in work on the embodied, environmentally situ- 

ated mind has been the value of ‘productive laziness’. I owe this phrase 

to Aaron Sloman, but the general idea goes back at least to Herbert 

Simon'’s (1956) explorations of economical but effective strategies and 

heuristics: problem-solving recipes that are not (in any absolute sense) 

optimal or guaranteed to work under all conditions, but that are 

‘good enough’ to meet a need while respecting limitations of time and
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processing power. For example, rather than attempt a full examination 

of reviews and menus for every restaurant within a five-mile radius, 

we might very well choose one that a trustworthy friend mentioned 

yesterday instead. We do so reasonably confident that it will be good 

enough, and thereby save the temporal and energetic costs of taking 

further information into account. 

The associated notion of adaptive organisms as ‘satisficers’ 

rather than absolute optimizers led to important work in the area of 
‘bounded rationality’ (Gigerenzer & Selton, 2002; Gigerenzer et al,, 

1999), exploring the unexpected potency of simple heuristics that may 
lead us astray at times but that also deliver quick verdicts using mini- 

mal processing resources.? The undoubted role of simple heuristics in 

the genesis of many human judgments and responses has also been 

amply demonstrated in large bodies of work displaying the some- 

times distortive role of stereotypic scenarios and associated biases in 

human reasoning (e.g., Tversky & Kahneman, 1973, and for a lovely 

integrative treatment, Kahneman, 2011). Nonetheless, we humans are 

also clearly capable of slower, more careful modes of reasoning that 

can, for limited periods at least, keep some of the errors at bay. To 

accommodate this, some theorists (see e.g., Stanovich & West, 2000) 

have suggested a ‘two systems’ view that posits two different cogni- 

tive modes, one (‘system 1’) associated with fast, automatic, ‘habitual’ 

response, and the other (‘system 2’) with slow, effortful, deliberative 

reasoning. The PP perspective offers, as we shall see, a flexible means 

of accommodating such multiple modes and the context-dependent 

use of fast, heuristic strategies within a single overarching processing 

regime. 

8.3 Ecological Balance and Baseball 

Fast, heuristically governed strategies for reasoning are, however, only 

one part of the rich mosaic of ‘productive laziness’. Another part (the 

focus of much of my own previous work in this area, see Clark, 1997, 

2008) involves what might be thought of as ecologically efficient uses of 

sensing, and the distribution of labour between brain, body, and world. 

For example, there are circumstances, as Sloman (2013) points out, in 

which the best way to get through an open door is to rely upon a simple 

servo-control, or bump-and-swerve, mechanism. 

Or consider the task of two-legged locomotion. Some bipedal 
robots (Honda’s flagship ‘Asimo’ is perhaps the best-known exam- 

ple) walk by means of very precise, and energy-intensive, joint-angle
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control systems. Biological walking agents, by contrast, make maximal 

use of the mass properties and biomechanical couplings present in the 

overall musculoskeletal system and walking apparatus itself. Nature’s 

own bipedal walkers thus make extensive use of so-called ‘passive 

dynamics’, the kinematics and organization inhering in the physical 

device alone (McGeer, 1990). It is such passive dynamics that enable 

some quite simple toys, that have no on-board power source, to stroll 

fluently down a gentle incline. Such toys have minimal actuation and 

no control system. Their walking is a consequence not of complex joint 

movement planning and actuating, but of their basic morphology (the 

shape of the body, the distribution of linkages and weights of compo- 

nents, etc.). Locomotion, as nicely noted by Collins et al. (2001, p. 608), 

is thus ‘a natural motion of legged mechanisms, just as swinging is a 
natural motion of pendulums’. 

Passive walkers (and their elegant powered counterparts, see 

Collins et al., 2001) conform to what Pfeifer and Bongard (2006) describe 

as a ‘Principle of Ecological Balance’. This principle states: 

first ... that given a certain task environment there has to be a 

match between the complexities of the agent’s sensory, motor, 

and neural systems . . . second. . . . that thereis a certain balance 

or task-distribution between morphology, materials, control, 

and environment. (Pfeifer & Bongard, 2006, p. 123) 

This principle reflects one of the big lessons of contemporary robot- 

ics, which is that the co-evolution of morphology (which can include 

sensor placement, body-plan, and even the choice of basic building 

materials, etc.) and control yields a golden opportunity to spread the 

problem-solving load between brain, body, and world. Robotics thus 

rediscovers many ideas explicit in the continuing tradition of J. J. Gibson 

and of ‘ecological psychology’ (see Gibson, 1979; Turvey & Carello, 1986; 

Warren, 2006). Thus William Warren, commenting on a quote from 

Gibson (1979), suggests that: 

biology capitalizes on the regularities of the entire system as 

a means of ordering behavior. Specifically, the structure and 

physics of the environment, the biomechanics of the body, per- 

ceptual information about the state of the agent-environment 

system, and the demands of the task all serve to constrain the 

behavioral outcome. (Warren, 2006, p. 358) 

Another Gibsonian theme concerns the role of sensing in action. 

According to a familiar (more classical) vision, the role of sensing is 

to get as much information into the system as is needed to solve the
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problem. These are the ‘re-constructive” approaches that we met back 

in chapter 6. For example, a planning agent might scan the environ- 

ment so as to build up a problem-sufficient model of what is out there 

and where it is Jocated, at which point the reasoning engine can effec- 
tively throw away the world and operate instead upon the inner model, 

planning and then executing a response (perhaps checking now and 

then during execution to be sure that nothing has changed). Alternative 

approaches (see, e.g., Beer, 2000, 2003; Chemero, 2009; Gibson, 1979; Lee 

& Reddish, 1981; Warren, 2005) depict sensing as a channel produc- 

tively coupling agent and environment, sidestepping where possible 

the need to convert world-originating signals into a persisting inner 

mode] of the external scene. 

Thus consider once again the ‘outfielder’s problem” as described 
in chapter 6. This was the problem of running so as to catch a ‘fly 

ball’ in baseball. Giving perception its standard role, we might have 

assumed that the job of the visual system is to transduce information 

about the current position of the ball so as to allow a distinct ‘reason- 

ing system’ to project its future trajectory. Nature, however, looks 

to have found a more elegant and efficient solution. The solution, 

a version of which was first proposed in Chapman (1968), involves 

running in a way that seems to keep the ball moving at a constant 

speed through the visual field. As long as the fielder’s own move- 

ments cancel any apparent changes in the ball’s optical accelera- 

tion, she will end up in the location where the ball is going to hit 

the ground. This solution, Optical Acceleration Cancellation (OAC), 

explains why fielders, when asked to stand still and simply predict 

where the ball will land, typically do rather badly. They are unable 

to predict the landing spot because OAC is a strategy that works by 

means of moment-by-moment self-corrections that crucially involve 

the agent’s own movements. The suggestion that we rely on such a 

strategy is also confirmed by some interesting virtual reality experi- 

ments in which the ball’s trajectory is suddenly altered in flight, 
in ways that could not happen in the real world (see Fink, Foo, & 

Warren, 2009). OAC is a nice case of fast, economical problem-solving. 

The canny use of data freely available in the optic flow enables the 

catcher to sidestep the need to deploy a rich inner model to calculate 

the forward trajectory of the ball.? 

Such strategies are suggestive, as we also noted in chapter 6 (see 

also Maturana, 1980) of a rather different role for the perceptual cou- 

pling itself. Instead of using sensing to get enough information inside, 

past the visual bottleneck, so as to allow the reasoning system to ‘throw 

away the world” and solve the problem wholly internally, they use the
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sensor as an open conduit allowing environmental magnitudes to exert a 

constant influence on behaviour. Sensing is thus depicted as the opening 

of a channel, with successful whole-system behaviour emerging when 

activity in this channel is kept within a certain range. In such cases, as 

Randall Beer puts it, ‘the focus shifts from accurately representing an 

environment to continuously engaging that environment with a body 

so as to stabilize appropriate co-ordinated patterns of behavior” (Beer, 

2000, p. 97). 

Finally, embodied agents are also able to act on their worlds in 

ways that actively generate cognitively and computationally potent 

time-locked patterns of sensory stimulation. For example (and for a 

fuller discussion, see Clark, 2008), Fitzpatrick et al. (2003) (see also Metta 

& Fitzpatrick, 2003) show how active object manipulation (pushing and 
touching objects in view) can help generate information about object 

boundaries. Their ‘baby robot’ learns about the boundaries by poking 
and shoving. It uses motion detection to see its own hand/arm moving, 

but when the hand encounters (and pushes) an object there is a sud- 

den spread of motion activity. This cheap signature picks out the object 

from the rest of the environment. In human infants, grasping, poking, 
pulling, sucking, and shoving creates a rich flow of time-locked mui- 

timodal sensory stimulation. Such multimodal input streams have been 

shown (Lungarella & Sporns, 2005) to aid category learning and con- 

cept formation. The key to all such capabilities is the robot or infant’s 

capacity to maintain coordinated sensorimotor engagement with its 

environment. Self-generated motor activity, such work suggests, acts 

as a ‘complement to neural information-processing’ (Lungarella & 

Sporns, 2005, p. 25) in that: 

The agent’s control architecture (e.g. nervous system) attends to 

and processes streams of sensory stimulation, and ultimately 

generates sequences of motor actions which in turn guide 

the further production and selection of sensory information. 

[In this way] ‘information structuring’ by motor activity and 
‘information processing’ by the neural system are continuously 

linked to each other through sensorimotor loops. (Lungarella 

& Sporns, 2005, p. 25) 

One major strand of work in robotics and artificial life thus stresses 

the importance of the distribution of the problem-solving load across 

the brain, the active body, and the manipulable structures of the local 

environment. This distribution allows the productively lazy brain to 

do as little as possible while still solving (or rather, while the whole 
embodied, environmentally located system solves) the problem.
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8.4 Embodied Flow 

Work on embodied cognition also calls into question the idea that there 

is a sequential flow of processing whose stages neatly correspond to 

perceiving, thinking, and acting. When we engage the world in daily 

behaviour, we often do not do it by first passively taking in lots of infor- 

mation, then making a full plan, then implementing the plan courtesy 

of some sequence of motor commands. Instead, sensing, thinking, 

and acting conspire, overlap, and start to merge together as whole 

perceptuo-motor systems engage the world. 

Examples of such merging and interweaving include work on inter- 

active vision (Churchland et al., 1994), dynamic field theory (Thelen et 

al,, 2001), and ‘deictic pointers’ (Ballard et al., 1997) (for some reviews, 

see Clark, 1997, 2008). By way of illustration, consider the task studied 

by Ballard et al. (1997). In this task, a subject is given a model pattern 

of coloured blocks and asked to copy the pattern by moving similar 

blocks, one at a time, from a reserve area to a new workspace. The task 

is performed by drag and drop using a mouse and monitor, and as you 

perform, eye tracker technology monitors exactly where and when you 
are looking as you tackle the problem. What subjects did not do, Ballard 

et al. discovered, was to look at the target, decide on the colour and 

position of the next block to be added, then execute their mini-plan by 

moving a block from the reserve area. Instead, repeated rapid saccades 

to the model were used during the performance of the task—many 

more saccades than you might expect. For example, the model is con- 

sulted both before and after picking up a block, suggesting that when 

glancing at the model, the subject stores only one small piece of infor- 

mation: either the colour or the position of the next block to be copied, 

but not both. Even when repeated saccades are made to the same site, 

very minimal information looked to be retained. Instead, repeated fixa- 
tions seem to be providing specific items of information ‘just in time’ 

for use.* Repeated saccades to the physical model thus allowed the sub- 

jects to deploy what Ballard et al. dub ‘minimal memory strategies’ to 

solve the problem. The idea is that the brain creates its programs so 

as to minimize the amount of working memory that is required, and 
that eye motions are here recruited to place a new piece of information 

into memory. By altering the task demands, Ballard et al. were also 

able to systematically alter the particular mixes of biological memory 

and active, embodied retrieval recruited to solve different versions of 

the problem, concluding that in this task ‘eye movements, head move- 

ments, and memory load trade off against each other in a flexible way’ 

(p- 732). This is another now-familiar (but still important) lesson from
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embodied cognition. Eye movements here allow the subject to use the 

external world itself, where appropriate, as a kind of storage buffer (for 
lots more on this kind of strategy, see Clark, 2008; Wilson, 2004). 

Putting all this together already suggests a much more integrated 

model of perception, cognition, and action. Perception is here tangled 

up with possibilities for action and is continuously influenced by cog- 
nitive, contextual, and motor factors. This is also the picture suggested 

earlier by Pfeifer et al’s (2007) notion of the ‘self-structuring of infor- 

mation flows” (83). Action serves to deliver fragments of information 

‘just in time’ for use, and that information guides action, in an ongoing 

circular causal embrace. Perception thus construed need not yield a 

rich, detailed, and action-neutral inner model awaiting the services of 

‘central cognition’ to deduce appropriate actions. In fact, these distinc- 
tions (between perception, cognition, and action) now seem to obscure, 

rather than illuminate, the true flow of effect. In a certain sense, the 

brain is revealed not as (primarily) an engine of reason or quiet deliber- 

ation, but as an organ for the environmentally situated control of action. 
Cheap, fast, world-exploiting action, rather than the pursuit of truth, 

optimality, or deductive inference, is now the key organizing principle. 

Embodied, situated agents, all this suggests, are masters of ‘soft assem- 

bly’, building, dissolving, and rebuilding temporary ensembles that 

exploit whatever is available, creating shifting problem-solving wholes 

that effortlessly span brain, body, and world. 

85 Frugal Action-Oriented Prediction Machines 

Superficially, these ‘lessons from embodiment’ can seem to point in 

a rather different direction to work on prediction-driven process- 

ing. Prediction-driven processing is often described as combin- 

ing evidence (the sensory input), prior knowledge (the generative 

model yielding the predictions), and estimations of uncertainty (via 

the precision-weighting upon prediction error) to generate a mul- 

tiscale best guess at how the world is. But this, as we have previously 

remarked, is subtly misleading. For what real-world prediction is all 

about is the selection and control of world-engaging action. Insofar 

as such agents do try to ‘guess the world’, that guessing is always 

and everywhere inflected in ways apt to support cycles of action and 
intervention. At the most fundamental level, this is simply because 

the whole apparatus (of prediction-based processing) exists only in 

order to help animals achieve their goals while avoiding fatally sur- 

prising encounters with the world. Action, we might say, is where the



THE LAZY PREDICTIVE BRAIN 251 

predictive rubber meets the adaptive road. And once we consider the 

role of prediction in the genesis and unfolding of action, the picture 
alters dramatically. 

The shape of the new picture was visible in our earlier discus- 

sion (6.5) of Cisek’s Affordance Competition hypothesis. Predictive 
processing was there shown to implement a strong version of ‘affor- 

dance competition” in which the brain continuously computes multiple 
probabilistically inflected possibilities for action, and does so using an 

architecture in which perception, planning, and action are continu- 

ously intermingled, supported by highly overlapping resources, and 

executed using the same basic computational strategy. PP here results 

in the creation and deployment of what Cisek and Kalaska (2011) called 

‘pragmatic’ representations: representations tailored to the produc- 

tion of good online control rather than aiming for rich mirroring of 

an action-independent world. Those representations simultaneously 

serve epistemic functions, sampling the world in ways designed to 

test our hypotheses and to yield better information for the control of 

action itself. The upshot was a picture of neural processing as funda- 

mentally action-oriented, representing the world as an evolving matrix 

of parallel, partially computed possibilities for action and intervention. 

The picture of embodied flow presented in the previous section is thus 

echoed, almost point-for-point, by work on action-oriented predictive 
processing,. 

To complete the reconciliation, however, we must leverage one 

final ingredient. That ingredient is the capacity to use prediction error 

minimization and variable precision-weighting to sculpt patterns of 

connectivity within the brain selecting, at various timescales, the sim- 

plest circuits that can reliably drive a target behaviour. This too is a 
feature that we have encountered earlier (see chapter 5). But the result- 

ing circuits, as we shall now see, neatly encompass the simple, frugal, 

‘sensing-for-coupling” solutions suggested by Gibson, Beer, Warren, 

and others. Better yet, they accommodate those ‘model-sparse’ solu- 

tions within the larger context of a fluid, reconfigurable inner economy 

in which richly knowledge-based strategies and fast, frugal solu- 

tions are merely different points on a single scale. Such points reflect 
the recruitment of different ensembles of inner and outer resources: 

ensembles that form and dissolve in ways determined by external 

context, current needs and bodily state, and ongoing estimations of 

our own uncertainty. This process of recruitment is itself constantly 

modulated, courtesy of the circular causal dance of perceptuo-motor 

response, by the evolving state of the external environment. At that 

point (I shall argue) all the key insights from work on embodiment and
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situated, world-exploiting action are fully realized using the distinctive 

apparatus of action-oriented predictive processing. 

8.6 Mix 'n’ Match Strategy Selection 

To see how this might work in practice, it helps to start with some exam- 

ples from a different (but in fact quite closely related) literature. This is 

the extensive literature concerning choice and decision-making. Within 

that literature, it is common to distinguish between ‘model-based’ 

and ‘model-free” approaches (see, e.g., Dayan, 2012; Dayan & Daw, 

2008; Wolpert, Doya, & Kawato, 2003). Model-based strategies rely, as 

the name suggests, on a model of the domain that includes informa- 

tion about how various states (worldly situations) are connected, thus 

allowing a kind of principled estimation (given some cost function) of 

the value of a putative action. Such approaches involve the acquisition 

and the (computationally challenging) deployment of fairly rich bodies 

of information concerning the structure of the task-domain. Model-free 

strategies, by contrast, are said to ‘learn action values directly, by trial 

and error, without building an explicit model of the environment, and 

thus retain no explicit estimate of the probabilities that govern state 

transitions’ (Glascher et al,, 2010, p. 585). Such approaches implement 

pre-computed ‘policies’ that associate actions directly with rewards, 

and that typically exploit simple cues and regularities while nonethe- 

less delivering fluent, often rapid, response. 

Model-free learning has been associated with a ‘habitual” system 

for the automatic control of choice and action, whose neural underpin- 

nings include the midbrain dopamine system and its projections to the 

striatum, while model-based learning has been more closely associated 

with the action of cortical (parietal and frontal) regions (see Gldscher 

et al, 2010). Learning in these systems has been thought to be driven by 

different forms of prediction error signal—affectively salient reward 

prediction error’ (see, e.g., Hollerman & Schultz, 1998; Montague et al., 

1996; Schultz, 1999; Schultz et al., 1997) for the model-free case, and more 

affectively neutral ‘state prediction error’ (e.g., in ventromedial prefron- 

tal cortex) for the model-based case. These relatively crude distinctions 

are, however, now giving way to a much more integrated story (see, e.g., 

Daw et al., 2011; Gershman & Daw, 2012) as we shall see. 

How should we conceive the relations between PP and such 

‘model-free’ learning? One interesting possibility is that an onboard 

process of reliability estimation might select strategies according to 

context. If we suppose that there exist multiple, competing neural
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-esources capable of addressing some current problem, there needs to 
e some mechanism that arbitrates between them. With this in mind, 

Daw et al. (2005) describe a broadly Bayesian ‘principle of arbitration’ 
whereby estimations of the relative uncertainty associated with distinct 

‘neural controllers’ (e.g., ‘model-based’ versus ‘model-free’ controllers) 

allows the most accurate controller, in the current circumstances, to 

determine action and choice. Within the PP framework this would be 

implemented using the familiar mechanisms of precision estimation 

and precision-weighting. Each resource would compute a course of 

action, but only the most reliable resource (the one associated with the 

least uncertainty when deployed in the current context) would get to 

determine high-precision prediction errors of the kind needed to drive 

action and choice. In other words, a kind of meta-model (one rich in 

precision expectations) would be used to determine and deploy what- 

ever resource is best in the current situation, toggling between them 

when the need arises. 

Such a story is, however, almost certainly over-simplistic. Granted, 

the ‘model-based / model-free” distinction is intuitive and resonates 

with old (but increasingly discredited) dichotomies between habit and 

reason, and between emotion and analytic evaluation. But it seems 

likely that the image of parallel, functionally independent, neural 

sub-systems will not stand the test of time. For example, a recent {MRI 

study (Daw, Gershman, et al,, 2011) suggests that rather than thinking 

in terms of distinct (functionally isolated) model-based and model-free 

learning systems, we may need to posit a single ‘more integrated com- 

putational architecture’ (p. 1204) in which the different brain areas 

most commonly associated with model-based and model-free learn- 

ing (pre-frontal cortex and dorsolateral striatum, respectively) each 

trade in both model-free and model-based modes of evaluations and 

do so ‘in proportions matching those that determine choice behavior’ 

(p- 1209). One way to think about this, from within the PP perspective, 

is by associating ‘model-free’ responses with processing dominated 

(‘bottom-up’) by the sensory flow, while ‘model-based’ responses are 

those that involve greater and more widespread kinds of ‘top-down’ 

influence> The context-dependent balancing between these two 

sources of information, achieved by adjusting the precision-weighting 
of prediction error, then allows for whatever admixtures of strategv 

task and circumstances dictate. 

Support for this notion of a more integrated inner economy was 

provided by a decision task (Daw, Gershman et al., 2011) in which exper- 

imenters were able to distinguish between apparently model-based 
and apparently model-free influences on subsequent choice and
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action. This is possible because model-free response is inherentlv 

backwards-looking, associating specific actions with previously 

encountered rewards. Animals exhibiting only model-free responses 

are, in that sense, condemned to repeat the past, releasing previ- 

ously reinforced actions when circumstances dictate. A model-based 

system, by contrast, is able fo evaluate potential actions using (as the 

name suggests) some kind of inner surrogate of the external arena in 

which actions are to be performed and choices made—such systems 

may, for example, deploy mental simulations to determine whether or 

not one action is to be preferred over another. Animals that deploy a 

model-based system are thus able, in the terms of Seligman et al. (2013), 

to ‘navigate into the future’ rather than remaining ‘driven by the past’. 

Most animals, it now seems clear, are capable of both forms of 

response and combine dense enabling webs of habit with sporadic 

bursts of genuine prospection. According to the standard picture, recall, 

there exist distinct neural valuation systems and distinct forms of pre- 

diction error signal supporting each type of learning and response. 

Using a sequential choice task, Daw et al. were able to create conditions 

under which the computations of one or other of these neural valua- 

tion systems should dissociate from behaviour, revealing the presence 
of independent computations (in different, previously identified, brain 

areas) of value by a model-free and a model-based system. Instead 

they found neural correlates of apparently model-free and apparently 

model-based responses in both areas. Strikingly, this means that even 

striatally computed ‘reward prediction errors” do not simply reflect 

learning using a truly model-free system. Instead, recorded activity 

in the striatum ‘reflected a mixture of model-free and model-based 

evaluations’ (Daw et al, 2011, p. 1209) and ‘even the signal most asso- 

ciated with model-free RL [reinforcement learning], the striatal RPE 

[reward prediction error], reflects both types of valuation, combined 

in a way that matches their observed contributions to choice behavior’ 

(Daw et al,, 2011, p. 1210). Top-down information, Daw et al. (2011) sug- 

gest, might here control the way different strategies are combined in 

differing contexts for action and choice. Greater integration between 

model-based and model-free valuations might also, they speculate, 

flow from the action of some kind of hybrid learning routine in which 

a model-based resource may train and tune the responses of a (quicker, 

in context more efficient) model-free resource.® 

At a more general level, such results add to a growing literature (for 

a review, see Gershman & Daw, 2012) that suggests the need for a deep 

reworking of the standard decision-theoretic model. Where that model 

posits distinct representations of utility and probability, associated
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with the activity of more-or-less independent neural sub-systems, we 
may actually confront a more deeply integrated architecture in which 

‘perception, action, and utility are ensnared in a tangled skein [involv- 

ing] a richer ensemble of dynamical interactions between perceptual 
and motivational systems’ (Gershman & Daw, 2012, p. 308). The larger 

picture scouted in this section here makes good functional sense, 

allowing ‘model-free’ modes to use model-based schemes to teach them 

how to respond. Within the PP framework, this results in a hierarchi- 

cal embedding of the (shallow) ‘model-free’ responses in a (deeper) 

model-based economy. This has many advantages, since model-based 

schemes are (chapter 5 above) profoundly context-sensitive, whereas 

model-free or habitual schemes—once in place—are fixed, bound 

to the details of previous contexts of successful action. By delicately 

combining the two modes within an overarching economy, adaptive 

agents may identify the appropriate contexts in which to deploy the 

model-free (‘habitual’) schemes. ‘Model-based’ and ‘model-free’ modes 

of valuation and response, if this is correct, simply name extremes 

along a single continuum and may appear in many mixtures and com- 

binations determined by the task at hand. 

8.7 Balancing Accuracy and Complexity 

We can now locate these insights within a larger probabilistic frame- 

work. Fitzgerald, Dolan, and Friston (2014, p. 1) note that ‘Bayes opti- 

mal agents seek both to maximize the accuracy of their predictions and 

to minimize the complexity of the models they use to generate those 

predictions’. Maximizing accuracy corresponds to maximizing how 

well the model predicts the observed data. Minimizing complexity, on 

the other hand, requires reducing computational costs as far as pos- 

sible, consistent with performing the task at hand. Formally, this can be 

achieved by incorporating a complexity-penalizing factor—sometimes 

called an Occam factor, after the thirteenth-century philosopher 

William of Occam who famously cautioned us not to ‘multiply entities 

beyond necessity’. Overall ‘model evidence’ is then a kind of composite 

quantity reflecting a delicate (and context-variable) accuracy/complex- 

ity trade-off. Fitzgerald, Dolan, and Friston go on to outline a specific 

scheme (involving ‘Bayesian model averaging’) in which ‘models are 

weighted or chosen according to their evidence [i.e., their overall model 

evidence as just defined] rather than simply their accuracy’ (Fitzgerald 
etal, 2014, p. 7). Within PP, variations in the precision-weighting of select 

prediction errors provide one mechanism capable of implementing just
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such task- and context-sensitive competition between different mode_: 

while synaptic pruning (see 3.9 and 9.3) serves complexity reduction ¢~ 

longer timescales. 

All this suggests a possible reworking of the popular suggestic-. 

(8.2) that human reasoning involves the operation of two functional = 

distinct systems, one for fast, automatic, ‘habitual’ response and tkr.: 

other dedicated to slow, effortful, deliberative reasoning. Instead of = 

truly dichotomous inner organization, we may benefit from a riche: 

form of organization in which fast, habitual, or heuristically based 

modes of response are often the default, but within which a large 

variety of possible strategies may be available. The balance betweer. 

these strategies is then determined by variable precision-weightings. 
hence (in effect) by various forms of endogenous and exogenous atten- 

tion (Carrasco, 2011). Humans and other animals would thus deplov 

multiple—rich, frugal, and all points in between—strategies defined 

across a fundamentally unified web of neural resources (for some pre- 

liminary exploration of this kind of more integrated space, see Pezzulo 

et al., 2013, and 8.8). 

Nor, finally, is there any fixed limit to the complexities of the pos- 

sible strategic embeddings that might occur even within a single more 

integrated system. We might, for example, use some quick-and-dirty 

heuristic strategy to identify a context in which to use a richer one, 

or use intensive model-exploring strategies to identify a context in 

which a simpler one will do. The most efficient strategy is simply the 

(active) inference that minimizes overall complexity costs. From this 

emerging vantage point the very distinction between model-based and 

model-free response (and indeed between system 1 and system 2, inso- 

far as these are conceived as distinct systems rather than modes®) looks 

increasingly shallow. These are now just convenient labels for different 

admixtures of resource and influence, each of which is recruited in the 

same general way as circumstances dictate. 

8.8 Back to Baseball 

Now let’s return to the outfielder’s problem described earlier. Here 

too, already-active neural predictions and simple, rapidly-processed 

perceptual cues must work together (if PP is correct) to determine a 
pattern of precision-weightings for different prediction error signals. 

This creates (recall chapter 5) a transient web of effective connectiv- 

ity (a temporary distributed circuit) and, within that circuit, it sets the 

balance between top-down and bottom-up modes of influence. In the
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case at hand, however, efficiency demands selecting a circuit in which 

sensing plays the non-reconstructive role described in chapter 6 and 
83. The temporary task of visual sensing, in this context, becomes that 

of cancelling the optical acceleration of the fly ball. That means giv- 

ing high weighting to the prediction errors associated with cancelling 
the vertical acceleration of the ball’s optical projection, and (to put it 

bluntly) not attending very much to anything else. 

Apt precision weightings thus select a pre-learnt, fast, low-cost 

strategy for solving the problem. Contextually recruited patterns of 

precision weighting here accomplish a form of set-selection or strategy 

switching® This assumes that slower processes of learning and adap- 
tive plasticity have already sculpted patterns of neural connectivity 

in ways that make the low-cost strategy available. But this is unprob- 

lematic. It can be motivated in general terms by the drive towards 

minimizing complexity (which is indistinguishable, under plausible 

constraints, from the drive towards ‘satisficing’). The required learning 

can thus be accomplished using prediction error minimization operat- 

ing at many timescales. Such processes range all the way from the slow 

learning of the child baseball player, to the faster online adaptation of 

the pro-player factoring in (during a match) changing specifics of the 

wind conditions and the play of opposing batters. 

The upshot is a complex but rewarding picture in which bedrock 

processes of predictive learning slowly install models that include 

precision expectations allowing patterns of effective connectivity to 

be built and re-built ‘on the fly’. This enables fast, knowledge-sparse 
modes of response to be recruited and nuanced according to cur- 

rent context. The resulting compatibility of ‘productively lazy’ and 

model-based approaches should come as no surprise. To see this, we 

need only reflect that the model or model fragment that underlies any 

given behaviour can be a simple, easily computed, heuristic (a simpli- 

fied ‘rule-of-thumb’) just as easily as something with a more complex 

causal structure. Such low-cost models will in many cases rely upon 

action, exploiting patterns of circular causal commerce (between per- 

ceptual inputs and motor actions) to deliver task-relevant information 

‘just in time’ for use. 

Fast, automatic, over-learnt behaviours are especially good candi- 

dates for control by models taking a more heuristic form. The role of 
context-reflecting precision assignments is then to select and enable 

the low-cost procedural model that has proven able to support the tar- 

get behaviour. Such low-cost models—OAC is a nice example—will 

in many cases rely upon the self-structuring of our own informa- 

tion flows, exploiting patterns of circular causal commerce (between



258 SCAFFOLDING PREDICTION 

perceptual inputs and motor actions) to deliver task-relevant informa- 
tion ‘just in time’ for use. 

More complex (intuitively more ‘model-rich’ though this is now just 

another location along a continuum) strategies may also involve simpli- 

fications and approximations. A nice example is work by Battaglia et al. 

(2013) on “intuitive physics’. Human agents are able to make rapid infer- 

ences about the physical behaviour of ordinary objects. Such inferences 

might include spotting that the pile of books or washing-up is unstable 

and at risk of toppling over, or that a lightly brushed object is going 

to fall and hit some other object. Underlying that capacity, Battaglia 

et al. suggest, may be a probabilistic scene simulator (a probabilistic 

generative model) able to deliver rapid verdicts on the basis of partial, 

noisy information. Such a simulator does not rely upon propositional 

rules but rather upon ‘quantitative aspects and uncertainties of object’s 

geometry, motions, and force dynamics’ (p. 18327). Battaglia et al. 

describe and test just such a model, showing that it fits data from many 

different psychophysical tasks. Importantly, the Battaglia et al. model 

delivers robustness and speed by simulating the physical world using 

approximations to the behaviour of real objects. In this way it ‘trades 

precision and veridicality for speed, generality, and the ability to make 

predictions that are good enough for the purposes of everyday activi- 

ties’ (Battaglia et al.,, 2013, p. 18328). 

The ‘intuitive physics engine’—or generative model by any other 

name—here produces simplified probabilistic simulations that are 

nonetheless able to predict key aspects of the ebb and flow of the physi- 

cal world. Such an ‘intuitive physics engine’ is able to infer key facts 

about the likely behaviours of objects in the kinds of scene shown in 

Figure 8.1—facts such as which object in fix 1C, will fall first, in what 

direction, and with what kinds of knock-on effect. Reliance upon 

approximations and the estimation of uncertainty also explains the 

existence of illusions (such as the stability illusion in Figure 8.1F) and 

errors in reasoning about the physical world. Our daily approxima- 

tions, that is to say, may not readily ‘comprehend’ the delicate struc- 

ture of balances that makes the tower of rocks stable. A model that 

was able to do so would in some circumstances be more accurate, but 

at some temporal cost (so perhaps we would not spot the instability of 

the washing-up pile in time to prevent a catastrophic state-transition). 

Approximate solutions such as these reflect what Gershman and 

Daw (2012, p. 307) describe as a kind of ‘meta-optimization over the 

costs (e.g., extra computation) of maintaining [a] full representation 

relative to its benefits’. The deepest explanation for the neural inter- 

mingling of perception, action, and utility may, Gershman and Daw
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emerge, dissolve, and interact. Within the PP framework, strategies of 

many different stripes may be selected moment-by-moment by chang- 

ing estimations of precision. Such estimations alter patterns of effective 

connectivity, enabling different webs of inner (and outer, see below) 

circuitry to control behaviour at different times.? 

8.9 Extended Predictive Minds 

All this suggests a very natural model of ‘extended cognition” (Clark, 

2008; Clark & Chalmers, 1998), where this is simply the idea that 

bio-external structures and operations may sometimes form integral 

parts of an agent’s cognitive routines. Nothing in the PP framework 

materially alters, as far as I can tell, the arguments previously presented, 

both pro and con, regarding the possibility of genuinely extended cog- 

nitive systems." What PP does offer, however, is a specific, and highly 

‘extension-friendly’, proposal concerning the shape of the specifically 

neural contribution to cognitive success. 

To see this, reflect that known external (e.g, environmental) opera- 

tions provide—by partly constituting—additional strategies apt for the 

kind of ‘meta-model-based’ selection described in the previous sec- 

tions. This is because actions that engage and exploit specific external 

resources will now be selected in just the same manner as the inner 

coalitions of neural resources themselves. For example, when per- 

forming the block-placing task (Ballard et al, 1997) described in 8.4, 

the brain must assign high precision to the predictions that underlie 

the various actions that are allowing us to ‘use the world as its own 

best model” while performing the task. Such world-engaging actions 

are determined, in turn, by the acquired estimation that reliable, 

salient (task-relevant) information is available at such-and-such a loca- 

tion and at such-and-such a time. Or consider the case where salient 

high-precision information is available by the use of some bio-external 

device, such as a laptop or smartphone. The core routine that selects 

actions to reduce prediction error will now select actions that invoke 

the bio-external resource. Invoking a bio-external resource, and mov- 

ing our own effectors and sensors to yield high-quality task-relevant 
information are here expressions of the same underlying strategy, 

reflecting our brain’s best estimates of where and when reliable, 
task-relevant information is available. The strategies thus selected are 

typically, just as Ballard et al. suggested, minimal-internal-memory 

strategies whose success conditions require both organismic action 

and the cooperation of the external environment. Such strategies again
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highlight the importance of distributed resource-webs spanning brain, 

body, and world. 

As a simple illustration, consider work by Pezzulo, Rigoli, and 

Chersi, (2013). Here, a so-called ‘Mixed Instrumental Controller’ 

determines whether to choose an action based upon a set of simple, 
pre-computed (‘cached’) values, or by running a mental simulation 

enabling a more flexible, model-based assessment of the desirability, 

or otherwise, of actually performing the action. The mixed controller 

computes the ‘value of information’ selecting the more informative 

(but costly) model-based option only when that value is sufficiently 

high. Mental simulation, in those cases, then produces new reward 

expectancies that can determine current action by updating the values 

used to determine choice. We can think of this as a mechanism that, 

moment-by-moment, determines (as discussed in previous sections) 

whether to exploit simple, already-cached routines or to explore a richer 

set of possibilities using some form of mental simulation. It is easy to 

imagine a version of the mixed controller that determines (on the basis 

of past experience) the value of the information that it believes would 

be made available by means of some kind of bio-external apparatus, 
such as the manipulation of an abacus, an iPhone, or a physical model. 

Deploying a simple cached strategy, a more costly mental simulation, 

or exploiting the environment itself as a cognitive resource are thus all 

strategies apt for context-sensitive recruitment using the PP apparatus. 

Seen from this perspective, the recruitment of task-specific 

inner neural coalitions within an interaction-dominated PP econ- 

omy is entirely on a par with the recruitment of task-specific 

neural-bodily-worldly ensembles. The formation and dissolution of 

extended (brain-body-world) problem-solving ensembles here obeys 

many of the same basic rules and principles (balancing efficacy and 

efficiency, and reflecting complex ongoing estimations of uncer- 

tainty) as does the recruitment of temporary inner coalitions bound 

by effective connectivity. In each case, what is selected is a tempo- 

rary problem-solving ensemble (a ‘temporary task-specific device’, see 

Anderson, Richardson, & Chemero, 2012) recruited as a function of 

context-varying estimations of uncertainty. This is simply the embod- 

ied, environmentally embedded version of the emergence of ‘tran- 

siently assembled local neural subsystems’ described in 5.5. 

Such temporary ensembles emerge and are deployed within the 

empowering contexts that we have described (8.4) as ‘embodied flow". 

Within such flows, perceptuo-motor routines deliver new inputs that 

recruit new transient ensembles of resources. It is these rolling cycles 

that most clearly characterize human cognition in the wild. Within
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these rolling cycles, arbitrarily complex amounts of ‘leaning on the 

world’ may become progressively folded in, expanding our practical 

cognitive capacities by offloading work from brain to (non-neural) 

body, and from organism to (physical, social, and technological) world. 

What PP makes unusually clear is that it is these rolling cycles that the 

neural economy constantly (and not just in the special cases involv- 
ing mind-extending tools and technologies) serves. As such cycles 

unfold, no inner homunculus oversees the repeated soft-assembly of 

the distributed problem-solving ensembles that result. Instead, such 

ensembles emerge and dissolve in ways determined by the progressive 

reduction, in environmental context, of precise, high-quality, predic- 

tion error. Organismically salient (high precision) prediction error may 

thus be the all-purpose adhesive that, via its expressions in action, binds 

elements from brain, body, and world into temporary problem-solving 

wholes. 

8.10 Escape from the Darkened Room 

Prediction error minimization is consistent, then, with a very large 

range of strategies for adaptive response. But there is one vibrant 

thread in the tapestry of such responses that can seem especially resis- 

tant to reconstruction using the resources on offer. That vibrant thread 

concerns play, exploration, and the attractions of novelty. The cognitive 

imperative of prediction error minimization, it is sometimes feared, is 

congenitally unable to accommodate such phenomena, offering instead 

a prescription for quietism, deliberate cognitive diminishment, and 

(perhaps) even fatal inactivity! The hapless prediction-driven organism, 

the worry goes, should simply seek out states that are easily predicted, 
such as an empty darkened room in which to spend the remainder of its 

increasingly hungry, thirsty, and depressing days. This is the so-called 

‘Darkened Room Puzzle’ (Friston, Thornton, & Clark, 2012). 

This worry (though important) is multiply misguided. It is mis- 

guided at the most basic biological level, where it is presented as a 

threat to the integrity and persistence of the organism. And it is mis- 

guided at the more rarefied level of ‘human flourishing’, where it is 
seen (see, e.g., Froese & Tkegami, 2013) as militating against play, explo- 

ration, and the deliberate search for novelty and new experiences. In 
each of these cases the solution to the puzzle is to notice the important 

role of the evolutionary and cultural backdrops against which pro- 

cesses of moment-by-moment prediction error minimization emerge 

and unfold.
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Prediction-error-based neural processing is, we have seen, part 

of a potent recipe for multiscale self-organization. Such multiscale 

self-organization does not occur in a vacuum. Instead, it operates only 

against the backdrop of an evolved organismic (neural and gross-bodily) 

form, and (as we will see in chapter 9) an equally transformative back- 

drop of slowly accumulated material structure and cultural practices: 

the socio-technological legacy of generation upon generation of human 

learning and experience. 

To start to bring this larger picture into focus, the first point to notice 

is that explicit, fast timescale processes of prediction error minimization 
must answer to the needs and projects of evolved, embodied, and envi- 

ronmentally embedded agents. The very existence of such agents (see 

Friston, 2011b, 2012¢) thus already implies a huge range of structurally 

implicit creature-specific ‘expectations’. Such creatures are built to seek 

mates, to avoid hunger and thirst, and to engage (even when not hun- 

gry or thirsty) in the kinds of sporadic environmental exploration that 

will help prepare them for unexpected environmental shifts, resource 

scarcities, new competitors, and so on. On a moment-by-moment basis, 

then, prediction error is minimized only against the backdrop of this 

complex set of creature-defining ‘expectations’. 

The scare quotes flag what seems to me to be an important differ- 

ence between expectations that are acquired on the basis of lifetime 

experience and those that are, one way or another, structurally implicit. 

We are built to breathe air through our lungs, hence we embody a kind 

of structural ‘expectation’ of staying (mostly) above water—unlike (say) 

an octopus. Some of our action tendencies are likewise built-in. The 

reflexive response to touching a hot plate is to draw away. This reflex 
amounts to a kind of bedrock ‘expectation’ of avoiding tissue damage. 

In this attenuated sense every embodied agent (even a bacterium) is, 

just as Friston (2012¢) claims, already a kind of surprise-minimizing 

model of its environment. Thus we read that: 

biological systems can distil structural regularities from envi- 

ronmental fluctuations (like changing concentrations of chem- 

ical attractants or sensory signals) and embody them in their 

form and internal dynamics. In essence, they become models 
of causal structure in their local environment, enabling them 

to predict what will happen next and counter surprising viola- 

tions of those predictions. (Friston, 2012¢, p. 2101) 

Another simple example is the information made available by our 

species-specific array of sensory receptors, and their placement at spe- 

cific bodily locations. This (at least until the invention of night-vision
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aids and other sensory augmentations) selects and constrains the space 

within which sensory prediction error can be actively minimized. But 

there is more to it than this. As evolved creatures we also ‘expect’ (still 

with my scare quotes) to remain warm, well-fed, and healthy, and sensed 

deviations from these ingrained norms will yield prediction errors capa- 

ble of driving short-term response and adaptation. Such agents (when 

normally functioning) simply do not feel the pull of the darkened room. 

Creature-defining ‘expectations’ of this kind are not subject to revision 

even by long-term life experiences (such as enduring a famine). 

The first thing to do when confronting the Darkened Room puz- 

zle is thus to view things from a rather more cosmic (long timescale) 

perspective. At such timescales, ‘surprisal’ (see 1) is reduced by any 

form of adaptation or change whose effect is to help the organism to 

resist dissolution and disorder, minimizing ‘free energy’ (Appendix 

2) in its exchanges with the environment. Considered over these longer 

timescales, we may say that this amounts to providing them with a 

kind of overarching set of structurally implicit ‘beliefs” or ‘expecta- 

tions'—still with those important scare quotes—that condition and 

constrain our moment-by-moment processes of explicit prediction error 

minimization. Relative to the full set of ‘expectations’ that in this way 
define an evolved agent, a darkened room usually’? holds no lure at 

all. Typical evolved agents strongly ‘expect’, as Friston (2012¢) suggests, 

not to spend very long at all in such unrewarding environments. This 

means that the Darkened Room holds no allure for creatures like us. 

Friston’s way of expressing this important fact is, however, poten- 

tially problematic—hence my use of all those scare quotes. For it 

threatens to conflate the various ways in which surprisal may be 

minimized—for example, by details of gross bodily form and neuro- 
anatomy, and by the more explicit, generative-model-based issuing 

of top-down probabilistic predictions to meet the incoming sensory 

stream. If my skin heals after a cut, it would be misleading to say that 

in some structural, embodied fashion I ‘predict’” an unbroken mem- 

brane. Yet it is only in this strained sense that, to take another example, 

the shape of the fish could be said to embody expectations concern- 

ing the hydrodynamics of seawater.® Perhaps we should allow that 

in some very broad sense, fish-y ‘surprisal’ is indeed partially deter- 

mined by such morphological factors. Our focus, however, has been on 
suites of entwined predictions issued by a neurally encoded generative 

model—the kind of process implemented, if PP is correct, by iterated 
exchanges of prediction and prediction error signaling in asymmet- 

ric bidirectional cascades of neuronal processing. Consequently, I do 

not think we ought properly (without scare quotes) to speak of all
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these bedrock adaptive states and responses as themselves amount- 

ing to structurally sedimented (Friston says ‘embodied’) predictions or 

expectations. Better, I think, to say that healing (along with a swathe of 

other neural and bodily mechanisms ensuring survival and success) 

sets the scene against which our predictive models of the world can take 
shape. Prediction error minimization here emerges as just one process 

among many—but one that (I have argued) plays a very special role in 

allowing agents like us to encounter, in perception and action, a struc- 

tured world of interacting distal causes, rather than simply (like plants 

or very simple life-forms) running routines that keep us viable. 

The ‘creature-defining backdrop’ is thus best understood—at least 

for our purposes—as setting the scene for the deployment (sometimes, 

in some animals) of more explicit prediction error minimizing strat- 

egies of learning and response. Nonetheless, the creature-defining 

backdrop is hugely important and influences both what we (in the rich 

sense) predict and, crucially, what we do not need, in that full sense, to 

predict—because, for example, it is already taken care of by basic bio- 

mechanical features, such as passive dynamics and the inbuilt syner- 

gies of muscles and tendons. It is only against that hugely empowering 

backdrop that online computations of prediction error can explain our 

complex, fluid forms of behavioural success. 

8.11  Play, Novelty, and Self-Organized Instability 

The Darkened Room Puzzle has another—slightly more subtle— 
dimension, nicely captured in the following passage: 

If our main objective is to minimize surprise over the states 

and outcomes we encounter, how can this explain complex 

human behavior such as novelty seeking, exploration, and, fur- 

thermore, higher level aspirations such as art, music, poetry, or 

humor? Should we not, in accordance with the principle, prefer 

living in a highly predictable and un-stimulating environment 

where we could minimize our long-term surprise? Shouldn’t 

we be aversive to novel stimuli? As it stands, this seems highly 

implausible; novel stimuli are sometimes aversive, but often 

quite the opposite. The challenge here is to reconcile the fun- 
damental imperative that underlies self-organized behavior 

with the fact that we avoid monotonous environments and 

actively explore in order to seek novel and stimulating inputs. 
(Schwartenbeck et al., 2013, p. 2)
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In just this vein Froese and Ikegami (2013) suggest that good ways of 

minimizing surprisal will include ‘stereotypic self-stimulation, cata- 

tonic withdrawal from the world, and autistic withdrawal from others’. 

The worry here is not (quite) that we will seek out some darkened room 

death trap. That worry was already dealt with by the observations con- 
cerning bedrock structure and native ‘expectations’. The worry, rather, 

is that the PP story can seem strangely silent with respect to the more 

positive attractions of novelty and exploration. It seems strangely silent, 

that is to say, regarding ‘why we actively aspire (to a certain extent) 

to novel, complex states” (Schwartenbeck et al., 2013). It is thus silent 

about, for example, much of the huge industry of entertainment, art, 

and culture. 

This is a large and challenging topic that I cannot hope to address 

in a few short comments. But part of the solution may itself involve 
(in a kind of bootstrapping way) forms of culturally-mediated lifetime 

learning that install global policies that actively favour increasingly 

complex forms of novelty-seeking and exploration. A global policy, in 

this sense, is just a rather general action selection rule—one that entails 

whole varieties of actions rather than a single act. The simplest such 

policy relevant to play and exploration is one that reduces the value 
of a state the longer that state is occupied. In worlds where resources 

are unevenly distributed in space and time, this may be an adaptively 

valuable policy. 

It may be useful to give this kind of policy a dynamical spin. As our 

trajectories though space and time unfold, potentially stable stopping 

points (attractors, in the language of dynamical systems) constantly 

arise and dissolve, often under the influence of our own evolving inner 

states and actions. Some systems, however, have a tendency to destroy 

their own fixed points, actively inducing instabilities in ways that result 

in what Friston, Breakspear, & Deco (2012) call ‘peripatetic or itinerant 

(wandering) dynamics’. Such systems would appear to pursue change 

and novelty ‘for their own sake”. 

An entertaining illustration involves what may well be the first 

‘urban myth’ of developmental robotics. According to this story, a robot 

had been set up to minimize prediction error in a toy environment. But 

having done that, instead of simply ceasing to behave, the robot began 

to spin around and around, creating a variety of optical artefacts that 

it then proceeded to model and predict. The story (which I heard in 

connection with work by Meeden et al,, 2009) turns out to be not quite 

true, though it is based upon some interesting robot behaviour that 

was indeed actually exhibited." But a creature genuinely disposed to 

destroy its own fixed points, finding itself trapped in a highly restricted
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environment, might indeed be driven to seek out new horizons by any 

means available. In a similar vein, Lauwereyns (2012) reports a study*® 

showing that: 

Human beings confined in a dark room with a minimum of 

stimulation will press buttons to make patterns of colored 

spots of light appear, preferring those sequences of pattern 

that offer the most variety and unpredictability. (Berlyne, 1966, 
p. 32, quoted in Lauwereyns, 2012, p. 28) 

More recently, Kidd et al. (2012) conducted a series of experiments 

with 7- and 8-month-old infants measuring attention to sequences 

of events of varying (and well-controlled) complexity. Infant atten- 

tion, they found, was characterized by what they dub a ‘Goldilocks 

Effect, focusing upon events presenting an intermediate degree of 

predictability—neither too easily predictable, nor too hard to predict. 

The probability of an infant looking away was thus greatest when com- 

plexity (calculated as negative log probability) was either very high or 

very low. The functional upshot, Kidd et al. suggest, is that ‘infants 
implicitly seek to maintain intermediate rates of information absorp- 

tion and avoid wasting cognitive resources on overly simple or overly 

complex events’ (Kidd et al,, 2012, p. 1). 

Such tendencies to seek out ‘just-novel-enough’ situations are a 

good candidate for some form of innate specification, since they would 

cause active agents to self-structure the flow of information in ways 

ideally suited to the incremental acquisition and tuning of an infor- 

mative generative model of their environment. More generally still, 

agents that inhabit complex, changing worlds would be well-served 

by a variety of policies that drive them to explore those worlds, even 

when no immediate gains or rewards are visible. Such agents would 

actively perturb their own trajectories through space and time in ways 

that enforce a certain amount of exploration.' The resulting ‘itinerant’ 

trajectories (Friston, 2010; Friston et al., 2009) provide adaptively valu- 

able gateways to new learning and discovery."” 

Extending this perspective, Schwartenbeck et al. (2013) suggest that 

certain agents may acquire policies that positively value the opportu- 

nity to visit many new states. For such agents, the value of some current 

state is partially determined by the number of possible other states that 

it allows them to visit. The complex human-built environments of art, 

literature, and science look like nice examples of domains structured 

to support and encourage just such open-ended forms of exploration 

and novelty-seeking. Predictive agents immersed in these kinds of 

designer environment will learn to expect (hence demand and actively
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seek out) those characteristic kinds of novelty and change. In structur- 

ing our cultural and social worlds we may thus be structuring ourselve: 

in ways that promote increasingly rarefied patterns of exploration and 

novelty-seeking. This incremental cultural self-scaffolding (the culmi- 

nation of humanity’s escape from the darkened room) is the topic of the 

next, and final, chapter. 

8.12 Fast, Cheap, and Flexible Too 

We live in changing and challenging worlds. Such worlds demand 

the use of many strategies, including fast, efficient modes of 

perception-action coupling and slower, effortful processes of reasoning 

and mental simulation. To stay ahead of such worlds, we must use what 

we know both to anticipate, and actively to sculpt, the sensory bar- 

rage. In so doing, we do not simply engage the world. Instead we select, 

moment-by-moment, the very strategies (the neural and extra-neural 

circuits and activities) by which we will do so. Those strategies range 

from the quick and dirty to the slow and accurate, from those domi- 

nated by bottom-up sensory flow to those more reliant upon top-down 

contextual modulation, and all points and admixtures in between. 

They range too from the highly exploratory to the deeply conservative, 

enabling fluent switching whenever the value of gaining information 

and experience starts to be outweighed by the costs and risks involved 

in obtaining it. These strategic switches balance expected temporal, 

energetic, and computational costs against possible benefits. 

Creatures like us are thus built to be persistently active, produc- 

tively lazy, and occasionally exploratory and playful. We are built to 

maximize success while minimizing effort, both intellectual and physi- 
cal. We do this, in large part, by deploying strategies that are funda- 
mentally action-oriented. Minds like ours are not in the business of 

representing the world in some passive, descriptive manner. Instead, 

they engage it in complex rolling cycles in which actions determine 

percepts that select actions, evoking and exploiting all manner of envi- 

ronmental structures and opportunities along the way. 

The worry that predictive processing organizations might over- 

emphasize computationally expensive, representation-heavy strategies 

over other (quicker, dirtier, more ‘embodied’) ones is thus fully and sat- 

isfyingly resolved. The ever-active predictive brain is now revealed as 

a lazy brain: a brain vigilant for any opportunity to achieve more by 

doing less.



9 
Being Human 

9.1 Putting Prediction in Its Place 

Our neural economy exists to serve the needs of embodied action. 

It does so, we saw, by initiating and sustaining complex circular 

causal flows in which actions and perceptions are co-determined and 

co-determining. These circular causal flows enact structural couplings 

that keep the organism within its own window of viability. In this way, 

the vision of the ever-active predictive brain dovetails elegantly with 
work on the embodied and situated mind. We have seen evidence of 

this already, as we explored the circular causal webs uniting percep- 

tion and action, the use of low-cost strategies making the most of body 

and world, and the complex continuous interweaving of perceiving, 

deciding, and acting. To complete the picture, however, we must now 

explore the many ways in which nested webs of social and environmen- 

tal structure inform, and are informed by, these unfolding processes of 

embodied neural prediction. 

At the core lie multi-timescale processes of self-organization. 

Prediction error minimization provides a plausible and powerful 

mechanism for self-organization—a mechanism capable of yielding 

nested dynamical regimes of great complexity. But that complexity, 
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in the rather special case of human agents, now involves a potent and 

labile sociocultural envelope. We humans—uniquely in the terrestrial 

natural order—build, and repeatedly rebuild, the social, linguistic, 

and technological worlds whose regularities then become reflected in 

the generative models making the predictions. It is because the brain 

itself is such a potent organ of unsupervised self-organization that 
our sociocultural immersions can be as efficacious as they are. But it 

is only in the many complex and ill-understood interactions between 

these two fundamental forces (between complex self-organizing neu- 

ral dynamics and the evolving swirl of social and material influence) 
that minds like ours emerge from the material flux. We must thus con- 

front the ever-active predictive brain in its proper setting—inextricably 
intertwined with an empowering backdrop of material, linguistic, 

and sociocultural scaffolding. What follows is a preliminary gesture 

towards that large and important task. 

9.2 Reprise: Self-Organizing around Prediction Error 

Prediction error provides an organismically computable quantity apt 

to drive neural self-organization in many ways and at many tempo- 

ral scales. We have seen this principle in action many times in previ- 

ous chapters, but it is worth pausing to admire the potent sweep of 
self-organization that results. At the heart of the process lies a proba- 

bilistic generative model that progressively alters so as better to pre- 

dict the plays of sensory data that impinge upon a biological organism 

or artificial agent. This results in learning that can separate out inter- 
acting bodily and environmental causes operating at varying scales 

of space and time. Such approaches describe a potent mechanism 

for self-organized, grounded, structural learning. Learning is now 
grounded because distal causes are uncovered only as a means of pre- 

dicting the play of sensory data (a play that also reflects the organ- 

ism’s own actions and interventions upon the world). Such learning is 

structure-revealing, unearthing complex patterns of interdependencies 

among causes operating at different scales of space and time. All this 

provides a kind of palette of predictive routines that can be combined 

in novel ways to deal with new situations. 

Such systems are self-organizing because they are not aiming at any 

specific input-output mapping. Instead, they must discover the patterns 

of cascading regularity that best accommodate their own (partially 

self-induced) flows of sensory information. This is liberating because it 

means that such systems can deliver ways of knowing that are not tied
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to the performance of specific tasks (although the plays of sensory data 

to be accommodated are themselves constrained by the broad forms of 
human activity). 

Such systems are also deeply context-sensitive. This is because sys- 

temic response in any area or at any level is now answerable to the 

full downwards (and lateral) cascade of context-fixing information. 

This non-linear dynamical picture increases still further in complex- 

ity because the flow of influence is itself reconfigurable, as changing 

precision estimations alter moment-by-moment patterns of effective 

connectivity. 

By self-organizing around prediction error, these architectures 

thus deliver a multiscale grip upon the organism-salient features of the 
world—a grip whose signature is the capacity to engage that world in 

ongoing cycles in which perception and action work together to quash 

high-precision prediction error. 

9.3 Efficiency and ‘The Lord’s Prior’ 

An important point to notice is that such systems do not simply cease 

to change and alter just because sensory prediction error has been suc- 

cessfully minimized. For there is, as we saw in chapter 8, another (less 

frequently highlighted) factor that can still drive change and learning. 

That factor is efficiency. Efficiency (see, e.g., Barlow, 1961; Olshausen 

& Field, 1996) is intuitively the opposite of redundancy and excess. A 

scheme or strategy is efficient if it uses only the minimal resources nec- 

essary to do the job. A generative model that is rich enough to main- 

tain an organismic grip upon the regularities important for selecting 

behaviour, but that does so using minimal energetic or representa- 

tional resources (for example, using few parameters) is efficient in this 
sense. By contrast, a system that uses a large number of parameters 

to accommodate or respond to the same data is not therby rendered a 

‘more accurate’ modeller of its world. On the contrary, the result will 

often be ‘over-fitting” the observed data, some of which turns out to be 

merely ‘noise” or random fluctuations around the informative signal. 
The Optical Acceleration Cancellation procedure described in 

chapter 8 is a nice example of a model that combines low complexity 

(few parameters) with high behavioural leverage. At the most general 

level, the drive towards efficiency is simply part and parcel of the over- 

all imperative to minimize the sum of sensory prediction errors. This 

involves finding the most parsimonious model that successfully engages 

the sensory flow. For the deep functional role of the prediction error
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signal, or so I have argued, is not to recruit new and better hypotheses 

about the world, so much as to leverage sensory information so as to 

guide fluent engagements with those aspects of the world relevant to 

our current needs and projects.! 

All this is nicely dramatized in Feldman’s (2013, p. 15) discussion of 

the ‘Lord’s Prior” where this rather mischievously names the mislead- 
ing idea that ‘the optimal Bayesian observer is correctly tuned when its 

priors match those objectively in force in the environment’. The deep 

problems with such a notion emerge as soon as we reflect that active 

agents are not, at root, simply trying to model the data so much as to 

come up with recipes for acting appropriately in the world. This will 

mean separating agent-salient signal from noise, selectively ignoring 

much of what the sensory signal makes available. Moreover, ‘one would 

be unwise to fit one’s prior too closely to any finite set of observations 

about how the world behaves, because inevitably the observations are a 

mixture of reliable and ephemeral factors’ (Feldman, 2013, p. 25). 

There is no guarantee that online predictive learning will cor- 

rectly separate out signal from noise in the efficient way that that this 

requires. But all is not lost. For efficiency can be increased (complex- 

ity reduced) even in the absence of ongoing data-driven learning. One 

way to do this is to ‘prune’ synaptic connectivity (perhaps, as specu- 

lated in chapter 3, during sleep) by removing connections that are weak 

or redundant. The ‘skeletonization’ algorithm? in connectionism (see 

Mozer & Smolensky, 1990, and discussion in Clark, 1993) and the aptly 

named wake-sleep algorithm (Hinton et al., 1995) are early examples 

of such procedures, each aiming to deliver robust performance while 

systematically reducing representational excess. The major benefit of 

such pruning is improved generalization—an improved ability to use 

what you know in a wide range of superficially distinct (but fundamen- 

tally similar) cases. Synaptic pruning provides a plausible mechanism 

for improving efficiency and reducing model complexity—an effect 

that may most frequently occur when exteroceptive sensory systems 

are dampened or shut down as occurs during sleep (see, e.g., Gilestro, 

Tononi, & Cirelli, 2009; Tononi & Cirelli, 2006). 

9.4 Chaos and Spontaneous Cortical Activity 

Synaptic pruning provides an endogenous means of improving our 

grip upon the world. It enables us to improve the grip of our models 
and strategiesby eliminating spurious information and associations, 

and thus avoiding—or at least repairing—the kind of ‘overfitting’ that
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occurs when a system uses valuable resources to track accidental or 

unimportant features of the training data. Synaptic pruning of this 
kind is best seen as a mechanism for improving the models that we 

already, in some rough sense, command. But we routinely do much 

more than that. For we are capable of a kind of deliberate imaginative 

exploration of our own mental space. The rudiments of this capacity 

come for free (as we saw in chapter 3) with the use of hierarchical neu- 

ral prediction as a means of driving learning, perception, and action. 

Creatures deploying that kind of strategy turned out to be natural 

imaginars, able to drive their own sensorimotor systems ‘from the top 

down’. Such creatures can benefit from the use of mental simulations 
that automatically respect the interlocking constraints implied by the 

generative model. Such simulations provide a means of getting the 

most out of the generative model that we already command, while syn- 

aptic pruning helps improve that model from within. 

But all this can still sound somewhat conservative, as if we are 

doomed (until new experiences are constructed or intervene) to stay, 

broadly speaking, within the limits of our achieved world view. To 

glimpse the possibility of more radical forms of endogenous cognitive 

exploration, recall the account of spontaneous cortical activity briefly 
sketched in 6.6. According to that account (see Berkes et al, 2011; see 

also Sporns, 2010 chapter 8), such spontaneous activity is not ‘mere 

neural noise’. Instead, it reflects a creature’s overall model of the world. 

Evoked activity (the activity resulting from a specific external stimulus) 

then reflects that model as it is applied to a specific sensory input. 

What this and other work (see Sadaghiani et al, 2010) suggests 

is that spontaneous cortical activity is an expression (a kind of gross 

signature) of the specific generative model underlying perception 

and action. According to such an account, ‘ongoing activity patterns 

reflect a historically informed internal model of causal dynamics in 

the world (that serves to generate predictions of future sensory input)’ 

(Sadaghiani et al., 2010, p. 10). Combining this picture of spontaneous 

cortical activity with the suggestions (8.11) regarding self-organizing 

instability opens up an intriguing possibility for more radical explora- 

tions of cognitive space. 

Suppose that our acquired world model is implemented by a 

dynamical regime that is never quite stable, most likely due (see, e.g., 

Van Leeuwen, 2008) to various chaos-style effects. Under such condi- 

tions, the model itself (where this is nothing but the constellations of 

structured neural activity ready to guide perception and action) is con- 

stantly ‘flittering’, exploring the edges of its own territory. Variations 

in such activity would determine subtly different responses to the
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encountered sensory stimuli. Even in the absence of compelling sen- 

sory inputs, that activity will not stop. Instead, it will continue to occur 

yielding ongoing forms of stimulus-detached exploration around 

the edges of the acquired model—explorations that, we may specu- 

late, might suddenly result in a new or more imaginative (and often 

more parsimonious, see 93) solution to a problem or puzzle that has 

been occupying our attention. In addition, work by Coste et al. (2011) 

suggests that some spontaneous cortical activity is related to fluctua- 

tions in precision optimizations.> Perhaps such fluctuations allow us 

to explore the edges of our own ‘meta-model’'—our own estimates of 

context-relative reliability. 

Might all this be atleast part of the solution to deep and abiding puz- 

zles concerning the origins of new ideas and creative problem-solving? 

Sadaghiani et al. (2010) link their account to some recent work in 

machine learning and robotics (Namikawa & Tani, 2010; Tsuda, 2001) in 

which such mental ‘wanderings’ are indeed the primary source of new 

forms of behaviour. Such wanderings might themselves be mandated 

by implicit hyperpriors that depict the world itself as changing and 

unstable, hence as no suitable place for systems that would rest on their 

cognitive laurels. Instead, we would be driven continuously to explore 

the edges of our own knowledge spaces, subtly altering our predictions 

and expectations (including our precision expectations) from moment 

to moment even in the absence of new information and experience. 

In an interesting extension of these themes, Namikawa et al. (2011) 

explored the relationship between complex hierarchical structure and 

self-organizing instabilities (deterministic chaos) using neuro-robotic 

simulations. In this work, a generative model with multi-timescale 

dynamics enables a set of motor behaviours. In these simulations (just 

as in the PP models to which they are formally closely related): 

Action per se, was a result of movements that conformed to 

the proprioceptive predictions of ... joint angles [and] per- 

ception and action were both trying to minimize prediction 

errors throughout the hierarchy, where movement minimized 

the prediction errors at the level of proprioceptive sensations. 

(Namikawa et al,, 2011, p. 4) 

In the simulations, deterministic chaos affecting slower timescale 

(higher level) network dynamics was found to enable new spontane- 

ous transitions among primitive actions (the basic repertoire of the 

agent). This organization was shown to be both emergent and func- 

tionally crucial. It was emergent insofar as the concentration of chaotic 

dynamics in the higher level network occurred naturally as long as the
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time constant of the higher level was significantly larger than that of 
the other regions (for the numerical details, see Namikawa et al., 2011, 

p- 3)- And this partial segregation of the chaotic dynamics was func- 

tionally crucial, since by restricting the impact of self-organized chaos 

to the higher level (slower timescale) networks, the robots were able to 

explore the useful, well-constrained space of possible action sequences 

without simultaneously undermining the stable, reusable elements 

of the action repertoire itself. They were thus able to generate new, 

spontaneous action transitions without disturbing the faster timescale 

dynamics (in lower level networks) that rendered their actions robust 

and reliably reproducible ‘on demand’. 

Only the networks whose timescale dynamics were sufficiently 
spread out in this way proved able to display ‘both itinerant behaviors 

with accompanying spontaneous transitions of behavior primitives and 

intentional fixed behaviors (repeatedly executable) [using] the same 

dynamic mechanism’ (Namikawa et al., 2011, p. 3, italics added). By 

contrast, if the timescale dynamics of the higher level network were 

reduced (becoming faster, hence closer to those of the lower level net- 

works), robot behaviour became unstable and unreliable, leading the 

authors to conclude that ‘hierarchical timescale differences ... are 

essential for achieving the two functions of freely combining actions 

in a compositional manner and generating them stably in a physical 

environment’ (Namikawa et al., 2011, p. 9). Such results, preliminary 

though they are, begin to suggest something of the deep functional role 
of multiple timescale dynamics—dynamics that occur naturally as a 

result of hierarchical predictive processing and that are plausibly real- 

ized by the spread of labour between neural structures with varying 

temporal response characteristics.* 

9.5 Designer Environments and Cultural Practices 

There is nothing specifically human, however, about any of the 
mechanisms for improving and exploring mental space just scouted. 

Prediction-driven learning, imagination, limited forms of simulation, 

and the canny exploitation of multi-timescale dynamics are all plausi- 

bly displayed, albeit to varying degrees, by other mammals. The most 

basic elements of the predictive processing story, as Roepstorff (2013, 
p. 224) correctly notes, may thus be found in many types of organism 

and model system. The neocortex (the layered structure housing corti- 

cal columns that provides the most compelling neural implementation 

for predictive processing machinery) displays some dramatic variations
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in size but is common to all mammals. Core features of the PP model 

may also be supported in other species using other structures (e.g., the 

so-called ‘mushroom bodies” found in insect brains are conjectured to 

provide a means of implementing forward models used for prediction, 

see Li & Strausfeld, 1999, and discussion in Webb, 2004). 

What, then, makes us (superficially at least) so very different? What 

is it that allows us—unlike dogs, chimps, or dolphins—to latch on to 

distal causes that include not just food, mates, and relative social rank- 

ings but also neurons, predictive processing, Higgs bosons, and black 

holes? One possibility (Conway & Christiansen, 2001) is that adapta- 

tions of the human neural apparatus have somehow conspired to create, 

in us, an even more complex and context-flexible hierarchical learning 

system than is found in other animals. Insofar as the PP framework 

allows for rampant context-dependent influence within the distrib- 

uted system, the same basic operating principles might (given a few 

new opportunities of routing and influence) result in the emergence 

of qualitatively novel forms of behaviour and control. Such changes 

might explain why human agents display what Spivey (2007, p. 169) 

nicely describes as an ‘exceptional sensitivity to hierarchical structure 

in any time-dependent signal” 

Another (possibly linked and certainly highly complementary) 

possibility involves a potent complex of features of human life, espe- 

cially our abilities of temporally co-coordinated social interaction (see 

Roepstorff, 2013) and our abilities to construct artefacts, and designer 

environments. Some of these ingredients have emerged in other spe- 

cies too. But in the human case the whole mosaic comes together under 

the influence of flexible structured symbolic language (this was the tar- 

get of the Conway and Christiansen treatment mentioned above) and 

an almost obsessive drive (Tomasello et al., 2005) to engage in shared 

cultural practices. We are thus enabled repeatedly to redeploy our 

core cognitive skills in the transformative context of exposure to what 

Roepstorff et al. (2010) call ‘patterned sociocultural practices’. These 

include the use of symbolic inscriptions (encountered as ‘material sym- 

bols’, see Clark, 2006) embedded in complex practices and social rou- 

tines (Hutchins, 1995, 2014). Such environments and practices include 

those of mathematics, reading,” writing, structured discussion, and 

schooling. The succession and tuning of such designer environments 

then constitutes the complex and ill-understood process that Sterelny 

(2003) describes as ‘incremental downstream epistemic engineering’. 

What are the potential effects of such stacked and trans- 

missible structures (designer environments and practices) upon 

prediction-driven learning in neural systems? Prediction-driven
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learning routines make human minds permeable, at multiple spatial 

and temporal scales, to the statistical structure of the action-ready, 

organism-salient world, as reflected in the training signals. But those 

training signals are now delivered as part of a complex developmen- 

tal web that gradually comes to include all the complex regularities 

embodied in the web of statistical relations among the symbols and 

other forms of sociocultural scaffolding in which we are immersed. We 

thus self-construct a kind of rolling ‘cognitive niche’ able to induce the 

acquisition of generative models whose reach and depth far exceeds 

their apparent base in simple forms of sensory contact with the world. 

To see how this might work, recall that the way to construct a new 

idea or concept (assuming the resources of PP) is to encounter a new 

sensory pattern that results in highly weighted (organism-salient) pre- 

diction error. Highly weighted errors, if the system is unable to explain 

them away by recruiting some model that it already commands, result 

inincreased plasticity and (if all goes well) the acquisition of new knowl- 

edge about the shape and nature of the distal causes responsible for the 

surprising sensory inputs. But we humans are also expert at deliber- 

ately manipulating our physical and social worlds so that they provide 

new and ever-more-challenging patterns that will drive new learning. 

A very simple example is the way that learning to perform mental arith- 

metic has been scaffolded, in some cultures, by the deliberate use of an 

abacus. Experience with the sensory patterns thus made available helps 

to install appreciation of many complex arithmetical operations and 

relations (for discussion, see Stigler et al., 1986). The specific example 

does not matter very much, but the general strategy does. We structure 
(and repeatedly restructure) our physical and social environments in 

ways that make available new knowledge and skills (for some lovely 

explorations, see Goldstone, Landy, & Brunel, 2011; Landy & Goldstone, 

2005; and, for an information-theoretic twist, Salge, Glackin, & Polani, 

2014). Prediction-hungry brains, exposed in the course of embod- 

ied action to novel patterns of sensory stimulation, may thus acquire 
forms of knowledge that were genuinely out-of-reach prior to such 

physical-manipulation-based retuning of the generative model. 

Such retuning and enhancement is now served by a huge variety 

of symbol-mediated loops into material and social culture: loops that 

involve (see Clark, 2003, 2008) notebooks, sketchpads, smartphones, and 

also (see Pickering & Garrod, 2007) written and spoken conversations 

with other agents.® Such loops are effectively enabling new forms of 

re-entrant processing. They take a ‘first-order’ cognitive product (such 

as the visual experience of seeing a new purple skyscraper) clothe it in 

public symbols (turning it into the written or spoken sequence, “I saw
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a new purple skyscraper today”) and launch it into the world so that 

it can re-enter our own cognitive system, and the cognitive systems of 

other agents, as a new kind of concrete perceptible—the percept of a 

written or spoken sentence (Clark 2006, 2008). Those new perceptibles 

bear highly informative statistical relations to other such linguaform 

perceptibles. Once externalized, an idea or thought is thus able to par- 

ticipate in brand new webs of higher order and more abstract statistical 

correlation. The signature of such correlations is that words predict the 

occurrence of other words, tokens of mathematical symbols and opera- 
tors predict the occurrence of other such tokens, and so on. 

We glimpse the power of the complex internal statistical relation- 

ships enshrined in human languages in Landauer and colleagues’ fas- 

cinating work on ‘latent semantic analysis’ (LSA). This work reveals 

the vast amount of information now embodied in statistical (but deep, 

not first order) relations between words and the larger contexts (sen- 

tences and texts) in which they occur (see Landauer & Dumais, 1997; 

Landauer et al., 2007). For example, deep statistical relations among 

words were here shown to contain information that could help pre- 

dict the grade-score of essays in specific subject areas. More gener- 

ally (for LSA is a very specific technique with strict limitations) the 

rich symbolic world we humans immerse ourselves in is now demon- 

strably chock-full of information about meaning relations in itself. 

Those meaning relations are reflected in our patterns of use (hence 
in patterns of occurrence) and they can be identified and exploited 

regardless of the many more fundamental hooks that link words and 

symbols to practical actions and the (rest of our) sensory world. Some 
of those meaning relations, moreover, obtain in realms whose core 

constructs are now far, far removed from any simple sensory signa- 

tures, visible only in the internal relations proper to the arcane worlds 
of quantum theory, higher mathematics, philosophy, art, and politics 

{(to name but a few). 

Our best takes on the world are thus given material form and 

made available (in that new guise) as publically perceptible object— 

words, sentences, equations. An important side-effect of this is that 

our own thoughts and ideas now become available, to ourselves and 

others, as potential objects for deliberate processes of attention. This 

opens the door to a whole array of knowledge-improvement and 

knowledge-testing techniques, ranging from simple conversations 
in which we ask for reasons, to the complex practices of testing, dis- 
semination, and peer-review characteristic of contemporary science. 

Courtesy of all that material public vehicling in spoken words, writ- 

ten text, diagrams, and pictures, our best predictive models of the
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world (unlike those of other creatures) have thus become stable, rein- 

spectable objects apt for public critique and systematic, multi-agent, 

multi-generational test and refinement. Our best models of the world 

are thus able to serve as the basis for cumulative, communally distrib- 

uted reasoning, rather than just providing the means by which indi- 

vidual thoughts occur. The same potent predictive processing regimes, 

now targeting these brand new types of statistically pregnant ‘designer 

inputs’, are then enabled to discover and refine new generative mod- 

els, latching onto (and at times actively creating) ever more abstract 

structure in the world. The upshot is that the human-built (material 

and sociocultural) environment becomes a potent source of new trans- 

missible structure that trains, triggers, and repeatedly transforms the 

activity of the prediction-hungry biological brain.” 

In sum, our human-built worlds are not merely the arenas in which 

we live, work, and play. They also structure the life-long statistical 

immersions that build and rebuild the generative models that inform 

each agent’s repertoire for perception, action, and reason. By construct- 

ing a succession of designer environments, such as the human-built 

worlds of education, structured play, art, and science, we repeatedly 

restructure our own minds. These designer environments have slowly 

become tailored to creatures like us, and they ‘know’ us as well as we 
know them. As a species, we refine them again and again, generation 

by generation. It is this iterative re-structuring, and not sheer process- 

ing power, memory, mobility, or even the learning algorithms them- 

selves, that completes the human mental mosaic. 

9.6  White Lines 

To further appreciate the power and scope of such culturally-mediated 

reshaping, recall the main moral of chapter 8. The moral was that the 

predictive brain is not doomed to deploy high-cost, model-rich strate- 

gies moment-by-moment in a demanding and time-pressured world. 

Instead, action and environmental structuring can both be called upon 

to reduce complexity. In such cases, PP delivers and deploys low-cost 

strategies that make the most of body, world, and action. In the simple 

case of running to catch a fly ball, the problem to be solved was ‘posed’ 
by the very ball whose in-flight optical properties made available the 

low-cost solution itself. In such cases, we did not need to actively struc- 

ture our world so as to make the low-cost strategy available, or cue its 

use. In other cases, however, the cultural snowball has enabled us to
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structure our worlds in ways that both cue and help constitute low-cost 

routes to behavioural or cognitive success. 

A maximally simple example is painting white lines along the 

edges of a winding cliff-top road. Such environmental alterations allow 

the driver to solve the complex problem of keeping the car on the road 

by (in part) predicting the ebb and flow of various simpler optical fea- 

tures and cues (see, e.g., Land, 2001). In such cases, we are building a 

better world to predict in, while simultaneously structuring the world 

to cue that strategy at the right time. In other words, we build worlds 

that cue simpler strategies that are only available because of the way 

we have altered the world in the first place. Other examples include the 

use of posted prices in supermarkets (Satz & Ferejohn, 1994), wearing 

the colours of our favourite football team, or displaying the distinctive 

clothing styles of our chosen subculture. 
The full potential of the prediction error minimization model of 

how cortical processing most fundamentally operates may thus emerge 
only when that story is paired with an appreciation of what immersion 

in a huge variety of sociocultural designer environments can do (for 

some early steps in this direction, see Roepstorff et al.,, 2010). Such a 

combined approach would implement a version of ‘neuroconstructiv- 

ism’ (Mareschal et al,, 2007), a view according to which 

The architecture of the brain ... and the statistics of the envi- 
ronment, [are] not fixed. Rather, brain-connectivity is subject to 

abroad spectrum of input-, experience-, and activity-dependent 

processes which shape and structure its patterning and 

strengths. ... These changes, in turn, result in altered interac- 

tions with the environment, exerting causal influences on what 

is experienced and sensed in the future. (Sporns, 2007, p. 179) 

Much of what is distinctive about human thought and reason may thus 

bebest explained by the operation of what Hutchins (2014, p. 35) describes 

as ‘cultural ecosystems operating at large spatial and temporal scales’. 

Within such ecosystems slowly evolved culturally transmitted practices 
sculpt the very worlds within which neural prediction error minimi- 

zation occurs. Those cultural practices may themselves be usefully 

understood, Hutchins conjectures, as entropy (surprise) minimization 

devices operating at extended spatial and temporal scales. Action and 
perception then work together to reduce prediction error only against 

the more slowly evolving backdrop of a culturally distributed process 

that spawns a succession of practices and designer environments whose 

impact on the development (e.g., Smith & Gasser, 2005) and unfolding of 

human thought and reason can hardly be overestimated.
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There is a downside, of course. The downside is that these cul- 

turally mediated processes may also incur costs in the form of vari- 

ous kinds of path-dependence (Arthur, 1994) in which later solutions 

build on earlier ones. Sub-optimal path-based idiosyncrasies may 

then become frozen (perhaps like the much-discussed QWERTY key- 

board or Betamax video format) into our material artefacts, institu- 

tions, notations, measuring tools, and cultural practices. But these 

costs are easy to bear. For it is those very same trajectory-sensitive 

cultural processes that deliver the vast cognitive profits that 

flow from the slow, multigenerational development of designer 

environments—environments that help human minds go where 

other animal minds do not. 

9.7 Innovating for Innovation 

Adding further fuel to this sociocultural-technological fire, it may even 
be the case, as elegantly argued by Heyes (2012), that many of our capac- 

ities for cultural learning are themselves cultural innovations, acquired by 

social interactions, rather than flowing directly from fundamental bio- 
logical adaptations. The idea here is that: 

the specialized features of cultural learning—the features that 

make cultural learning especially good at enabling the social 

transmission of information—are acquired in the course of 

development through social interaction. ... They are products 

as well as producers of cultural evolution. (Heyes, 2012, p. 2182) 

Cultural learning, to borrow Heyes own analogy, would not merely 

be a producer of more and more ‘grist’ (transmissible facts about the 
world) but a source of ‘mills'—the “psychological processes that enable 

us to learn the grist from others’ (Heyes, 2012, p. 2182). 

The most obvious example is reading and writing, a matched pair 

of cultural practices that seem to have emerged far too recently to be 

a result of genetic adaptations. The practice of reading is known to 

cause widespread changes in human neural organization (Dehaene 

et al,, 2010; Paulesu et al,, 2000). The resulting new organization exploits 

what Anderson (2010) describes as a fundamental principle of neural 

reuse’ in which pre-existing elements are recruited and repurposed. In 

this way: 

learning to read takes old parts and remodels them into a new 

system. The old parts are computational processes and cortical
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regions originally adapted, genetically and culturally, for object 

recognition and spoken language, but it is an ontogenetic, cul- 

tural process— literacy training—that makes them into a new 

system specialized for cultural learning. (Heyes, 2012, p. 2182) 

Reading is thus a nice example of a culturally inherited mill—a prod- 

uct of cultural evolution that feeds and fuels the process of cultural 

evolution itself. Other examples, Heyes argues, may include key mech- 

anisms of social learning (learning by observing other agents in action) 

and imitation. If Heyes is right, then culture itself may be responsible for 

many of the sub-mechanisms that give the cultural snowball the means 

and momentum to deliver minds like ours. 

9.8  Words as Tools for Manipulating Precision 

Words and phrases enjoy a double life. They function as communicative 

vehicles, but they also seem to play a role in the unfolding and devel- 

opment of our own thoughts and ideas. This latter role is sometimes 

referred to as the supra-communicative dimension of language (see 

Clark, 1998; Dennett, 1991; Jackendoff, 1996). This supra-communicative 

role can seem rather mysterious. What cognitive advantage could pos- 

sibly accrue to an agent simply in virtue of expressing a thought (one 

that, you might insist, she already has) using language? The answer, 

presumably, is that we are wrong to depict the case in quite that way. 

Rather than merely expressing a thought we already have, such acts 

must somehow alter, impact, or transform the thinking itself. But just 

how might this work? 

Consider, from the PP perspective, the likely effects of encoun- 

tered, self-produced, or conversationally co-constructed words or 

phrases upon individual processing and problem-solving. In such 

cases we, either alone or as part of a collective, are creating ‘artificial 

input streams’ that may be peculiarly well-adapted to alter and nuance 

the flows of inner processing that help determine perception, experi- 
ence, and action. 

In a bare-bones exploration of such ideas, Lupyan and Ward (2013) 

conducted an experiment using a technique called Continuous Flash 

Suppression (CFS).® In CFS an image continuously presented to one 

eye is suppressed when a changing stream of other images is pre- 

sented to the other eye. This is another example of bi-stable percep- 

tion, related to the binocular rivalry case that we explored way back in 

chapter 1.” Lupyan and Ward found that an object that is masked from
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awareness by CFS can be unsuppressed (consciously detected) if the 

right word—the word ‘zebra), if the suppressed object was a zebra—is 
heard before the trial begins. Hearing the right word increased the 

‘hit rate’ for detecting the object and shortened reaction times too. The 

explanation, the authors suggest, is that ‘when information associated 

with verbal labels matches incoming (bottom-up) activity, language 

provides a top-down boost to perception, propelling an otherwise 

invisible image into awareness” (Ward & Lupyan, 2013, p. 14196). In 

this experiment the verbal enhancement was externally provided. But 

related effects, in which no external cueing is provided, have also been 

demonstrated for conscious recognition. Thus, Melloni et al. (2011, and 

discussion in 3.6) showed that the onset time required to form a report- 
able conscious percept varies substantially (by around 100 ms) accord- 

ing to the presence or absence of apt expectations, even when those 

expectations emerge naturally as the subject performs a task. Putting 

these two effects together suggests that exposure to words functions to 

alter or nuance the active expectations that help construct our ongoing 

experience. 

In some ways, this seems obvious enough. Words make a differ- 

ence! But there is emerging evidence that the expectations induced 

by exposure to words and phrases are especially strong, focused, and 

targeted. Lupyan and Thompson-Schill (2012) found that hearing the 

word ‘dog’ is better than simply hearing a barking sound as a means 

of improving performance in a related discrimination task. There is 

also intriguing evidence (see Cukur et al,, 2013, and discussion in Kim 

& Kasstner, 2013) that category-based attention (as when we are told 
covertly to attend to ‘vehicles” or to humans’ when watching a movie 

or video clip) temporarily alters the tuning of neuronal populations, 

shifting the category sensitivity of neurons or of neuronal ensembles 

in the direction of the attended content. 

Such transient instruction-induced alterations of cortical represen- 

tations could be cashed out by the suite of mechanisms that alter the 

precision-weighting of specific prediction error signals. This is sugges- 

tive. A potent feature of structured language is its ability to cheaply 

and very flexibly target highly specific aspects of our own understand- 

ing or of our understanding of another agent. One way in which this 

could work, within the context of a PP-style cognitive architecture, 

is thus by impacting our ongoing estimations of precision, hence the 

relative uncertainty assigned to different aspects of ongoing neural 

activity. Recent work by Yuval-Greenberg and Heeger (2013, p. 9365) 

suggests that ‘CFS is based on modulating the gain of neural responses, 

akin to reducing target contrast’. The PP mechanism for modulating
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such gain is, of course, the precision-weighting of prediction error. 

Language, it may be conjectured, provides a finely tuned means of arti- 

ficially manipulating the precision (hence of temporarily modifying the 

impact) of prediction error at different levels of neural processing. Such 
transient, targeted, subtle manipulations of precision could selectively 

enhance or mute the influence of any aspect of our own or another 

agent’s world model. Self-produced (or mentally rehearsed) language 

would then emerge as a potent means of exploring and exploiting the 

full potential of our own acquired generative model, providing a kind 

of artificial second system for manipulating the precision-weighting of 
our own prediction errors—hence a neat trick” (Dennett, 1991) for arti- 

ficially manipulating our estimations of our own uncertainty enabling 
us to make fully flexible use of what we know. 

Words, we might say, are (for us language users) a metabolically 

cheap and flexible source of ‘artificial contexts’ (Lupyan & Clark, in 

press). Viewed from the PP perspective, the impact of strings of words 

upon neural processing is thus flexibly to modify both what top-down 

information is brought to bear, and how much influence it has at every 

level of processing (see Figure 9.1). Such a powerful tool for targeted 
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self-manipulation will provide a huge boost to intelligence, improving 

performance in ways that go far beyond those associated with linguis- 

tic performance alone.” It is a tool, moreover, whose overall cognitive 

impact would be expected to vary in proportion to the subtlety and 

range of the linguistic repertoire of the agent. 

This is a tempting picture indeed. But exactly how public lingua- 

form encodings interact with the kinds of structured probabilistic 

knowledge representation posited by PP remains largely unknown. 

Such interactions lie at the heart of the processes of cultural construc- 

tion described earlier and must constitute a crucial target for future 

research. 

9.9 Predicting with Others 

In the social world, many of the tricks and ploys we have just sketched 
come together in a mutually supportive mix. Other agents are (recall 

chapter 5) often apt for prediction using the same generative model that 

gives rise to our own actions. But other agents also provide a unique 

form of ‘external scaffolding’, since their actions and responses can be 

exploited to reduce our own individual processing loads. Finally, other 

agents are themselves predictors, and this opens up an interesting space 

for mutually beneficial (or sometimes destructive—recall 2.9) processes 

of ‘continuous reciprocal prediction’. 

A nice example, explored in some detail by Pickering and Garrod 
(2007, 2013) is the co-construction of a conversation. In conversation, 

Pickering and Garrod suggest, each person uses their own language 

production system (hence the generative model underlying their own 

behaviour) to help predict the other’s utterances, while also using 

the output of the other as a kind of external scaffolding for their own 

ongoing productions. These predictions (just as PP would suggest) are 

probabilistic, and span multiple different levels from phonology to 

syntax and semantics. As conversation proceeds, multiple predictions 

are thus continuously co-computed with their associated probabilities 

(see also Cisek & Kalaska, 2011; Spivey, 2007). Each party to such a pro- 

cess is, in the typical case, in the business of matching, or attempting 

to match, their behaviour and expectations to those of the other. As 

conversation proceeds, words, grammar, intonation, gesture, and eye 

movements may all be overtly copied or covertly imitated (for a handy 

review of the linguistic and behavioural evidence, see Pickering & 

Garrod, 2004). Overt copying, in particular, helps support mutual pre- 

diction and mutual understanding since ‘if B overtly imitates A, then
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A's comprehension of B's utterance is facilitated by A's memory for A’s 

previous utterance’ (Pickering & Garrod, 2007, p. 109). The upshot is 

that ‘prediction and imitation can jointly explain why conversation 

tends to be easy, even though it involves constant task-switching and 

the need to determine when to speak and what to say” (p. 109). 

Such piggybacking is not, of course, restricted to our conversa- 

tional interactions. Instead, in one form or another it seems to char- 

acterize many forms of human joint action ranging from team sports 

to changing the bed linen with a partner (Sebanz & Knoblich, 2009). 

Individual agents may also actively constrain their own behaviour so 

as to make themselves more easily predictable by other agents. Thus, 

we might artificially stabilize our own public personas so as to encour- 
age others to enter into economic or emotional arrangements with us 

(Ross, 2004). On an even grander scale, Colombo (in press) depicts social 

norms (the mostly unwritten ‘rules’ of daily social behaviour, such as 

leaving a tip in a restaurant) as devices whose role is to reduce mutual 

uncertainty by creating structures or schemas within which behaviour 

becomes more mutually predictable. Social norms, Colombo argues, 

are entropy-minimizing devices, represented as probability distribu- 

tions, that serve to make social behaviour predictable. Expectations 

about our own behaviour are thus simultaneously descriptive and pre- 
scriptive in nature. 

This dual nature is also evident (Hirsh et al., 2013) in the cogni- 

tive role of personal narratives: the stories we tell, to ourselves and 

to others, about the flow and meaning of our lives. Such narratives 

function as high-level elements in the models that structure our own 

self-predictions, and thus inform our own future actions and choices. 

But personal narratives are often co-constructed with others, and thus 

tend to feed the structures and expectations of society back in so that 

they become reflected in the models that an individual uses to make 

sense of her own acts and choices. Personal narratives may thus be con- 
sidered as another species of communal uncertainty-reducing device. 

Roepstorff and Frith (2004) note that many cases of human 

interaction involve a kind of top-level ‘script-sharing’ in which the 

highest-level processes that control one agent’s action may originate in 

the brain of another agent. The case they examine in detail is the con- 

struction of a sufficient understanding of an experimental situation to 

allow a subject to participate in a specific psychological experiment. 

In such cases, human agents can often achieve the (sometimes quite 

demanding) understanding needed to participate simply by means of a 

bout of verbal instruction in which high-level understandings are com- 

municated directly from experimenter to subject. This is a case of what
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Roepstorff and Frith engagingly dub ‘top-top control of action’, in which 

elements of the experimenter’s high-level understanding become posi- 

tioned, courtesy of linguistic exchange, to control patterns of response 

in another agent. Such a situation may be contrasted with the long 

and arduous training process needed to install sufficient understand- 

ing in a monkey. The especially challenging example that Roepstorff 

and Frith describe involved performing a simplified version of the 

Wisconsin Card Sorting Task and required, before the monkeys were 

able to act as suitable subjects, a full year of operant conditioning (see 

Nakahara et al,, 2002). Following this training, Nakahara et al. found 

anatomically similar brain activations in both monkeys and human 

subjects as they performed the task, suggesting that, as planned, the 

monkeys had indeed learnt the same ‘cognitive set’ (the same guiding 

recipe for action and choice) as the human subjects. But despite this 

end-point similarity, the process was, clearly, radically different, since: 

whereas the human participant receives this script directly 

from the experimenter in a “top-top” exchange, the monkey has 

to reconstruct this script solely via the concrete stimuli and 

rewards offered to it. It happens as the monkey, based on the 

previous understandings of the situation, reacts to the reward 

responses that the experimenter dispenses. (Roepstorff & 

Frith, 2004, p. 193) 

In the case of the monkey, script-synchronization required the experi- 

menters’ top-level understanding to be recreated via a truly bottom-up 

process of learning, whereas in the case of the human subjects, this 

arduous route could be avoided by the judicious use of language and 

pre-existing shared understandings. Among human subjects already 

possessing significant shared understanding, language thus provides a 

kind of cheap, readily available ‘top-top’ route for the control of action. 

Looping linguaform interactions can thus help create what Hasson 

et al. (2012, p. 114) describe as systems of ‘brain-to-brain coupling’ in 

which ‘the perceptual system of one brain [is] coupled to the motor sys- 

tem of another” in ways that enable the emergence of new forms of joint 

behaviour—for example, when one agent shouts commands to another 

while moving a grand piano up a flight of stairs. 

Language also provides a means for whole groups of human agents 

to collectively negotiate complex representational spaces. In particu- 

lar, it provides a means (see Clark, 1998) of taming ‘path-dependent’ 

learning. Path dependency, in its most familiar form, is the rationale for 

structured education and training. This is necessary because certain 

ideas can be understood only once others are in place. Such ‘cognitive
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path dependency’ is nicely explained (see, e.g., Elman, 1993) by treat- 

ing intellectual progress as involving something like a process of 

computational search in a large and complex space. Previous learning 

inclines the system to try out certain locations in the space and not 

others. When the prior learning is appropriate, the job of discovering 

some new regularity is made tractable: the prior learning acts as a fil- 

ter on the space of options to be explored. The hierarchical nature of 

the prediction-based approaches we have been exploring makes them 

especially well-suited as inner mechanisms capable of supporting com- 

plex patterns of path-dependent learning in which later achievements 

build on earlier ones. At the same time, however, prior learning makes 

certain other regularities harder (at times impossible) to spot. Prior 

knowledge is thus always both constraining and enabling. 

When confronting agents that exhibit path-dependent learning, the 

mundane observation that language allows ideas to be preserved and 

(in some sense) to migrate between individuals takes on a new force. 

For we can now appreciate how such migrations may allow the com- 

munal construction of extremely delicate and difficult intellectual tra- 

jectories and progressions. An idea which only Joe’s experience makes 

available, but which can flourish and realize its full potential only in 
the intellectual niche currently provided by the brain of Mary, can now 

realize its full potential by journeying between those agents. Different 

agents (and the same agent at different times) constitute different ‘fil- 

ters’, and groups of such agents make available trajectories of learning 

and discovery that no single agent could comprehend. The variety of 

intellectual niches available within a linguistically linked community 

thus provides a stunning matrix of group-level multi-agent trajectories. 

In sum, socially interacting agents benefit from nested and 

self-reinforcing cycles of ongoing mutual prediction. This kind of joint 

piggy-backing emerges naturally when groups of interacting, predic- 

tive agents construct a shared social world and may be a fundamen- 

tal source of low-cost computational strategies for human interaction. 

Inter-agent exchanges thus create new paths through the space of pos- 

sible understandings, allowing webs of communicating agents com- 

munally to explore intellectual trajectories that would rapidly defeat 

any individual agent. 

9.10 Enacting Our Worlds 

The combined effects of action, cultural learning, reciprocal prediction, 

the canny use of language, and the many forms of socio-technological
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scaffolding are transformative. It is the ill-understood alchemy between 

the predictive brain and this whole raft of mutually supportive tricks 
and ploys that makes us distinctively human. An immediate implica- 

tion of our larger story is thus that there is a very real sense in which 

human agents help construct the very worlds they model and inhabit. 

That process of construction corresponds rather closely to the 

mysterious-sounding notion of ‘enacting a world’, at least as that notion 

appears in Varela et al. (1991)." 

Varela et al. write that: 

The overall concern of an enactive approach to perception is 

not to determine how some perceiver-independent world is 

to be recovered; it is, rather, to determine the common prin- 

ciples or lawful linkages between sensory and motor sys- 

tems that explain how action can be perceptually-guided in a 

perceiver-dependent world. (Varela et al., 1991, p. 173) 

Such an approach to perception is prefigured, Varela et al. report, in 

the work of Merleau-Ponty (1945/1962). There, Merleau-Ponty stresses 

the important degree to which perception itself is structured by human 
action. Thus, we often think of perception as simply the source of infor- 

mation that is then used for the guidance of action. But expand the 

temporal window a little and it becomes clear that we might equally 

well think of action as the selector of the perceptual stimulations them- 

selves. In the words of Merleau-Ponty: 

since all the stimulations which the organism receives have 

in turn been possible only by its preceding movements which 

have culminated in exposing the receptor organ to external 

influences, one could also say that behavior is the first cause of 

all the stimulations. (Merleau-Ponty, 1945/1962, p. 13) 

In a striking image, Merleau-Ponty then compares the active organism 

to a keyboard which moves itself around so as to offer different keys 
to the ‘in itself monotonous action of an external hammer’ (p. 13)."2 The 

message that the world ‘types onto the perceiver’ is thus largely cre- 

ated (or so the image suggests) by the nature and action of the perceiver 

herself: the way she offers herself to the world. The upshot, according 

to Varela et al. (1991, p. 174) is that ‘the organism and environment [are] 

bound together in reciprocal specification and selection’. 

This kind of relation is described by Varela et al. as one of ‘struc- 

tural coupling” in which ‘the species brings forth and specifies its own 

domain of problems’ (p. 198) and in that sense ‘enacts’ or brings forth 

(p. 205) its own world. In discussing these matters, Varela et al. are
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also concerned to stress that the relevant histories of structural cou- 

pling may select what they describe as ‘non-optimal” features, traits, 

and behaviours: ones that involve ‘satisficing’ (see Simon, 1956, and 

chapter 8) where that means settling for whatever ‘good enough’ solu- 

tion or structure ‘has sufficient integrity to persist’ (Varela et al., 1991, 

P. 196). PP has the resources to cash all these ‘enactivist’ cheques, depict- 

ing the organism and the organism-salient world as bound together in 

a process of mutual specification in which the simplest approximations 

apt to support a history of viable interaction are the ones that are learnt, 

selected, and maintained.® 

The simplest way in which a predictive-processing enabled agent 

might be said to actively construct its world is by sampling. Action here 

serves perception by moving the body and sense organs around in ways 

that aim to ‘serve up’ predicted patterns of stimulation. In particular, 

they aim (chapter 2) to serve up predicted sequences of high-reliability, 

taslerelevant information. This is a very clear case, it seems to me, of 

the kind of ‘active keyboard’ effect imagined by Merleau-Ponty—the 

organism selectively moves its body and receptors to try to discover 

the very stimuli that it predicts. In this way, different organisms and 

individuals may selectively sample in ways that both actively construct 

and continuously confirm the existence of different ‘worlds”. It is in this 

sense that, as Friston, Adams, and Montague (2012, p. 22) comment, our 

implicit and explicit models might be said to ‘create their own data’. 

Such a process repeats at several organizational scales. Thus, we 

humans do not merely sample some natural environment. We also 

structure that environment in (as we just saw) a wide variety of potent, 

interacting, and often cumulative ways. We do this by building mate- 

rial artefacts (from homes to highways), creating cultural practices 

and institutions, and trading in all manner of symbolic and notational 

props, aids, and scaffoldings. Some of our practices and institutions 

are also designed to train us to sample and exploit our human-built 

environment more effectively—examples would include sports prac- 

tice, training in the use of specific tools and software, learning to 

speed-read, and many, many more. Finally, some of our technological 

infrastructure is now self-altering in ways that are designed to reduce 

the load on the predictive agent, learning from our past behaviours 

and searches so as to serve up the right options at the right time. In 

all these ways, and at all these interacting scales of space and time, we 

build and selectively sample the very worlds that—in iterated bouts of 

statistically sensitive interaction—install the generative models that we 

bring to bear upon them.
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The task of the generative model in all these settings is to capture 

the simplest approximations that will support the actions required to do 

the job—that (as we saw in chapter 8) means taking into account what- 

ever work can be done by a creature’s morphology, physical actions, 

and socio-technological surroundings. PP thus harmonizes fully with 

work that stresses frugality, satisficing, and the ubiquity of simple but 

adequate solutions that make the most of brain, body, and world. Brain, 

body, and the partially self-constructed environment stand revealed 

as ‘mutually embedded systems’ (Varela et al,, 2001, p. 423) working 

together in the service of situated success. 

9.11  Representations: Breaking Good? 

There remains, however, at least one famously vexed issue upon 

which PP and enactivism (at least if history is any guide) seem 

doomed to disagree. That is the issue of ‘internal representa- 

tion’. Thus Varela et al. are explicit that on the enactivist concep- 

tion ‘cognition is no longer seen as problem solving on the basis of 

representations’ (p. 205). PP, however, deals extensively in internal 

models—rich, frugal, and all points in-between—whose role is to 

control action by predicting complex plays of sensory data. This, 

the enactivist might fear, is where our promising story about neu- 

ral processing ‘breaks bad’. Why not simply ditch the talk of inner 

models and internal representations and stay on the true path of 

enactivist virtue? 

This issue requires a lot more discussion than I shall (perhaps mer- 

cifully) attempt here® Nonetheless, the remaining distance between 
PP and enactivism may not be as great as that bald opposition sug- 

gests. We can begin by recalling that PP, although it trades heavily in 

talk of inner models and representations, invokes representations that 

are probabilistic and action-oriented through and through. These are 

representations that (see chapters 5-8) are fundamentally in the busi- 

ness of serving action within the context of rolling sensorimotor cycles. 

Such representations aim to engage the world, rather than to depict it in 

some action-neutral fashion. They remain, moreover, firmly rooted in 

the patterns of organism-environment interaction that served up the 

structured sensory stimulations reflected in the mature probabilistic 

generative model. The role of that generative model is to deliver an effi- 

cient, context-sensitive grip upon a world of multiple competing affor- 

dances for action.
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The shape of that grip is well captured by Itay Shani who writes that: 

Actual sensory systems are not concerned with truth and accu- 

racy as such but rather, with action and the need to maintain 

the functional stability of the organisms in which they are 

embedded. They do not report, or register, what is where like 

an idealized scientific observer but, rather, help organisms to 
cope with changing conditions in their external, and internal 

(somatic), environments. (Shani, 2006, p. 90) 

This is exactly the role played, if PP is correct, by the multilevel proba- 

bilistic generative models that guide perception and action.”® 

What are the contents of the states governed by these multilevel 

action-oriented probabilistic generative models? The generative 

model issues predictions that estimate various identifiable worldly 
states (including states of the body and the mental states of other 

agents).’ But it is also necessary, as we have repeatedly seen, to esti- 

mate the context-variable reliability (precision) of the neural estima- 

tions themselves. Some of these precision-weighted estimates drive 

action, and it is action that then samples the scene, delivering per- 

cepts that select more actions. Such looping complexities will make 

it hard (perhaps impossible) adequately to capture the contents or 

the cognitive roles of many key inner states and processes using 

the terms and vocabulary of ordinary daily speech. That vocabu- 

lary is ‘designed’ for communication (though it may also enable 

various forms of cognitive self-stimulation). The probabilistic gen- 

erative model, by contrast, is designed to engage the world in rolling, 

uncertainty-modulated, cycles of perception and action. The repre- 

sentations thus constructed are not actual re-presentations or dupli- 

cates of objects in the world but ... incomplete, abstract code that 
makes predictions about the world and revises its predictions on the 
basis of interaction with the world’ (Lauwereyns, 2012, p. 74). Within 

PP, high-level states (of the generative model) target large-scale, 

increasingly invariant patterns in space and time. Such states help us 

to keep track of specific individuals, properties, and events despite 

large moment-by-moment variations in the stream of sensory stimu- 

lation. Unpacked via cascades of descending prediction, such higher 

level states simultaneously inform both perception and action, lock- 

ing them into continuous circular causal flows. Instead of simply 

describing “how the world is’, these models—even when considered 

at the ‘higher’ more abstract levels—are geared to engaging those 

aspects of the world that matter to us. They are delivering a grip on 

the patterns that matter for the interactions that matter.
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This suggests a recipe for peace in the disputes concerning internal 

representation. Varela et al. (1991) strongly reject appeals to ‘internal rep- 

resentation’. But for them, this notion implies the ‘action-neutral’ capture 

of what they call a ‘pregiven world’. Organism and world, they argued, 
are instead co-defined by a history of structural coupling: a kind of active 

‘fitting” of each to the other, rather than a passive ‘mirroring’. PP, I have 

tried to show, fully respects this intuition. It posits a hierarchical genera- 

tive model that helps maintain the integrity and viability of a system by 

enabling it to minimize prediction errors and thus avoid compromising 

(possibly fatal) encounters with the environment. That distributed inner 

model is itself the result of self-organizing dynamics operating at mul- 

tiple temporal scales, and it functions selectively to expose the agent to 

the patterns of stimulation that it predicts. The generative model thus 

functions—just as an enactivist might insist—to enable and maintain 

structural couplings that serve our needs and that keep us viable. 

Could we perhaps have told our story in entirely non- 

representational terms, without invoking the concept of a hierarchi- 

cal probabilistic generative model at all? One should always beware 

of sweeping assertions about what might, one day, be explanatorily 

possible! But as things stand, I simply do not see how this is to be 

achieved."” For it is surely that very depiction that allows us to under- 
stand how it is that these looping dynamical regimes arise and enable 

such spectacular results. The regimes arise and succeed because 

the system self-organizes so as to capture patterns in the (partially 

self-created) input stream. These patterns specify bodily and worldly 
causes operating at varying scales of space and time. Subtract this 

guiding vision and what remains is just a picture of complex looping 

dynamics spanning brain, body, and world. Such a vision is surely 

correct, as far as it goes. But it does not explain (does not render intelli- 

gible) the emergence of a structured meaningful realm apt for percep- 

tion, thought, imagination, and action. 

Consider those same looping dynamics from the explanatory per- 

spective afforded by PP, however, and many things fall naturally into 

place. With that schema in mind, we comprehend perception, imagi- 

nation, and simulation-based reasoning as co-emergent from a single 

cognitive architecture; we see how that architecture simultaneously 

supports perception and action, locking them together in a circular 

causal embrace; we see why, and exactly how, perception and action 

are themselves co-constructed and co-determining; we see how, at 

longer timescales, statistically driven learning can unearth interact- 

ing distal and bodily causes in the first place, revealing a structured 

world of human-sized opportunities for action; and we understand
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how it is that unexpected omissions and absences can be every bit 

as salient and perceptually striking as the most concrete of ordinary 

perceptibles. We appreciate all this, moreover, from a perspective 

that both accommodates and unifies impressive swathes of work in 
machine learning, in psychophysics, in cognitive and computational 

neuroscience and (increasingly) in computational neuropsychiatry. 

This is surely encouraging. Perhaps models in this broad ballpark 

offer our first glimpse of the shape of a fundamental and unified sci- 

ence of the embodied mind? 

9.12 Prediction in the Wild 

Our neural economy exists to serve the needs of embodied action. It does 

so by initiating and sustaining complex circular causal flows in which 

actions and perceptions are co-determined and co-determining. These 

flows enact structural couplings that serve our needs while keeping 

the organism within its own specialized window of viability. All this is 

orchestrated, or so our story suggests, by a multilevel generative model 

tuned to predict task-salient aspects of the current sensory signal. 

Is this an inner economy bloated with representations, detached 

from the world? Not at all. This is an inner economy geared for action 

that aims to lock embodied agents onto opportunities in their worlds. 

Dynamically speaking, the whole embodied, active system here 

self-organizes around the organismically-computable quantity ‘pre- 

diction error”. This is what delivers that multi-level, multi-area grip on 

the evolving sensory barrage—a grip that must span multiple spatial 

and temporal scales. Such a grip simultaneously determines percep- 

tion and action, and it selects (enacts) the ongoing stream of sensory 

bombardment itself. The generative model that here issues sensory 

predictions is thus nothing but that multi-level, multi-area, multi-scale, 

body-and-action involving grip on the unfolding sensory stream. To 

achieve that grip is to know the structured and meaningful world that 

we encounter in experience and action. 

That grip, in the somewhat special case of the human mind, is fur- 

ther enriched and transformed by layer upon layer of sociocultural 
structures and practices. Steeped in such practices, our predictive 

brains are empowered to redeploy their basic skills in new and trans- 

formative ways. Understanding the resulting interplay between cul- 

ture, technology, action, and cascading neural prediction is surely one 

of the major tasks confronting twenty-first-century cognitive science.



10 

Conclusions 

The Future of Prediction 

Remember that all models are wrong; the practical question is how 
wrong do they have to be to not be useful. 

—DBox & Draper, 1987 

10.1  Embodied Prediction Machines 

Predictive processing (PP) offers a vision of the brain that dove- 

tails perfectly (or so I have argued) with work on the embodied and 

environmentally situated mind. This is a fit forged by action and by 

the circular causal flows that bind acting and perceiving. It is a fit 
that reveals perception, understanding, reason, and imagination as 

co-emergent, and restless itinerant dynamics as the signature of the 
embodied mind. Within this ever-active, self-organizing flow, neural 

sub-assemblies form and dissolve in ways determined by changing 
estimations of relative uncertainty. These temporary circuits recruit, 

and are recruited by, shifting webs of bodily and extra-bodily struc- 

ture and resources. The resulting transient wholes are the true (frugal, 

efficient) vehicles of adaptive and behavioural success. The predictive 
brain is thus not an insulated inference engine “in the head” so much 

as an action-oriented engagement engine, delivering a rolling grip on 

task-salient opportunities. 

Sculpting and maintaining that rolling grip are the deep cogni- 
tive engines of downwards (and lateral) flowing prediction. It is those 

deep cognitive engines (multilevel probabilistic generative models) 

295



296 SCAFFOLDING PREDICTION 

that enable us to encounter, in perception and action, a world parsed 

for human needs and purposes. Sprinkled liberally with estimations 

of the precision (the variance or uncertainty) of our own prediction 

errors, this provides a potent toolkit for surfing the waves of sensory 

uncertainty. Creatures thus equipped are nature’s experts at separat- 

ing the signal from the noise, discerning the salient interacting causes 

that are structuring the constant energetic pummelling of their sensory 

surfaces. 

Perception and action here emerge as two sides of a single com- 

putational coin. Rooted in multilevel prediction-error minimizing 

routines, perception and action are locked in a complex circular causal 

flow. Within that flow, actions select sensory stimulations that both test 

and respond to the bodily and environmental causes identified by the 

multilevel cascade. Percepts and action-recipes here co-emerge, com- 

bining motor prescriptions with continuous efforts at understanding 

our world. Perception and action are thus similarly and simultaneously 

constructed, and intimately entwined. 

Systems such as these are knowledge-driven, courtesy of the struc- 

tured probabilistic know-how encoded in complex multilevel genera- 
tive models. But they are also fast and frugal, able to use that know-how 

to help select the most cost-efficient strategy for a given task and con- 
text. Many of those cost-efficient strategies trade the use of action and 

of bodily and environmental structure (and intervention) against the 

use of expensive forms of on-board computation. Working alongside 

the full gamut of strategies and ploys installed by slower processes of 

evolutionary adaptation, this enables the flexible and intelligent selec- 

tion of low-cost efficient strategies whenever task and context allows. 

The fit with embodied and situated cognitive science is thus fully 

realized. Perception-action loops are fundamental; low-cost, represen- 

tationally efficient options are preferred; and the continuous stream 

of error-minimizing action allows for the recruitment and use of arbi- 

trarily complex suites of external resources—resources that are now 

simply swept up in the ongoing circular causal flow. 

The world thus encountered is a world structured, in large part, 

by the affordances for action that it presents. As our affordance-based 

exploration of this world proceeds, interoceptive and exteroceptive 

information are constantly combined as environmental causes are 

identified and behaviours entrained. This provides a rich new entry 

point for accounts of experience, emotion, and affect: accounts that 

do not compartmentalize cognition and emotion, but reveal them 

as (at most) distinctive threads in a single inferential weave. In this 

dense, ongoing, multilayer exchange, interoceptive, proprioceptive,
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and exteroceptive information work constantly together, and the flow 

of human experience emerges as a continuous construct at the meet- 

ing point of diverse systemic expectations and the self-structured 

sensory flow. 

There are hints here of a new understanding of what it means to 

encounter the world in perception.! This will be an understanding in 

which experience, expectation, estimated uncertainty, and action are 

inextricably intertwined, together delivering a grip upon—and a tra- 

jectory within—a world whose organism-salient features are continu- 

ously disclosed (and in some cases, continuously created) as a result 

of our own activity. The fit between mind and world, if this is cor- 

rect, is a fit forged not by some form of passive ‘apt description’ but by 

action itself: action that continuously selects the stimuli to which we 
respond. Key to this process of continual sensorimotor flow is the use 
of precision-weighting to control not just the relative influence of prior 

knowledge (hence predictions) at every level but also the large-scale 

flows of information that constitute the transient-but-unified process- 

ing regimes that form and disperse as we move from task to task and 

from context to context. 

By self-organizing around prediction error, and by learning a gen- 

erative rather than a merely discriminative (i.e., pattern-classifying) 

model, these approaches realize many of the dreams of previous work 

in artificial neural networks, robotics, dynamical systems theory, and 

classical cognitive science. They perform unsupervised learning using 

a multilevel architecture and acquire a satisfying grip—courtesy of 
the problem decompositions enabled by their hierarchical form—upon 

structural relations within a domain. They do this, moreover, in ways 

that remain firmly grounded in the patterns of sensorimotor experi- 

ence that structure learning, using continuous, non-linguaform, inner 

encodings (probability density functions and probabilistic inference). 

Courtesy of precision-based restructuring of patterns of effective con- 

nectivity, those same approaches nest simplicity within complexity and 

make as much (or as little) use of body and world as task and context 

dictate. 

10.2  Problems, Puzzles, and Pitfalls 

All this hints at the shape of a truly fundamental and deeply unified 

science of the embodied mind. In the present text, it is this bigger pic- 

ture that I have tried to bring into focus. This meant concentrating on 

that positive, integrative story—a strategy that seems warranted, at
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least while the science of the predictive mind is still in its infancy. But 

there remain a raft of problems, pitfalls, and shortfalls that need to be 

addressed. Among the key puzzles and problems, four stand out as 

especially challenging and important. 

The first concerns the urgent need to explore a larger space of 

approximations and of possible representational forms. Complex 

real-world problems demand the use of approximations to truly opti- 
mal forms of probabilistic inference, and there are many ways in which 

neuronal populations might represent probabilities and many ways to 

perform probabilistic inference (see, e.g.,, Beck et al, 2012; Kwisthout 

& van Rooij, 2013; Pouget, Beck, et al,, 2013). Much more work is thus 

required to discover which approximations the brain actually deploys. 

Moreover, the form of such preferred approximations will interact 
with the kinds of representation used and will reflect the availability 
of domain-knowledge that could be used to shrink the search space. 

Addressing these issues, both in simulation (Thornton, ms), using 

behavioural metrics (Houlsby et al., 2013) and by probing biological 

brains (Bastos et al., 2012; Egner & Summerfield, 2013; Iglesias, Mathys, 

et al, 2013; Penny, 2012) is essential if relatively abstract theoretical 

models (such as PP) are to be tested and transformed into plausible 
accounts of human cognition. 

A second issue concerns the need to explore multiple variant archi- 

tectures. The present text focused mostly upon one possible architectural 

schema: a schema requiring functionally distinct neural populations 

coding for representation (prediction) and for prediction error, and in 

which predictions flow backwards (and laterally) through the neural 

hierarchy while information concerning residual prediction error flows 

forwards (and laterally). But that schema represents just one point in 

the large and complex space of probabilistic generative-model based 

approaches, and there are many possible architectures, and possible 

ways of combining top-down predictions and bottom-up sensory infor- 

mation, in the general vicinity. For example, the foundational work by 

Hinton and colleagues on deep belief networks (Hinton, Osindero, & 

Tey, 2006; Hinton & Salakhutdinov, 2006) differs (chapter 1, note 13) 

despite sharing an emphasis upon probabilistic generative models; 

McClelland (2013) and Zorzi et al. (2013) bring work on deep unsuper- 

vised learning into alignment with work on Bayesian models of contex- 

tual effects and with neural network models such as the connectionist 

interactive activation model; Spratling (2010, 2011, 2014) has proposed 

an alternative predictive coding model, PC/BC, standing for predic- 

tive coding/biased competition, that implements the key principles of 

predictive coding using a different flow of prediction and error, and
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that is described by a variant mathematical framework; Dura-Bernal, 

Wennekers et al. (2011, 2012) develop a variant of the Spratling PC/ 

BC architecture that extends the well-known HMAX (Riesenhuber & 

Poggio, 1999; Serre et al,, 2007) feedforward model of object recogni- 

tion, accommodating strong top-down effects (such as the perception 

of illusory contours) while reproducing many of the computational effi- 

ciencies of the feedforward approach; Wacongne et al. (2012) develop a 

detailed neuronal model implementing predictive coding (for auditory 

cortex) using layered networks of spiking neurons; O’Reilly, Wyatte, 

and Rohitlich (ms; see also Kachergis et al, 2014) offer a rich neuro- 

computational account of predictive learning in which the very same 

layer encodes expectations and outcomes (at differing temporal stages 

of processing) and in which input is often only partially predicted; 

Phillips and Silverstein (2013) develop a broader, computationally rich 

perspective on context-sensitive gain control; den Ouden, Kok, and 

de Lange (2012) survey the many ways in which the brain seems to 

code prediction error signals, and the varying functional roles of such 

signals in different brain regions; Pickering and Garrod (2013) pres- 

ent a rich cognitive psychological account of language production and 

comprehension using the apparatus of mutual prediction and forward 
models; and roboticists such as Tani (2007), Saegusa et al. (2008), Park 

et al. (2012), Pezzulo (2007), and Mohan, Morasso, et al. (2011), Martius, 

Der, and Ay (2013) are exploring the use of a variety of prediction-based 

learning routines as a means of grounding higher cognitive functions 

in the solid bedrock of sensorimotor engagements with the world. 
This remarkable efflorescence of work on prediction-based learn- 

ing and response is both encouraging and vital. For it is only by con- 

sidering the full space of possible prediction-and-generative-model 

based architectures and strategies that we can start to ask truly pointed 

experimental questions of the brain and of biological organisms: ques- 

tions that might one day favour one of these models (or, more likely, 

one coherent sub-set of models?) over the rest, or else may reveal deep 

faults and failings among their substantial common foundations. Only 
then will we find out, to echo the laudably dour sentiments of Box and 

Draper, just how wrong, or how useful, these models actually are. 
The third set of challenges concerns the extension of these accounts 

into the intuitively “higher level’ domains of long-term planning, cog- 

nitive control, social cognition, conscious experience,® and explicit, lin- 

guistically inflected, reasoning. Here, the present text ventured at least 

a smattering of hints and suggestions—for example, linking planning 
and social cognition to varying kinds of generative-model-based simu- 

lation; control to context-sensitive gating routines; conscious experience



300 SCAFFOLDING PREDICTION 

to delicate mixtures of interoceptive and exteroceptive predictions; and 

linguistically inflected reasoning to the artificial self-manipulation of 

precision-weightings. But despite these tentative footsteps, the exten- 

sion of these accounts into such domains remains murky at best. (For 

some discussion, see Fitzgerald, Dolan, & Friston, 2014, Harrison, 

Bestmann, Rosa, et al, 2011; Hobson & Friston, 2014; Hohwy, 2013, 

chapters g-12; Jiang, Heller, & Egner, 2014; King & Dehaene, 2014; 

Limanowski & Blankenburg, 2013; Moutoussis et al., 2014; Panichello, 

Cheung, & Bar, 2012; and Seth, 2014). Most challenging of all, perhaps, 

will be the implied reconstruction of motivation, value, and desire in 

terms of more fundamental processes of prediction, Bayesian infer- 

ence, and self-estimated uncertainty (see Friston, Shiner, et al., 2012; 

Gershman & Daw 2012; Bach & Dolan 2012; Solway & Botvinick 2012; 

Schwartenbeck et al., 2014). 

The fourth and final batch of issues is more strategic and conceptual. 

Does the picture of extensive reliance upon multilevel generative mod- 

els and top-down prediction somehow over-intellectualize the mind? 

Are we back-sliding towards an outmoded ‘Cartesian’ view in which 

the mind is an insulated inner arena, teeming with internal representa- 

tions yet somehow estranged from the multiple problem-simplifying 

opportunities provided by body and world? Nothing, or so I have 

argued, could be further from the truth. Instead we have seen how the 

use of prediction-driven learning and multilevel generative models 

directly serve the twin pillars of perception and action, enabling fast, 

fluent forms of context-sensitive response. The predictive brain, I have 
tried to show, is an action-oriented engagement machine, adept at finding 

efficient embodied solutions that make the most of body and world. 
Brains now emerge as complex nodes in a constant two-way flux in 

which the inner (neural) organization is open to constant reconfigura- 
tion by external (bodily and environmental) factors and forces, and vice 

versa. Inner and outer here become locked in constant co-determining 

patterns of exchange, as predictive agents continuously select the stim- 

ulations that they receive. This pattern repeats at more extended scales 

of space and time, as we structure (and repeatedly restructure) the 

social and material worlds that slowly but surely structure us. 

The brain thus revealed is a restless, pro-active organ locked in 

dense, continuous exchange with body and world. Thus equipped 

we encounter, through the play of self-predicted sensory stimulation, 

a world of meaning, structure, and opportunity: a world parsed for 

action, pregnant with future, and patterned by the past.



Appendix 1 

Bare Bayes 

Bayes theorem delivers an optimal way of altering existing beliefs in 

response to new information or evidence. In the case of sensory evi- 

dence, it shows how to update belief in some hypothesis (e.g, that there 

is a cat on the mat) as a function of how well the sensory data (e.g., 

plays of light on the retina, or more realistically, the unfolding plays 
of light resulting from active exploration of the scene) are predicted by 

the hypothesis. In so doing, it assumes a prior state of belief of some 

kind and then specifies how to alter that belief in the light of the new 
evidence. This allows continual, rational updating of our background 

model (the source of the prior states of belief) as more and more new 

evidence arrives. 

For our—admittedly rather limited—purposes, the mathematics 

here does not matter (though for a lovely primer, see Doya & Ishii, 2007; 

for something more informal, see Bram, 2013, chapter 3; and for discus- 

sion of applications to human cognition, see Jacobs & Kruschke, 2010). 

But what the mathematics achieves is something rather wonderful. It 

allows us to adjust the impact of some incoming sensory data accord- 

ing to background information about (1) the chances of getting that 
sensory data if the world was, indeed, in such-and-such a state (that 

is, ‘the probability of the data given the hypothesis’, i.e., how well the 
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data are predicted by the hypothesis) and (2) the prior probability of 

the hypothesis (the chances, regardless of the sensory data, of the cat 

being on the mat). Crunching all that together in the right way yields 

the correct estimation (given what you know) of the revised (posterior) 

probability of the hypothesis given the new sensory evidence.' The nice 

thing here is that once you have updated your prior belief to a posterior 

belief, the posterior belief can serve as the prior for the next observation. 

The crunching is important, since failures to take account of back- 

ground information can badly skew assessments of the impact of new 

evidence. Classic examples include how to assess your chances of hav- 

ing some medical condition given a positive result using an accurate 

test, or assessing the chances that a defendant is guilty given some 

forensic (e.g, DNA) evidence. In each case, the proper impact of the 

evidence turns out to depend much more strongly than we intuitively 

imagine upon the prior chances of having the condition (or being 

guilty of the crime) anyway, independently of that specific evidence. 

In essence, Bayes rule is thus a device for combining prior knowledge 

(about base rates, for example) with what Kahneman (2011, p. 154) calls 

the ‘diagnosticity of the evidence’—the degree to which the evidence 

favours one hypothesis over another. A direct implication is that—as 

the cosmologist Carl Sagan famously put it—'extraordinary claims 

need extraordinary evidence’. 

The ‘predictive processing” models discussed in the text implement 

just such a process of ‘rational impact adjustment”. They do so by meet- 

ing the incoming sensory signal with a set of top-down probabilistic 

predictions based on what the system knows about the world and what 

it knows about the context-varying reliability of its own sensing and 

processing. There is a reformulation of Bayes’s rule that makes espe- 

cially clear its relation to such prediction-based models of perception. 

The reformulation (as translated into prose by Joyce, 2008) says that: 

The ratio of probabilities for two hypotheses conditional on a 

body of data is equal to the ratio of their unconditional [base- 
line] probabilities multiplied by the degree to which the first 

hypothesis surpasses the second as a predictor of the data. 

The drawback, you might think, is that all this will only work when 

you know all that stuff about unconditional probabilities (the priors 

and ‘statistical background conditions’) already. That is where so-called 

‘empirical Bayes’ (Robbins, 1956) gets to make a special contribution. 

For within a hierarchical scheme, the required priors can themselves 

be estimated from the data, using the estimates at one level to provide 

the priors (the background beliefs) for the level below. In predictive
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processing architectures, the presence of multilevel structure induces 

such ‘empirical priors” in the form of the constraints that one level in 

the hierarchy places on the level below. These constraints can be pro- 

gressively tuned, using standard gradient descent methods, by the sen- 

sory input itself. Such multilevel learning procedures look neuronally 

implementable courtesy of the hierarchical and reciprocally connected 

structure and wiring of cortex (see Bastos et al, 2012; Friston, 2005; 

Lee & Mumford, 2003). 

Some words of caution however. The notion that the brain per- 

forms some form of approximate Bayesian inference is increasingly 

popular. In its broadest form, this need only mean that the brain uses 

a generative model (a model, that is, embodying background knowl- 

edge about the statistical structure of the task) to compute its best guess 

{the ‘posterior distribution’) about the world, given the current sensory 

evidence. Such methods need not deliver good results or optimal infer- 

ence. The generative model might be wrong, coarse, or incomplete, 

either because the training environment was too limited or skewed, 

or because the true distributions were too hard to learn or impossible 

to implement using available neural circuitry. Such conditions force 

the use of approximations. The moral is that ‘all optimal inference is 

Bayesian, but not all Bayesian inference is optimal’ (Ma, 2012, p. 513). 

In other words, there is a large space hereabouts, and it needs careful 

handling. For a useful survey, see Ma (2012).



Appendix 2 

The Free-Energy Formulation 

Free-energy formulations originate in statistical physics and were intro- 

duced into the machine-learning literature in seminal treatments that 

include Hinton and von Camp (1993), Hinton and Zemel (1994), MacKay 

(1995), and Neal and Hinton (1998). Such formulations can arguably be 

used (e.g., Friston, 2010) to display the prediction error minimization 

strategy as itself a manifestation of a more fundamental mandate to 

minimize an information-theoretic isomorph of thermodynamic free 
energy in a system’s exchanges with the environment. 

Thermodynamic free energy is a measure of the energy available 

to do useful work. Transposed to the cognitive/informational domain, 

it emerges as the difference between the way the world is represented 

(modelled) as being and the way it actually is. Care is needed here, 
though, as that notion of ‘the way the world is represented as being” is a 

slippery beast and must not be read as implying a kind of passive (‘'mir- 

ror of nature’, see Rorty, 1979) story about the implied fit between model 

and world. For the test of a good model, as we see at some length in the 

present text, is how well it enables the organism to engage the world 

in a rolling cycle of actions that maintain it within a window of viabil- 

ity. The better the engagements, the lower the information-theoretic 

free energy (this is intuitive, since more of the system’s resources are 
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being put to ‘effective work’ in modelling the world). Prediction error 

reports this information-theoretic free energy, which is mathemati- 

cally constructed so as always to be greater than ‘surprisal’ (where 

this names the sub-personally computed implausibility of some sen- 

sory state given a model of the world, see Tribus, 1961). Entropy, in this 

information-theoretic rendition, is the long-term average of surprisal, 

and reducing information-theoretic free energy amounts to improv- 

ing the world model so as to reduce prediction errors, hence reduc- 

ing surprisal (better models make better predictions). The overarching 
rationale is that good models (by definition) are those that help us suc- 

cessfully engage the world and hence help us to maintain our struc- 

ture and organization so that we appear—over extended but finite 

timescales—to resist increases in entropy and (hence) the second law 

of thermodynamics. 

The “free-energy principle’ itself then states that ‘all the quantities 

that can change; i.e. that are part of the system, will change to minimize 

free-energy’ (Friston & Stephan, 2007, p. 427). Notice that, thus formu- 

lated, this is a claim about all elements of systemic organization (from 

gross morphology to the entire organization of the brain) and not just 

about cortical information processing. Using a series of elegant math- 

ematical formulations, Friston (2009, 2010) suggests that this principle, 

when applied to various elements of neural functioning, leads to the 
generation of efficient internal representational schemes and reveals 

the deepest rationale behind the links between perception, inference, 

memory, attention, and action explored in the present text. Morphology, 

action tendencies (including the active structuring of environmental 

niches), and gross neural architecture are all expressions, if this story is 

correct, of this single principle operating at varying timescales. 

The free-energy account is of great independent interest. It repre- 

sents a kind of ‘maximal version” of the claims concerning the compu- 
tational intimacy of perception and action, and it is at least suggestive 

of a general framework that might accommodate the growing inter- 

est (see, e.g., Thompson, 2010) in understanding the complex relations 

between life and mind. Essentially, the hope is thus to illuminate the 

very possibility of self-organization in biological systems (see, e.g., 

Friston, 2009, p. 293, and discussion in chapter 9). 

A full assessment of the free-energy principle and its potential 
applications to understanding life and mind is, however, far beyond 

the scope of the present treatment.



Notes 

INTRODUCTION 

1. Hermann von Helmholtz (1860) depicts perception as involving probabi- 

listic inference. James (1890), who studied under Helmholtz, also depicts 

perception as drawing upon prior knowledge to help deal with imper- 

fect or ambiguous inputs. These insights informed the ‘analysis-by- 

synthesis’ paradigm within psychology (see Gregory, 1980; MacKay, 

1956; Neisser, 1967; for a review, see Yuille & Kersten, 2006). Helmholtz's 

insight was also pursued (as we shall see in chapter 1) in an important 

body of computational and neuroscientific work. Crucial to this lineage 

were seminal advances in machine learning that began with pioneer- 

ing connectionist work on backpropagation learning (McClelland et al, 

1986; Rumelhart et al., 1986) and continued with work on the aptly named 

‘Helmholz Machine’ (Dayan et al.,, 1995; Dayan & Hinton, 1996; see also 

Hinton & Zemel, 1994). For useful reviews, see Brown & Briine, 2012; 

Bubic et al., 2010; Kveraga et al., 2007. See also Bar et al., 2006; Churchland 

et al, 1994; Gilbert and Sigman, 2007; Grossberg, 1980; Raichle, 2010. 

2. Barney was at that time working with Dennett at the Curricular Software 

Studio, which Dennett co-founded at Tufts in 1985. The project advisor 

was Tufts geologist Bert Reuss. 
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3. The remark is made during an interview with Danny Scott (‘Racing to 

the Bottom of the World’) published in the Sunday Times Magazine, 27 

November 2011, p. 82. 

These are cases that are sometimes described as ‘psychogenic’ 

‘non-organic’, ‘unexplained’ or even (in older parlance) ‘hysterical’ I bor- 

row the term ‘functional motor and sensory symptoms’ from Edwards 

et al. (2012). 

CHAPTER 1 

1. Examples include Biederman, 1987; Hubel & Wiesel, 1965; and Marr, 1982. 

2. I will sometimes write, as a kind of shorthand, that predictions flow 

downwards (from higher areas towards the sensory peripheries) in these 

systems. This is correct, but importantly incomplete. It highlights the 

fact that predictions, at least in standard implementations of PP, flow 

from each higher level to the level immediately below. But a great deal 

of predictive information is also passed laterally within levels. Talk of 

downward-flowing prediction should thus be read as indicating ‘down- 

ward and lateral flowing’ prediction. Thanks to Bill Phillips for suggest- 

ing that I clarify this at the outset. 

. I'have seen this dictum variously attributed to the machine-learning pio- 

neer Max Clowes, and to the neuroscientists Rodolfo Llinas and Ramesh 

Jain. The ‘controlled hallucination’ spin can, however, make it seem as if 

our perceptual grip on reality is fragile and disturbingly indirect. On the 
contrary, it seems to me—though the arguments for this must wait until 

later—that this view of perception shows, in detail, just how perception 

(or better, perception-action loops) puts us in genuine cognitive contact 

with the salient aspects of our environment. It might thus be better, or 

so I will later (chapter 6) suggest, to regard hallucination as a form of 

‘uncontrolled perception’. 

. In practice, simple back-propagation networks starting with random 

assignments of weights and non-problem-specific architectures tended 

to learn very slowly and often got stuck in so-called local minima. 

. Famous victims of this temptation include Chomsky, Fodor, and to a 

lesser extent, Pinker (see his 1997). 

. By this I mean, in forms that multiplied the layers of so-called ‘hid- 

den units’ intervening between input and output. For a nice discussion 

of these difficulties, see Hinton, 2007a. 

. There are echoes here both of Husserl and of Merleau-Ponty. For some 

nice discussion, see Van de Cruys & Wagemans, 2011. 

. ‘Analysis by synthesis’ is a processing strategy in which the brain does not 

build its current model of worldly causes by accumulating, bottom-up, a 

mass of low-level cues. Instead, the brain tries to predict the current suite 

of sensory cues from its best models of interacting worldly causes (see 
Chater & Manning, 2006; Neisser, 1967; Yuille & Kersten, 2006).
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NOTES 309 

. For a nice account, defending a prediction-based model, see Poeppel & 

Monahan, 2011. 

This was a computationally tractable approximation to ‘maximum like- 

lihood learning’ as used in the expectation-maximization (EM) algo- 
rithm of Dempster et al. (1977). 

Readers unfamiliar with this notion might want to revisit the informal 

example of SLICE presented in the Introduction. 

You can see the network in action on Hinton’s website at: http://www. 

cs.toronto.edu/~hinton/digits.html. 

The differences mostly concern the kinds of message passing schemes 

that are, and are not, allowed, and the precise ways that top-down and 

bottom-up influences are used and combined during both learning and 

online performance. In Hinton’s digit-recognition work, for example, 

generative-model based prediction plays a key role during learning. But 

what that learning delivers are simpler (purely feedforward) strategies 
for use in rapid online discrimination. We shall later see (in Part III) 

how PP systems might fluidly and flexibly accommodate the use of such 

simple, low-cost strategies. What all these approaches share, however, 

is a core emphasis, at least during learning, on the use of generative 

models within a multilevel setting. For a useful introduction to Hinton 

and colleagues (often more ‘engineering-driven’) work on ‘deep learn- 

ing’ systems, see Hinton, 2007a; Salakhutdinov & Hinton, 2009. 

For a sustained discussion of these failings, and the attractions of con- 

nectionist (and post-connectionist) alternatives, see Bermuidez, 2005; 

Clark, 1989, 1997; Pfeifer & Bongard, 2006. 

See Kveraga, Ghuman, & Bar, 2007. 

For a selection of pointers to this important, and much larger, space, see 

chapter 10. 

The basic story just rehearsed is, as far as I can tell, still considered cor- 

rect, But for some complications, see Nirenberg et al., 2010. 

See essays in Alais & Blake, 2005, and the review article by Leopold & 

Logothetis, 1999. For an excellent introduction, see Schwartz et al., 2012. 

Such methods use their own target data sets to estimate the prior distri- 

bution: a kind of bootstrapping that exploits the statistical independen- 

cies that characterize hierarchical models. 

For further discussion, see Hohwy, 2013. 

This is not ‘explaining away’ in the sense of Pearl (1988), where that names 

the effect by which confirming one cause reduces the need to invoke 
alternative causes (as Hypothesis 1 increases its posterior probability, 

Hypothesis 2 will decrease its, even if they were independent before 

the evidence arrived). Nor is it ‘explaining away’ in the sense associated 

with the elimination of unnecessary entities from an ontology. Rather, 

the idea is simply that well-predicted sensory signals are not treated as 

newsworthy, since their implications are already accounted for in systemic 
response. Thanks to Jakob Hohwy for pointing this out.
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Notice, however, that the obvious efficiencies in forward process- 

ing are here bought at the cost of the multilevel generative machin- 

ery itself: machinery whose implementation and operation requires a 

whole set of additional connections to realize the downward swoop of 
the bidirectional cascade. 

The consistency of selective sharpening and dampening also makes 

it harder—though not impossible—to tease apart the empirical 

implications of predictive coding and ‘evidence accumulation’ accounts 

such as Gold and Shadlen’s (2001). For a review, see Smith & Ratcliff, 

2004. For an attempt to do so, see Hesselmann et al., 2010. 

The most minimal suggestion might be that the separation is essen- 

tially temporal, implicating the very same units at diffferent processing 

stages. Such proposals would, however, be required to resolve a host of 

technical problems that do not afflict more standard suggestions (such 

as Friston’s). 

Experimental tests have also recently been proposed (Maloney & 

Mamassian, 2009; Maloney & Zhang, 2010) which aim to ‘operational- 

ize’ the claim that a target system is (genuinely) computing its outputs 

using a Bayesian scheme, rather than merely behaving ‘as if’ it did so. 

This, however, is an area that warrants a great deal of further thought and 

investigation (for some nice discussion, see Colombo & Seriés, 2012). 

Potter et al. (2014) show that the minimum viewing time needed for 

comprehension of the conceptual gist of a visually presented scene 

(e.g., ‘smiling couple’ or ‘picnic’ or ‘harbour with boats’) can be as low 

as 13ms. This is too fast to allow new feedforward-feedback loops 

(‘re-entrant loops’) to become established. Moreover, the results do not 

depend upon the subjects being told the target labels before seeing the 

images (thus controlling for specific top-down expectations that might 

already be in place before presentation of the image). This suggests that 

gists of these kinds can indeed be extracted (as Barrett and Bar suggest) 

by an ultra-rapid feedforward sweep. 

This means that we need to be very careful when generalizing from 

ecologically strange laboratory conditions that effectively deprive us of 

such ongoing context. For some recent discussion, see Barrett & Bar, 

2009; Fabre-Thorpe, 2011; Kveriga et al., 2007. 

Such effects have long been known in the literature, where they first 

emerged in work on sensory habituation, and most prominently in 

Eugene Sokolov’s pioneering (1960) studies of the orienting reflex. More 

on this in chapter 3., 

For an excellent discussion of this recent work, see de-Wit et al., 2010. 

Possible alternative implementations are discussed in Spratling and 

Johnson (2006) and in Engel et al. (2001). 

This is a measure of relative neural activity (‘brain activation’) as indexed 

by changes in blood flow and blood oxygen level. The assumption is 

that neural activity incurs a metabolic cost that this signal reflects. It is
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widely acknowledged (see, e.g., Heeger & Ross, 2002) to be a rather indi- 

rect, assumption-laden, and ‘blunt’ measure compared to, say, single 

cell recording. Nonetheless, new forms of multivariate pattern analysis 

are able to overcome some of the limitations of earlier work using this 

technique. 

32. This could, the authors note, be due to some fundamental metabolic 

difference in processing cost between representing and error detection, 

or it may be that for other reasons the BOLD signal tracks top-down 

inputs to a region more than bottom-up ones (see Egner at al., 2010, 

p- 16607). 

33. These views stress the pro-active elicitation of task-relevant information 

‘just-in-time’ for use. Examples include Ballard, 1991; Ballard et al., 1997, 

Churchland et al,, 1994. For discussion, see Clark, 1997, 2008. We return 

to these topics in chapters 4 through 9. 

34. For windows onto this large literature, see Raichle, 2009; Raichle & 

Snyder, 2007; Sporns, 2010, chapter 8; Smith, Vidaurre, et al,, 2013. See 

also the discussions of spontaneous neural activity in chapters 8 and 9. 

35. Such economy and preparedness is biologically attractive, and neatly 

sidesteps many of the processing bottlenecks (see Brooks, 1991) 

associated with more passive models of the flow of information. In pre- 

dictive processing, the downward flow of prediction does most of the 

computational ‘heavy-lifting’, allowing moment-by-moment process- 

ing to focus only on the newsworthy departures signified by salient 

(high-precision, see chapter 2) prediction errors. We take up these issues 

in chapters 4 to 9. 

CHAPTER 2 

1. For another new one, that involves movement and requires viewing using 

a web browser, try http://www.michaelbach.de/ot/cog-hiddenBird/ 

index.html 

2. ‘Beliefs’ thus construed are best understood as induced by ‘probability 

density functions’ (PDFs), where these describe the relative likelihood 

that some continuous random variable assumes a given value. A random 

variable simply assigns a number to an outcome or state and may be dis- 

crete (if the possible values are at different points) or continuous (if they 

are defined over an interval). 

3. This flexible computation of sensory uncertainty is common ground 

between predictive processing and ‘Kalman filtering’ (see Friston, 2002; 

Grush, 2004; Rao & Ballard, 1999). 

4. Recall that in these models, error units receive signals from 

representation-units at their own level, and from representation-units 

at the level above, while representation units (sometimes called ‘state 

units’) are driven by error units at the same level and at the level below. 

See Friston, 2009, Box 3, p. 297.
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So-called ‘synchronous gain’ (in which synchronized pre-synaptic 

inputs modify post-synaptic gain; see Chawla, Lumer, & Friston, 1999) 

may also be a contributor here. There is also recent speculation, as 

Friston (2012a) points out, concerning a possible role for fast (gamma) 

and slow (beta) frequency oscillations in conveying bottom-up sensory 

information and top-down predictions, respectively. This affords a 

nice mapping to the activity of superficial and deep pyramidal cells. 

Investigations of these interesting dynamic possibilities remain in their 

infancy, but see Bastos et al,, 2012; Friston, Bastos, et al.,, 2015; Buffalo et 

al., 2011; and the more general discussion in Engel, Fries, & Singer, 2001. 

See also Sedley & Cunningham, 2013, p. 9. 

. Hohwy (2012) offers a wonderful quotation from Helmholtz’ 1860 

Treatise on Physiological Optics that captures this experience well. The 

quotation (as translated by Hohwy) reads: 

The natural unforced state of our attention is to wander 

around to ever new things, so that when the interest of an 

object is exhausted, when we cannot perceive anything new, 

then attention against our will goes to something else. ... If 

we want attention to stick to an object we have to keep finding 

something new in it, especially if other strong sensations seek 

to decouple it. (Helmholtz, 1860, p. 770; translated by JH) 

. Here too, such assignments may sometimes mislead, and plausible 

accounts of phenomena such as change blindness and inattentional blind- 

ness can be constructed that turn upon variations of precision-weighting 

across different types and channels of information, see Hohwy (2012). 

. Such cases may also involve another kind of prediction, associated with 

emotions (in this case, fear and arousal)—interoceptive predictions 

concerning our own physiological state. These further dimensions are 

discussed in chapter 7. 

. I'here concentrate on vision, but the points should apply equally well to other 
modalities (consider, e.g, the way we explore a familiar object by touch). 

Despite this core commonality with PP-style approaches, important dif- 

ferences (especially concerning the roles of reward and reinforcement 

learning) separate these accounts. See the discussion in Friston, 2011a; 

and in chapter 4. 

It is thus not a ‘conspicuity’ based map of the kind rejected by Tatler, 

Hayhoe et al. (2011). 

The simulation captures only the direct effects of the winning hypoth- 

esis on the pattern of saccades. A more complex model would need to 

include the effects of neural estimations of precision, driving the simu- 

lated agent to probe the scene according to where the most reliable (not 

just the most distinctive) sensory information is expected. 

For example, the suggestion of purchases that reflect previous choices 

may lead to cycles of new purchasing (and consequently adjusted
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recommendations) that progressively cement and narrow the scope 

of our own interests, making us victims of our own predictability. For 

some discussion, see Clark, 2003, chapter 7. 

Indeed, stimulus contrast can be used as a proxy to manipulate precision. 
An example of this is the empirical evidence for changes in post-synaptic 

gain—of the sort seen during attentional modulation—induced by chang- 

ing luminance contrast. See Brown et al., 2013. 

For a similar example, see Friston, Adams, et al., 2012, p. 4. 

A much better understanding of such multiple interacting mechanisms 
(various slow neuromodulators perhaps acting in complex concert with 

neural synchronization) is now needed, along with a thorough exami- 

nation of the various ways and levels at which the flow of prediction 

and the modulating effects of the weighting of prediction error (preci- 

sion) may be manifest (see Corlett et al,, 2010; Friston & Kiebel, 2009; 

Friston, Bastos et al., 2015). See also Phillips & Silverstein (2013); Phillips, 

Clark, & Silverstein (2015). 

Intriguingly, the authors are also able to apply the model to one 

non-pharmacological intervention: sensory deprivation. 

Feldman and Friston (2010) point out that precision behaves as if it were 

itself a limited resource, in that turning up the precision on some prediction 

error units requires reducing it on others. They also comment, intriguinly 

(op citp. 11) that “The reason that precision behaves like a resource is that the 

generative model contains prior beliefs that log-precision is redistributed 

over sensory channels in a context-sensitive fashion but is conserved over 

all channels.” Clearly, such ‘beliefs’ will in no way be explicitly encoded 

but must instead be somehow inherent in the basic structure of the sys- 

tem. This raises important issues (concerning what is and is not explicitly 

encoded in the generative model) that we return to in chapter 8. 

CHATTER 3 

1. 

W
 

See also DeWolf & Eliasmith, 2011, section 3.2. It is interesting to notice 

that key signature elements are preserved even when physical motion is 

minimized, as in the use of surgical micro-tools as non-standard imple- 

ments for signing one’s name. Experienced micro-surgeons succeed at 

the first attempt and show the same handwriting style as their normal 

writing (except that at 40X magnification, they can become tangled in 

the individual fibres of the paperf); see Allard & Starkes, 1991, p. 148. 

Such feats attest to our remarkable capacity to construct new skilled 
performances using existing elements and knowledge. 

. Sokolov, 1960; see also Bindra, 1959; Pribram, 1980; and Sachs, 1967. 

. See Sutton et al., 1965; Polich, 2003, 2007. 

. Iremain deliberately uncommitted as to the correct neuronal interpre- 

tation of this essentially functional notion of layers or levels. But for 

some speculations, see Bastos et al., 2012.
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. Though they do not, of course, recognize them under those 

descriptions! 

. I make no attempt to specify which animals fall under this broad 

umbrella, but the presence of bidirectional neocortical circuitry 

(or—and this is obviously harder to establish—functional analogues of 

such circuitry) should provide a good clue. 

. A voxel is a ‘volumetric pixel’ Each voxel tracks activity in a circum- 

scribed three-dimensional space. A single fMRI voxel typically repre- 

sents a fairly large volume (typically 27 cubic mm within a 3mm x 3mm 

x 3mm cube). 

. Actually, the experimenter’s task is harder, as the raw fMRI data pro- 

vides at best a coarse shadow (built from hemodynamic response) of the 

underlying neural activity itself. 

. Recall, however, that each voxel covers a substantial volume (around 27 

cubic mm ) of neural tissue. 

Thanks to Bill Phillips for suggesting this (personal communication). 

There may also be scope hereabouts for some illuminating discus- 

sion of ‘disjunctivism’'—the idea, roughly, that veridical percepts and 

hallucinations share no common kind. Much turns, of course, on just 

how the disjunctivist claim is to be unpacked. For a pretty comprehen- 

sive sampling of possible formulations, see the essays in Haddock & 

Macpherson, 2008, and in Byrne & Logue, 2009. 

This paragraph condenses, and slightly oversimplifies, the views found 

in Hobson (2001) and Blackmore (2004). See also Roberts, Robbins, & 

Weiskrantz, 1998; and Siegel, 2003. 

Just such a two-stage process, as Hobson and Friston note, lay at the 

heart of Hinton et als aptly named wake-sleep algorithm (see Hinton 

et al,, 1995, and discussion in chapter 1). 

See chapter 2 and further discussion in chapters 5 and 8. 

This second-order (‘meta-memory’) component is necessary to account 

for the feeling of familiarity-without-episodic-recall. (Think, for exam- 

ple, of recognizing a face as familiar, despite having no episodic mem- 

ory of any specific encounter with that individual) 

For another attempt to tackle memory using predictive-processing-style 

resources, see Brigard, 2012. For a different strategy, see Gershman, 

Moore, et al., 2012. 

For another example of this kind of account, see van Kesteren et al,, 

2012. 

For example some model-elements must account for small variations in 

the sensory signals that accompany bodily movement and that help to 

specify a perspective upon a scene, while others track more invariant 

items, such as the identity and category of the perceived object. But it is 

the precision-modulated interactions between these levels, often medi- 

ated (see Part II) by ongoing motor action of one kind or another, that 

now emerges as the heart of intelligent, adaptive response.
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CHAPTER 4 

10. 

11. 

James, 1890, vol. 2, p. 527. 

. The perceived opposition is apparent in treatments including Anderson 

and Chemero (2013), Chemero (2009), Froese and lkegami (2013). 

More ecumenical views are defended in treatments including Clark 

(1997, 2008). 

. See also Weiskrantz, Elliot, and Darlington (1971), who there introduce 

what has rather charmingly become known as the ‘standard tickle 

apparatus’ allowing easy experimental comparisons between self- and 

other-induced tickling. 

. See Decety, 1996; Jeannerod, 1997; Wolpert, 1997; Wolpert, Ghahramani, 

& Jordan, 1995; Wolpert, Miall, & Kawato, 1998. 

. A related (but simpler and more general) explanation of such effects 

is made available by the absorption of the standard accounts into the 

more general framework of prediction-based processing. According 

to this account, the reason we do not see the world as moving simply 

because we move our eyes is that the sensory flow thus induced is best 

predicted using an internal model whose highest levels depict a stable 
world available for motoric sampling. 

. In that more complete account, descending precision expectations dur- 

ing self-made acts turn down the volume or gain of prediction errors 

reporting the sensory consequences of those acts. In effect, we thus tem- 

porarily suspend our attention to many of the sensory perturbations 

that we ourselves cause (see Brown et al., 2013; and further discussion 

in chapter 7). 

. These are cost functions that address bodily dynamics, systemic noise, 

and required accuracy of outcome. See Todorov, 2004, Todorov & 

Jordan, 2002. 

. See Adams, Shipp, & Friston, 2012; Brown et al, 2011; Friston, 

Samothrakis, & Montague, 2012. 

. For the full story, see Shipp et al, 2013. Compactly, ‘the descending 

projections from motor cortex share many features with top-down 

or backward connections in visual cortex; for example, corticospinal 

projections originate in infragranular layers, are highly divergent and 

(along with descending cortico-cortical projections) target cells express- 

ing NMDA receptors’ (Shipp et al., 2013, p. 1). 

Anscombe’s target was the distinction between desire and belief, but 

her observations about direction of fit generalize (as Shea, 2013, nicely 

notes) to the case of actions, here conceived as the motoric outcomes of 

certain forms of desire. 

Two commonly cited costs are thus moise’ and ‘effort’—fluent action 

seems to depend upon the minimization of each of these factors. See 

Harris & Wolpert, 1998; Faisal, Selen, & Wolpert, 2008; O’'Sullivan, 

Burdet, & Diedrichsen, 2009.



316 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

NOTES 

Recall that the term ‘belief” is here used to cover any of the contents of the 

generative models that guide perception and action. Such beliefs need not 

be agent-accessible and, as previously noted, are usually understood as 

expressions of probability density functions describing the relative likeli- 

hood that some continuous random variable assumes a given value. In the 

context of action selection, for example, a PDF might specify, in a continu- 

ous fashion, the current probability of the transition to some successor state. 

What this all amounts to, in the end, is a combination of active con- 

struction, selective sampling, and selective representing. The full pic- 

ture here will not emerge until Part III of our text. But when all those 

factors conspire, the knowing agent locks on to the organism-relevant 

structure of the surrounding (social, physical, and technological) envi- 

ronment, achieving a delicate and life-sustaining balancing act between 

building a world and being constrained by a world. This is the same bal- 

ancing act highlighted by Varela, Thompson, and Rosch in their classic 

(1991) treatment, The Embodied Mind. 

I borrow this phrase from one of my favourite philosophers, Willard 

van Orman Quine, who used it when commenting on a rather bloated 

ontology, writing that “‘Wyman’s overpopulated universe is in many 

ways unlovely. It offends the aesthetic sense of us who have a taste for 

desert landscapes’ (Quine, 1988, p. 4). 

For some critical concerns about this general strategy, see Gershman & 

Daw, 2012. Gershman and Daw worry, in effect, that collapsing costs 

and utilities into expectations delivers too blunt a tool, since it makes 

it hard to see how unexpected events (such as winning the lottery) 

could be treated as valuable. This kind of worry underestimates the 

resources available to the fans of prediction and expectation. Adaptive 

agents should expect to be able, at times, to benefit from surprises and 

environmental change. This suggests that the two approaches may 

not be as conceptually distinct as they might at first appear. They may 

even be inter-translatable, since everything that one side might wish 

to express using talk of utility and value, the other may express using 

talk of higher level (more abstract and flexible) expectations. For more 

on these and related issues, see Part III. 

See Friston, 2011a; Mohan & Morasso, 2011. 

For some discussion, see Friston, 2009, p. 295. 

The apparent radicalism of this view depends mostly upon the contrast 

with work that posits multiple paired forward and inverse models as 

the substrate of fluent, flexible motor behaviour. As we saw, alternative 

approaches (such as Feldman, 2009; Feldman & Levin, 2009) that posit, 

e.g., equilibrium or reference points as their core organizing principle 

provide a very natural fit with the proprioceptive prediction-based pro- 

cess model (for further discussion, see Friston, 2011a; Pickering & Clark, 

2014; Shipp et al,, 2013).
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For the most part (but see Mohan & Morasso, 2011; Mohan, Morasso, 

et al, 2013) work in Cognitive Developmental Robotics (CDR) has 

retained the classical structure of paired forward/inverse models, effer- 

ence copy, and value and reward signals. The CDR experiments are 

suggestive, however, insofar as they show that prediction-error-based 

encodings can structure motor actions in ways that open the door to 

imitation learning, 

Predictive processing is, I think, ideally positioned to satisfy this remit, 

since it combines powerful learning routines with a fully unified per- 

spective encompassing perception and action. 

In the work by Park et al,, this kind of early learning was enabled using 

a self-organizing feature map (Kohonen, 1989, 2001). This is closely 
related to Hebbian learning, but it adds a ‘forgetting term’ to restrict the 

potential explosion of learned associations. Another approach to such 

learning deploys a modified recurrent neural network (a ‘recurrent neu- 

ral network with parametric biases’, see Tani et al., 2004). 

Dynamic Anthropomorphic Robot with Intelligence—Open Platform, 

from the Virginia Tech Robotics and Mechanisms Lab. See http://www. 

romela.org/main/DARwIn_OP:_Open_Platform_Humanoid_Robot_ 

for_Research_and_Education. 

CHAPTER 5 

1. Of course, they may also be treated simply as further phenomena requir- 
ing the development of brand new models—a less efficient strategy that 
may be mandated by encounters with the alien and exotic, or perhaps 

(see Pellicano & Burr, 2012, and comments by Friston, Lawson, & Frith 

2013) by malfunctions of the context/prediction machinery itself. See 

also chapter 7. 

. See McClelland & Rumelhart, 1981, and for an updated ‘multino- 

mial interactive activation’ model, see Khaitan & McClelland, 2010; 

McClelland, Mirman, et al., 2014. 

. There are deep connections between this form of connectionism and 

work in the PP paradigm. For some explorations, see McClelland, 2013, 

and Zorzi et al., 2013. 

. For an alternative implementation, that nonetheless preserves key fea- 

tures of the PP model, and that also implements a functional hierarchy, 

see Spratling (2010, 2012). 

. Recall that empirical priors are the probabilistic densities or ‘beliefs’ 
associated with intermediate levels in a hierarchical model. 

. See Aertsen et al,, 1987; Friston, 1995; Horwitz, 2003; Sporns, 2010. 

Sporns (2010, p. 9) suggests that structural connectivity remains stable 

‘on a scale of seconds to minutes’, while changes in effective connectiv- 

ity may occur on the order of hundreds of milliseconds.
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. For useful introductions to these approaches, see Stephan, Harrison, et 

al., 2007, and Sporns, 2010. 

. Context-reflecting expectations about reliability and salience are thus 

acquired injust the same way as knowledge about other worldly or bodily 

properties and states of affairs. Estimations of reliability and salience are 

themselves determined by the current interaction of sensory data with 

the overall generative model, giving rise to the increasingly intractable 

problem of ‘estimating the reliability of one’s own estimates of reliability” 

{for some nice discussion, see Hohwy, 2013, chapter 5). 

As achieved, for example, using various forms of network analysis (for a 

rich and comprehensive review, see Sporns, 2002) able to reveal patterns 

of functional and effective connectivity between neurons and between 

neuronal populations. See also Colombo, 2013. 

The brain thus construed is ‘labile’ and comprises ‘an ensemble of func- 

tionally specialized areas that are coupled in a nonlinear fashion by 

effective connections’ (Friston & Price, 2001, p. 277). Except that where 

Friston and Price speak of ‘functionallly specialized’ areas, I think it 

would be better to follow Anderson (2014, pp. 52-53) and speak of func- 

tionally differentiated” ones. 

Such accounts share core commitments with several related proposals 

(for reviews, see Arbib, Metta, et al., 2008, section 62.4, and Oztop et 

al., 2013). The HMOSAIC model (Wolpert et al., 2003) exploits the same 

kind of hierarchical prediction-driven multilevel model as a means of 

supporting action imitation, and Wolpert et al. further suggest that that 

approach might likewise address issues concerning action understand- 

ing and the ‘extraction of intentions’. 

For ease of exposition, I will sometimes speak as if we commanded 

distinct generative models for different domains. Mathematically, how- 

ever, this can always be couched as further tuning of a single, overall 

generative model. This is clear in the various treatments by Friston and 

colleagues, see, e.g., Friston, 2003. 

The suggestion here is not that our somatosensory areas themselves 

are rendered inactive during action observation. Indeed, there is con- 

siderable evidence (reviewed in Keysers et al., 2010) that such areas 

are indeed active during passive viewing. Rather, it is that the for- 

ward flowing influence of (the relevant aspects of) proprioceptive 
prediction error now becomes muted, rendering such error unable to 

impact higher levels of somatosensory processing. Just such a pattern 

(of lower level activity combined with higher level inactivity) was 

found by Keysers et al. (2010). See also Friston, Mattout, et al., 2011, 

p. 156. 

This, as Jakob Hohwy (personal communication) nicely notes, is not 

a lucky or ad hoc trick. It is simply another manifestation of learn- 

ing the best ways to estimate precision so as to minimize prediction 

errors.
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There is large and complex literature on this topic, see Vignemont & 

Fourneret, 2004, for a useful review, and some important fine-tuning of 

the basic notion. See also Hohwy, 2007b. 

See, e.g., Friston, 2012b; Frith, 2005; Ford & Mathalon, 2012. 

See Barsalou, 1999, 2009; Grush, 2004; Pezzulo, 2008; Pezzulo et al., 2013; 

see also Colder, 2011; Hesslow, 2002. 

In this work, an ambiguous figure (the famous face-vase figure) is 

seen as either a face or a vase in ways that co-varied with spontane- 

ous pre-stimulus activity in the fusiform face area (FFA). As the authors 

note, however ‘it is unclear whether the variations in the ongoing activ- 

ity of FFA signals reported here are akin to slow fluctuations as they 

have been described in the form of resting state networks” (Hesselmann 

et al,, 2008, p. 10986). 

Some sleeping states and perhaps some practices (such as meditation 

and chanting) may provide exceptions to this rule. 

Such estimates of our own uncertainty play a central role in a wide 

variety of recent computational and neuroscientific work. See, e.g., Daw, 

Niv, & Dayan, 2005; Dayan & Daw, 2008; Knill & Pouget, 2004; Yu & 

Dayan, 2005; Daw, Niv, & Dayan 2005; Dayan & Daw, 2008; Ma, 2012; van 

den Berg et al., 2012; Yu & Dayan, 2005. 

CHAPTER 6 

1. As noted in chapter 1, the phrase ‘perception as controlled hallucina- 

tion’ has been variously attributed to Ramesh Jain, Rodolfo Llinas, and 

Max Clowes. It is also quoted by Rick Grush in his work on the ‘emula- 

tion theory of representation’ (e.g., Grush, 2004). 

. Given the standard implementation of the predictive processing 

story—for an alternative implementation, see Spratling, 2008. 

. Though recall the discussion (in 1.13) of the surprising power of an 

ultra-rapid feedforward pass to uncover the conceptual gist of a visu- 

ally presented scene (Potter et al., 2013). 

. For an example of this, see 6.9. 

. The notion of an affordance is widely used and widely interpreted. In 

the hands of its originator, J. J. Gibson, affordances were agent-relative 

possibilities for action present (though not necessarily recognized by 
the agent) in the distal environment (see Gibson, 1977, 1979). For a care- 

ful, nuanced discussion, see Chemero, 2009, chapter 7. 

. See also Kemp et al., 2007. 

. The process level here corresponds to what Marr (1982) described as the 

level of the algorithm. 

. The classic critique is that of Fodor and Pylyshyn (1988), but related 

points were made by more ecumenical theorists, such as Smolensky 

(1988) whose later work on optimality theory and harmonic grammar 

(Smolensky & Legendre, 2006) likewise accommodates both generative
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structure and statistical learning. For further discussion of this impor- 

tant issue, see Christiansen & Chater, 2003. 

. For an excellent discussion of this attractive feature of hierarchi- 

cal Bayesian approaches, see Tenenbaum et al., 2011. Caution is still 

required, however, since the mere fact that multiple forms of knowledge 

representation can co-exist within such models does not show us, in any 

detail, how such various forms may effectively be combined in unified 

problem-solving episodes. 

For a review, see Tenenbaum et al., 2011. But for an important critique 

of some of the claims as applied to higher-level cognition, see Marcus & 

Davis, 2013. 
As Karl Friston (personal communication) has suggested. 

For example, a system might start with a set of so-called ‘perceptual 

input analyzers’ (Carey, 2009) whose effect is to make a few input 

features more salient for learning. For discussion of the combined 

effects of HBM learning and such simple biases, see Goodman et al., 

in press. 

This ‘action-oriented’ paradigm is associated with insights from devel- 

opmental psychology (Smith & Gasser, 2005; Thelen et al., 2001), eco- 

logical psychology (Chemero, 2009; Gibson, 1979; Turvey & Shaw, 1999), 

dynamical systems theory (Beer, 2000), cognitive philosophy (Clark, 

1997, Hurley, 1998; Wheeler, 2005), and real-world robotics (Pfeifer & 

Bongard, 2006). For a useful sampling of many of these themes, see the 

essays in Nunez & Freeman, 1999. 

There is a nice discussion of this issue in Wiese (2014). 

Such appeals to powerful (and often quite abstract) hyperpriors will 

clearly form an essential part of any larger, broadly Bayesian, story 

about the shape of human experience. Despite this, no special story 

needs to be told about either the very presence or the mode of action of 

such hyperpriors. Instead, they arise quite naturally within hierarchi- 

cal models of the kind we have been considering where they may be 

innate (giving them an almost Kantian feel) or acquired in the manner 

of empirical (hierarchical) Bayes. 

See Ballard (1991), Churchland et al., (1994), Warren (2005), Anderson 

(2014), pp. 163-172. 
Thus Hohwy et al. (2008) note that “Terms like “predictions” and 

“hypotheses” sound rather intellectualist when it comes to basic per- 

ceptual inference. But at its heart the only processing aim of the system 

is simply to minimize prediction error or free energy, and indeed, the 

talk of hypotheses and predictions can be translated into such a less 

anthropomorphic framework [and] implemented using relatively sim- 

ple neuronal infrastructures’ (Hohwy et al., 2008, pp. 688—-690). 

One might even deny that evil demon style manipulations actually 

deceive us. Instead, they merely suggest an alternate substrate for the 

same old veridical knowledge about an external reality: a world built
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of tables, chairs, baseball games, and the like. For this kind of response, 

see Chalmers (2005). 

Typically, these rich inner models involved symbolic encodings that 

described states of affairs using complex language-like knowledge 

structures. Nothing like this is implied by PP. 

A versions of this misplaced worry also appears in Froese & 

Tkegami, 2013. 

Thanks to Michael Rescorla for this helpful terminological suggestion. 

Thus Friston, in a passage already quoted back in chapter 1, suggests 

that ‘the hierarchical structure of the real world literally comes to be 

“reflected” by the hierarchical architectures trying to minimize predic- 

tion error, not just at the level of sensory input but at all levels of the 
hierarchy”’ (Friston, 2002, p. 238). 

It is a weak sense because there is no guarantee that the potential think- 
ings of beings deploying this strategy will form the kind of closed set 

(encompassing all possible combinations of the component grasps) 

required by the so-called Generality Constraint (Evans, 1982). 

See, e.g., Moore, 1903/1922; Harman, 1990. 

In this case we are perceptually misled even though we, as reflective 

agents know better. In more severe cases (cases of delusions and hal- 

lucinations) we may be misled at every level. 
It is not inconceivable, for example, that a broader ecological perspective 

might reveal the rubber hand illusion and its ilk as the inescapable price 

of being a labile biological system whose parts may grow, change, and 

suffer various forms of unexpected damage and/or augmentation. 

For a nice introduction to this illusion, with accompanying graph- 

ics, see http://psychology.about.com/od/sensationandperception/ss/ 

muller-lyer-illusion.htm. 

Advanced agents may manage a step or two into these murky meta- 

waters. See, e.g., Daunizeau, den Ouden, et al., 2010a, b. 

CHAPTER 7 

1. 

w
 

For an excellent discussion of many general issues concerning metacog- 

nition and prediction error, see Shea (2013). That discussion is couched 

in terms of ‘reward prediction errox’ but all the key claims apply, as far 

as I can tell, to the more general case of sensory prediction error dis- 

cussed in the present text. 

. This illustration first appeared in Frith and Friston (2012). 

. For a review of some of the recent literature, see Schiitz et al., 2011. 

. For the equations, see Adams et al., 2012, pp. 8-9. Note that the equations 

on those pages specify first, the process generating the sensory inputs 

that the agent receives (exteroceptive retinal input concerning the tar- 

get location, in an intrinsic (retinal) frame of reference, and propriocep- 

tive input reporting angular displacement of the eye) then second, the
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generative model that the agent brings to bear upon those inputs. Only 

the latter is described (informally) in the present text. 

. There is a kind of double negation here that can be a little confus- 

ing. The picture is one in which the standard (neurotypical) state 

involves an attenuation (i.e,, a reduction) of the sensory consequences 

of self-produced actions. When this attenuation is itself reduced (abol- 

ished or lessened), such sensory consequences are—in one sense at 

least—experienced more veridically. They are experienced as being of 

the same intensity as the same event (a certain pressure on the hand, 

say) externally generated. But this, as we shall see, is not always a good 

thing and may also lead to the emergence of various illusions of agency 

and control. 

. All subjects underestimate their own applied forces but that underesti- 

mation is much reduced in the case of the schizophrenic subjects (see 

Shergill et al., 2005). 

. See Adams et al.,, 2012, pp. 13—-14; Feldman & Friston, 2010; Seamans & 

Yang, 2004; see also Braver et al., 1999. 

. Heath Robinson, was a British cartoonist whose work, rather like that of 

Rube Goldberg in the USA, often depicted weird and complex machin- 
ery for the achievement of simple goals—for example, a long arrange- 

ment of chains, pulley, levers, and cuckoo-clocks to butter a slice of 

bread or deliver a cup of tea at a pre-arranged time. 

. Itis worth repeating that what matters in all these cases is really just the 

relative balance between the precision of prediction errors computed 

at various levels. It does not matter, functionally speaking, whether 

high-level precision is decreased or low-level precision increased. This 

is not to say that such differences are unimportant, as they concern pat- 

terns of causality that may have clinical implications concerning etiol- 

ogy and treatment. 

The label ‘functional motor and sensory symptoms’, unlike many of 

these older locutions, is considered acceptable by patients (see Stone 

et al., 2002). 

The influence of folk-physiological expectations has also been noted 
when hypnotized patients are told that their hand is paralysed. Here, 

as in cases of so-called ‘hysterical paralysis| the boundaries of the 

paralysis reflect our commonsense ideas about the borders of the hand 

rather than the true physiology of the hand as a moveable unit (see 

Boden, 1970). 

E.g., insular cortex (in the case of functional pain symptoms) or premo- 

tor cortex or supplementary motor area (in the case of functional motor 

symptoms). 

For an interesting application of this kind of framework to the special 
case of phantom limb pain, see De Ridder, Vanneste, & Freeman, 2012. 

For reviews, see Benedetti, 2013; Enck et al., 2013; Price et al., 2008. 

Buchel et al. also speculate (2014, pp. 1227-1229) that administered
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opioids might similarly play a (somewhat more direct and ‘mechani- 

cal’) role in modulating the precision of top-down predictions. For an 

intriguing evolutionary account that seems broadly compatible with the 

PP model, see Humphrey, 2011. 

It is enlightening to visit the online discussion forum ‘wrongplanet. 

com’ and search for ‘hollow mask illusion’. On one thread, a variety of 

autistic subjects report initially failing to see the hollow mask illusion 

(instead seeing it as it really is, i.e., as an inverted concave mask rather 

than as a convex face-shape). But many subjects were able to learn to see 

it in the neurotypical way, and those same subjects then found them- 

selves unable to experience the inverted mask as concave. This is very 
much like the neurotypical experience of sine-wave speech (see 2.2). 
There is emerging empirical support for this story (see Skewes 

et al,, 2014). 
This is probably not the best term here, as it invites a false parallel with 

the technical notion of a hyper-prior (see Friston, Lawson, & Frith, 2013). 

In exploring the so-called ‘sense of presence’, it is not clear whether the 

experiential target is some nebulous but positive sense of presence, or 

simply the normal absence of a sense of non-presence, unreality or dis- 

connection. The model that Seth et al. propose is deliberately agnostic on 

this subtle but potentially quite illuminating issue. Instead, their target 

is whatever (a feeling of presence, or the absence of a feeling of absence) 

is impaired in so-called ‘dissociative psychiatric disorders” disorders 

where the sense of reality of the world, or of the self, is altered or lost. 

Sometimes proprioception is counted as part of exteroception. Seth 

et al. themselves carve the cake in this manner. Nothing in the present 

treatment turns upon this terminological choice, but it is worth bearing 

in mind when viewing Figure 7.2 
For criticisms and complexities, see Marshall and Zimbardo (1979), 

Maslach (1979), and LeDoux (1995). 

There is resonance here with the complex and subtle work of Nick 

Humphrey, who argues (Humphrey, 2006) that sensation always 

involves something pro-active—the ongoing attempt to meet the incom- 

ing signal with an active (predictive processing would say, ‘anticipa- 

tory’) response. 

Towards the end of his treatment, Pezzulo adds a further (and I think 

important) twist, arguing (2013, p. 18) that ‘interoceptive information is 

part and parcel of the representation of entities such as “wind”, “thief”, 

and many others”. The idea here is that the internal states that become 

active in the presence of specific external states of affairs are always 

richly contextually inflected, and that this inflection now seamlessly 

combines ‘objective’ and ‘subjective’ (e.g., emotional and body-related) 

elements. 

An additional factor (Pezzulo, 2013, p. 14) might be the greater simplic- 

ity or parsimony of the single model (thief in the night) as against the
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complex model involving two co-occurring but causally unrelated fac- 

tors. We shall have more to say about this kind of factor in chapters 8 

and 9. 

For a lovely rendition of this kind of picture, see Barrett & Bar, 2009. 

Consistent with this single crucial role, insults or disturbances impact- 

ing distinct neural populations, or selectively impacting tonic or phasic 

dopaminergic response, will often have very different behavioural and 

experiential effects (see Friston, Shiner, et al. 2012). 

It will only feel like progress, of course, if you are already somewhat 

sceptical about the way the ‘hard problem’ is typically presented in the 

literature. True believers in the hard problem will say that all we can 

make progress with using these new-fangled resources is the familiar 

project of explaining patterns of response and judgement, and not the 

very existence of experience itself. Those of a more optimistic nature 

will think that explaining enough of that just is explaining why there 

is experience at all. For a start on this project, as it takes shape within 

the broadly Bayesian framework on offer, see Dennett, 2013. 

CHAPTER 8§ 

1. The full title was ‘Fast, Cheap, and Out of Control: A Robot Invasion 

of the Solar System’'—this alluded to parts of the paper mooting the 

idea of sending hundreds of tiny, cheap robots into space. See Brooks & 

Flynn, 1989. 

. For example, if asked to judge which of a pair of towns has the high- 

est population, we will often choose the one whose name we find most 

familiar. In many cases this familiarity contest (or ‘recognition heu- 

ristic’) will indeed track population size. For a balanced review, see 

Gigerenzer and Goldstein (2011). 

. There are related accounts of how dogs catch Frisbees, a rather more 

demanding task due to occasional dramatic fluctuations in the flight 

path (see Shaffer et al., 2004). 

. To test this hypothesis, Ballard et al. used a computer program to alter 

the colour of a block while the subject was looking elsewhere. For most 

of these interventions, subjects did not notice the changes even for 

blocks and locations that had been visited many times before, or that 

were the focus of the current action. 

. Thanks to Jakob Hohwy (personal communication) for this helpful 

suggestion. 

. This might be implemented as an adapted version of the so-called 

‘actor-critic” account (see Barto, 1995; Barto et al. 1983) but one in which 

a model-free ‘actor’ is trained by a model-based ‘critic’ (see Daw et al., 

2011, p. 1210). 

. In essence, this involves creating a weighted average of the predic- 

tions made by different models. Bayesian model selection, by contrast,
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involves selecting one model over others (see, e.g., Stephan et al., 2009). 

The reader may note that for most of the present chapter, I frame my 

own discussion in terms of model selection. Nonetheless, model aver- 

aging, under some (high sensitivity) conditions, can deliver outright 

model selection. Agents able to vary the sensitivity of their own model 

comparisons would benefit from increased flexibility though it is not yet 

clear which procedure provides the best fit with behavioural and neural 

evidence. For further discussion, see Fitzgerald, Dolan, & Friston, 2014. 

8. Weaker versions of the ‘dual systems’ view, such as those recently 
defended by Evans (2010) and Stanovich (2011) are, however, potentially 

consistent with the more integrated PP account. See also Frankish, 

forthcoming, 

9. Such an effect has been demonstrated in some simple simulations of 

cued reaching under the influence of changing tonic levels of dopamine 

firing—see Friston, Shiner, et al., (2012). 

10. This kind of approach, in which simple, efficient models are gated and 

enabled within the larger context of a hierarchical Bayesian system, is 
by no means unique to predictive processing,. It is present, for example, 

in the MOSAIC framework due to Haruno, Wolpert, & Kawato, 2003. In 

general, this kind of strategy will be available wherever estimations of 

our own uncertainty are available to gate and nuance online response. 

11. For a thorough rehearsal of the positive arguments, see Clark, 2008. For 

critiques, see Adams & Aizawa, 2008; Rupert, 2004, 2009. For a rich sam- 

pling of the ongoing debate, see the essays in Menary, 2010. 

12. Except at bed time! I use the term ‘darkened room’ o mean the scenario 

in which we retire to a dark chamber and remain there, without food, 

water, or amusements until we die—this is the kind of ‘predictable but 

deadly’ circumstance that the critics have in mind. 

13. This example occurs in Campbell, 1974. 

14. This was confirmed by Lisa Meeden (personal communication). 

Meeden thinks the story might originate with a learning robot (Lee 

et al., 2009) designed to seek out learnable (but as yet unlearnt) sen- 
sory states. One such ‘curiosity-bot” (or ‘intrinsically motivated con- 

troller’), instead of simply learning the easiest stuff first, seemed to 

challenge itself by trying to learn a hard thing alongside an easier one. 

This behaviour was not one that the experimenters had anticipated 

and resulted in the robot displaying oscillating back-and-forth view- 
ing routine. Commenting on the mythological spinning behaviour, 
Meeden (personal communication) notes that ‘it would be interesting 

to see what would happen with a curiosity-based learning robot placed 

into a fairly simple environment for a long period of time. Would it 

begin to create new experiences for itself by trying new combinations 

of movements?’ For more on robotics and intrinsic motivations, see 

Oudeyer et al., 2007. 

15. The original study was that of Jones, Wilkinson, and Braden (1961).
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For more on this ‘exploration/exploitation’ trade-off, see Cohen, 

McClure, & Yu, 2007. 
In the case of perception, another fundamental pay-off for such 

‘self-organized instability’ may be avoiding overconfidence, thus 

always leaving room to explore other possibilities. 

CHAPTER g 

1. 

w
 

10. 

11. 

As noted earlier (4.5) I do not mean to suggest that all prediction errors 

can be quashed by action. What seems right, however, is that even 

in the case where the error cannot itself be resolved by action, the 

error-minimizing routine is still trying to deliver a grip upon the world 

that is apt for the selection of action. Salient unexplained errors, even in 

the ‘purely perceptual’ case, are thus geared to select percepts that are 

fundamentally designed to help us select actions. 

. This routine (Mozer & Smolensky, 1990) removed the least necessary 

hidden units from a trained-up network and thus improved both effi- 

ciency and generalization. Similarly, in computer graphics, skeletoniza- 

tion routines remove the least necessary pixels from an image. For some 

discussion, see Clark (1993). 

. Thanks to Jakob Hohwy for drawing this work to my attention. 

. In the work by Namikawa et al., the neural structures thus implicated 

were prefrontal cortex, supplementary motor area, and primary motor 

cortex (see Namikawa et al,, 2011, pp. 1-3). 

. The potency and the complexity of such effects are nicely illustrated 

in Dehaene’s (2004) ‘neuronal re-cycling’ account of the complex inter- 

play between neural precursors, cultural developments, and the neural 

effects of those cultural developments, as manifest in the key cognitive 

domains of reading and writing (see 9.7 following). 

. For some intriguing speculations concerning the initial emergence of all 

those discrete symbols in predictive, probabilistic contexts, see Kdnig & 

Kriger, 2006. 

. See, e.g., Anderson, 2010; Griffiths & Gray, 2001; Dehaene et al., 2010; 

Hutchins, 2014; Oyama, 1999; Oyama et al., 2001; Sterelny, 2003; Stotz, 

2010; Wheeler & Clark, 2008. For a useful review, see Ansari, 2011. 

. For some discussion, see Tsuchiya & Koch, 2005. 

. Exposure to words does not, however, appear to work in the case of bin- 

ocular rivalry, although priming with other (image-congruent) sounds 

does, see Chen, Yeh, & Spence, 2012. 

Thiswould go some way towards explaining why simple language-based 

measures (such as vocabulary size) are good predictors of performance 

on non-verbal intelligence tests. See Cunningham & Stanovich, 1997. 

See also Baldo et al., 2010. 

There is now a large, and not altogether unified, literature on enaction. 

For our purposes, however, it will suffice to consider only the classic
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statement by Varela et al. (1991). Important contributions to the larger 

space of enactivist, and enactivist-inspired, theorizing include Froese 

and Di Paolo (2011), Noé (2004, 2010), and Thompson (2010). The edited 

volume by Stewart et al. (2010) provides an excellent window onto much 

of this larger space. 

12. Part of this image is misleading, insofar as it suggests that the external 

world is merely a source of undifferentiated perturbations (the repeated 

striking of a monotonous hammer). What seems correct is that the 

agent, by exposing herself to the varied stimulations predicted by the 

generative model, actively contributes to the world as sampled. Since it 

is only the world as sampled that the model needs to accommodate and 

explain, this delivers a very real sense in which (subject to the overarch- 

ing constraint of structural self-maintenance, i.e., persistence and sur- 

vival) we do indeed build or ‘enact’ our individual and species-specific 

worlds. 

13. Variants of such a process may be found at several organizational 

scales, perhaps down to the level of dendrites of single cells. In just 

this vein, Kiebel and Friston (2011) suggest that one can understand 

intra-cellular processes as minimizing ‘free energy’ (see Appendix 2). 

14. I have engaged such arguments at length elsewhere (see Clark, 1989, 

1997, 2008, 2012). For sustained arguments against the explanatory 

appeal to internal representation, see Chemero, 2009; Hutto & Myin, 

2013; Ramsey, 2007. For some useful discussion, see Gallagher, Hutto, 

Slaby, & Cole, 2013; Sprevak, 2010, 2013. 

15. Itis also the role more broadly played by what Engel et al. (2013) describe 

as ‘dynamic directives'—dispositions towards action that are rooted 

in emergent ensembles that can include multiple neural and bodily 

structures. 

16. Bayesian perceptual and sensorimotor psychology already has much 

to say about just what worldly and bodily states these may be. See e.g,, 

Kérding & Wolpert, 2006; Rescorla, 2013, In Press. 

17. For a wonderful attempt, see Orlandi (2013). Orlandi’s provocative but 

closely argued claim is that vision is not a cognitive activity and does 

not involve trading in internal representations (although it may some- 

times generate mental representations as a kind of end-product). The 

argument is restricted in scope, however, as it targets only the processes 

involved in online visual perception. 

CHAPTER 10 

1. Such an understanding may have social and political consequences too. 

For at the very heart of human experience, PP suggests, lie the massed 

strata of our own {mostly unconscious) expectations. This means that 

we must carefully consider the shape of the worlds to which we (and 

our children) are exposed. If PP is correct, our percepts may be deeply
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informed by non-conscious expectations acquired through the statistical 

lens of our own past experience. So if (to take just the glaringly obvi- 

ous examples) the world that tunes those expectations is thoroughly 

sexist or racist, that will structure the subterranean prediction machin- 

ery that actively constructs our own future perceptions—a potent rec- 

ipe for tainted ‘evidence’, unjust reactions, and self-fulfilling negative 

prophecies. 

One such subset is, of course, the set of hierarchical dynamic models (see 

Friston, 2008). 

Conscious experience is something of an outlier in this set, since it may 

well be a rather basic feature of animal cognition. This is suggested, in 

fact, by recent work (reviewed in chapter 7) associating conscious experi- 

ence with interoceptive prediction: prediction of our own physiological 

states. 

APPENDIX 1 

1. The posterior probability of the hypothesis given some new data (or sen- 

sory evidence) is proportional to the probability of the data given the 

hypothesis, multiplied by the prior probability of the hypothesis.
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