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Introduction

Recent decades have borne witness to the emergence of new frameworks in psychology (Chemero,
2009; Gibson, 1979), neuroscience (Eliasmith, 2005; Varela, 1996; Varela et al., 1991), anthropology
(Deacon,2011a), and philosophy (Thompson, 2010), each more committed than the last to explaining
the cognitive feats of organisms from their own point of view.

New mechanistic theories, drawing on dynamical systems theory and information theory, evince
a growing interest in the study of the workings of meaning and signification. Previous theories had
tended to approach living systems either from a detached, reductionist stance that disregarded con-
scious experience (Fodor, 1975; 1983; Watson, 1913) or — in contrast — from a purely subjective
perspective, without much concern for the physical processes that underwrite our experience of a
meaningful world (Ingold, 2000). The dual reality of living systems — as mechanistic, but also per-
spectival and capable of signification — increasingly drives research on sentient systems. It would be a
mistake to think that adopting a mechanistic approach commits one to reductionism and to mindless
conceptions of the living (Ramstead et al., 2018; Thompson, 2010).

The terms “signification” and “meaning” are polysemic. Sometimes their referents seem elusive
because the phenomena at play in attributions of significance are multilayered. We use the terms “sig-
nification” and “meaning’ to refer to a specific kind of interpretive ability and its output, whereby an
agent can make use of signs to convey specific meanings — or to interpret signs provided to them as
meaning this or that. As emphasized by many philosophical traditions (notably, stoicism), humans do
not interact with the world in an unmediated way (as a naive realist or phenomenological account
might hold), but rather apprehend it via the meaning that they assign to their experience.

We argue that active inference can provide some mechanistic insights about signification and
meaning-making abilities in humans. Active inference is the newest creature-centered framework
to come out of information theory (Friston, 2020), and it represents a promising new avenue for
the study of mind in cultural context (Ramstead et al., 2016; Veissiere et al., 2020). Active infer-
ence explains how organisms are able to generate rolling cycles of belief-guided, adaptive action
and perception (Clark, 2015; Ramstead et al., 2019a). The framework casts perception, learning,
and action as forms of inference — and provides a formal model for the study of hierarchically
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nested systems (Badcock et al., 2019a; Kirchhoff et al., 2018). The active inference framework has
been applied to explain varied phenomena, such as the generation of adaptative behavior by living
creatures (Friston et al., 2017), the hierarchical and nested structure of biological systems (Ramstead
et al., 2019b), the construction by creatures of their ecological niche (Constant et al., 2018), and the
coevolution of human genes and culture (Veissiere et al., 2020), cooperative communication systems
(Vasil et al., 2019), linguistic capacity (Friston et al., 2020), and hermeneutics (Friston & Frith, 2015a).
We believe many of the questions addressed by active inference echo those addressed in the field of
neurosemiotics, which intends to study — among other things — the processes that underwrite the
general capacity of organisms to behave meaningfully, or to generate meaning, within their environ-
ment (Bouissac, 1985; Jorna, 2006).

The main claim of this chapter is that a theory of signs akin to classical, Peircean semiotics can
be (partially) formulated using active inference, in light of the conceptual analogies between the
two frameworks, notably the shared commitment to the notion of abductive inference in living
(and cognitive) systems. Furthermore, we argue that Peirce’s construct of semiotic interpretant — the
interpreter’s understanding of the relation between a signifier and what it signifies — can be given a
formal interpretation under active inference by associating it with the construct of generative model
in active inference. Generative models are probabilistic mappings, from a set of unobserved or latent
causes to their observed sensory consequences. Under active inference, such models underlie the
generation of adaptive action. We argue that active inference allows us to model signification and
meaning-making as inference in a hierarchical generative model, where inferential processes at super-
ordinate layers of the hierarchical model arise from — and constrain — those unfolding at subordinate
levels (Friston, 2008). Based on this argument, we reinterpret Peirce’s typology of signs (as icons,
indices, and symbols) via active inference. We place special emphasis on the notion of abductive infer-
ence (going beyond the sensory data at hand) in resolving the ill-posed problem of inferring what
our sensations connote (Seth, 2015).

The remainder of this chapter will be divided in two parts. In the next section, we introduce the
active inference framework. We then detail the conceptual analogies between active inference and
classical (Peircean) semiotics, before offering a partial but formal mapping of key semiotic notions,
notably the icon/index/symbol triad, onto central constructs of active inference. We close with
proposals for future work.

Active inference
An introduction to the active inference framework

Active inference is a theory that explains how living systems preserve their nonequilibrium steady
state (Friston, 2020). According to the fluctuation theorems that generalize the second law of
thermodynamics, the entropy of any system tends to increase — and living systems must counter its
dispersive effects to remain alive (Parr et al., 2020; Seifert, 2012). In this context, entropy is a measure
of disorder: it quantifies the total number of configurations in which the system being examined can
find itself. Most inanimate systems in nature self-organize to equilibrium, which means that they con-
sume the gradients around which they self-organize. For instance, the lightning bolt, in striking, self-
organizes around — and dissolves — a charge gradient, thereby increasing the entropy and disorder of
the surrounding air molecules. Living systems, in contrast, tend to resist this tendency towards entropic
disorder and maintain their internal organization. By definition, this means they exist far from thermo-
dynamic equilibrium — which is death (Schrodinger, 1944). For example, the body temperature of
mammals is far from the room temperature (and for most animals, to find their body at the ambient
temperature of the environment entails death). How is this feat accomplished by living organisms?
This question has been tackled by an emerging field of work centered around the free-energy
principle, a variational principle of least action that underwrites active inference (Friston, 2010, 2020).
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The central claim is that for a self-organizing system to exist at nonequilibrium steady state means
that it looks as if it minimizes its variational free energy (Ramstead et al.,2019a). In a nutshell, this free
energy quantifies the discrepancy between the current sensory state and the expected sensory state.
At its simplest, this means everything that lives this must show some form of homoeostasis (Bernard,
1974) — that is, a minimization of the discrepancy between sensed states of being and homoeostatic
(or allostatic) setpoints (Ramsay & Woods, 2014; Seth & Friston, 2016; Stephan et al., 2016; Sterling
& Eyer, 1988). In information theoretic terms, this discrepancy is measured by free energy, which
provides a measurable proxy for self-information or surprisal. The average self-information is entropy,
so any minimizing free energy counters an increase in entropy (Friston, 2010). One could then refor-
mulate the problem in the following way: “How do organisms resist entropic decay? By minimizing
free energy.” This is, in essence, the free-energy principle.! Of course, stating this without further
investigation would be begging the question “How do organisms minimize their free energy?” This
question can be answered by appealing to Markov blankets and generative models.

Markov blankets and generative models

We can associate a system of interest with the states in which it can find itself, which we call internal
states. The rationale for this is intuitive. For a system to be considered as a system, it must evince a
minimal form of independence from its surrounding environment (external states), lest it simply
dissolve into that environment when perturbed — or indeed measured. This is not to say that the
system of interest is completely separated from its environment (i.e., isolated or closed in a thermo-
dynamic sense), but rather that its influence on the system is mediated, such that the embedding
environment can change without the system being entrained without question.

In the active inference framework, this form of conditional independence is underwritten by the
presence of a Markov blanket (Friston, 2013), a statistical construct originally developed in the con-
text of statistical inference over random variables (Pearl, 1988). For our purposes, it operationalizes
the intuitive notion of a mediated coupling to the environment (Kirchhoff et al., 2018; Ramstead
et al., 2018). A Markov blanket mediates between internal and external states, and the blanket itself is
composed of sensory states, which influence but are not influenced by internal states, and active states,
which influence but are not influenced by external states (see Figure 3.1).

Sensory states

External states Internal states

Figure 3.1 Markov blanket and its variables

This figure depicts a Markov blanket, illustrating the influences between the variables that constitute the blanket.
Here, internal states — denoted s — are influenced by (but do not influence) sensory states or observations (0);
while external states — denoted s — are influenced by (but do not influence) active states (a). From Ramstead,
Kirchhoff, and Friston (2019). See e-book for a fullcolor version of this figure.
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From this vantage point, every living creature is enshrouded by a Markov blanket, which mediates
its access to the world in which it is embedded.Yet what lies behind the shroud is of critical signifi-
cance to the creature because everything of relevance to it — be it potential predators, food items, or
mates — lies there. This is reminiscent of the concept of the Umwelt developed by Jakob von Uexkdill.
The Umwelt can be understood as the embodied perspective (i.e., the viewpoint) that biological
beings take on their world, and this perspective is the union of the effector world and the perceptor world
(von Uexkiill, 1982). This means the subjective world of organisms is not composed of a series of
objects with “objective” properties, but rather is better understood as a set of objects that are made
meaningful in the organism’s perceptual field by its action capacities: for foxes, given their specific set
of hunting capacities, a field of grass is a support for walking towards their prey; but for worm-eating
birds, given their action capacities, the field grass is the “pantry” itself, so to speak.

The existence of a Markov blanket implies a form of inference, implicit in the minimization of
free energy that scores the likelihood of sensations, given an Umuwelt associated to the internal states.
This means that to exist — in the sense of being separable from the environment — is to infer the
external causes of sensory impressions that are hidden behind the Markov blanket. These hidden
causes are the external states. In active inference, inference about the most probable hidden cause of
sensory data is accomplished thanks to what is known as a generative model, a statistical formulation
of the Umwelt as a model of the process that generates sensations. In other words, it is a model of how
sensory impressions are generated — including, crucially, the actions of the organism. Technically, a
generative model is a joint probability distribution or density over sensory outcomes and their hidden
causes (Friston, 2010; Friston et al., 2018).

The idea is that organisms entertain and evaluate competing models or hypotheses (Unnwelten) and
select the one for which there is the most evidence (i.e., the hypothesis that renders the sensations
the most likely or least surprising). Crucially, this evidence is the complement of the free energy
above. In other words, minimizing free energy minimizes the discrepancy between sensory states and
those expected under a generative model. This is mathematically the same as maximizing the evi-
dence for the generative model. Heuristically, variational free energy therefore provides a measure of
the evidence for a creature’s generative model. To select the model that minimizes the discrepancy
between what is predicted and what is sensed (i.e., variational free energy) is the same as selecting
the model that is supported by the most evidence (Friston, 2020) — that is, a form of self-evidencing
(Hohwy, 2016). The links between this self-evidencing and Peircean abductive inference will be
fleshed out below.

We emphasize the inferential and perspectival nature of active inference. Generative models
scaffold the probabilistic beliefs of an organism. These Bayesian beliefs? reflect the existence of the
organism itself. They have been shaped by evolutionary history: the preferred states of the organism,
encoded in its model, can be cast as a “best guess” about the causal structure of the econiche as
experienced by the phenotype in question (Badcock et al., 2019b; Campbell, 2016). In other words,
organisms are constantly trying to infer states of affairs in the external world, given current evidence
provided by sensory states and its prior beliefs — and, indeed, given the kind of creature that it is. For
instance, for a human to find oneself suddenly submerged in water would be quite surprising, whereas
such a situation would be expected for a fish.What is important to note is that the generative model is
not an objective map of the world; it is formed as a function of the needs and concerns of the creature
(Ramstead et al., 2019a; Tschantz et al., 2019). Thus, generative models harness these species-specific
expectations about the lived world (just like in the Umuwelr).

A simple generative model: Likelihood mappings and prior beliefs

Given sensory data, the system is trying to infer what external states have caused these outcomes.
The relation between hidden causes and sensory outcomes is formalized in a generative model
through a likelihood mapping (Figure 3.2), which in discrete-state space generative models, like
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Generative model of action and perception
Policy
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Figure 3.2 Generative model of action perception

In active inference, perception amounts to the (Bayesian) inversion of a generative model. This inversion
corresponds to inference or abduction. The organism has access to its sensory observations (o), its beliefs about
how its observations map onto states in the world (A), and its prior beliefs about the state of the world before
seeing observations (D). More sophisticated generative models include beliefs about state transitions (B) that
depend upon plans or policies. The policies () that are selected are those that minimize expected free energy that
depends upon prior beliefs about final states (C). Please see Parr and Friston (2018) for a technical explanation
of the equations that describe the implicit belief updating, given sensory outcomes. See e-book for a full-color
version of this figure.

finite state machines or partially observed Markov decision processes is usually denoted by a matrix
A. Technically, this mapping tells us the probability of some observation, given that some state of
the world is the case — which is denoted P (o | s). This likelihood is supplemented with some prior
Bayesian beliefs about how states change over time, usually encoded by a probability transition matrix
called B. These state transitions depend upon action or plans. Prior beliefs about final and initial
hidden states are usually encoded in vectors called C and D. It may seem strange to reduce a genera-
tive model, or Umuwelt, of the world in this way; however, the functional form of this generative
model is universal and very expressive (see below). Crucially, committing to a particular functional
form allows one to simulate the minimization of free energy and accompanying self-organization. In
this setting, the minimization of free energy corresponds to Bayesian belief updating and, with the
above form, looks very much like message passing in neuronal circuits (for further details, see Parr
and Friston, 2018).

Starting from prior beliefs and its sensory states, the organism must solve the inverse inference
problem that of determining which state of the world is most probable, given its observations and
prior beliefs — denoted P (s | o). Thus, we say that perception “inverts” the generative model that
maps from unobservable (external) causes to observable (sensory) consequences to obtain the inverse
mapping — namely, the most probable cause of current sensory states. This inverse mapping from
consequences to causes is the essence of inference and self-evidencing, which can also be viewed as
an act of abduction.
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Crucially, to be endowed with beliefs about state transitions opens the door to action on the
world. After all, the ability to act depends on the ability to anticipate the (sensory) consequences of’
action, which in turn implies the ability to plan into the future. Under active inference, beliefs about
possible courses of action are called policies. The selection of policies is implemented as the selection
of specific beliefs about state transitions — namely, beliefs informed by the foreseen consequences of
action and prior beliefs about final outcomes. Action is cast as a self-fulfilling prophecy: creatures
fulfill their expectations through policy selection (Friston et al., 2017). Policy selection, in turn, is
driven by expected free energy — namely, the free energy expected under a given policy. Differences
in expected free energy over competing policies drive policy selection, as creatures enact the policy
associated with the lowest expected free energy, thereby working towards predictable outcomes that
constitute the free energy minimizing, evidence maximizing, nonequilibrium steady-state dynamics
that characterize the creature in question.

Crucially, for our purposes, the generative models used in active inference can be endowed with
a hierarchical structure. Such a scheme is depicted in Figure 3.3, in which state estimation at the
subordinate level is used as sensory data (as observations) for state inference at the superordinate
level. Note the higher-order likelihood matrix A(2), which links lower-level states (1) — now taken
as sensed outcomes — to higher-level state inference (2). This setup effectively equips the agent with
higher-order beliefs, e.g., higher-order beliefs about state transitions, which would be denoted by
B(2), that contextualize beliefs and inferences at the subordinate layers of the model. In short, a hier-
archical generative model of this sort equips the creature with a sense of the future (i.e., temporal
depth) at different temporal scales, which finesses planning and policy selection — based upon the
future consequences of action.

Toward a variational semiotics

We are now in a position to establish a preliminary mapping between semiotic constructs and
structures within the active inference framework. We first expand the general theme of our variational
rendition of semiotics by showcasing the conceptual similarities between the two frameworks. More
precisely, we claim that Peircean interpretants can be associated formally with generative models in
active inference. We then describe how Peirce’s most famous typology of signs into icons, indices, and
symbols can be recast in the active inference framework.

As foreshadowed in our brief presentation of active inference, we note that the theoretical struc-
ture of active inference is strikingly similar to that of Peircean semiotics, allowing us to map some of
the constructs of active inference (at least partially) onto those of Peirce’s semiotics, namely abductive
inference and the sign triad of icons, indices, and symbols. Does that mean we can reduce semiotics
to active inference? Our aim is rather to show that active inference is semiotic in its logic. In some
sense, our attempt to explain some of the semiotic concepts by appealing to the resources of the active
inference framework is not far from the intent of Peirce himself. As Short argues, “a central thrust
of Peirce’s mature semeiotic is that intentionality may be explained naturalistically” (Short, 2007: 8).

Active inference and deflationary semantics

Before touching on the semiotic structure of active inference, we have to address one major con-
cern about generative models, which is their capacity to address the very notion of “meaning” that
is at stake within neurosemiotics. Indeed, some critics have pointed out that information-theoretic
constructs should not be conflated with the phenomenon of “meaning” (Brier, 2008). Thus, it is
fair to ask whether active inference and generative models are up to the task. Our goal here is
not to demonstrate that a global reduction of the phenomenon of meaning is within the purview
of active inference, but rather to point toward how active inference can deal with certain specific
aspects of meaning. As stated before, the term “meaning” itself is polysemic; one could follow Morris
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and distinguish between multiple dimensions of meaning, namely semantics (or the “reference” or
“aboutness” of signs), syntactics (the reference to other signs or symbols) and pragmatics (the concrete
use of signs in real-life situations).” This leaves out the phenomenal or experienced aspect of meaning,
arguably infusing all other dimensions to different degrees. While we do not pretend to directly
solve the issue of naturalizing phenomenality as the complexity of the issue as generated more than
100 years of active philosophical and scientific debate (see Ramstead, 2015 for a discussion), this
chapter still aims to convince the reader that active inference can at least provide some partial account
of the “meaningful” drive of organisms that can be also described as dynamical systems.

The semantic aspect of meaning within active inference has been studied by Ramstead et al. (2020).
In the active inference conceptual context, semantics is used to describe the relation between internal
states of the system and external states — that is, an aboutness of internal states (and not meaning as
a subjective feeling or experience). The authors, following Egan (2019), propose to cast, in a defla-
tionary fashion, the aboutness of internal states in terms of the mathematical function that these
states accomplish within physical systems, rather than by some “gloss” of cognitive content. The key
to understanding how this (mathematical) aboutness is at play is that we can describe a given system
with the tools of systems theory, as a dynamical flow within over some state space, or using infor-
mation theoretic tools, providing a statistical description of this flow. In brief, under the free-energy
principle, we can describe the internal states of a system as containing a statistical manifold, a space in
which the coordinates are sufficient statistics of beliefs over external states (e.g., the mean and variance
of a Bayesian belief).

Under the free energy principle, given the Markovian partition of internal and external states
(which are conditionally independent), it follows that internal states act as (the sufficient statistics of)
beliefs about external states — that is, given the internal state, a consumer of the state can find the
probability distribution of external states (just like any normal distribution can be reproduced given
its mean and variance, which are its sufficient statistics). In short, the aboutness of internal states is
formalized under the free-energy principle as a relationship between internal and external states, with
internal states parametrizing probability densities over external states — a technical treatment of the
mathematical foundations of this observation can be found in Friston (2020) and Friston et al. (2020).
Philosophically, the important point to understand is that, in this context, the emphasis is placed on
the relations of meaning rather than on the content of meaning. Furthermore, in active inference, the
relations of meaning are always enacted: the internal states also encode the consequences of action on
external states (via active states).

The limitation of this account is that we have to accept a “deflationary” account of semantic
content (Egan, 2019), in which semantic content is only an intentional gloss that can serve heuristic
purposes to guide scientific research about cognitive activities (Ramstead, 2019¢). That is, the asso-
ciation of internal states with external states and the role of this association for the description of
the behavior of a far-from-equilibrium steady states system can be explained mathematically, but not
the complete integrated experience of meaning. Nevertheless, we still maintain that active inference
displays some basic aspects of a semiotic structure. With these deflationary caveats in place, we now
attempt to connect systematically active inference and Peirce’s semiotics.

A basic semiotic structure

Signs are first and foremost things that stand for other things. This is in line with the commitments of
active inference, which states that creatures do not have access to things in an unmediated way (as we
have presented in comparison with Uexktll’s Umwelf). This is why we believe that, at its core, active
inference is compatible with many aspects of (Peircean) semiotics. Indeed, the abductive nature of
the inferential processes under the free-energy principle has recently been compared with Peircean
abduction (or abductive inference) (Pietarinen & Beni, 2021). Briefly, they describe self-evidencing
processes in the following fashion:
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1. Y (a sensory datum) is surprising (in the information-theoretical sense described above);
if X (a prior or a fact about the world) were to be the case, then’Y would be less surprising;

3. therefore, let us see to it that/there is reason to suspect that X (to “believe-X"" about external
states) is to be part of the generative model. (Adapted from Pietarinen & Beni, 2021;see also Parr
and Friston, 2018, for a technical explanation of the equations that describe the implicit belief
updating, given sensory outcomes.)

The inferential nature of semiosis has also been described within the field of biosemiotics. For
instance, Kull et al. (2011) argue that conditional forms of logic (i.e., if = then) are embodied in the
forms and habits of organisms and are in this sense a “bio-logic.” As they explicitly state,

semiosis facilitates the development of an organism’s capacity to behave in a way that is both
consistent with its environment and implicitly inferential. “Logic” as we are using it here is
not something to be considered as a product of abstract cognition in humans, but rather we
simply intend to highlight the inference-like architecture of biological function, which we
take to also be the basis of semiosis in general.

(Kull et al., 2011: 33)

This “inference-like” architecture is precisely what is at play within active inference under the free-
energy principle, following the fact that internal states of organisms are conditionally independent of
external states, given the Markov blanket partition.

In this line of thought, we propose that the Peircean concept of interpretant can be mapped to the
concept of generative models, an idea that has already been sketched, but not developed enough, in
Campbell (2012).The interpretant, for Peirce, is the “understanding” (at least implicit) that a semiotic
agent has of the signifier—signified relationship — or, as Peirce puts it, the effect of the sign on the
interpreter (Peirce, 1902).This construct reflects the idea that a signifier must be taken as standing for
something. That an agent can relate a signified to its signifier assumes that they have acquired the rele-
vant skill, or evolved the disposition, to interpret the sign as a sign. At bottom, a Peircean interpretant
is a way to sample, and organize our perception of, the world around us.

Generative models accomplish the same thing as interpretants — namely, organizing perception
of (and action in) the world. Indeed, generative models are joint probability distributions of sensory
states and what caused them, including the action of the organism itself. In other words, the inferen-
tial process at the core of life — the bio-logic as described by Kull and colleagues — takes the form of a
generative model within active inference. This affinity between semiotic and variational frameworks
makes us believe in the possibility of a (partial) formalization of semiotics as a naturalized theory of
signification. The aim here is not to replace the field of semiotics, but rather to suggest that semi-
otic processes can be explained rigorously by appeal to active inference framework. Moreover, this
correspondence can facilitate the work of understanding semiotic constructs at different temporal
scales because active inference provides a principled (and possibly unified) account of life processes,
including signification and semiosis.

Variational icons (“looks like”)

We now turn to a partial breakdown of the Peircean typology in variational terms, starting with the
simplest signs: icons. Icons signify by virtue of a shared quality (often an apparent physical similarity)
between the sign-vehicle (signifier) and the object (signified) (Peirce, 1902). An illustrative example
of an iconic sign is a photograph of a friend. Unless aftected by prosopagnosia or placed under undue
strain, persons can leverage the palpable similarity between the photograph and their friend and rec-
ognize the image as being a photograph of this friend.

Iconic signs underlie the most elementary forms of perception, since members of a given percep-
tual category bear iconic resemblance to each other, for the interpreter. Perceptual categorization is
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thus dependent on iconicity — in the general sense of shared quality or similarity — because a category
is simply a set of members sharing certain features, which means that they signify each other iconic-
ally (for the interpreter who uses the category).

From the variational point of view, we argue that a sign signifies iconically when its action on
the interpreter is mediated by a likelihood mapping (or matrix A). Thus, two different icons refer to
the same thing (object, event, etc.) if they trigger the same inferences. If a given signifier is similar
enough to what it signifies, it will cause the creature to infer the same hidden cause as when it
observes the thing signified by the icon. In short, iconic signifiers trigger the same state inferences
as the direct, firsthand perception of their signified “in the flesh”: both the signifier and the signified
itself map onto the same underlying latent state. Our proposal here is similar to Deacon’s description
of'icons: the most basic sense of iconicity is that of “non-distinction” — that is, that the same interpret-
ative processes are in play for two things, making them “iconic” of each other (Deacon, 1997: 76-77).
The neuroanatomical correlates of this matrix A function will be explored in the next section, linking
icons (A matrices) and indices (B matrices).

Variational indices (“points to”)

Indices can also be formalized via active inference, through the correspondence between the pro-
cess of indexical inference and beliefs about state transitions (i.e., B matrices). The capacity of indices
to signify is based upon causal or correlative relationships between them and their signified. For
example, because of the causal relation between them, symptoms can be indices of a disease. Here,
we follow Deacon’s hierarchical model of semiotics, in the sense that simpler types of signification
are embedded within more complex types — that is, there is a nested structure of signs at play in the
constitution of more complex semiotic relations. To recognize a sign as the index of some signified,
the creature needs to recognize (iconically) the two elements composing the indexical relation (e.g.,
symptom and disease) and relate them using a superordinate sign. We argue that this structural (and
hierarchical) characteristic is similar to the way that, in active inference, moment-to-moment state
inference (based on likelihood mappings and prior beliefs) is contextualized by beliefs about state
transitions.

Recall that state transition (B) matrices embody — in neuronal or chemical connections such as
the brain connections or a cell’s intracellular kinetic pathways — a creature’s beliefs about how states
transition into others, and about what sensory outcomes these future hidden states typically cause.
Moreover, when one is talking about a causal relationship between things (one of the hallmarks of
indexical signification), one is really talking about transitions between one state and the next, at least
insofar as this relation of co-occurrence is believed to hold by the interpreter. What we mean is that
causality is not necessary “objective” — for example, a lab mouse can have a model of the transition
between a red light and an electric shock, whether or not the red light really causes the electric shock.
Therefore, we argue that the transition probabilities (the B matrices) function, in semiotic terms,
indexically, since they imply a succession of moment-to-moment state inferences based on likelihood
mappings and priors, just as indices imply an association of icons. This is particularly so for genera-
tive models based upon discrete state spaces, where the only thing that distinguishes one state from
another is its index — and the only operational meaning of these indices are the transition (or likeli-
hood) mappings to the indices of other states (or sensory outcomes) — see Friston and Buzsaki (2016)
for treatment of indexing time in this setting.

Interestingly, the general structure of these (perceptual) inferences can be related to neuroanatom-
ical architecture (Hipdlito et al., 2021; Parr & Friston, 2018).This is in line with the good regulator
theorem (Conant & Ashby, 1970), stating that a good regulator must be a model of what it regulates.
For active inference, this means that generative models and brain anatomy are mutually constraining —
that is, that the space of plausible brain architectures is constrained by the free energy principle
(Parr & Friston, 2018).
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Figure 3.4 Active inference model mapped onto a brain diagram

Neurons in cortical layer IV represent the spiny stellate cells that receive input from relay nuclei of the thalamus,
and from lower cortical areas. The appropriate thalamic relay depends upon the system in question. In the context
of the visual system, it is the lateral geniculate nucleus (LGN). In the somatosensory or auditory systems, it is
the ventral posterior nucleus or the medial geniculate nucleus, respectively. Layer IV cells in this network signal
prediction errors (a measure of surprisal), computed by comparing the optimal estimate (obtained by combining
the messages from its Markov blanket) with the current belief, represented in superficial cortical layers (adapted
from Parr and Friston, 2018). See e-book for a full-color version of this figure.

Active inference models have been mapped onto known neuroanatomy. Consider the simplified
model of the brain presented in Figure 3.4, adapted from Parr and Friston (2018). In this representa-
tion, the superficial layers of the brain encode an agent’s expectations: the units in superficial layers
encode beliefs about states at three time-points (immediate past, current time, and immediate future).
In this neuronal representation, the likelihood mapping is encoded by specific neural populations
(which implement the A-matrix that as we have seen encodes the probability of an observation given
a discrete hidden state) and passed on via the thalamic relay (by the lateral geniculate nucleus for
the visual system or the medial geniculate nucleus for the auditory system). Conversely, the neural
messages carrying signals encoded by B matrices (state transitions) are passed on and processed by
populations encoding past states and future states, which are thought to be implemented by the
connections between superficial layers and layer IV spiny stellate cells. In turn, these neurons are
thought to represent prediction errors, which as they arise and are quashed drive the system towards
better predictions. This forms a biologically plausible neural architecture that can implement icons
and indexes as discussed above.

Let us use an example to see the possible implications of such framework. Imagine a creature
walking in a forest — this example is inspired by Deacon (1997: 77-78). Suddenly, a new sensory
outcome is made available — one that updates its current belief about the state of affairs in the world.
After correcting for prediction error, the creature infers (that is, believes that) what it is seeing is smoke.
This first (predictive) inference allows the agent to attribute the changes in its sensory states to a
cause — namely, to a black column rising from the trees. Armed with the likelihood mappings already
formed within the organism’s generative model, the animal infers that smoke is the most probable
hidden cause of the current sensory outcomes. Here, as Deacon suggests, smoke is perceived icon-
ically, in the sense that the current appearance of the black column bears an iconic resemblance to
past occurrences of smoke. As we saw in the previous section, active inference formalizes this kind of
relationship with likelihood mappings. The organism can make this inference because it has a good
generative model of an econiche that features things that “smoke.”
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With the presence of the smoke inferred, other beliefs get to work. Through its previous
experiences with its niche (made of combustible trees), the organism has become endowed with
beliefs about state transitions (B matrices). Now that smoke has been identified as the probable cause
of the current sensory outcome, uncertainty can be reduced further by leveraging these beliefs. Our
creature has learned that the most probable cause of smoke is fire. It is thus able to perform a nested
indexical inference (namely, that the state “smoke” often transitions into the state “fire”), so to per-
ceive smoke motivates the inference that there is probably a fire nearby, with (action) related sensory
outcomes associated with the hidden state “fire” (e.g., heat, light, burning, pain), thus motivating
policy selection to ensure movement away from the source of smoke (even if there is not a real fire).

Variational symbols (“refers to, within a convention”)

We now turn to symbols, the most complex case in the semiotic theory of signs. A symbol signifies
by virtue of a convention (Peirce, 1902). Although this definition is generally agreed upon, it leaves
much to the imagination. This definition is vague enough to lead to multiple usages of the term.
Thankfully, the construct was taken up by Deacon (2011b), who characterized two major usages of
the word “symbol” in the literature:

1. Non-linguistic symbols. In the social sciences, the word “symbol” refers to meanings that are con-
ventionally invested in or projected onto artifacts that are culturally determined. The meaning
is typically learned and culturally specific. For example, crowns are symbols of monarchy and its
related political institutions, as when we refer to a monarchy as “The Crown.”

2. Linguistic, code-like symbols. In mathematics and logic, the word “symbol” refers to written traces
that are conventionally mapped to other such traces, and that can be combined to form other,
distinct written traces according to explicit rules.

We argue that (1) the conventional aspect of symbols can be understood as an effect of collective
patterns of inference based on the same, shared generative model; and (2) the syntactical aspect of
symbols (symbol to symbol transitions, as are commonplace in language) can be recast as super-
ordinate beliefs about (semiotic) state transitions.

Deontic cues and the conventionalization of signs

We believe that studying the conventional aspect of symbols is akin to studying cultural patterns inside
a given group or society — that is, studying a multi-agent phenomenon. How can the active inference
framework explain these phenomena? The trick is to reformulate the question: How can multiple
agents arrive at a shared understanding of the meaning of some cues in their (shared) environment?
We believe we can recast the conventional aspect of symbols as deontic cues under a shared genera-
tive model.

Indeed, what we call “culture” — that is, the inheritable behavioral differences among conspecifics
that are acquired through learning — can be understood as underwritten by shared generative models.
Thus, to share a culture is to share a set of expectations about “how creatures like myself behave in
specific contexts,”a model of the “generic other” reminiscent of Mead (1934).This notion of a shared
generative model, in turn, has motivated work on shared manners of attending to the world — what
we have called regimes of attention and expectation (Constant et al., 2019). These comprise shared
manners of sampling of the world and shared patterns of attributing salience to things in the world.

In a very minimalist sense, a cultural practice can be described as a shared, socially patterned way
of acting and perceiving the world (Veissiere et al., 2020). In other words, people sharing the same
culture will share the same (or similar enough) generative models, which means they share the same
expectations about how the world is and how agents can act within it. Shared regimes of attention
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manifest themselves to the organisms through shared behavioral repertoires underwritten by shared
expectations about the value of policies; these are cultural affordances because they are not innate, but
instead learned through immersive practice and imitation.

How can a generative model become “shared” among multiple agents? For simple agents, like
songbirds, the attunement of two (or more) generative models can be described as “neural her-
meneutics,” which describes the process by which two interpreters can come to understand one
another — a process that rests on sharing a generative model. In short, two coupled interlocutors
attune themselves to each other until they converge on the same beliefs about each other’s internal
states (Friston & Frith, 2015a,2015b; see also Veissiére et al., 2020). For humans (and any other poten-
tial cultural species), the story is, of course, more complicated.

A key notion when it comes to understanding these phenomena is that of niche construction under
the free energy principle — that is, the modification of the environment by the organism to better fit its
own expectations, as formalized within the active inference framework (Constant et al.,2018). Indeed,
active inference is not a process situated solely in the brain, but rather is embodied and embedded
in the environment. The modifications of the environment by the organism are targeted towards
elements that can be modified to better fit its own phenotype, and thus minimize its free energy in
that environment. These modifications are “traces” of the action of the organism; the environment
embodies the preferences of the organisms that shape it. Reciprocally, that means the organism can
later rely on environmental features to guide its behavior (or policy selection), a concept known in
the philosophy of biology as the scaffolding of cognitive processes (Sterelny, 2010). Under the active
inference framework, policy selection — involving environmental features — can have an epistemic value
or a pragmatic value (Constant et al., 2019). Epistemic value is a function of the reduction of uncertainty,
while pragmatic value is a function of the potential fulfillment of preferred sensory outcomes (innate
or prior preferences over phenotypic states of being).

The more organisms that act on its environment in a certain way, the more the environment
becomes robust to change (like a path in a field whose groves grow deeper and cleaner at each passage,
and thus comes to “embody” the preferred path of the individuals who take it). In this context, gen-
eric “cues” (i.e., iconic/indexical signs) that have an epistemic and/or pragmatic value (e.g., like the
link between smoke and fire) will consolidate into deontic cues (i.e., conventional signs) as a function
of the action of the organisms within the environment (Constant et al., 2019). A deontic cue informs
the organism about what ought to be done given the current context and situation, and is socially
determined. This is because the more organisms act on their environment, the more their actions
are carved into their niche — and the more the niche will reliably inform other members about the
expectations of a generic like-me other in this (now socio-cultural) niche. Hence the opportunity for
deontic policy selection, where denizens scaffold their inference through the environment in a recip-
rocal causation loop. Thus, the environmental niche itself becomes a model of its inhabitants, in the
sense that this reciprocal loop performs a “caching” of beliefs about actions in this environment. In
other words, generic cues consolidate into deontic cues through agential actions on the environment.

Conventions — that is, shared ways of acting and perceiving the world — are thus generated
through the actions and the recognition of the action of the others, eventually amounting to a local
“social-cultural world” where mutually recognized utterances and environmental cues have a specific
“meaning,” or a certain epistemic and pragmatic affordance (or value) (Veissiere et al., 2020). This
is also reminiscent of the Morris pragmatics dimension of meaning as described earlier. The deontic
cues that make up the niche encode the preferences of the “generic other” and can take the form of
indexical artifacts that acquire a deontic value through the repeated actions of multiple agents and
point to broader symbolic conventions for navigating the world. Roads, for example, point to the
expected presence of other humans — who also know how to operate cars — to be utilized in certain
explicit ways (via traffic signs as additional guides) and many more implicit ways encoded in cultural
conventions. We believe that these deontic cues — as characterized within active inference — capture
the conventional aspect of symbols — that is, environmental and cultural cues that have a shared value
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and will influence and be interpreted by different members of a community in roughly the same
way. Technically, in Peircean nomenclature, this conventional feature is characteristic of legisigns — that
is, sign-vehicles that are generated and used conventionally, whereas symbols are a specific kind of
legisigns (see Short, 2007 for a more detailed account of the Peircean typology of signs.

The syntactic aspect of symbols

The second aspect of symbols is more akin to the linguistic notion — that is, signs that can indi-
cate other signs or, in the hierarchical model of Deacon, indices of indices (Deacon, 1997). Based
on generative models with deep temporal structure (e.g. Friston et al., 2020), we suggest that the
best way to implement syntactic constraints in a generative model is to use a hierarchical model
that has a superordinate B matrix. It has already been argued that statistical notions could yield a
working paradigm for understanding language processing, acquisition and evolution, which could
provide an alternative to the innateness of language structures (Christiansen & Chater, 2016).
Indeed, what is a syntax if not a set of rules ascribing the correct and incorrect transition from one
symbol to the next, and which symbols can indicate which other symbols. An important feature
of (linguistic) symbols is the fact that they can refer to other symbols. This can be described as a
syntax (Deacon, 1997; Luuk & Luuk, 2012). Interestingly, it is precisely this kind of hierarchical
and relational indexing that underlies most of modern computational linguistics (Khani et al., 2018;
Kleinschmidt & Jaeger, 2015; MacKay & Peto, 1995; Roy, 2005; Teh et al., 2006), sometimes with
an explicit nod to semiotics.

With a generative model of two systems able to play the 20 questions game, Friston et al. (2020)
suggest that transition between words in a sentence is analogous to policy selection — namely, selecting
the best symbol given precedent symbols, future symbols, and the general context of the conversa-
tion. Symbols can be recast as state transitions, beliefs about state transitions beliefs, or B matrices at
a superordinate level of the generative model, which contextualize subordinate B matrices. This is
the variational version of indices of indices. This refers to transitions between symbols (e.g., selecting
which word will come next in a sentence). This rendition is, of course, not a finished model of all lin-
guistic processes that, in itself, could count as a dynamical explanation of syntax, but rather functions
to illustrate the potential of active inference to construct such a model.

Conclusion

We hope we have demonstrated the possible fruitful connections that can be made between the field
of semiotics, which provides tools to understand signification, and the active inference framework,
which provides tools to understand living systems from a formalized and principled statistical per-
spective. The work presented here is a first sketch of what could be called variational semiotics. We
hope this discussion will motivate interdisciplinary investigations at the intersection of semiotics and
the sciences of life and mind, progressing towards the establishment of neurosemiotics to understand
the unyielding drive to construe meaning in humans (and possibly other species).
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Notes

1 Technically, the free energy principle turns this on its head to show that systems that resist entropic decay (i.e.,
possess a nonequilibrium steady state) look as if they are minimizing free energy, thereby furnishing a teleo-
logical normative account of self-organization.

2 Probabilistic or Bayesian beliefs are simply conditional or posterior probability distributions over external
states that are parameterized by internal states. They do not connote personal or propositional beliefs. For
example, a virus can encode Bayesian beliefs about its external milieu in its internal molecular states.

3 This characterization of Morris has been described as non-Peircean (Pietarinen, 2012); nevertheless, it proves
useful in our situation to relate certain aspects of meaning with certain aspects of active inference.
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