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System Overview

An intelligent cognitive
device that tracks a

user through
handwashing, providing
cues when necessary.



System Features

I Monitors a user with dementia during handwashing,
I Prompts a user only when necessary,
I Calls for human assistance if needed,
I Vision based: only video inputs,
I Robust: able to recover from tracker failures,
I Real-Time: 320× 240 @ 40fps,
I Probabilistic: Explicit modeling of uncertainty,
I Partially observable: estimates user internal states,



Integrated System



Tracking
Tracking through occlusions and changes in shape
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I Objects modeled as flocks of features
I Simple color features, Gaussian distributions
I Bayesian sequential estimation
I Monte Carlo approximation (particle filter)
I Three interacting filters: 2 hands + towel
I Dynamics: Constant mean velocity
I Mixed-state dynamics
I Data-driven proposal (e.g. ICondensation)



Data Driven Proposal
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Partially Observable Markov Decision Process
(POMDP)

A POMDP is a probabilistic temporal model
of an agent interacting with its environment :
a tuple 〈S, A, T , R, O, B〉

I S: finite set of unobservable states
I O: set of observations
I B : S × A → O observation function
I A: finite set of agent actions
I T : S × A → S transition function
I R : S × A → R reward function
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What can you do with a POMDP?

Everything you can do with a dynamic Bayes net (DBN)...

I monitor belief(s)
I compute data likelihood given model



What can you do with a POMDP?

Everything you can do with a dynamic Bayes net (DBN)...

I monitor belief(s)
I compute data likelihood given model

... plus! compute a policy of action , π

I π(b(s)): belief states → actions
I policy actions maximise long-term reward
I tradeoff multiple, competing objectives
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I Policy does not imitate a human - optimises for system



Handwashing POMDP
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Handwashing POMDP
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Handwashing POMDP: Actions
I do nothing: system waits
I call caregiver: system calls for single step assistance
I prompts:

I audio/video
I male voice
I preceded with reminder : “you’re washing your hands”
I 3 levels of specificity:

low : basic prompt with few details
“Use the soap”

medium : include person’s name, more details
“John, use the soap in the pink bottle”

high : medium prompt with video demonstration

http://www.computing.dundee.ac.uk/staff/jessehoey/coach/soap_vid.avi


Handwashing POMDP: Plansteps
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Handwashing POMDP: Plansteps
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Handwashing POMDP: Plansteps
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Handwashing POMDP: Plansteps

behavior: 
rinse
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Handwashing POMDP: Behaviors



Handwashing POMDP: Attitude

Factor: Models: Dynamics:

Awareness need for
assistance

changes
quickly

Responsiveness response to
assistance

changes from
day to day

Dementia Level likelihood user
will be aware
and responsive

does not
change



Handwashing POMDP
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Handwashing POMDP
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Rewards and Solutions

Rewards and Costs:
I Task completion: large reward
I Prompts: costly
I Cost for prompting twice in a row (pestering)

Solution:
I 200K states × 198 observations × 26 actions
I Optimal solution intractable
I Approximations used:

I Point-based (Perseus - Vlassis & Spaan, 2005)
I Structured solution (SPUDD - Hoey & St. Aubin, 1999)
I Restrict size of solution (Poupart, 2005)
I Disregard observations (Hoey & Poupart, 2005)
I Merge states (St. Aubin & Hoey, 2000)



Overall System

I Runs on a single laptop Intel core 2 duo 2Gb Ram
I LCD screen for prompts
I Point Grey Research Dragonfly II
I 320x240 at 40Hz
I Modular processes
I UDP IPC communication through central broker



Simulation Results
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I 20 simulation trials (50 steps each)
I 10 experiments
I all true user types (attitudes)



Simulation Results
Learning the user’s dementia level over a clinical trial
(20 handwashing simulations)
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Actor Trials

Scenario 3:

Scenario 4:

http://www.computing.dundee.ac.uk/staff/jessehoey/coach/dvflockbeliefB-a.mpeg
http://www.computing.dundee.ac.uk/staff/jessehoey/coach/dvflockbeliefC-a.mpeg


Current System - Clinical Trials

I Full system to be deployed in clinical trials spring 2007
I Long-term care facility in Toronto, Canada
I 8 week trial (A-B-A-B baseline/system alternating 2 weeks)
I 10 participants moderate to severe dementia
I Measure: reduction in caregiver burden



Future Work

I Hierarchical modeling for full integration of tracking with
POMDP

I Apply to other activities
I Learn POMDP parameters
I Bayesian Reinforcement Learning (online)
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