Assisting Persons With Dementia During Handwashing Using a Partially Observable Markov Decision Process

Jesse Hoey

ICVS - March 21, 2007

School of Computing
UNIVERSITY OF DUNDEE
System Overview

An intelligent cognitive device that tracks a user through handwashing, providing cues when necessary.
System Features

- **Monitors** a user with dementia during handwashing,
- **Prompts** a user only when necessary,
- **Calls** for human assistance if needed,
- **Vision based**: only video inputs,
- **Robust**: able to recover from tracker failures,
- **Real-Time**: $320 \times 240 @ 40$fps,
- **Probabilistic**: Explicit modeling of uncertainty,
- **Partially observable**: estimates user internal states,
Integrated System

- Camera
 - Video
 - Grab frame
 - Update tracker

- Tracking
 - Hand positions
 - Discretise observations
 - Check belief change
 - New, stable belief detected?

- Belief monitor
 - Summon human caregiver
 - Action
 - Policy
Tracking

Tracking through occlusions and changes in shape

- Objects modeled as *flocks of features*
- Simple *color features*, Gaussian distributions
- *Bayesian sequential* estimation
- Monte Carlo approximation (*particle filter*)
- *Three interacting* filters: 2 hands + towel
- Dynamics: *Constant mean velocity*
- *Mixed-state dynamics*
- *Data-driven proposal* (e.g. ICondensation)
Data Driven Proposal

new image

(t)

color segmentation

draw samples

data-driven

color
samples

task

data-driven
samples from
(1-\alpha)

prior distribution

(t-1)

draw samples

1-\alpha

proposal

samples from
prior
A POMDP is a probabilistic temporal model of an agent interacting with its environment: a tuple \(\langle S, A, T, R, O, B \rangle \)

- \(S \): finite set of unobservable states
- \(O \): set of observations
- \(B : S \times A \rightarrow O \) observation function
- \(A \): finite set of agent actions
- \(T : S \times A \rightarrow S \) transition function
- \(R : S \times A \rightarrow \mathcal{R} \) reward function
What can you do with a POMDP?

Everything you can do with a dynamic Bayes net (DBN)...

- monitor belief(s)
- compute data likelihood given model
What can you do with a POMDP?

Everything you can do with a dynamic Bayes net (DBN)...

- monitor belief(s)
- compute data likelihood given model

... plus! compute a policy of action, π

- $\pi(b(s))$: belief states \rightarrow actions
- policy actions maximise long-term reward
- tradeoff multiple, competing objectives

get hands clean \quad user independence \quad caregiver burden

- Policy does not imitate a human - optimises for system
Handwashing POMDP

\[
\begin{align*}
S & \quad \text{PROMPT} \\
\text{HANDS LOCATION} & \quad \text{time t} \\
\text{HANDS LOCATION} & \quad \text{time t+1}
\end{align*}
\]
Handwashing POMDP

- PROMPT
- HANDS LOCATION
- PLAN STEP
- ATTITUDE
- BEHAVIOR

(time t) (time t+1)
Handwashing POMDP: Actions

- **do nothing**: system waits
- **call caregiver**: system calls for **single step** assistance
- **prompts**:
 - audio/video
 - male voice
 - preceded with reminder: “you’re washing your hands”
 - 3 levels of specificity:
 - **low**: basic prompt with few details
 - “Use the soap”
 - **medium**: include person’s name, more details
 - “John, use the soap in the pink bottle”
 - **high**: medium prompt with video demonstration
Handwashing POMDP: Plansteps
Handwashing POMDP: Plansteps

![Diagram showing the steps of handwashing with labels a, b, d, g, j, k, h, e, and transitions indicating water on and off.]
Handwashing POMDP: Plan steps
Handwashing POMDP: Plansteps
Handwashing POMDP: Plansteps

- dirty
- clean
- soapy
- water off
- dirty, dry
- clean
- soapy
- water off
Handwashing POMDP: Plansteps

[Diagram showing the plan steps]

1. a (dirty)
2. b
3. d (soapy)
4. e
5. g
6. h
7. j
8. k (clean, dry)
9. water off
10. clean, dry water off

[Legend: dirty, dirty, dry, soapy, water off, clean]
Handwashing POMDP: Plansteps
Handwashing POMDP: Plansteps

- **Behavior:**
 - Rinse
 - Dirty
 - Clean
 - Soapy
 - Soapy, dry
 - Water on
 - Clean, wet
 - Water on
 - Clean, dry
 - Water off
 - Dirty, dry

- **Diagram:**
 - Dirty
 - Soapy
 - Behavior: Rinse
 - Clean, dry
 - Water off
 - Clean, wet
 - Water on

- Nodes:
 - a
 - b
 - c
 - d
 - e
 - g
 - h
 - j
 - k

- Edges:
 - a → b
 - b → d
 - d → g
 - g → h
 - h → j
 - j → k
 - k → d
 - d → e
 - e → a
 - a → d
 - d → g
 - g → h
 - h → j
 - j → k
 - k → g
 - g → a
 - a → d

- Handwashing states:
 - Dirty
 - Soapy
 - Clean
 - Water on/off
Handwashing POMDP: Behaviors
Handwashing POMDP: Attitude

<table>
<thead>
<tr>
<th>Factor:</th>
<th>Models:</th>
<th>Dynamics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awareness</td>
<td>need for assistance</td>
<td>changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quickly</td>
</tr>
<tr>
<td>Responsiveness</td>
<td>response to assistance</td>
<td>changes from</td>
</tr>
<tr>
<td></td>
<td></td>
<td>day to day</td>
</tr>
<tr>
<td>Dementia Level</td>
<td>likelihood user will be aware</td>
<td>does not change</td>
</tr>
<tr>
<td></td>
<td>and responsive</td>
<td>change</td>
</tr>
</tbody>
</table>
Handwashing POMDP
Handwashing POMDP

Dementia Level
Awareness
Responsiveness

PROMPT

time t

ATTITUDE

PLAN STEP

BEHAVIOR

HANDS LOCATION

time t+1

ATTITUDE

PLAN STEP
Rewards and Solutions

Rewards and Costs:
- Task completion: large reward
- Prompts: costly
- Cost for prompting twice in a row (pestering)

Solution:
- 200K states \times 198 observations \times 26 actions
- Optimal solution \textit{intractable}
- \textbf{Approximations} used:
 - Point-based (\textbf{Perseus} - Vlassis & Spaan, 2005)
 - Structured solution (\textbf{SPUDD} - Hoey & St. Aubin, 1999)
 - Restrict size of solution (Poupart, 2005)
 - Disregard observations (Hoey & Poupart, 2005)
 - Merge states (St. Aubin & Hoey, 2000)
Overall System

- Runs on a single laptop Intel core 2 duo 2Gb Ram
- LCD screen for prompts
- Point Grey Research Dragonfly II
- 320x240 at 40Hz
- Modular processes
- UDP IPC communication through central broker
Simulation Results

Average over

- 20 simulation trials (50 steps each)
- 10 experiments
- all true user types (attitudes)
Simulation Results

Learning the user's dementia level over a clinical trial (20 handwashing simulations)
Actor Trials

Scenario 3:

Scenario 4:
Current System - Clinical Trials

- Full system to be deployed in clinical trials spring 2007
- Long-term care facility in Toronto, Canada
- 8 week trial (A-B-A-B baseline/system alternating 2 weeks)
- 10 participants moderate to severe dementia
- Measure: reduction in caregiver burden
Future Work

- Hierarchical modeling for full integration of tracking with POMDP
- Apply to other activities
- Learn POMDP parameters
- Bayesian Reinforcement Learning (online)
Thanks to...

Collaborators
► Jesse Hoey, University of Dundee
► Axel von Bertoldi, University of Toronto
► Alex Mihailidis, University of Toronto
► Pascal Poupart, University of Waterloo

Other help
► Craig Boutilier, University of Toronto
► Kate Fenton, University of Toronto
► Zhonghai Li, University of Toronto
► Rozanne Wilson, University of Toronto
► Jennifer Boger, University of Toronto
Thanks to...

Support

- American Alzheimer’s Association
- Intel Corporation

Institutions

- IATSL
- Intelligent Assistive Technology and Systems Lab
- University of Waterloo
- School of Computing, University of Dundee
- University of Toronto