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Fall Detection With Multiple Cameras: An
Occlusion-Resistant Method Based on 3-D

Silhouette Vertical Distribution
Edouard Auvinet, Franck Multon, Alain Saint-Arnaud, Jacqueline Rousseau, and Jean Meunier

Abstract—According to the demographic evolution in industri-
alized countries, more and more elderly people will experience falls
at home and will require emergency services. The main problem
comes from fall-prone elderly living alone at home. To resolve this
lack of safety, we propose a new method to detect falls at home,
based on a multiple-cameras network for reconstructing the 3-D
shape of people. Fall events are detected by analyzing the volume
distribution along the vertical axis, and an alarm is triggered when
the major part of this distribution is abnormally near the floor
during a predefined period of time, which implies that a person
has fallen on the floor. This method was validated with videos of
a healthy subject who performed 24 realistic scenarios showing 22
fall events and 24 cofounding events (11 crouching position, 9 sit-
ting position, and 4 lying on a sofa position) under several camera
configurations, and achieved 99.7% sensitivity and specificity or
better with four cameras or more. A real-time implementation us-
ing a graphic processing unit (GPU) reached 10 frames per second
(fps) with 8 cameras, and 16 fps with 3 cameras.

Index Terms—3-D reconstruction, fall detection, multiple cam-
eras, occlusion.

NOMENCLATURE

X = (X,Y,Z) Real world coordinates.
Xc = (Xc, Yc , Zc) Camera coordinates.
f = (fx, fy ) Focal length (horizontal and ver-

tical).
c = (cx, cy ) Optical center coordinates.
k = (k1 , k2 , k3 , k4 , k5) Radial distortion parameters.
T 3D translation vector.
R 3D rotation matrix.
(xn , yn ) Normalized image projection.
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(dx, dy ) Tangential distortion vector.
rn Radial distance.
(xd, yd) Normalized image coordinates

with radial distortion.
(xp, yp) Pixel image coordinates.
α Skew coefficient.
ij Image i of camera j.
bj Background model of camera j.
sj Binary image of the segmented

foreground object for camera j.
zi Height of the horizontal plane i.
Si,j Projection of the image provided

by camera j on the horizontal
plane i.

Si Summation of the projection Si,j

coming from n cameras.
S∗

i One slice of the 3D volume recon-
structed.

V V D(i) Vertical Volume Distribution of
the object at the ith slice.

V V DR Vertical Volume Distribution Ra-
tio.

Th Segmentation threshold.

I. INTRODUCTION

WHEN approaching 65 years old, the risk of falling is
rising. Indeed 30% of people over 65 years of age and

living in the community fall each year, and a fifth of fall inci-
dents require medical attention [1]. Hence, falling is the most
common cause of injury for elderly people [2]. It was the first
cause of death by injury for elderly in 1997 and 1998 [3], [4]. Al-
though, most of the falls result in light injuries, 5%–10% of falls
in community dwelling lead to serious injuries such as fractures,
head injuries, or serious lacerations [5], [6]. An example of such
injuries is hip fracture. Moreover, 25%–75% of “fallers” do not
recover their prefracture level of movement and autonomy [7].
Besides, fear of falling appears and/or increases after falling that
could increase the risk factor for future falls and reduce the qual-
ity of life [5]. This fall problem becomes more important for el-
derly people living alone because they cannot always call emer-
gency services. Hence, many recent works have tried to develop
easy-to-use and automatic techniques to detect falls in elderly
people’s houses [5], [9]–[15]. The key question is: how to detect
that a person has fallen in a house, which contains many objects,
and where people can perform a wide range of activities?
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Indeed, one of the key problems is to recognize a fall among
all the daily life activities. A description of the various phases
of falling has been proposed in previous studies [16], [17]. This
classification provides us with physical features proper to fall
movement that can be used to detect a fall in daily life. Falling
is subdivided into four phases [17]: prefall (linked to daily life
motions); critical (loss of balance); postfall (final position after
fall); and recovery (return to normal daily life) phases. The crit-
ical phase is extremely short (300–500 ms [17], [18]) composed
of “free fall” and ”impact with the floor” events. The former
is associated with an increase of the body’s velocity because
of gravity. This velocity reaches abnormal maximal values for
vertical and horizontal speeds compared to normal life activi-
ties [18]: typically 2–3 times higher values. At the ”impact with
the floor” event, the speed decreases down to zero and a sudden
inversion of acceleration polarity occurs. During the postfall pe-
riod, the main features are a horizontal orientation of the body,
a proximity to the floor, and commonly, lack of movements.

According to this description, several approaches have been
proposed to detect falls. These approaches mainly focus on
the critical and postfall phases. Wearable devices composed
of accelerometers or gyroscopes directly placed on subjects
body parts (mainly chest [5], waist [8], or wrists [8]) enable
to capture the high velocities, which occur during the critical
phase and the horizontal orientation during the postfall phase.
However, these methods are based on the assumption that the
subject wears the system at any time (with a warning by the
system otherwise), and therefore, if it is uncomfortable, it could
bother the user. Additionally, such systems require recharging
the battery frequently, which could be a serious limitation for
real application.

On the opposite, video systems enable an operator to rapidly
check if an alarm is linked to an actual fall or not. Therefore,
cameras placed in the subject’s environment were used to detect
falls by measuring the movement or orientation of the body. A
first approach consists in detecting abnormal horizontal and ver-
tical speeds [9] or body silhouette changes [10], [12] associated
with the critical phase. Another method consists in using body
orientation features, such as width and height of a silhouette
by comparing a standing and a lying person [12], [15], [19]. In
this case, the detection would be mainly based on postfall shape
or orientation features. As these approaches generally use only
one camera, they could fail to detect falls in case of occlusions.
These occlusions frequently occur in real situations at home
because a room contains furniture and objects that could be
placed between the subject and the camera (as shown in Fig. 1),
contrary to easier and simplified experimental settings in labo-
ratories. Thus, dealing with occlusions is a key issue for using
video systems in real situations in order to avoid misdetection
and false alarms.

Using multiple cameras could overcome this limitation by
offering several different points of view of the subject. It then
becomes possible to extract a 3-D silhouette of the subject. Some
approaches use homography (a transformation between projec-
tive planes) to project silhouette (previously segmented with a
foreground/background algorithm) on the ground and parallel
planes for gathering information from different cameras and

Fig. 1. Examples of real occlusions in our experimental setup.

locate the person in the place (e.g., [14], [20]–[22],). Another
method, the visual hull [23], consists in back-projecting silhou-
ettes into space using camera models. Contrary to homography,
camera models permit to represent more sophisticated situations
such as lens distortion. The intersection of all those projections
results in the final volume [23]. This method has been applied
to fall detection in [13] to detect if the body is vertical or not
during the postfall phase. To this end, the method computes the
centroid of the volume and its main axis using principal compo-
nent analysis. The authors did not report any information about
the robustness of the system to occlusions. However, since the
silhouettes coming from all the cameras were needed, when
an occlusion occurs for one camera or more, the reconstructed
volume may become unreliable or unusable. To overcome this
problem, it is possible to use an occlusion-resistant visual-hull
method [24]. This approach is able to reconstruct a volume even
if one of the silhouette is not present for one of the cameras
(such as when the body is occluded).

In this paper, we propose a method that is capable of deal-
ing with several occlusions that could occur in personal houses.
This method is based on two main ideas. First, we use the
occlusion-resistant algorithm introduced previously in [23] in
order to detect if a person is lying on the ground even if some
occlusions occur. Second, we introduce the original and simple
idea of vertical volume distribution ratio (denoted VVDR in
the remaining of this paper). This ratio is obtained by dividing
the volume that is below a given height by the total volume.
For people lying on the ground, this ratio is high compared to
when they are standing up. We assume that this feature is less
sensitive to noise than methods based on the principal axis of
the reconstructed volume. VVDR has been successfully tested
in a few occlusion-less situations [25]. In the present paper, we
tested how this framework is able to manage occlusions in 24
realistic scenarios showing 22 fall events and 24 confounding
events (11 crouching position, 9 sitting position, and 4 lying on a
sofa position) under several camera configurations. This unique
dataset is documented [26] and made available to the scientific
community through a website [27]. We also theoretically ana-
lyze the robustness of the method to occlusion by identifying
the worst occlusion case and testing it with experimental videos.
Finally, a real-time implementation using GPU is demonstrated.

The paper is organized as follows. Section II describes
the theoretical background and the implementation of the
method proposed in this paper in order to detect falls in these
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Fig. 2. Schematic representation of the entire process.

scenarios, thanks to the multi-cameras system. Section III
describes the experimental setup that was used to generate the
24 scenarios with occlusions to validate the method. Section IV
provides some results and discussion about the performance
of the method. Finally, Section VI gives the conclusion and
perspectives to this paper.

II. METHOD

Briefly stated, the method essentially involves two main steps.
First, with the set of cameras, the 3-D volume of the person is
reconstructed with a shape-from-silhouette approach. Second,
an index (VVDR) is obtained by dividing the volume that is
below 40 cm by the total volume of the person. Then, a simple
threshold is used to determine if this index reveals a fall or not.
This section describes in more details these steps.

Our algorithm can be divided into three levels: camera and
data fusion levels (step 1); and recognition level (step 2), as
shown in Fig. 2.

A. Camera Level

In order to calculate the volume distribution of a subject in his
environment, the system must know the relationship between
the camera coordinate system and the real 3-D space. Thus,
preliminary to the fall detection process, the cameras have to be
calibrated.

Intrinsic parameters were computed using the chess-board
method [28] to define the focal distance f = (fx, fy ), the op-
tical center c = (cx, cy ), the skew coefficient α, and the ra-
dial distortion k = (k1 , k2 , k3 , k4 , k5), as presented in [29]. The
later parameters are necessary because of nonnegligible radial
distortion due to the large field of view of the camera lenses.
External parameters, the rotation matrix R, and the translation
vector T were calculated using feature points manually placed
on the floor. Altogether, these parameters define the projective
camera model described as follows. Let X = (X,Y,Z) be the
real world vector of a 3-D point, and Xc = (Xc, Yc , Zc) his
coordinates in the camera space, then

Xc = RX + T.

The normalized image projection (xn , yn ) is defined by[
xn

yn

]
=

[
Xc/Zc

Yc/Zc

]
.

The normalized point coordinates (xd, yd ) with radial distortion
become[

xd

yd

]
=

(
1 + k1r

2
n + k2r

4
n + k5r

6
n

) [
xn

yn

]
+

[
dx

dy

]

where the tangential distortion vector (dx, dy ) is

[
dx

dy

]
=

[
2k3 xn yn + k4

(
3x2

n + y2
n

)
k3

(
x2

n + 3y2
n

)
+ 2k4 xn yn

]

and radial distance is: rn =
√

x2
n + y2

n .
Finally, multiplying the normalized coordinates with the cam-

era matrix gives pixel coordinates (xp, yp )

[
xp

yp

]
=

[
fx α · fx cx

0 fy cy

] ⎡
⎣xd

yd

1

⎤
⎦

where α is a skew coefficient. This function can be written as
follows:

[xp, yp ] = φ (X,Y,Z, f , c,k,R,T, α) .

In order to detect moving objects, each image of camera
j, noted ij , is subtracted from its own background model bj

obtained by computing a temporal median image of the sequence
[30]. When the absolute difference of a pixel is higher than a
previously defined threshold Th, it is registered as a foreground
pixel, otherwise it is considered as a background pixel

sj (xp, yp) =
{

1, if |ij (xp, yp) − bj (xp, yp)| > Th

0, otherwise

}
.

Finally, in order to reduce noise detection and reinforce large
surface detection, an opening morphological operation is done
on sj . An example of this segmentation is given in Fig. 3.

B. Data Fusion Level

This level aims at gathering projections of the 2-D silhouette
provided by each camera on horizontal slices in order to recon-
struct the 3-D volume of the subject. Let Sij be the projection
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Fig. 3. Result of the moving object segmentation process. From left to right,
background median model bj , current frame ij , and segmented picture sj for
camera j .

Fig. 4. Representation of four slices (Si ), where camera views were projected
and summed (18 slices were used in practice with a 10-cm vertical interval)

of the image provided by camera j on the horizontal plane i as
follows:

Si,j (X,Y ) = sj (φ (X,Y,Zi, fj , cj ,kj ,Rj ,Tj , αj ))

where Zi is the height for the horizontal plane i, and fj , cj , kj ,
Rj , Tj , αj are the parameters for camera j.

For each horizontal slice i, Si is the image corresponding to
the summation of projection Si,j coming from n cameras

Si (X,Y ) =
n∑

j=1

Si,j (X,Y )

where n is the total number of cameras. Therefore, Si (X,Y )
takes values between 0 and n, depending on the number of
2-D silhouettes (from n cameras) contributing to the 3-D re-
construction at position (X,Y ) and at height Zi . The distance
between each slice was set arbitrarily to 10 cm in this study.
Fig. 4 illustrates an example of such kind of fusion.

Without occlusion, the person is visible from all cameras and
consequently all positions (X,Y ), where Si (X,Y ) = n define
the correct 3-D reconstruction (slice by slice). To allow toler-
ance for one possible occlusion, we simply add the positions,
where Si (X,Y ) = n − 1 at the expense of a slightly larger and
coarser reconstruction. Therefore, by thresholding Si at n − 1,
we obtain the 3-D reconstruction as a series of segmented slices
S∗

i

S∗
i (X,Y ) =

{
1, if Si (X,Y ) ≥ n − 1

0, otherwise

}
.

As the threshold is applied individually to each position (X,Y ),
we can also handle the case of multiples partial occlusions in
different cameras if they are not affecting the same position
(X,Y ). Notice that, reducing the threshold to accommodate

Fig. 5. 3-D reconstruction of a person after fusion of the different points of
view and their corresponding VVD on the right. Light gray color is attached to
a standing up person, and dark gray for a lying on the ground person.

Fig. 6. Example of the VVD during a fall scenario (displayed with gray levels).

more occlusions would result in an unacceptable enlargement
and innacuracy of the 3-D reconstruction.

Let B be the set of pixels in each slice S belonging to the
largest object. The vertical volume distribution of this object at
the ith slice denoted VVD (i) is given by

VVD (i) =
∑

(X,Y )∈B

S∗
i (X,Y ) .

Examples of the resulting volume of a standing up (light gray)
and lying down (dark gray) positions, and their corresponding
VVD are presented in Fig. 5, where the difference is clearly
visible. Fig. 6 represents the evolution of the VVD (displayed
with gray levels) of a subject obtained during a fall scenario.

C. Fall-Detection Level

To detect a fall, an indicator based on the ratio between the
sum of VVD values from the first 40 cm (five slices starting
from the floor) with respect to the whole volume (m = 18 slices)
is computed as follows:

VVDR =
∑5

i=1 VVD (i)∑m
i=1 VVD (i)

. (1)

This value, 40 cm, is justified by anthropometric data from
[31]. In particular, for the 65–80 years old range, the shoulder
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Fig. 7. Description of each scenarios.

width mean is 41.7 cm. This is the highest height to be expected
for a lying down body.

A fall is detected if this ratio is above a preselected thresh-
old during a predefined period of time (5 s in our case). This
predefined period of time of 5 s is not a sensitive parameter and
could be longer if needed. We chose 5 s because after that period,
the subject stood up after a fall (we did not ask him to stay on the
floor indefinitely) and the confounding events (e.g., crouching
down) were lasting shorter periods of time. In practice, this pa-
rameter should be chosen by the clinician considering the habits
of the elderly person.

III. MATERIALS AND EXPERIMENTS

In order to evaluate the method proposed in this paper we
have captured several videos containing a wide set of falls (see
Fig. 7). For each situation, we used several synchronized cam-
eras. However, it is impossible to capture real-life situations,
where people actually fall. This is why we have designed sce-
narios that were carried out by an actor who performed the falls
in our laboratory with appropriate protection (mattress). One
has to notice that the realism of the falling motion is not a key
issue here as our approach focuses on the postfall phase.
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A. Experimental Setup

The dimension of the area was 7 m per 4 m. A table, a
chair, and a sofa were introduced in the capture area in order to
reproduce a normal room, where people actually live. Adding
such furniture introduces occlusions in the videos for most of
the scenarios. We assumed that a commercial system based on
our technique would be made up of Internet Protocol (IP) video
surveillance cameras with large field of view lenses. For all the
scenarios, we thus placed eight such cameras (Gadspot 4600,
110◦ field of view) all around the area. They were attached to
the ceiling at 2.5-m height. Video streams (720 × 480 at 30 fps)
were recorded and analyzed on a common desktop PC.

B. Fall Scenarios

We decided to propose a wide range of realistic fall scenar-
ios according to many previously published works (e.g., [32]).
Each scenario is defined by a set of characteristics, such as the
main falling direction (falling down, forward, backward, and
side way) and the departure position (stand up, sit on a chair,
or a sofa). Each scenario is depicted in Fig. 7. Some situations,
which could lead to false alarms, such as occlusions due to furni-
ture (see Fig. 1), crouching down on the floor, and lying on a sofa
(see Fig. 8) are also present to complexify the scenarios. Overall,
there were 24 realistic scenarios showing 22 fall events and 24
confounding events (11 crouching position, 9 sitting position,
and 4 lying on a sofa position) under several camera configura-
tions. These scenarios captured with eight cameras correspond
to a total of 143472 frames (4782.4 s) to be analyzed by the
system. This unique dataset is documented in [26] and made
available to the scientific community through a website [27].

Each scenario was performed once by one subject and ap-
proved by the local Institutional Review Board (IRB) authority.
The subject in the videos is one of the author (A. Saint-Arnaud),
a clinician, whose research interests are elderly people affected
by musculoskeletal and cognitive disorders living in the com-
munity. He is well aware of the different features of real falls
in elderly people and took care of performing the simulated
falls accordingly (e.g., slow motion, falls due to different disor-
ders (loss of balance, blood pressure drop, abrupt sitting due to
weakening of the ham-string muscles in elderly people, etc.).

All the cameras were used to capture the fall. However, it was
possible to test various camera configurations by using or not
some of the video sequences during the analysis process. Hence,
we tested configurations using three to eight cameras. It enabled
us to evaluate how our method was influenced by the number of
the cameras used for the capture. For each scenario, we tested
219 configurations: all the possible combinations when selecting
three to eight cameras among eight cameras

C3
8 + C4

8 + C5
8 + C6

8 + C7
8 + C8

8 = 219. (6)

Some of these scenarios involved occlusions due to furniture
placed in the environment.

In order to test further the ability of the system to tackle
the problem of occlusions, we also introduced two artificial
occlusions. The first one consists in completely deleting the
contribution of one camera, corresponding to a full occlusion

Fig. 8. Examples of confounding events, from left to right, crouched down,
lying on a sofa, and sitted position.

Fig. 9. Illustrative example with four cameras. For a given slice, the segmented
surface S∗

i (and the reconstructed volume) is underestimated in case of a camera
occlusion.

Fig. 10. Influence of the number of cameras on the capability of the VVDR
to discriminate body postures obtained without artificial occlusions. The gray
areas correspond to 95% confidence intervals and the solid lines are the medians.

of this camera. The second one deletes only the contribution
of one camera for the lowest 40 cm of the 3-D volume. This
correspond to the worst possible case because the volume of the
lowest part becomes underestimated, and consequently, this re-
duces the VVDR value. This can be explained by the illustrative
example in Fig. 9. For a four-camera setup without occlusion,
the segmented slice S∗

i is larger (1-2-3-4) than with one oc-
clusion (1-2-3,1-2-4,1-3-4,2-3-4). Therefore, an occlusion may
contribute to a higher rate of FNs (failing to detect a real fall).

C. Data Analysis

In this paper, we wish to evaluate the ability of the VVDR
to discriminate lying-on-the-floor position (corresponding to a
fall) from others. To this end, we computed the VVDR for all
the images coming from the sequences. As shown in Fig. 10,
VVDR for lying down positions is clearly different than oth-
ers, such as standing up, sitting down, or crouched positions.
This statement is true for whatever the number of cameras and
even with only three cameras, where the separation remains ac-
ceptable. The actual time, where a fall occurs (denoted tfall) is
manually measured in the video sequences. This time is defined
as the beginning of the postfall period when the body hits the
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TABLE I
SENSIBILITY AND SPECIFICITY OBTAINED WITH VVDR THRESHOLD SET AT

97.5 PERCENTILE OF THE NO-FALL REGION

ground. If our method is able to detect a fall event after tfall , the
detection is supposed to be correct (true positive). If the method
does not detect any fall, it is supposed to have failed (false neg-
ative). If it detects a fall event before tfall this time interval, it is
supposed to have generated a false detection (false positive). If
no fall is detected before tfall , it is then considered as TN.

D. Statistical Analysis

The VVDR threshold to set a fall detection was simply taken
as the 97.5% percentile of the no-fall region in Fig. 10. This
means that with VVDR alone, 2.5% of false positives (FPs)
will occur, but we will get most, if not all, the true positives
(TPs). This bias toward TP is reasonable since we prefer a few
more FPs to avoid some miss-detections of fall (risk minimiza-
tion). Moreover, the predefined period of inactivity (5 s) after a
potential fall will remove several other FPs.

We have tested this threshold with an unbiased leave-one-out
strategy to compute the sensitivity and specificity of the com-
plete system (including the period of inactivity of 5 s) in Table I.
This means that for each scenario tested, we have computed
the VVDR threshold corresponding to the 97.5% percentile of
the no-fall region obtained from all the remaining (training)
scenarios.

To analyze our recognition results, we compute the sensitivity
and the specificity, as follows:

1) Sensitivity: Se = TP
(TP + FN)

2) Specificity: Sp = TN
(TN + FP)

where
1) True Positives (TP ): number of falls correctly detected

(among the 22 fall events multiplied by the total number
of camera configurations).

2) False Negatives (FN ): number of falls not detected.
3) False Positives (FP ): number of normal activities de-

tected as a fall (among the 24 normal segments in each
scenario multiplied by the total number of camera config-
urations).

Fig. 11. VVDR for a standing up and lying down situations, where one camera
is gradually occluded (from the ground to the head of the subject) in a three-
cameras setup with 95% confidence interval in light gray.

4) True Negatives (TN ): number of normal activities not
detected as a fall.

IV. RESULTS

This section presents results obtained from experimentation
with the dataset previously presented. In the first part, the ability
of the VVDR to detect a fall is examinated. Then, the real-time
constrain is tested with respect to the number of camera.

A. VVDR Behavior

Results shown in Fig. 10 prove that VVDR enables to dis-
criminate lying-on-the-floor from others positions. Indeed, the
95% confidence intervals (gray areas) around the mean value
of VVDR for lying-on-the-ground and others positions are very
well separated with four cameras or more. The separation re-
mains acceptable for the three-camera setup, although, some
overlap appears between the confidence intervals.

Moreover, the distance between the two confidence intervals
increases with the number of cameras, which tends to show that
the ability to detect lying positions increases with the number
of cameras.

With four cameras or more, the system achieved almost 100%
sensitivity and specificity, as presented in the first part of Table I.
The less favorable results were obtained with three cameras, for
which the sensitivity decreased down to 80.6%. Whatever the
scenario was, simulating a partial occlusion of the lowest 40 cm
above the ground (worst occlusions) in one camera led to an
artificial decrease of VVDR (see Fig. 11) resulting in a lower
detection rate (55% sensitivity with three cameras), but also in
the same way, a lower false detection rate (100% specificity), as
shown in the second part of Table I. On the contrary, simulating
total occlusion of one camera increased the VVDR (see Fig. 11)
resulting in a higher detection rate (94.7% sensitivity with three
cameras) at the expense of a higher FP rate (95.6% specificity
for six cameras and more), as shown in Table I.
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TABLE II
INFLUENCE ON THE IMPLEMENTATION ON COMPUTATION TIME

The fact that the inflexion point is located at 40 cm, when all
contribution of one camera for the lower part of the body are
clearly occluded, demonstrates that this is the worst occlusion
case, as explained by Fig. 9. In this case, the numerator of (5) is
the most underestimated.

B. Real-Time Implementation

Three different implementations of this method have been
tested. The first one used only the processor to deal with all the
computations. The second one used the GPU [35] for recon-
structing the voxels, while the remaining of the computations
were performed by the processor. The last one used the GPU for
reconstructing the voxels and segmenting the image. Computa-
tion times for these three methods are reported in Table II. The
main result is that the algorithm, which used the GPU can go 18
times faster than the one with only the processor, for three cam-
eras. This ratio increased up to 28 when using eight cameras.

V. DISCUSSION

Our results compare very favorably with those reported in
the literature. For instance, Rougier et al. [10] have developed
a fall-detection system with a single camera based on silhouette
deformation of the subject with the same dataset used here. Their
results gave a sensitivity and specificity of 95.5% and 96.4%,
respectively, that are lower than those obtained with our method,
although, this comparison is somewhat unfair because they used
only one camera. Anderson et al. [13] used fuzzy logic with a
multicamera setup on a dataset containing 14 falls and 32 no-
falls events. They obtained 100% TP detection and 6,25% false
detection (sensitivity = 100% and specificity = 93.75%). How-
ever, they did not address the problem of occlusions and their
approach requires the manual adjustment of several parameters.
Cucchiara et al. [14] proposed a posture-classification system
that was able to achieve 97.23% accuracy with some occlusions
and for four types of postures including lay down position. No-
tice that [13] and [14] used datasets with different (unspecified
number of) subjects, while we used one (experimented) subject.

The method presented in this paper is able to deal with an
occlusion of one camera without significantly decreasing the
detection rate. In real life, situations, where several cameras
are occluded generally occur. However, the reconstruction al-
gorithm is applied independently for each 3-D position. Hence,
the algorithm is able to deal with several occlusions, except if

Fig. 12. Volume reconstructed in case of real occlusions with pictures shown
in Fig. 1. Left: classical method. Right: occlusion-resistant method presented in
this paper.

there is more than one occlusion for the same 3-D position. In
some real situations, such as the one depicted in Fig. 1, all the
cameras may be partially occluded. A classical reconstruction
method [13] may fail in recognizing a lying person in that case,
as shown in Fig. 12, whereas, the method presented in this paper
is able to reconstruct the volume of the actor. The quality of the
resulting reconstructed volume is sufficient to compute VVDR,
and thus determine if the actor is lying down or not.

Another important feature of the method is the fact that it
works without considering the speed or motion of the person.
Indeed, by simply looking for abnormal volume distribution
along the vertical axis, i.e., when the major part of the body
is near the floor, fall detection is made possible. This point is
important because motion is generally difficult to measure and
usually needs more computer resources, and a high and fixed
frame rate to be accurate; these requirements add complexity
and could impair real-time processing.

Regarding the possibility that people just happen to have their
bodies close to the floor for a long period of time (maybe to pick
up something or to tie their shoelaces). This problem is usually
tackled by the computation of the VVDR itself because a large
part of the body remains above 40 cm, but in the unusual case,
where the elderly is very near the floor, the predefined limit of
time (5 s in our case) is sufficient to avoid FP. The limit could be
increased to a higher value if necessary depending on the habits
of the elderly person and is not a sensitive parameter. In this
paper, the 11 crouching-down events were correctly identified
as TN (except for the three-camera configuration). However, in
the case, where the subject finishes the fall onto an object (e.g.,
table, wall, or other furniture), a large part of the body could
remain above 40 cm, and thus, our system could fail. Adding
some knowledge about the environment could help to detect
these difficult cases. Similarly, a fall ending in a sitting posture
(on the floor) could cause a miss detection.

Notice that another moving object entering/leaving the room,
like a cat or dog would be ignored because the system analyses
only the largest object (human) in the scene (see Section II).
Very big dogs are out of the question because of the additional
risk of fall for an elderly person living alone.

To bring the system to a multiroom setup, a set of cameras
needs to be installed in every room. Fortunately, this does not
require much more computer resources. Actually, the computer
simply needs to know in what room the elderly person is and then
process the data coming from this room only for fall detection.
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The presence of a person in a room can be easily and quickly
monitored with simple background subtraction for all cameras
(in all rooms) checked one after the other at a low frame rate
per camera (e.g., 1 frame/sec). Only the cameras involved in the
identified room would be processed at a higher frame rate for
fall detection. More sophisticated alternatives are also possible
and will be investigated in the future.

One shortcoming of a multiroom setup of our video system
is the requirement for installation of adequate infrastructures
that may cause a significant modification of the subjects home
environment. Although, this means certainly much work (e.g.,
compared to wearable devices), with the current miniaturiza-
tion of cameras and reliable Wi-Fi technology, we believe that
such system is nevertheless realizable for real application. The
cost of such system could be another problem for the user or
provider; however, we think that the economic advantages will
be noticeable when compared with traditional intervention, i.e.,
placing the elderly in a specialized establishment (instead of the
home setting). Another concern about video systems could be
the intimacy and privacy of the user. For this reason, this system
should use a closed circuit: the system will be activated to send
an alarm signal toward an outside resource (e.g., via a phone or
internet) if and only if a fall is detected, then the images for that
event could be accessed (with a password) by the designated
persons (e.g., the main care giver or an emergency call centre).
Moreover, in some areas (e.g., bathroom), the images could be
processed (blurring, pixelization, or silhouette extraction) to en-
sure some privacy. Finally, it is worth mentioning that in a recent
study on the perception of intelligent videomonitoring system
by elderly people [33], 96% of participants were favorable or
partially favorable to such system for fall detection at home.

Finally, the quality of the images was rather poor here due to
large field of view lenses and compression artifacts of low-cost
cameras, resulting in noise on segmented pictures. Such noise
may lead to errors in the silhouette of moving objects. However,
missing part of the silhouette could be considered as partial
occlusions that our method is able to overcome. Imperfect seg-
mentation are thus partially compensated by the method, but
improvement in the segmentation algorithm would certainly be
desirable in the future to compensate for the limitations asso-
ciated with low-cost cameras. Today’s higher end cameras will
certainly become more affordable in the future and could also
contribute to better performance of the system.

VI. CONCLUSION

The results presented in this paper had shown that a multi-
camera system is reliable in order to detect falls even if some
occlusions occur. This result is valid even with only three cam-
eras, but four or more cameras will offer better performances.

This research has led to five contributions:
1) VVDR, a simple and robust feature for fall detection; of

occlusion-resistant volumetric reconstruction to fall de-
tection; of a unique dataset that is now documented [26]
and made available to the scientific community through
a website [27]; analysis of the robustness of the method
to occlusion by identifying the worst occlusion case and
testing it with experimental videos; and

2) real-time implementation with GPU.
One of the major contributions of this paper is the design of a

simple index, the VVDR, which focuses on the change of shape
vertical distribution of the subject (from standing up to lying
down on the ground). VVDR is robust to some inaccuracies that
could occur for a few images (because of too multiple occlusions
or segmentation errors). It also means that using a lower frame
rate could be considered without affecting the performance of
the system, since only the shape distribution at each frame is
considered. Hence, we could imagine that a unique system could
be used to monitor several rooms at a low frame rate for each
camera. In this way, an entire home for autonomous people or
multiple resident in a community dwelling could be monitored,
thanks to a unique system composed of a network of cameras
and only one computer. In this paper, we have also shown that
this type of detection process could be real time if necessary by
simply using a GPU.

The reconstruction method proposed in this paper could be
applied to other types of applications, such as quantifying daily
life activities, which is a key issue of our modern society. As
for detecting falls, real situations involve many occlusions and
classical methods based on multiple cameras (e.g., [13]) gen-
erally fail in solving this problem. More generally, this method
should be useful for applications involving spatial location and
activity classification, depending on shape of subjects. Contrary
to approaches mainly based on image analysis, dealing with 3-D
volumes in space brings richer information that should be useful
to address complex monitoring processes.
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