Bayesact I - Background

Jesse Hoey

February 6, 2014

Readings:

- M.Sanjeev Arulampalam, Simon Maskell, Neil Gordon and Tim Clapp. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, Vol 50, No 2, Feb 2002.
- David Silver and Joel Veness Monte Carlo Planning in Large POMDPs. In NIPS 2010.

Background: David Poole and Alan Mackworth. Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press, 2010. Chapters 6 and 9 in particular. See artint.info

Uncertainty

Why is uncertainty important?

- Agents (and humans) don't know everything,
- but need to make decisions anyways!
- Decisions are made in the absence of information,
- or in the presence of noisy information (sensor readings)

The best an agent can do:

know how uncertain it is, and act accordingly

Probability: Frequentist vs. Bayesian

Frequentist view:

probability of heads = # of heads / # of flips probability of heads this time = probability of heads (history) Uncertainty is **ontological**: pertaining to the world

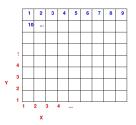
Bayesian view:

probability of heads **this time** = agent's **belief** about this event belief of agent A: based on previous experience of agent A Uncertainty is **epistemological**: pertaining to knowledge

Features

Describe the **world** in terms of a set of **states**: $\{s_1, s_2,, s_N\}$

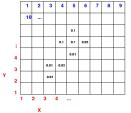
or, as the product of a set of **features** (also known as **attributes** or **random variables**)



- Number of states = $2^{number \ of \ binary \ features}$
- Features describe the state space in a **factored** form.
- state \rightarrow factorize \rightarrow feature values
- ullet feature values o cross product o states

Probability Measure

if X is a random variable (feature, attribute), it can take on values x, where $x \in Domain(X)$ $Pr(X = x) \equiv Pr(x)$ is the probability that X = x joint probability $Pr(X = x, Y = y) \equiv Pr(x, y)$ is the probability that X = x and Y = y at the same time Joint probability distribution:



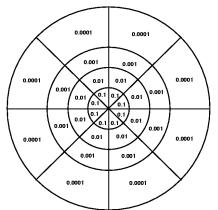
Sum Rule:

$$\sum_{X} Pr(X = X, Y) = Pr(Y)$$

We call Pr(Y) the marginal distribution over Y

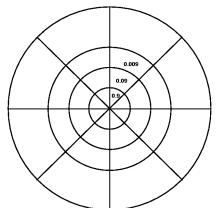
Independence

- describe a system with n features: $2^n 1$ probabilities
- Use independence to reduce number of probabilities
- e.g. radially symmetric dartboard, Pr(hit a sector)
- $Pr(sector) = Pr(r, \theta)$ where r = 1, ..., 4 and $\theta = 1, ..., 8$.
- 32 sectors in total need to give 31 numbers



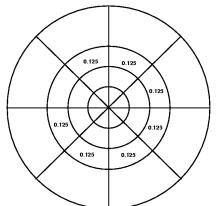
Independence

- describe a system with n features: $2^n 1$ probabilities
- Use independence to reduce number of probabilities
- e.g. radially symmetric dartboard, Pr(hit a sector)
- assume radial independence: $Pr(r, \theta) = Pr(r)Pr(\theta)$
- only need 7+3=10 numbers



Independence

- describe a system with n features: $2^n 1$ probabilities
- Use independence to reduce number of probabilities
- e.g. radially symmetric dartboard, Pr(hit a sector)
- assume radial independence: $Pr(r, \theta) = Pr(r)Pr(\theta)$
- only need 7+3=10 numbers



Conditional Probability

if X and Y are random variables, then

```
Pr(x|y) is the probability that X = x given that Y = y. e.g. Pr(flies|is\_bird) = ?
```

Conditional Independence

$$Pr(flies|is_bird, has_wings) = Pr(flies|is_bird)$$

so learning has_wings doesn't influence beliefs about flies if you already know is_bird

Product rule (Chain rule):

$$Pr(flies, is_bird) = Pr(flies|is_bird)Pr(is_bird)$$

 $Pr(flies, is_bird) = Pr(is_bird|flies)Pr(flies)$

$$Pr(is_bird|flies) = \frac{Pr(flies|is_bird)Pr(is_bird)}{Pr(flies)}$$

Conditional Probability

if X and Y are random variables, then

$$Pr(x|y)$$
 is the probability that $X = x$ given that $Y = y$. e.g. $Pr(flies|is_bird) = ?$

Conditional Independence $Pr(flies|is_bird, has_wings) = Pr(flies|is_bird)$

so learning <code>has_wings</code> doesn't influence beliefs about <code>flies</code> if you already know <code>is_bird</code>

Product rule (Chain rule):

$$Pr(flies, is_bird) = Pr(flies|is_bird)Pr(is_bird)$$

 $Pr(flies, is_bird) = Pr(is_bird|flies)Pr(flies)$

$$Pr(is_bird|flies) = \frac{Pr(flies|is_bird)Pr(is_bird)}{Pr(flies)}$$

Why is Bayes' theorem interesting?

and want to do evidential reasoning:
 Pr(is_bird | flies)
 Pr(disease | symptom)
 Pr(fire | alarm).

 $Pr(a \text{ tree is in front of a car} \mid image looks like <math>\clubsuit)$

Updating belief: Bayes' Rule

Agent has a **prior belief** in a **hypothesis**, h, Pr(h),

Agent observes some **evidence** e that has a **likelihood** given the hypothesis: Pr(e|h).

The agent's **posterior belief** about h after observing e, Pr(h|e),

is given by Bayes' Rule:

$$Pr(h|e) = \frac{Pr(e|h)Pr(h)}{Pr(e)} = \frac{Pr(e|h)p(h)}{\sum_{h} Pr(e|h)Pr(h)}$$

Expected Values

expected value of a function on X, V(X):

$$\mathbb{E}_{Pr(x)}(V) = \sum_{x \in Dom(X)} Pr(x)V(x)$$

where Pr(x) is the probability that X = x.

This is useful in decision making, where V(X) is the *utility* of situation X.

Bayesian decision making is then

$$egin{argmax} rg \max_{Pr(outcome|decision)} (V(ext{decision})) \ &= rg \max_{decision} \sum_{outcome} Pr(outcome|decision) V(outcome) \ &= arg \max_{decision} Pr(outcome) \ &$$

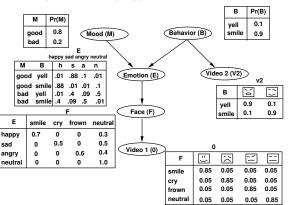
Value of Independence

- complete independence reduces both representation and inference from $O(2^n)$ to O(n)
- Unfortunately , complete mutual independence is rare
- Fortunately , most domains do exhibit a fair amount of conditional independence
- Bayesian Networks or Belief Networks (BNs) encode this information

Bayesian Networks

A Bayesian Network (Belief Network, Probabilistic Network) or BN over variables $\{X_1, X_2, \dots, X_N\}$ consists of:

- a DAG whose nodes are the variables
- a set of Conditional Probability tables (CPTs) giving $Pr(X_i|Parents(X_i))$ for each X_i



Stochastic Simulation

- Idea: probabilities
 samples
- Get probabilities from samples:

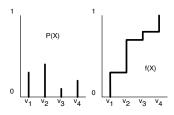
Χ	count		X	probability
<i>x</i> ₁	n_1		X ₁	$\frac{probability}{n_1/m}$
:	:	\leftrightarrow	^1	
x_k	n_k		:	:
total	m		X_k	n_k/m

• If we could sample from a variable's (posterior) probability, we could estimate its (posterior) probability.

Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution: $f(x) = Pr(X \le x)$.
- Select a value y uniformly in the range [0,1].
- Select the x such that f(x) = y.



Hoeffding Bound

p is true probability, s is sample average, n is number of samples

- $Pr(|s-p|>\epsilon) \leq 2e^{-2n\epsilon^2}$
- if we want an error greater than ϵ in less than a fraction δ of the cases, solve for n:

$$2e^{-2n\epsilon^2} < \delta$$

$$n > \frac{-\ln\frac{\delta}{2}}{2\epsilon^2}$$

	ϵ error	cases with error $>\epsilon$	samples needed
• we have	0.1	1/20	184
	0.01	1/20	18,445
	0.1	1/100	265

Forward sampling in a belief network

- Sample the variables one at a time; sample parents of X before you sample X.
- Given values for the parents of X, sample from the probability of X given its parents.

Sampling for a belief network: inference

Sample	Mood	Behavior	Emotion	V2	Face	0
s_1	good	smile	happy	smile	smile	smile
<i>s</i> ₂	good	yell	sad	yell	smile	smile
<i>s</i> ₃	bad	smile	sad	smile	cry	cry
<i>S</i> ₄	bad	yell	angry	yell	frown	frown
<i>s</i> ₅	good	smile	happy	smile	smile	smile
<i>s</i> ₆	bad	smile	sad	smile	smile	smile
<i>s</i> ₁₀₀₀	bad	yell	angry	yell	frown	frown

To get $Pr(H = h_i | Ev = ev_i)$ simply

- count the number of samples that have $H = h_i$ and $Ev = ev_i$, $N(h_i, ev_i)$
- ullet divide by the number of samples that have $E=e_i,\ N(ev_i)$
- $Pr(H = h_i | Ev = ev_i) = \frac{Pr(H = h_i \land Ev = ev_i)}{Pr(Ev = ev_i)} = \frac{N(h_i, ev_i)}{N(ev_i)}$

Only need those samples that have $Ev = ev_i$: Rejection sampling

Importance Sampling

- If we can compute Pr(evidence|sample) we can weight the (partial) sample by this value.
- To get the posterior probability, we do a weighted sum over the samples; weighting each sample by its probability.
- We don't need to sample all of the variables as long as we weight each sample appropriately.
- We thus mix exact inference with sampling.
- Don't even have to draw from any true distribution, Pr(B)
- Draw from proposal $q(B) o b_i$,
- additionally weight by $Pr(b_i)/q(b_i)$

Importance Sampling

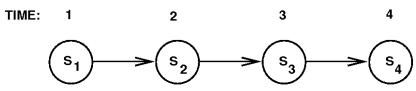
e.g. given evidence v_2 , o, m, we can draw i^{th} sample:

- 1. draw from $q(B) \rightarrow b_i$
- 2. draw from $Pr(E|m, b_i) \rightarrow e_i$
- 3. weight by $Pr(v_2|b_i)Pr(o|e_i)Pr(b_i)/q(b_i)$, where $Pr(o|e_i) = \sum_f Pr(o|f)Pr(f|e_i)$

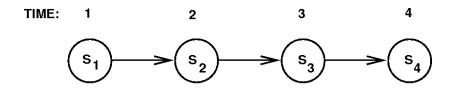
 W_e : sum of all weights for all samples with $e_i = e$ W: sum of all weights $Pr(E = e|v_2, o) = W_e/W$

Probability and Time

- A node repeats over time
- explicit encoding of time
- Chain has length = amount of time you want to model
- Event-driven times or Clock-driven times
- e.g. Markov chain



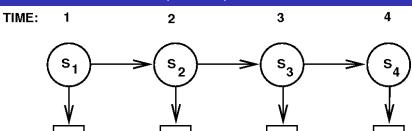
Markov assumption



$$Pr(S_{t+1}|S_1,...,S_t) = Pr(S_{t+1}|S_t)$$

This distribution gives the dynamics of the Markov chain

Hidden Markov Models (HMMs)



Add: observations O_t and observation function $Pr(O_t|S_t)$

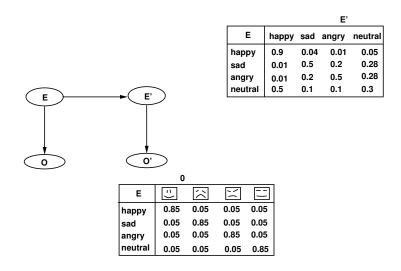
Given a sequency of observations O_1, \ldots, O_t , can estimate **filtering**:

$$Pr(S_t|O_1,\ldots,O_t)$$

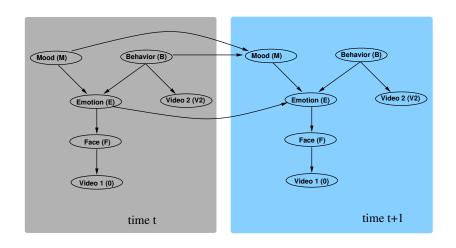
or **smoothing**, for k < t

$$Pr(S_k|O_1,\ldots,O_t)$$

Emotions over time

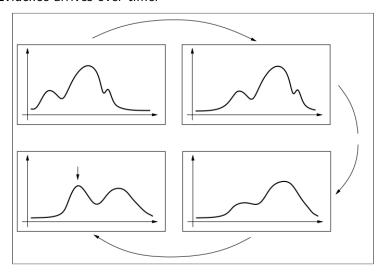


Dynamics Bayesian Networks (DBNs)



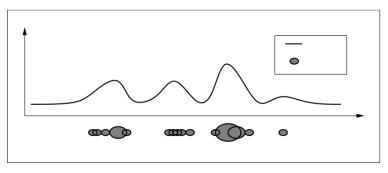
Particle Filtering

Evidence arrives over time:



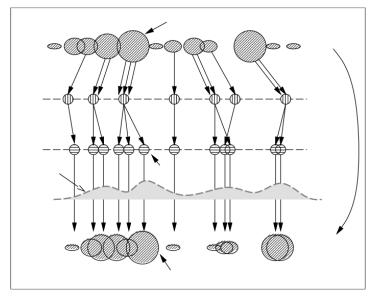
Particle Filtering

Represent distributions with samples:

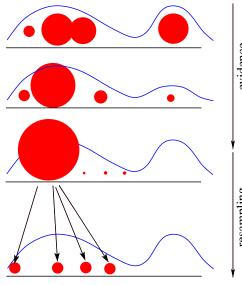


Particle Filtering

Update samples using particle filter:



Resampling



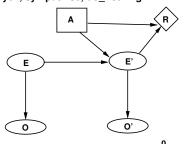
evidence

- avoids degeneracies in the samples
- all importance weights \rightarrow 0 except one
- performance of the algorithm depends on the resampling method.

resampling

POMDPs

Partially Observable Markov Decision Process:



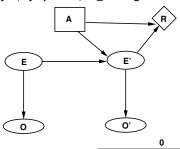
A: do_n		E'		
E	happy	sad	angry	neutral
happy	0.9	0.04	0.01	0.05
sad	0.01	0.5	0.2	0.28
angry	0.01	0.2	0.5	0.28
neutral	0.5	0.1	0.1	0.3

E	R(E)
happy	1.0
sad	-0.1
angry	-1.0
neutral	0.0

	•			
E	()	\sim),(
happy	0.85	0.05	0.05	0.05
sad	0.05	0.85	0.05	0.05
angry	0.05	0.05	0.85	0.05
neutral	0.05	0.05	0.05	0.85

POMDPs

Partially Observable Markov Decision Process:



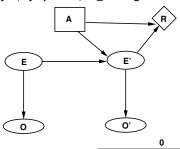
A: smile_at			E'	
E	happy	sad	angry	neutral
happy	0.99	0.0	0.0	0.01
sad	0.01	0.9	0.01	0.08
angry	0.01	0.2	0.3	0.48
neutral	0.7	0.1	0.1	0.1

E	R(E)
happy	1.0
sad	-0.1
angry	-1.0
neutral	0.0

	U			
E	=)	\sim) (==
happy	0.85	0.05	0.05	0.05
sad	0.05	0.85	0.05	0.05
angry	0.05	0.05	0.85	0.05
neutral	0.05	0.05	0.05	0.85

POMDPs

Partially Observable Markov Decision Process:



A: sympathis	e_with E'
--------------	-----------

E	happy	sad	angry	neutral
happy	8.0	0.14	0.01	0.05
sad	0.2	0.3	0.1	0.4
angry	0.01	0.1	0.7	0.18
neutral	0.3	0.1	0.1	0.5

E	R(E)
happy	1.0
sad	-0.1
angry	-1.0
neutral	0.0

E	=	\sim),([]
happy	0.85	0.05	0.05	0.05
sad	0.05	0.85	0.05	0.05
angry	0.05	0.05	0.85	0.05
neutral	0.05	0.05	0.05	0.85

Policies

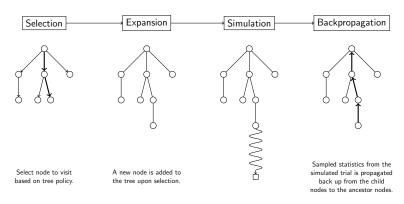
Policy: maps beliefs states into actions $\pi(b(s)) o a$ Two ways to compute a policy

- 1. Backwards search
 - Dynamic programming (Variable Elimination)
 - ▶ in MDP:

$$Q_t(s, a) = R(s, a) + \gamma \sum_{s'} Pr(s'|s, a) \max_{a'} Q_{t-1}(s', a')$$

- in POMDP: $Q_t(b(s), a)$
- 2. Forwards search: Monte Carlo Tree Search (MCTS)
 - Expand the search tree
 - Expand more deeply in promising directions
 - Ensure exploration using e.g. UCB

MCTS



Run trial simulation based on a default policy (usually random) from the newly created node until terminal node is reached.

Next:

- Bayesian Affect Control Theory (I)
- Bayesian Affect Control Theory (II)