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Uncertainty

Why is uncertainty important?

Agents (and humans) don’t know everything,

but need to make decisions anyways!

Decisions are made in the absence of information,

or in the presence of noisy information (sensor readings)

The best an agent can do:
know how uncertain it is, and act accordingly



Probability: Frequentist vs. Bayesian

Frequentist view:
probability of heads = # of heads / # of flips
probability of heads this time = probability of heads (history)
Uncertainty is ontological: pertaining to the world

Bayesian view:
probability of heads this time = agent’s belief about this event
belief of agent A : based on previous experience of agent A
Uncertainty is epistemological: pertaining to knowledge



Features

Describe the world in terms of a set of states: {s1, s2, ...., sN}

or, as the product of a set of features
(also known as attributes or random variables)

Number of states = 2number of binary features

Features describe the state space in a factored form.

state → factorize → feature values

feature values → cross product → states



Probability Measure

if X is a random variable (feature, attribute),
it can take on values x , where x ∈ Domain(X )
Pr(X = x) ≡ Pr(x) is the probability that X = x
joint probability Pr(X = x ,Y = y) ≡ Pr(x , y) is the

probability that X = x and Y = y at the same time
Joint probability distribution:

Sum Rule: ∑
x

Pr(X = x ,Y ) = Pr(Y )

We call Pr(Y ) the marginal distribution over Y



Independence

describe a system with n features: 2n − 1 probabilities

Use independence to reduce number of probabilities

e.g. radially symmetric dartboard, Pr(hit a sector)

Pr(sector) = Pr(r , θ) where r = 1, . . . , 4 and θ = 1, . . . , 8.

32 sectors in total - need to give 31 numbers



Independence

describe a system with n features: 2n − 1 probabilities

Use independence to reduce number of probabilities

e.g. radially symmetric dartboard, Pr(hit a sector)

assume radial independence: Pr(r , θ) = Pr(r)Pr(θ)

only need 7+3=10 numbers
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Conditional Probability

if X and Y are random variables, then

Pr(x |y) is the probability that X = x given that Y = y .
e.g. Pr(flies|is bird) =?

Conditional Independence
Pr(flies|is bird , has wings) = Pr(flies|is bird)

so learning has wings doesn’t influence beliefs about flies if you
already know is bird
Product rule (Chain rule):
Pr(flies, is bird) = Pr(flies|is bird)Pr(is bird)
Pr(flies, is bird) = Pr(is bird |flies)Pr(flies)
leads to : Bayes’ rule
Pr(is bird |flies) = Pr(flies|is bird)Pr(is bird)

Pr(flies)
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Why is Bayes’ theorem interesting?

Often you have causal knowledge:
Pr(flies | is bird)
Pr(symptom | disease)
Pr(alarm | fire)

Pr(image looks like | a tree is in front of a car)

and want to do evidential reasoning:
Pr(is bird | flies)
Pr(disease | symptom)
Pr(fire | alarm).

Pr(a tree is in front of a car | image looks like )



Updating belief: Bayes’ Rule

Agent has a prior belief in a hypothesis, h, Pr(h),

Agent observes some evidence e
that has a likelihood given the hypothesis: Pr(e|h).

The agent’s posterior belief about h after observing e, Pr(h|e),

is given by Bayes’ Rule:

Pr(h|e) =
Pr(e|h)Pr(h)

Pr(e)
=

Pr(e|h)p(h)∑
h Pr(e|h)Pr(h)



Expected Values

expected value of a function on X , V (X ):

EPr(x)(V ) =
∑

x∈Dom(X ) Pr(x)V (x)

where Pr(x) is the probability that X = x .

This is useful in decision making, where V (X ) is the utility of
situation X .

Bayesian decision making is then

arg max
decision

EPr(outcome|decision)(V (decision))

= arg max
decision

∑
outcome

Pr(outcome|decision)V (outcome)



Value of Independence

complete independence reduces both representation and
inference from O(2n) to O(n)

Unfortunately , complete mutual independence is rare

Fortunately , most domains do exhibit a fair amount of
conditional independence

Bayesian Networks or Belief Networks (BNs) encode this
information



Bayesian Networks

A Bayesian Network (Belief Network, Probabilistic Network) or
BN over variables {X1,X2, . . . ,XN} consists of:

a DAG whose nodes are the variables

a set of Conditional Probability tables (CPTs) giving
Pr(Xi |Parents(Xi )) for each Xi
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Stochastic Simulation

Idea: probabilities ↔ samples

Get probabilities from samples:

X count

x1 n1
...

...
xk nk

total m

↔

X probability

x1 n1/m
...

...
xk nk/m

If we could sample from a variable’s (posterior) probability, we
could estimate its (posterior) probability.



Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real
domain:

Totally order the values of the domain of X .

Generate the cumulative probability distribution:
f (x) = Pr(X ≤ x).

Select a value y uniformly in the range [0, 1].

Select the x such that f (x) = y .
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Hoeffding Bound

p is true probability, s is sample average, n is number of samples

Pr(|s − p| > ε) ≤ 2e−2nε2

if we want an error greater than ε in less than a fraction δ of
the cases, solve for n:

2e−2nε2 < δ

n >
−ln δ2
2ε2

we have

ε error cases with error > ε samples needed

0.1 1/20 184
0.01 1/20 18,445
0.1 1/100 265



Forward sampling in a belief network

Sample the variables one at a time; sample parents of X
before you sample X .

Given values for the parents of X , sample from the probability
of X given its parents.



Sampling for a belief network: inference

Sample Mood Behavior Emotion V2 Face 0

s1 good smile happy smile smile smile
s2 good yell sad yell smile smile
s3 bad smile sad smile cry cry
s4 bad yell angry yell frown frown
s5 good smile happy smile smile smile
s6 bad smile sad smile smile smile

...
s1000 bad yell angry yell frown frown

To get Pr(H = hi |Ev = evi ) simply

count the number of samples that have H = hi and Ev = evi ,
N(hi , evi )

divide by the number of samples that have E = ei , N(evi )

Pr(H = hi |Ev = evi ) = Pr(H=hi∧Ev=evi )
Pr(Ev=evi )

= N(hi ,evi )
N(evi )

Only need those samples that have Ev = evi : Rejection sampling



Importance Sampling

If we can compute Pr(evidence|sample) we can weight the
(partial) sample by this value.

To get the posterior probability, we do a weighted sum over
the samples; weighting each sample by its probability.

We don’t need to sample all of the variables as long as we
weight each sample appropriately.

We thus mix exact inference with sampling.

Don’t even have to draw from any true distribution, Pr(B)

Draw from proposal q(B)→ bi ,

additionally weight by Pr(bi )/q(bi )



Importance Sampling

e.g. given evidence v2, o,m, we can draw i th sample:

1. draw from q(B)→ bi

2. draw from Pr(E |m, bi )→ ei

3. weight by Pr(v2|bi )Pr(o|ei )Pr(bi )/q(bi ), where
Pr(o|ei ) =

∑
f Pr(o|f )Pr(f |ei )

We : sum of all weights for all samples with ei = e
W : sum of all weights
Pr(E = e|v2, o) = We/W



Probability and Time

A node repeats over time

explicit encoding of time

Chain has length = amount of time you want to model

Event-driven times or Clock-driven times

e.g. Markov chain



Markov assumption

Pr(St+1|S1, . . . ,St) = Pr(St+1|St)

This distribution gives the dynamics of the Markov chain



Hidden Markov Models (HMMs)

Add: observations Ot and
observation function Pr(Ot |St)
Given a sequency of observations O1, . . . ,Ot , can estimate
filtering:

Pr(St |O1, . . . ,Ot)

or smoothing, for k < t

Pr(Sk |O1, . . . ,Ot)



Emotions over time

0.1

0.2

0.010.04 0.05

0.5

O O’

0.28

0.28

0.3

0.5

0.9

0.01

0.01

0.5

0.2

0.1
E’

neutralhappy sad

0.85 0.05

0.85

0.85

0.85

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.050.05

happy

sad

angry

neutral

E

neutral

angry

sad

happy

E

0.05

0.05

0

angry

E’

E



Dynamics Bayesian Networks (DBNs)

Video 2 (V2) Video 2 (V2)

Behavior (B)Behavior (B)Mood (M) Mood (M)

Face (F)Face (F)

Video 1 (0) Video 1 (0)

Emotion (E)

time t time t+1

Emotion (E)



Particle Filtering

Evidence arrives over time:



Particle Filtering

Represent distributions with samples:



Particle Filtering

Update samples using particle filter:



Resampling
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POMDPs

Partially Observable Markov Decision Process:
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POMDPs

Partially Observable Markov Decision Process:
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POMDPs

Partially Observable Markov Decision Process:
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Policies

Policy: maps beliefs states into actions π(b(s))→ a
Two ways to compute a policy

1. Backwards search
I Dynamic programming (Variable Elimination)
I in MDP:

Qt(s, a) = R(s, a) + γ
∑

s′ Pr(s ′|s, a) maxa′ Qt−1(s ′, a′)
I in POMDP: Qt(b(s), a)

2. Forwards search : Monte Carlo Tree Search (MCTS)
I Expand the search tree
I Expand more deeply in promising directions
I Ensure exploration using e.g. UCB



MCTS

Selection Expansion Simulation Backpropagation

Select node to visit
based on tree policy.

A new node is added to
the tree upon selection.

Run trial simulation based
on a default policy (usu-

ally random) from the
newly created node until
terminal node is reached.

Sampled statistics from the
simulated trial is propagated

back up from the child
nodes to the ancestor nodes.



Next:

Bayesian Affect Control Theory (I)

Bayesian Affect Control Theory (II)


