Affect Control Theory

Tobias Schröder
University of Waterloo
Centre for Theoretical Neuroscience
Recap

- Emotions are multi-level: From body to culture
- Evaluation, Potency, Activity (EPA) “allow the mind and body to communicate” (Clore & Pappas, 2007)
- Micro-social perspective: Emotions allow efficient coordination between agents
- Macro-social perspective: Emotions and actions are based on culturally shared conceptual structures => Maintenance of the social order
Balance
(or congruity/consistency/coherence/dissonance avoidance…)
(e.g., Heider, 1946; Osgood & Tannenbaum, 1955; Festinger, 1957; Thagard, 2000)

- Basic human motive: “orderly representations”
- Incoherent representations motivate corrective action
- The role of identity: Align experiences and actions with situational self sentiments: Who am I?
Twenty-Statements Test (Kuhn, 1960)

I am...

1. __________
2. __________
3. __________
 ...
20. __________
Affect Control Theory at a Glance
(Heise, 1979; 2007; MacKinnon & Heise, 2010)

Self Sentiment

Identity

Emotion

Behaviour

select

ought to confirm

results in

institutional constraints

ought to confirm

select
Impression Formation
(e.g., Schröder, 2011; Smith, Matsuno, & Umino, 1994; Smith-Lovin, 1987)

a mother (2.9 / 1.5 / 0.6)
Impression Formation
(e.g., Schröder, 2011; Smith, Matsuno, & Umino, 1994; Smith-Lovin, 1987)

A mother plays with a child. (3.4 / 1.8 / 0.9)
a mother (2.9 / 1.5 / 0.6)

Transient Impressions vs. Fundamental Sentiments
Deflection: \((\text{Transient-Fundamental})^2\)

A **mother** beats a child. \((-1.0 / 3.5 / 2.2\)
a mother \((2.9 / 1.5 / 0.6)\)
Deflection: \((\text{Transient-Fundamental})^2\)

A mother beats a child. (2.9 / 1.5 / 0.6)

A mother beats a child. (-1.0 / 3.5 / 2.2)
Example Equation: Impression of Actor (E)

\[A_e' = -0.38 + 0.42A_e - 0.11A_a + 0.47B_e + 0.11O_e \\
+ 0.05A_eB_e + 0.09A_aO_e + 0.09A_aO_a + 0.04B_eO_e \\
- 0.07B_eO_a - 0.13B_pO_e + [...] \]
Example Equation: Impression of Actor (E)

\[A_{e'} = -0.38 + 0.42A_e - 0.11A_a + 0.47B_e + 0.11O_e + 0.05A_eB_e + 0.09A_aO_e + 0.09A_aO_a + 0.04B_eO_e - 0.07B_eO_a - 0.13B_pO_e + [...] \]
Example Equation: Impression of Actor (E)

\[A_{e'} = -0.38 + 0.42A_e - 0.11A_a + 0.47B_e + 0.11O_e + 0.05A_eB_e + 0.09A_aO_e + 0.09A_aO_a + 0.04B_eO_e - 0.07B_eO_a - 0.13B_pO_e + [...] \]

- stability
- bevaioir congruence
- balance effects
Example Equation: Impression of Actor (E)

\[A_{e'} = -0.38 + 0.42A_e - 0.11A_a + 0.47B_e + 0.11O_e + 0.05A_eB_e + 0.09A_aO_e + 0.09A_aO_a + 0.04B_eO_e - 0.07B_eO_a - 0.13B_pO_e + [...] \]

- Stability
- Behaviour congruence
- Balance effects
- Rejection of power
Interact: Simulation of Social Interaction
(Heise, 1997)
GroupSimulator: Dynamics in Small Groups
(Heise, 2013)
Evidence – Verbal Communication
(Schröder & Scholl, 2009)
Dyadic interactions videotaped, subdivided into discrete events, and coded for interpersonal affect.

Comparison: INTERACT predictions of sequences vs. observed transitions between affective expressions.

Behavioral Markers:
- E: smile, laugh, small physical distance
- P: posture, relaxation
- A: variation in speech, gestural activity
Evidence – N400 Component of EEG
(Schauenburg, Ambrasat, von Scheve, Schröder, & Conrad, in preparation)

Results (N=26)
Cluster ANOVA: region (3) x hemisphere (2) x deflection (3):
Interaction region x deflection, \(F(4, 100) = 3.307, p = .032^*, \eta^2 = .117 \)
Region of Interest ANOVA: deflection (3):
Main effect deflection, \(F(2, 50) = 4.565, p = .021^*, \eta^2 = .154 \)

All p-values are Greenhouse-Geisser corrected
Limitations of Affect Control Theory

• Many social situations are ambiguous, interpretations are probabilistic.
• The consensus paradox: People agree on meanings, but there are subtle differences.
• Identities and their meanings change.
• People can have multiple identities.
• People have external goals, which sometimes compete with the affect control mechanism.

=> BayesACT (next week)