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Abstract
José is a visually guided autonomous robotic waiter. He

circulates around a room populated by groups of people, po-
litely serving appetizers to humans. The serving task com-
bines elements of robotics with human computer interaction,
challenging control architecture with multiple task integra-
tion. This paper describes our purely vision-based approach
to this task. Methods for mapping, localization and naviga-
tion are presented and discussed, including issues of safety
for both robots and humans. Our work on human-robot in-
teraction is covered, as well as our solutions to various tasks
specific to serving food. We present results of our methods
from sample experiments in our laboratory. We further dis-
cuss our experiences at the 2001 AAAI mobile robot “Hors
D’œuvres Anyone?” competition, at which José took first
prize.

1 Introduction
This paper is about using vision for autonomous robotics.

Vision provides rich, high bandwidth, two dimensional data
containing information about color, texture, depth and optic
flow, among others. This multi-modal data source can be
exploited universally for the accomplishment of many dif-
ferent tasks. It is a harmonious host of information about a
robot’s environment, and is an alternative to more special-
ized sensors such as sonar or laser range finders. Although
vision is such a rich data source, it usually requires com-
plex techniques for the extraction of useful information. For
example, while sonar data directly estimates depth informa-
tion, vision data (from multiple cameras) requires a stereo
matching algorithm. However, the vision sensors can esti-
mate further properties of environmental structure using the
integrated color and texture information.

In this paper, the techniques we have developed for us-
ing vision are discussed in the context of a particular robotic
task: serving food to a gathering of people. To accomplish
this task, a robot must reliably navigate around a room pop-
ulated by groups of people, politely serving appetizers to hu-
mans. The robot must also monitor the food it has available
to serve, and return to a home base location to refill when
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Figure 1: José, the robotic waiter

the food is depleted. The serving task involves many ba-
sic aspects of mobile robotics, including localization, map-
ping, navigation and human-robot interaction. In ongoing
research, we have developed a solid framework for accom-
plishing these fundamentals using only vision as a sensor on
our autonomous robot, José (Figure 1). Problems specific
to the serving task were also solved using vision, including
finding people to serve and monitoring food.

Previous approaches to the autonomous serving task in-
clude Alfred [10], the winning robot waiter at the 1999 “Hors
D’œuvres Anyone?” competition. José differs from Alfred
in three respects. First, Alfred relies on sonar for naviga-
tion, while José uses only vision. Second, Alfred focused
on speech recognition much more than José. Although Al-
fred’s speech recognition worked well in the laboratory en-
vironment, it performed poorly in the crowded, noisy con-
ference reception hall typical of “Hors D’œuvres Anyone?”
competitions [10]. Commercial speech recognition systems,
as used by both Alfred and José, have not reached the level
of accuracy needed for conference reception environments,
and we therefore decided not to rely on speech recognition
for José. Third, Alfred needed special landmarks for naviga-
tion, and had lighting and scale dependent landmark recog-
nition systems. José uses natural landmarks and a scale and
illumination invariant recognition system.
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Figure 2: Control Architecture

This paper is structured as follows. The next section
presents an overview of our mobile vision-based robot,
José, including his hardware systems, and his software ar-
chitecture which separates control into low, mid and high-
level behaviors. Sections 3, 4 and 5 present details on these
three levels. Section 6 shows results from some sample serv-
ing runs, and discusses our experiences at the 2001 AAAI
mobile robot competition. Section 7 concludes the paper.

2 José
José is a Real World Interface (RWI) B-14 mobile robot

equipped with an Intel Pentium PC running the Linux op-
erating system. José senses the environment through five
cameras, three of which are are encapsulated in a Triclops
stereo vision camera module. José has a Sony pan-tilt color
camera, which is used for locating people to interact with.
A Sony laptop computer mounted above José supports the
food tray and its screen displays José’s face. A Logitech
web-cam keeps watch over the food tray. José has a Com-
paq wireless ethernet modem which allows his software sys-
tems to be distributed. In particular, a second Linux PC
serves as a host computer running a supervisor module, and
the laptop computer runs the food monitoring and face gen-
eration programs.

José is driven by a hierarchical behavior-based control
architecture [1], as shown in Figure 2. The system divides
the robot’s behaviors into three levels, each of which con-
tains simple, independent, modules. The modularity of the
system makes implementation and testing simple and effi-
cient. The lowest level involves perception and motor con-
trol, and includes servers interfacing with the robot’s motors
and odometry, the Triclops unit, and the color camera.

The middle level includes modules for the various behav-
iors the robot needs to perform its tasks. These fall into three
categories, as shown in Figure 2.

Mobility: Behaviors which enable the robot to circulate in
its environment: mapping, localization, and navigation.

Human-Robot Interaction (HRI): Behaviors for interact-
ing with humans: finding people to interact with,
speech recognition and synthesis, and facial expression
generation.

Serving: Behaviors specific to the serving task: Planning
locations for service and monitoring the food tray.

The highest level is a single supervisor behavior which
delegates tasks to middle level modules. To ensure scalabil-
ity of the system, the supervisor runs on a remote computer,
and communicates with the middle level behaviors through
sockets. The middle level modules communicate with the
lowest level through a shared memory architecture. Middle
and low level behaviors must therefore all run on the robot,
with the exception of speech recognition, the facial expres-
sions and the tray monitoring, which communicate directly
with sensors.

The following three sections will describe each of the
three levels in Figure 2.

3 Perception and Motor Control
José’s trinocular stereo unit (Triclops) outputs three im-

ages. The corresponding dense two-dimensional depth infor-
mation is used as the primary input for map building, local-
ization, navigation, and people finding behaviors. Triclops
was developed at the UBC Laboratory for Computational In-
telligence (LCI) and is being marketed by Point Grey Re-
search, Inc. (www.ptgrey.com). A Matrox Meteor frame
grabber connects the Triclops to José. The Triclops stereo
vision module has 3 identical wide angle (90◦ degree field-
of-view) cameras, arranged in an L shape. The system is
calibrated, and corrected for lens distortion and camera mis-
alignment in software to yield three corrected images that
conform to a pinhole camera model with square pixels. The
camera coordinate frames are co-planar and aligned so that
the the epipolar lines of the camera pairs lie along the rows
and columns of the images.

The trinocular stereo approach is based on the multi-
baseline stereo developed by Okutomi and Kanade [12].
Each pixel in the reference image is compared with pixels
along the epipolar lines in the top and left images. The com-
parison measure used is sum of absolute differences. The
results of the two image pairs (left/right, top/bottom) are
summed to yield a combined score. Multi-baseline stereo
avoids ambiguity because the sum of the comparison mea-
sures is unlikely to cause a mismatch—an erroneous mini-
mum in one pair is unlikely to coincide with an erroneous
minimum in another pair. Examples of the stereo results are
shown in Figure 3(a) and (b). Further details on the stereo
algorithm we use can be found in [11].

A PCTV frame grabber card delivers color images from
the Sony pan-tilt unit through the color image server (see
Figure 2). The color images are registered with the stereo
images from the Triclops using a offline manual calibration.
The calibration must be repeated only when the positions
(relative to the robot) of the color camera or Triclops unit
are adjusted. We are currently replacing the Triclops and



color camera with a single digital color Triclops unit called
Digiclops (also from Point Grey Research). The Digiclops
unit, with integrated color and stereo information, will cir-
cumvent the need for the calibration.

The RWI robot platform has motor controls for rotation
and translation, and provides odometry data. Although the
odometry is fairly accurate, it can lead to serious errors in
mapping and localization over the time period of a typical
circulation of the serving robot. Methods for correcting such
errors are discussed in Section 4.1.2.

4 Modeling and Task Execution
This section describes the mid-level behaviors which en-

able José to accomplish basic mobility (mapping, localiza-
tion and navigation), human-robot interaction (people find-
ing, speech synthesis and recognition, and facial expres-
sions), and other behaviors specific to the serving task (goal
planning and tray monitoring).
4.1 Mobility

The most fundamental, by no means the simplest, task for
a mobile robot is moving around in its environment. This
must be accomplished within certain safety limits for the
robot. If humans are present (as in the serving task), their
safety cannot be jeopardized. These constraints are satisfied
by building an accurate map, localizing the robot, and then
navigating safely through the mapped environment, as we
now describe.
4.1.1 Occupancy Grid Mapping

Occupancy grid mapping, pioneered by Moravec and
Elfes [5], is the most widely used robot mapping technique
due to its simplicity, robustness and flexibility in accommo-
dating many kinds of spatial sensors. It also adapts well to
dynamic environments. The technique divides the environ-
ment into a discrete grid and assigns to each grid location a
value related to the probability that the location is occupied
by an obstacle. Initially, all grid values are set to 50%, in-
dicating equal probability that the grid location is occupied
and unoccupied. Sensor readings supply uncertainty regions
within which an obstacle is expected to be. Probabilities at
grid locations that fall within these regions of uncertainty
are increased while those at locations in the sensing path be-
tween the robot and the obstacle are decreased.

Although occupancy grids may be implemented in any
number of dimensions, most mobile robotics applications
(including ours) use 2D grids. Much of the 3D data is lost
in the construction of a 2D occupancy grid map. The robot
possesses 3 DOF (X, Y, heading) within a 2D plane corre-
sponding to the floor. The robot’s field of view sweeps out
a 3D volume above this plane. A projection of all obstacles
within this volume to the floor uniquely identifies free and
obstructed regions in the robot’s space.

Figure 3 shows the construction of the 2D occu-
pancy grid sensor reading from a single 3D stereo im-
age. Figure 3(a) shows the reference camera greyscale im-
age (320x240 pixels), and (b) the resulting disparity image.
Black regions indicate image areas which were invalidated.
Otherwise, brighter areas indicate higher disparities (closer
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Figure 3: From stereo images to radial maps. (a) greyscale
image (b) disparity image (black indicates invalid, otherwise
brighter indicates closer to the cameras) (c) depth vs columns
graph (depth in cm) (d) the resultant estimate of clear, un-
known and occupied regions (light grey is clear, black is oc-
cupied and dark grey is unknown)

to the camera). The maximum disparities in each column
are converted to depth to produce a radial map, as shown in
Figure 3(c). Figure 3(d) shows these depth values converted
into an occupancy grid representation; light grey indicates
clear regions, black indicates occupied, and dark grey in-
dicates unknown areas. The process illustrated in Figure 3
generates the input into our stereo vision occupancy grid.
The mapping system then integrates these values over time,
to expand the map and keep it current in the changing world.
We identify an obstacle at all locations in the occupancy grid
where the value is above a threshold. Figure 10 shows ex-
amples of occupancy grids generated in this way.

4.1.2 Localization
Safe mobility involves simultaneous localization and

mapping (SLAM). The robot must build a map of the en-
vironment and track its position relative to that environment.
However, accurate localization is a prerequisite for build-
ing a good map, and having an accurate map is essential
for good localization. This problem has been a central re-
search topic for the past few years [16, 3, 17, 4, 18]. Our
vision-based SLAM algorithm uses Triclops stereo data of
features detected by the Scale Invariant Feature Transform
(SIFT) [9]. Simply put, José finds out where he is by recog-
nizing and locating previously observed visual features in his
environment. SIFT features are invariant to image transla-
tion, scaling, rotation, and partially invariant to illumination
changes and affine or 3D projection. These characteristics
make SIFT features suitable landmarks for mapping and lo-
calization, since when mobile robots are moving around in
an environment, landmarks are observed from different an-
gles, distances and under different illuminations. Figure 4(a)
shows an example of detected SIFT features, including scale
and orientation.

The SIFT features must be located in three dimensions.



(a) (b)

Figure 4: (a) SIFT features found, with scale and orientation indicated by the size and orientation of the squares. (b) Stereo
matching result, where horizontal and vertical lines indicate the horizontal and vertical disparities respectively.

To accomplish this, we match SIFT features in each of the
three images delivered by the Triclops system combined
with epipolar and disparity constraints. Figure 4(b) shows
the final disparities of all consistent SIFT features. From
the positions of the matches, and the camera intrinsic pa-
rameters, we can compute the 3D world coordinates of each
feature relative to the robot. We maintain a database of the
located SIFT landmarks and use it to match features found
in subsequent views. Once the SIFT features are matched,
we can use the matches in a least-squares procedure to com-
pute a more accurate camera ego-motion and hence correct
localization errors. This SLAM results in a 3D map of SIFT
features, and an accurate position and orientation of the robot
in the map. The SIFT map presently is separate from the oc-
cupancy grid, but in principle it can be integrated with the
grid so that errors due to drift and slippage can be corrected.
An example SIFT map with over 2000 landmarks is shown
in Figure 5. Readers are referred to [15] for further details
of the SLAM technique.

Figure 5: Bird’s eye view of the SIFT map around base re-
gion: the home location is indicated by the square with the
current robot position and view direction shown as a V.

The database of SIFT features can also be used for global
localization [14], i.e., determining current position with no
prior position information. To tackle this problem, we con-
sider matching a set of SIFT landmarks as a whole. Given a
small set of current SIFT features and a large set of SIFT

landmarks in the database, we would like to estimate the
robot position that would have brought the largest number
of landmarks into close alignment, provided that the robot
has previously viewed the current scene during the map
building stage. We use the RANSAC (RANdom Sample
And Consensus) method to generate hypotheses of the form:
(X,Z, θ) where X is the sideways displacement, Z is the
forward displacement and θ is the orientation. We select the
hypothesis with the maximum number of matches and the
lowest least-squares error.

Global localization is necessary for serving food when
the robot must find its way back to a home base to refill
with food. When a refill is required, the robot navigates by
dead-reckoning to around 2m away from the home base and
carries out global localization there. Figure 5 shows the po-
sitions of robot and home base at this stage. Using the lo-
calization estimate, the robot can then proceed to the home
region successfully for refill.

4.1.3 Navigation
Given a goal location, the robot position, and the occu-

pancy grid map, we want to find the shortest and safest path
connecting the two. The path planning algorithm we use
is a mixture of shortest path [8] and potential field meth-
ods [7, 2]. In clear areas, the method operates as a short-
est path planner with a fixed distance constraint from obsta-
cles. In cluttered areas, the method turns into a potential
field planner, to avoid getting stuck. The combination of the
two allows the robot to navigate efficiently in clear environ-
ments without getting stuck in cluttered areas. Our navigator
is described more fully in [11].

4.2 Human-Robot Interaction
We are mainly interested in robotic tasks oriented towards

people, and devote a significant portion of our research to
human-robot interactions. We wish to develop natural inter-
faces for control of and for social interaction with our robots.
Natural interfaces include speech, gesture and facial expres-
sion. This section describes our efforts towards enabling
José with the capacity to find people in his environment (a
necessary precursor to interaction) and with natural interac-
tion behaviors.



4.2.1 Finding People
Humans are distinguished from the environment in a two-

stage process: skin-color segmentation followed by rejection
of false positives using the occupancy grid. One feature that
all people have in common is the hue of their skin. The hue
of human skin falls in a narrow range which is largely invari-
ant to a person’s skin color. The threshold value is decided
during a training stage by calculating the mean and standard
deviation of the hue of a number of sample skin pixels. We
re-train the system for significant changes of the illumination
in the operating environment. On average, the hue threshold
falls around the value 30 ± 10.

José converts RGB color images from the color cam-
era to HSV color space and segments to select the human
skin colored pixels. Since the color images are registered
with the Triclops stereo data (see Section 3), 3D locations
of skin-colored regions are recovered. These locations are
then projected to the floor, and used to build a 2D map of
people locations (see Figure 10 for examples). Some ob-
jects have hues very similar to human skin (e.g., cardboard
and wood). José must differentiate people from such obsta-
cles to ensure appropriate serving behavior (e.g., so as not to
serve wooden tables). Fortunately, José’s map, as described
in Section 4.1.1, is built while he is alone in the area he is
to operate. Thus, we can compare each selected skin pixel’s
projected floor location against the occupancy grid and ig-
nore locations that are unoccupied or marked as static ob-
stacles. Two examples of skin-color detection are shown in
Figure 9. While the segmentation clearly misses some of the
skin colored regions in both images, there are no false pos-
itives remaining after comparison with the occupancy grid
map. The 2D people location map is integrated over time,
resulting in a map, Pp(�x, t), giving the probability that a per-
son is at location �x at time t. Figure 10 shows examples of
this map during a typical serving run.

4.2.2 Interacting with People
A robot gains acceptance by humans if it allows for natu-

ral interaction. We have explored interactions between José
and his customers using speech and facial expressions. José
uses a DoubleTalk speech generation engine to utter pre-
defined statements. In conjunction with speech, facial ex-
pressions are displayed with an animated face on a laptop
screen mounted above the serving tray. Examples are shown
in Figure 6. The animated face lends expressiveness to the
speech, thus making interactions with José more interesting
for his customers. While many face generation systems use
complex 3D graphics [10], José’s face is a simple cartoon.
This allows for fast rendering, and does not detract from in-
teraction quality, since humans will interact with even the
simplest of generated faces as a real human face [13].

José has speech recognition capabilities, but has not
made extensive use of them yet. We chose not to rely on
speech recognition, as robustness to environmental factors
has not yet emerged in commercially available products. We
are also working on facial expression and gesture recogni-
tion for José [6].

(a) (b) (c) (d)
Figure 6: Faces coincide with speech (a) ”Stop stealing
food!”, (b) ”I’m sorry”, (c) ”Would you like an appetizer?”,
(d) ”I have no food left!”

4.3 Serving
The particular task we have used recently as a testbed for

our vision-based robotic system is that of serving food to
a gathering of people. This task requires many of the be-
haviors which have been implemented on our robotic plat-
form, José. Serving also necessitates some additional task-
specific behaviors: circulating in a room full of people,
ensuring coverage (everyone gets served) and making sure
there is food in the serving tray. This section describes these
two behaviors.

4.3.1 Route planning
José must plan a route through the environment that en-

ables him to offer food to candidate humans and to return
to his refilling station when required. This is accomplished
using a procedure that dynamically determines the best fea-
sible goal location. At each time, t, the best goal is defined
using a dynamic desirability function, D(�x, t), �x ∈ E, where
E is the spatial extent of the environment. The desirability
of a location, �x, tells the robot the utility of being at position
�x at time t given that the current robot position is �xr(t). A
goal is chosen as the maximum of the desirability function.

We calculate the desirability as a weighted sum of the
people probability map, Pp(�p) (Section 4.2.1), and three cost
terms Cc, Co, and Ch.

1. The cost associated with locomotion, Cc, is given by the
distance of a path planned to �x from the current robot
position, �xr(t): Cc = c (�xr (t) , �x).

2. The cost of proximity to obstacles, Co, is given by Co =
mini=0..No

‖�x − �oi‖, where �oi is the location of the ith

static obstacle (Section 4.1.1). and No is the number of
obstacles.

3. The cost of serving at previously served sites, Ch, is
given by Ch =

∑τmax
τ=1 mc(�x,�xr(t−τ))hτ where the con-

stant parameter m ∈ (0, 1) adjusts José’s desire to
serve as many locations as possible, and the constant
parameter m ∈ (0, 1) discounts the past. The history is
not considered beyond a horizon τmax.

The desirability function is given by:

D = Pp − ω2
oCo − ω2

hCh − ω2
cCc,

where the weights, ω, are parameters specified by the de-
signer. Figure 11 shows some example desirability maps.



Our experiments in various environments have shown that
maximization of the desirability function produces reason-
able goals. If no people are detected, José will wander the
room in an exploratory fashion. If people are detected, José
will try to serve the closest person. The more people that
are detected, the longer José will remain in the area to serve
before moving on.

Despite this success, we have found that such a primi-
tive motion model to be insuficient in general. The assump-
tion that congregation sites remain relatively stationary in a
typical reception setting was found to be misguided. There-
fore, a method of dynamically tracking the desired target(s)
and appropriately adjusting the goal location is important for
general application, and is a subject of ongoing research.

4.3.2 Monitoring appetizers
As shown in Figure 1, José carries a food tray monitored

by a Logitech web cam. Monitoring the amount of food al-
lows José to detect when someone takes food, and when
the tray is empty (calling for a return to base). The tray is
solid black and has a dull texture so that regions containing
food will have a significantly higher intensity than the back-
ground, allowing the percentage of food on the tray to be
estimated using a simple thresholding operation.

Other objects, such as human hands, occasionally appear
in the cameras field of view, causing increases in the percent-
age of segmented pixels. However the amount of food on the
tray should only decrease as people take food from the tray.
The amount of food on the tray should increase only when
José is at home base for refilling. Therefore, if the num-
ber of non-black pixels suddenly increases significantly, it is
likely that some other object has entered the image. How-
ever, a persistent increase indicates new food on the tray.

José keeps a ten second history of the percentages of
non-black pixels that it has computed for the images. The
percentage of food on the tray is estimated as the minimum
of the percentages of non-black pixels in the history. With
this strategy, an increase in the percentage of non-black pix-
els will not affect the food percentage unless the increase
persists for the entire length of the history.

Figure 7 shows images of the food tray before, during,
and after, respectively, a person takes food from it. The

Figure 7: Top row: images taken while a person helps him-
self to an appetizer. Bottom row: segmented regions.

top set of images are the images taken by the camera. The
bottom set of images are the corresponding images result-
ing from segmentation of food pixels (shown in white) from

to−serve−location

go−to−baseDone
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has−target−location 
has−food−in−tray &

Serving

has−target−location 
has−food−in−tray &

no−more−food no−food−in−trayreached−base

at−target−location

no−food−in−tray

Figure 8: The state diagram for José’s serving behaviors

tray pixels (shown in black). Before the person takes food
from the tray (leftmost image), the computed food percent-
age is 34%. When the person moves his hand into the view of
the camera (middle image), to take food, the number of non-
black pixels increases. However, the computed food percent-
age remains at 34%. Once the food is removed (rightmost
image), the computed food percentage drops to 26%.

5 Planning
The highest level of control belongs to a supervisor that

activates mid-level behaviors to achieve the task at hand. The
behavior of the supervisor is modeled with a finite state au-
tomaton, as shown in Figure 8. The supervisor remains in
the start state while the robot waits at the base location for
food to be placed in its tray. When the tray is filled and the
goal planner returns a location to serve, the supervisor en-
ters the to-serve-location state and the supervisor directs the
navigator to move to the goal location. Once the robot ar-
rives at the goal, the supervisor enters the serving state, and
directs the speech and face to offer food. After a brief pause,
the supervisor checks the amount of food left. If there is still
food in the tray, the goal planner is again invoked. If there
is no food left in the tray, the supervisor switches to the go-
to-base state, and directs the navigator to return back to the
base. When the robot arrives near the base, the supervisor
invokes the localization behavior, which globally locates the
robot and base, allowing a precise move to the base.

6 Results
Figures 9, 10, and 11 show data from an example serving

run performed in our laboratory. José had previously built
an occupancy grid, which is shown in Figure 10. The occu-
pancy grids show unexplored and explored space in dark and
light gray, respectively, while obstacles are shown in black.
José starts at his home base and performs a visual scan of his
environment. Color, skin segmentations and stereo data from
this scan are shown across two images in Figure 9. The peo-
ple finding behaviour locates two groups based on the skin
segmentations and stereo data, as shown in light-colored pix-
els overlaid on the occupancy grids in Figure 10(a). The goal
planner computes the initial desirability function, as shown
in Figure 11(a). The parameters for the desirability function
were set to ωo = 3.0, ωh = 1.0, ωc = 0.2, m = 0.75 and
h = 0.9.

The first goal is chosen as the maximum of this function,
and is centered on the group of people to José’s right. The
navigator plans a path to this goal, and José offers appetizers



color images

skin segmentation

stereo images
Figure 9: Two views of José’s environment from the home
base as seen though the color camera (top row) and corre-
sponding skin segmentations (middle row) and stereo depth
images (bottow row). Note how the positions of the two
groups of people in these images relate to the 2D people lo-
cations shown superimposed on the occupancy grids in Fig-
ure 10

upon arrival in front of the group of people, as shown in Fig-
ure 11(b). The goal planner incorporates this serving loca-
tion into the desirability function, as shown in Figure 11(b).
The new maximum of the function is centered on the second
group of people, which becomes the next goal location. Fig-
ure 10(b) shows José’s path as he navigates to the second
group and again offers food. José has now run out of food
on his tray, and proceeds to navigate back to home base, as
shown in Figure 10(c). To ensure accurate global localiza-
tion, he first navigates to a point 2m in front of the base,
performs the localization, and then navigates to the base, ar-
riving within 10cm.

José was deployed at the Hors D’œuvres Anyone? mo-
bile robot serving competition in Seattle. He detected and
approached groups of people, knew when his tray was
empty, and found his way back home to within 10cm.
José’s face, voice and well-tailored dress were great crowd
pleasers, evoking many smiles and laughter. Our experience
at the competition uncovered two facts about the robotic
serving task. We found that vision alone is sufficient to per-
form the serving job. We also realized that probabilistic dy-
namic modeling of people would be a very useful additional
component to a system for robotic waiting.

We were initially apprehensive about José moving in a
room full of people without using sonar. Collisions with hu-
mans in the room would lead to disqualification. However,
we found that our vision capabilities provided ample real-
time feedback about the positions of obstacles to allow the
robot to successfully and safely move and serve. The pri-
mary reason for these capabilities is the fast, high quality
stereo data provided by the Triclops system. However, us-
ing vision data alone does impose constraints. First, stereo
matching takes time. The result is a bound on the translation
and rotation speeds that the robot can achieve. Translation is
limited to avoid collisions. The robot cannot react to objects
in its path until they appear in the stereo data. Rotation is
limited because multiple frames are needed to confirm the
presence or absence of an obstacle. If the robot rotates too
quickly, the presence and position of an obstacle will not be
confirmed, and will not appear in the occupancy grid, pos-
sibly leading to a collision. Translation speed was set to 30
cm/s, while rotation speed was set to 10 deg/s. While this
gave fairly satisfactory performance, an increase in speed
would give a more life-like performance. The second con-
straint imposed by our stereo vision data is a limited field
of view, implying a limited amount of map updates which
can be performed in a time interval. Sonar and laser range
data avoid this problem with omnidirectional scanning. Ad-
ditional Triclops units could be used to acheive a larger field
of view for a vision based robot.

The Hors D’œuvres Anyone? competition showed that
our assumption of static groups of people is not often valid
in a serving environment. People are dynamic objects, and
seem to behave in strange ways in the presence of a robot.
Many of the observed human behaviors were attempts to
provoke some kind of reaction from the robot: clustering
around, waving hands in front of the cameras, attempting
to block José’s path, etc. These behaviors were interpreted
by José (perhaps correctly) as attempts to foil his serving
task. He would remonstrate with the culprits, sometimes to
no avail. José currently makes assumptions about the dy-
namics of people. José chooses a group of people to serve,
and then makes his way to the location of the group. Once he
begins, he does not verify that the group has maintained posi-
tion, and continues until he reaches his target. In many cases,
the chosen group moves, often towards José. If they come
towards him, he perceives them as an obstacle, asks them to
move, and waits for them to do so. We are currently work-
ing on simple following behaviors which will avoid these
kinds of problems. However, a more general dynamic plan
updating scheme would be an asset. We are currently inves-
tigating a probabilistic people mapping algorithm. As well,
we are combining the occupancy grid navigation and obsta-
cle avoidance with the localization and odometry correction
provided by the SIFT map.

7 Conclusions
We have presented our visually guided autonomous serv-

ing robot, José. Mapping, localization and navigation issues
which have been the focus of recent research in our labo-
ratory were discussed. Human-robot interaction, and serv-



(a) (b) (c)
Figure 10: Occupancy grids at three times during a serving run. Also shown are the accumulated skin-color maps, and José’s
trajectory, with an ’x’ marking the home base, and ’o’s marking serving locations.

(a) (b)
Figure 11: Desirability maps at two times during a serving run.

ing issues were also covered. Our results show that José is
capable waiter, combining effective robotic techniques with
panache and wit, and the delicate savoir-faire of an élite
waiter. Our experiences at the 2001 AAAI Hors D’œuvres
Anyone? competition uncovered issues which we are cur-
rently looking into. These include more dynamic modeling
of people, better navigation techniques, and more integrated
speech and facial expression interactions.
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