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Abstract

We present a new method for designing and implementing
socially interactive mobile robots built around a 3-layer hy-
brid control architecture. Our main contribution is at the
deliberative level, where we introduce Multiply Sectioned
Markov Decision Processes (MS-MDPs) as a mechanism
for efficient task specification, policy generation and execu-
tion. Using MS-MDPs, we partition the task into a number
of subtasks, each assigned to an MDP, such that each one
can be specified and solved independently. Each MDP con-
trols one aspect of the global task, and they all are executed
concurrently, coordinated implicitly by common state vari-
ables. We validate our approach by presenting experiments
performed using our robot HOMER, the Human Oriented
MEssenger Robot. HOMER is a stereo-vision guided mo-
bile robot designed for performing a message delivery task,
which allows for rich and complex robot-human interac-
tions using a multi-modal interface. HOMER’s deliberative
layer includes 3 MDPs: the navigator, the dialogue man-
ager and the gesture generator. Together they coordinate
10 behaviors for accomplishing the message delivery task.

1 Introduction

We are concerned with the problem of building mobile
robotic systems with capacities to interact with humans.
Such robots will need navigation, mapping, localization
and obstacle avoidance capabilities to deal with moving
around in an uncertain and changing environment. They
will also need to model the dynamics of people in an en-
vironment, including their locations in space and their be-
havioral patterns. Finally, human users will require such
robots to present clear, simple and natural interactive inter-
faces, which enable easy exchanges of information between
robot and human. The systems to deal with each of these
problems can be made fairly independent, and thus can be
implemented modularly. The remaining challenge is to in-
tegrate and coordinate the modules to perform a given task.

We propose a framework for task coordination based
on multiple Markov decision processes (MDPs) that satis-
fies the previous requirements, which we call Multiply Sec-
tioned Markov Decision Processes (MS-MDPs). Using a
representation based on MS-MDPs, we partition the task
into a number of subtasks, each assigned to an MDP, such
that each one can be specified and solved independently.
Each MDP controls one aspect of the global task, and all are
executed concurrently, coordinated implicitly by common
state variables. At the execution stage, all MDP policies are
consulted concurrently, and the best actions (for each) are
selected according to each policy and the current state.

The MS-MDP approach has several advantages against
using a single MDP: (i) it is easier to specify a simpler,
smaller MDP for each subtask, (ii) it is more efficient in
terms of solving each subtask MDP versus solving a more
complex single MDP. However, these efficiency gains come
at the cost of optimality, as we discuss in Section 4.2. MS-
MDPs also have an advantage over hierarchical MDPs [4],
since they allow multiple actions to be executed simultane-
ously without considering all possible action combinations.

We validate our approach by presenting experiments per-
formed using our robot: HOMER. HOMER, the Human
Oriented MEssenger Robot, is a mobile robot that com-
municates messages between humans in a workspace. The
message delivery task is a challenging domain for an inter-
active robot. It presents all the difficulties associated with
uncertain navigation in a changing environment, as well as
those associated with exchanging information and taking
commands from humans using a natural interface. For this
task we use 3 MDPs: the navigator, the dialogue manager
and the gesture generator. Together they coordinate 10 be-
haviors for accomplishing the message delivery task. Al-
though we describe our framework for the message deliv-
ery task, our system can easily be extended to other human-
interactive mobile robotic tasks.

The rest of the paper is organized as follows. We be-
gin by reviewing related work in social mobile robots, in
particular in alternative approaches for planning and coor-



dination. Then we introduce our mobile robot, HOMER,
describe his hardware and software systems, and the differ-
ent modules that are used for the message delivery task. We
describe the general framework for task coordination based
on MS-MDPs, and present the particular configuration used
for HOMER. We then introduce the domain of message de-
livery, and show results of some experiments demonstrating
HOMER’s performance in a complex domain. Lastly, we
conclude and discuss future research directions.

2 Related work
Building service robots to help people has been the subject
of much recent research. The challenge is to achieve reli-
able systems that operate in highly dynamic environments
and have easy to use interfaces. This involves solving both
the more traditional robot problems of navigation and lo-
calization and the more recent problems in human-robot in-
teraction. Another challenge arises from the large scope of
these systems and the many pieces that must be integrated
together to make them work. RHINO [3], was one of the
most successful service robots ever built. It was designed
as a museum tour guide. RHINO successfully navigated
a very dynamic environment using laser sensors and inter-
acted with people using pre-recorded information; a per-
son could select a specific tour of the museum by press-
ing one of many buttons on the robot. RHINO’s task plan-
ning was specified using an extension to the GOLOG lan-
guage called GOLEX; GOLEX is an extension of first or-
der calculus, but with the added ability to generate hierar-
chical plans and a run-time component monitoring the ex-
ecution of those plans. MINERVA [17], was the succes-
sor of RHINO. MINERVA differed from RHINO in that it
could generate tours of exhibits in real-time as opposed to
choosing one of several pre-determined tours. MINERVA
also improved on the interaction by incorporating a steer-
able head capable of displaying different emotional states.
The GOLOG language was combined with decision theo-
retic planners in DTGOLOG, used in the implementation
of a service delivery robot [2]. More recently, the robot
PEARL escorted elderly people around an assisted living
facility [10]. Its navigation and localization used probabilis-
tic techniques with laser sensors. PEARL is more focused
on the interaction side with an expressive face and a speech
recognition engine.

One of PEARL’s contributions is the use of a hierarchical
partially observable Markov decision process (HPOMDP),
which is an extension of hierarchical MDPs (HMDPs) [4] to
model uncertain observations. HMDPs use an specified hi-
erarchical breakdown of the domain, and introduce abstract
actions in higher level MDPs which invoke the policies of
lower-level MDPs. Our framework of Multiply-Sectioned
MDPs (MS-MDPs) is related to HMDPs, with the impor-
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Figure 1: (a) HOMER the messenger robot interacting with
a person and (b) closeup of HOMER’s head

tant difference that MS-MDPs do not require recursive ex-
ecution of policies, instead allowing multiple actions to be
performed simultaneously. When a subtask is given control
in a HMDP, no other subtask can interrupt it until it com-
pletes and returns control to the level in the hierarchy that
invoked it. In a MS-MDP, on the other hand, subtasks are
all executed concurrently, allowing multiple behaviors in a
robotic system to be controlling the actions of the robot si-
multaneously. Markov Task Sets [9] also allow this type
of concurrent control, but assume utility independence be-
tween subtasks. MS-MDPs use a common reward function
for all subtasks, and seek collaborative solutions between
behaviors.

The work we present in this paper builds upon our pre-
vious service robots, including the award-winning waiter,
José [5], and an initial implementation of HOMER [6], in
which we used a single Markov decision process (MDP)
planner. Our current work extends this by adding additional
behaviors, and by introducing MS-MDPs to make the plan-
ning more efficient.

3 HOMER

3.1 Hardware

Our robot, HOMER, shown in Figure 1(a), is a Real World
Interface B-14 robot, and has a single sensor: a Point Grey
Research BumblebeeTM stereo vision camera. The Bum-
blebee is mounted atop an LCD screen upon which is dis-
played a pleasant and dynamic animated face. We call the
combination of Bumblebee and LCD screen the head. The
face displays non-verbal invitations to humans to approach
and speak, expresses emotions, or emphasizes or conveys
further information. The head is mounted on a Directed
Perception pan-tilt unit, as shown in Figure 1(b), which pro-
vides lateral and dorsal movement for the camera system
and animated face, enabling visual search and following for
realistic interaction. An omnidirectional microphone is the
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only other sensor available on HOMER and it is used for
speech recognition.

HOMER is equipped with 4 on board computers based
on the Intel Pentium III processor and running the LINUX
operating system. The computers communicate among each
other using a 100Mbps local area network. A Compaq wire-
less 10Mbps network connection allows the robot’s com-
puter to communicate with any other computer in our lab’s
LAN for additional compute power as needed.

3.2 Software Architecture

Crucial to the design of a human-interactive mobile robot
is the ability to rapidly and easily modify the robot’s be-
havior, specifying the changes in a clear and simple lan-
guage of high-level concepts. These design constraints call
for a mobile robot to have a modular software system, with
a planning module written in a simple and easy to use lan-
guage for specifying new world states and goals. HOMER’s
software system is designed around a Behavior-based ar-
chitecture [1]. For HOMER, a behavior is an independent
software module that solves a particular problem, such as
navigation or face detection. We refer to behaviors inter-
changeably as modules. Behaviors exist at 3 different lev-
els, as shown in Figure 2. The lowest level behaviors inter-
face with the robot’s sensors and actuators, relaying com-
mands to the motors or retrieving images from the camera.
These are described more fully elsewhere [7]. Behaviors
at the middle level can be grouped in two broad categories:
mobility and human-robot interaction (HRI). Mobility mod-
ules perform mapping, localization and navigation [11, 14],
as well as resource (battery level) monitoring. HRI modules
are for people finding and tracking, speech synthesis and
recognition, and facial expression generation [5, 7]. Mid-
dle level modules interface with the lowest level through

a shared memory mechanism. Each middle level module
computes some aspect of the state of the environment. For
example, the localization module computes the current lo-
cation of the robot with respect to the robot’s internal maps.
These outputs are typically reported to the highest level
modules. Each module further offers a set of possible ac-
tions the module can effect. Communication among middle
and high level behaviors is done using network sockets.

There are four high-level modules: a manager and three
planners. The manager maps between the output of the
modules and the inputs to the three planning engines. The
current outputs of all the modules (and the manager’s state)
are the current state of the robot, and it is divided up into
different sections for each planner. The manager’s job is to
integrate all the state information from the modules with its
own, and present the result to the planning engines. The
planning engines together implement the MS-MDP frame-
work to select the actions to perform given the current state.
The manager then delegates the actions sent by the planners
to the appropriate modules.

4 Management and Planning
The global state of the system is described by a vector
X =

⋃
N

i=1
Xi, where Xi is the state vector for each mod-

ule and N is the number of modules. The manager synthe-
sises this state vector by collecting information from each
module, possibly compressing the probabilistic belief states
reported by modules by choosing the value with maximum
likelihood. In the general case, the planners would take ad-
vantage of the information contained in the belief state, by
using partially observable MDPs (POMDPs). However, it
is P-SPACE hard in the general case to find policies for
POMDPs, calling for approximate techniques for robotics
applications [10]. Hierarchical methods are another way to
combat the complexity of POMDPs [15, 16, 12]. HOMER
considers the state vector to be fully observable, and uses
MS-MDPs to break the domain into tractable components.
After a review of MDPs, we describe our MS-MDP frame-
work and how this is used for the message delivery task.

4.1 Markov Decision Processes
Markov decision processes (MDPs) have become the se-
mantic model of choice for decision theoretic planning
(DTP) in the AI community [13]. They are simple for do-
main experts to specify, or can be learned from data. They
are the subject of much current research, and have many
well studied properties including approximate solution and
learning techniques. An MDP is a tuple {S,A,Pr, R},
where S is a finite set of states and A is a finite set of
actions. Actions induce stochastic state transitions, with
Pr(s, a, t) denoting the probability with which state t is



reached when action a is executed at state s. R(s) is a real-
valued reward function, associating with each state s its im-
mediate utility R(s). Solving an MDP is finding a mapping
from states to actions. Solutions are evaluated based on an
optimality criterion such as the expected total reward. An
optimal solution is one that achieves the maximum over the
optimality measure, while an approximate solution comes
to within some bound of the maximum.

We use a factored, structured, MDP solver, SPUDD [8],
that uses the value iteration algorithm to compute an op-
timal infinite-horizon policy of action for each state, with
expected total discounted reward as the optimality crite-
rion. SPUDD uses a representation of MDPs as decision
diagrams, and is able to take advantage of structure in the
underlying process to make computation more efficient and
scalable towards larger environments. The modularity of
our system makes representation as a factored MDP simple
and typically results in a sparsely connected Markov net-
work. Such sparseness leads to very efficient calculations
when using a structured solution approach as in SPUDD.
However, if we require simultaneous actions using a single
MDP, we need to consider all the possible action combina-
tions, which will imply an additional increase in the size of
the state-action space. So we propose a framework for task
coordination based on multiple MDPs, that we call Multiply
Sectioned Markov Decision Processes (MS-MDPs),

4.2 Multiply Sectioned MDPs

A MS-MDP is a set of N MDPs, all of which share the same
goal and state space, but have different action sets. We as-
sume that the actions of each MDP do not conflict with the
other processes, so that each action set can be executed con-
currently with the others. As mentioned in the introduction,
we do not find optimal solutions for the global MDP, but
simply simultaneously execute the optimal solutions from
each sub-MDP. Intuitively, we can think that each MDP is
solving one aspect of the global task, coordinated by a com-
mon state vector, and in this way accomplish the common
goal. Our results for the messenger robot give empirical
evidence for this framework. We leave a formal proof of
optimality as future work.

Given that we have a factored representation of the state
space, each MDP only needs to consider the state variables
that directly influence its actions and reward. This implies
that each MDP, Pi, will in general have a subset of the state
variables spanning its local state space, Si. Further, we do
not consider the effects of combined actions. These two as-
pects can make a considerable reduction in the action-state
of the problem, as we show for the messenger task.

At the design phase, we specify each MDP to solve one
aspect of the global task. For HOMER’s message delivery
task, one MDP can focus on the navigation part, another on

the speech dialogue, another on gesture generation. Each
MDP can be specified relatively independently of the oth-
ers, although the goal is the same and the designer should
be aware of the other subtasks. Then, each MDP can be
solved independently to obtain the optimal policies for each
subtask. At the execution stage, all the MDPs are executed
concurrently, and the best actions (for each) are selected ac-
cording to each policy and the current state.

A final consideration is conflicts between the actions of
the different MDPs. Conflict in this case is simply a con-
straint that would preclude two actions from being exe-
cuted. For example, the robot cannot navigate and recog-
nize people simultaneously because the robotic head must
be facing in different directions for each. Currently, we use
a simple heuristic to resolve conflicts, but we are working
on an extension that includes an arbiter to decide the best
action based on its value.

4.3 Managing the message delivery task

HOMER’s message delivery task consists of accepting mes-
sages, finding recipients and delivering messages. In his
quiescent state, HOMER explores the environment look-
ing for a message sender. A potential sender can initiate
an interaction with HOMER by calling his name, or by
presenting herself to the robot. HOMER asks the person
for her name (sender), the recipient’s name, and the mes-
sage. During the interactions, HOMER uses speech recog-
nition, speech generation and gesture generation to commu-
nicate with people. Once HOMER has a message to deliver,
he must find the recipient. This requires some model of
the typical behavioral patterns of people within HOMER’s
workspace. We use a static map of person locations, which
is updated when new information is obtained about the pres-
ence or absence of persons. This map allows HOMER to
assess the most likely location to find a person at any time.
Navigation to that location is then attempted. If the loca-
tion is not reachable, HOMER finds another location and
re-plans. If the location is reached, then HOMER attempts
to find a potential receiver using face and voice detection.
Upon verifying the receivers name, HOMER delivers the
message. During the entire process, HOMER will localize
in the map if necessary, or it will go home to recharge if its
battery is low.

The message delivery task can be divided in 3 subtasks,
each one controlled by an MDP. The Navigator controls
the navigation and localization of the robot, the Dialogue
Manager controls the interaction with people using speech,
and the Gesture Generator controls the interaction with peo-
ple using gestures performed by an animated face. Each
MDP includes the relevant variables as its state space, and
controls several behaviors through its actions. The com-
plete state is represented by 13 variables, shown in Table 1.



Variable Description MDP
Has message has a message to deliver N,D,G
Receiver name receiver name or none N,D,G
Sender name sender name or none N,D,G
At location at location of receiver N,D,G
Has location has receiver’s location N
Location Unreachable cannot go to location N
Receiver Unreachable cannot find the receiver N
Battery low battery is low N
Uncertain location uncertain about location N
Voice heard detected voice (speech) D,G
Person close detected a person D,G
Called Homer someone call its name D,G
Yes/No yes/no response D,G

Table 1: Homer’s state variables. For each variable, we
show the MDPs that include it.

MDP actions modules
Navigator explore navigation

navigate navigation
localize localization
get new goal location generator
go home navigation
wait navigation

Dialogue ask speech generation
confirm speech generation
give message speech generation

Gesture neutral gesture generation
happy gesture generation
sad gesture generation
angry gesture generation

Table 2: Homer’s MDPs and its corresponding actions. For
each action, we indicate the modules which effect them.

The actions for each MDP and corresponding behaviors are
shown in table 2. Several behaviors do not appear in the ta-
ble (person detection, voice detection, etc.); these are used
to get information by observing the world.

The dialogue manager includes some actions that are
generic, such as the ask action, which can be used to ask for
the sender’s name, receiver’s name and the message. The
specific action is determined by the state variables, and it is
decided at another level. For the Dialogue MDP, it is like
any other action (the transition function considers all the
specific actions). We implement these generic actions as fi-
nite state machines, although this could be also represented
as another MDP in a hierarchical way.

The goal of the message delivery task is encoded in the
reward function: a small reward for receipt of a message,

a big reward for message delivery, and a negative reward
for a low battery. The Dialogue and Gesture planners only
include rewards for message receipt and delivery, while the
navigator includes all three.

We solved the 3 MDPs using SPUDD and generated the
optimal policies for each one. During concurrent execution
of the policies, potential conflicts are avoided by simply giv-
ing priority to the Navigator. Thus, if HOMER is navigating
to a location, such as home, it does not stop for an interac-
tion. Our current work involves using an arbiter to resolve
these conflicts more generally.

5 Experiments

To validate our approach, we ran several experiments with
our robot. Each experiment involves the robot receiving and
delivering a message by visiting locations as necessary. Ini-
tially, we performed a guided exploration task in order to
build all the necessary maps for navigation and localiza-
tion. We also manually specified a list of possible users and
the most likely areas they inhabit. HOMER then ran au-
tonomously for the message delivery task.1 Figure 3 shows
key frames from one message delivery run. Some of the
key variable values are shown, as well as the actions taken
by each planner (Navigator, Dialogue, Gestures). A brief
description is also given.

6 Conclusion and Future Work

In this paper, we introduced MS-MDPs as an efficient ap-
proach to the design and implementation of socially interac-
tive robots. This technique allows the partition of a robot’s
task into a number of subtasks, each assigned to an MDP,
such that each one can be specified and solved indepen-
dently. At run-time, all MDPs execute concurrently, co-
ordinated implicitly by common state variables. We vali-
dated the MS-MDP framework using it to design our robot
HOMER, that approaches the problem of message delivery
among people in a workplace.

In the future, we wish to analyze the optimality of MS-
MDP policies in order to establish theoretical bounds, and
investigate conflict resolutions. Finally, we also plan to ex-
tend HOMER’s current model such that it can engage in
more complex interactions.
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