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Abstract

HOMER, the Human Oriented MEssenger Robot, is a stereo-
vision guided mobile robot for performing human-interactive
tasks. Our design concept for HOMER combines mobile
robotic techniques for navigation, localization, map build-
ing and obstacle avoidance with human interaction capacities
for person recognition, speech, facial expression and gesture
recognition, and human dynamics modeling. HOMER’s ca-
pabilities are modular and independent, and are integrated
in a consistent and scalable fashion under the umbrella of
a decision-theoretic planner, which models the uncertain ef-
fects of the robot’s actions. The planner uses factored Markov
decision processes, allowing for simple specification of tasks,
goals and state spaces. We demonstrate HOMER performing
a message delivery task, which is rich and complex both in
robot navigation and in human interaction.

Introduction
This paper describes our work on HOMER, the Human
Oriented MEssenger Robot, a mobile robot that communi-
cates messages between humans in a workspace. The mes-
sage delivery task is a challenging domain for an interactive
robot. It presents all the difficulties associated with uncer-
tain navigation in a changing environment, as well as those
associated with exchanging information and taking com-
mands from humans using a natural interface. In designing
HOMER, however, we are concerned with the more general
problem of building mobile robotic systems with capacities
to interact with humans independently of the task they are
asked to perform. Such robots will need navigation, map-
ping, localization and obstacle avoidance capabilities to deal
with moving around in an uncertain and changing environ-
ment. They will also need to model the dynamics of peo-
ple in an environment, including their locations in space and
their behavioral patterns. Finally, human users will require
such robots to present clear, simple and natural interactive
interfaces, which enable easy exchanges of information be-
tween robot and human. The systems to deal with each of
these problems can be made fairly independent, and thus can
be implemented modularly.

The remaining challenge is then to integrate the modules
to perform a given task. The task specification should there-
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fore be in a simple language that enables efficient extension
or re-assignment of a robot’s task. This paper presents our
modular and scalable design of HOMER’s hardware and
software systems, which provides for easy integration of
sensor and actuator modules for a given task specification.
Although we are describing HOMER’s application to the
message delivery task, our system can easily be extended or
re-assigned to other human-interactive mobile robotic tasks.

Building service robots to help people has been the sub-
ject of much recent research. The challenge is to achieve re-
liable system that operate in highly dynamic environments
and have easy to use interfaces. This involves solving both
the more traditional robot problems of navigation and lo-
calization and the more recent problems in human-robot in-
teraction. Another challenge arises from the large scope of
these systems and the many pieces that must be integrated
together to make them work. RHINO (Burgard et al. 1998),
was one of the most successful service robots ever built. It
was designed as a museum tour guide. RHINO successfully
navigated a very dynamic environment using laser sensors
and interacted with people using pre-recorded information;
a person could select a specific tour of the museum by press-
ing one of many buttons on the robot. RHINO’s task plan-
ning was specified using an extension to the GOLOG lan-
guage called GOLEX; GOLEX is an extension of first order
calculus, but with the added ability to generating hierarchi-
cal plans and a run-time component monitoring the execu-
tion of those plans. MINERVA (Thrun et al. 1999), was
the successor of RHINO. MINERVA differed from RHINO
in that it could generate tours of exhibits in real-time as
opposed to choosing one of several pre-determined tours.
MINERVA also improved on the interaction by incorporat-
ing a steerable head capable of displaying different emo-
tional states.

More recently, (Montemerlo et al. 2002) designed
PEARL, a robot for assisting the elderly. PEARL’s main
task is to escort people around an assisted living facility.
Its navigation and localization uses probabilistic techniques
with laser sensors. PEARL is more focused on the interac-
tion side with an expressive face and a speech recognition
engine. PEARL’s largest contribution is the use of a par-
tially observable Markov decision process for modeling un-
certainty at the highest level of task specification.

We begin this paper by introducing our mobile robot,
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Figure 1: (a) HOMER the messenger robot (b) closeup of
HOMER’s head

HOMER, describing his hardware and software systems. We
then show how HOMER navigates through the world, maps
the world, localizes himself, recognizes faces and searches
for people. Following this, we describe how HOMER plans
his actions. We then introduce the domain of message
delivery, and show results of some experiments showing
HOMER’s performance in a simple domain. We discuss the
directions we are currently pursuing and conclude the paper.

Hardware
Our robot, HOMER, shown in Figure 1(a), is a Real World
Interface B-14 robot, and has a single sensor: a Point Grey
Research 1 Bumblebee �

�
stereo vision camera. The Bum-

blebee is mounted atop an LCD screen upon which is dis-
played a pleasant and dynamic animated face. We call the
combination of Bumblebee and LCD screen the head. The
face displays non-verbal invitations to humans to approach
and speak, expresses emotions, or emphasizes or conveys
further information. The head is mounted on a Directed Per-
ception pan-tilt unit, as shown in Figure 1(b), which pro-
vides lateral and dorsal movement for the camera system
and animated face, enabling visual search and following for
realistic interaction.

The use of a single stereo camera for all sensing of his
environment is what makes HOMER stand out as a robot.
Vision provides rich, high bandwidth, two dimensional data
containing information about color, texture, depth and optic
flow, among others. This multi-modal data source can be
exploited universally for the accomplishment of many dif-
ferent tasks. It is a harmonious host of information about a
robot’s environment, and is an alternative to more special-
ized sensors such as sonar or laser range finders. Mount-
ing the stereo camera on a pan-tilt unit adds flexibility to
HOMER’s real-time navigation and interaction.

HOMER is equipped with 4 on board computers based
on the Intel Pentium III processor and running the LINUX
operating system. The computers communicate among each
other using a 100Mbps local area network. A Compaq wire-
less 10Mbps network connection allows the robot’s com-
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puter to communicate with any other computer in our lab’s
LAN for additional compute power as needed. The Bum-
blebee unit outputs images and dense stereo maps over
IEEE-1394 (Firewire) connection to one of the on board
workstations. Both images and stereo maps are used by
HOMER to build two dimensional maps of his environment,
to localize himself with respect to that map, and to detect
and recognize objects and people (Murray & Little 2000;
Elinas et al. 2002; Elinas & Little 2002). HOMER’s on-
board processors are used for all modules which need exten-
sive and rapid access to image data or to the motors, includ-
ing the face recognition software and all lower controllers
for motion and pan-tilt action. The planning engine and
manager module run on two different off-board machines
as they require less bandwidth for communication.

HOMER’s actuators include motors for translation and ro-
tation in two dimensions, motors for movement of the head,
speech through on-board mono speakers, and facial expres-
sion generation in the animated face on the LCD screen.

Software Architecture
HOMER’s software system is designed around a Behavior-
based architecture (Arkin 1998; Brooks 1986). For
HOMER, a behavior is an independent software module
that solves a particular problem, such as navigation or face
recognition. We refer to behaviors interchangeably as mod-
ules in what follows. Behaviors exist at 3 different levels,
as shown in Figure 2. The lowest level behaviors inter-
face with the robot’s sensors and actuators, relaying com-
mands to the motors or retrieving images from the cam-
era. These are described more fully elsewhere (Elinas &
Little 2002). Behaviors at the middle level can be grouped
in two broad categories: mobility and human-robot inter-
action (HRI). Mobility modules perform mapping, localiza-
tion and navigation (Murray & Little 2000). HRI modules
are for face recognition, people finding, speech synthesis,
facial expression generation. In the coming months we plan
to add more middle level behaviors, including speech recog-
nition and natural language understanding, 3D occupancy



grid mapping, facial expression recognition, sound localiza-
tion and gesture recognition (Elinas & Little 2002). Mid-
dle level modules interface with the lowest level through a
shared memory mechanism. Each middle level module out-
puts some aspect of the state of the environment. For exam-
ple, the face recognition module reports a distribution over
people’s faces in its database, while the navigation module
reports the current location of the robot with respect to the
maps. These outputs are typically reported to the highest
level modules. Each module further offers a set of possible
actions the module can effect. All communication among
the middle and high level behaviors is done using sockets.

There are two high-level modules: a manager and a plan-
ner. The manager maps between the output of the modules
and the inputs to the planning engine. The manager may
also have some internal state which it controls. The current
outputs of all the modules (and the manager’s state) is the
current state of the robot. The manager’s job is to integrate
all the state information from the modules with its own, and
present the result to the planning engine, which consults a
policy of action and recommends some action. The man-
ager then delegates this action to whatever modules respond
to it.

In an architecture of this style, the challenges are in the
task divisions among behaviors, and in allowing for easily
constructed, debugged, and extended manager and planning
modules. In our past work (Elinas et al. 2002), we imple-
mented the manager and planner together as a finite state
machine, which is typically difficult to debug and extend.
In this work we separate planning and management tasks,
and use a Markov decision process (MDP) domain repre-
sentation for the planner (Puterman 1994). This allows the
robot’s tasks to be encoded at a high-level, and makes the
high level modules much easier to implement and extend in
the future.

Modules
Crucial to the design of a human-interactive mobile robot
is to is the ability to rapidly and easily modify the robot’s
behavior, specifying the changes in a clear and simple lan-
guage of high-level concepts. For example, we may wish
to modify our message delivery robot so that it also delivers
coffee. The robot will need new hardware (an actuator to
grab the coffee with) and new sensors (to operate the new
actuators, to recognize cash money,...). Further it will need
to be able to plan solutions to deal with the extended state
space of coffee delivery. For example, it now needs to plan
for the situation in which one buys for and receives a coffee
from an attendant. These design constraints call for a mo-
bile robot to have a modular software system, with a plan-
ning module written in a simple and easy to use language
for specifying new world states and goals. The additional
resources, sensors and actuators needed for the additional
tasks, should be simple to add to the existing system. Fur-
ther, the solution concept for the robot must be easily ex-
panded to include the new facets of its job. HOMER is an
implementation of a human-interactive mobile robot with
such design principles in mind. Independently operating
modules from the core of HOMER’s architecture, as shown
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Figure 3: From stereo images to radial maps. (a) greyscale
image (b) disparity image (black indicates invalid, other-
wise brighter indicates closer to the cameras) (c) depth vs
columns graph (depth in cm) (d) the resultant estimate of
clear, unknown and occupied regions (light grey is clear,
black is occupied and dark grey is unknown)

in Figure 2. They report their states to a manager, who col-
lects information from all the robot’s modules, synthesizes a
current world state, which is reported to a planning engine.
The planning engine returns an optimal action, which the
manager delegates to one or more modules. The following
sections present the different modules, the manager and the
planning engine. HOMER’s current modules perform nav-
igation, mapping and localization (Murray & Little 2000;
Se, Lowe, & Little 2002),face recognition, and person loca-
tion modeling. Following the descriptions of the modules is
a description of the manager and planner.

Mapping, Localization and Navigation

HOMER uses 2D occupancy grid maps for navigation and
localization. Figure 3 shows the construction of the 2D oc-
cupancy grid sensor reading from a single 3D stereo im-
age. Figure 3(a) shows the reference camera greyscale im-
age (320x240 pixels), and (b) the resulting disparity image.
Black regions indicate image areas which were invalidated.
Otherwise, brighter areas indicate higher disparities (closer
to the camera). The maximum disparities in each column
are converted to depth to produce a radial map, as shown in
Figure 3(c). Figure 3(d) shows these depth values converted
into an occupancy grid representation; light grey indicates
clear regions, black indicates occupied, and dark grey in-
dicates unknown areas. The process illustrated in Figure 3
generates the input into our stereo vision occupancy grid.
Because the camera is mounted on a pan-tilt unit, care must
be taken to transform these occupancy values to the robot’s
coordinate frame before adding them to the global occu-
pancy grid. The mapping module integrates the local maps



over time, keeping the global map current over time. We
identify an obstacle at all locations in the occupancy grid
where the value is above a threshold.

Safe mobility involves simultaneous localization and
mapping (SLAM). The robot must build a map of the envi-
ronment and track its position relative to that environment.
However, accurate localization is a prerequisite for build-
ing a good map, and having an accurate map is essential for
good localization. This problem has been a central research
topic for the past few years (Simmons & Koenig 1995;
Burgard et al. 1998; Dellaert et al. 1999; Thrun 2000).
Our vision-based SLAM algorithm uses stereo data of fea-
tures detected by the Scale Invariant Feature Transform
(SIFT) (Se, Lowe, & Little 2002). Simply put, HOMER
finds out where he is by recognizing and locating previously
observed visual features in his environment. SIFT features
are invariant to image translation, scaling, rotation, and par-
tially invariant to illumination changes and affine or 3D pro-
jection. These characteristics make SIFT features suitable
landmarks for mapping and localization, since when mobile
robots are moving around in an environment, landmarks are
observed from different angles, distances and under different
illuminations.

The navigation task is to find the shortest and safest path
connecting two locations given the occupancy grid map, The
path planning algorithm we use is a mixture of shortest path
and potential field methods. In clear areas, the method op-
erates as a shortest path planner with a fixed distance con-
straint from obstacles. In cluttered areas, the method turns
into a potential field planner, to avoid getting stuck. The
combination of the two allows the robot to navigate effi-
ciently in clear environments without getting stuck in clut-
tered areas. Our navigator is described more fully in (Mur-
ray & Little 2000).

Face recognition

Our face detection and recognition process takes place in
two steps at each frame. It first searches for candidate face
regions using skin color segmentation, followed by con-
nected components analysis. Although we have found this to
be a relatively robust method for detecting candidate face re-
gions, it can fail due to changing lighting conditions. A more
sophisticated approach may be desirable in the future (Viola
& Jones 2001). We maintain a set of color templates of peo-
ple’s faces in a database, and a set of mappings from skin
color segmented regions to color template matches. These
mappings allow the face region to be found regardless of
how the skin segmentation algorithm responds to given per-
son’s skin color. A new image is first segmented and the
largest skin-colored regions are found. The mappings are
then applied to each region for each template, and the input
image regions are correlated with the templates, using raw
squared match scores. A small local search fine-tunes the
location of the match, and the log likelihood of the observa-
tion given each template,

�
, �������	� 
��� can be estimated. A

probability distribution over ��� persons, �	��� ��������� ��� , can
then be estimated using Bayes’ rule by summing over all the
templates of that person in the database, weighted by this
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Figure 4: Face recognition. Top row shows a database of
exemplars for three persons. Bottom row shows some input
images, linked to their most likely exemplar. Most likely
match scores and reported person are also shown.

likelihood.
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where ��/ is the number of templates, *	�,
��0� �1�� is the prob-
ability of each template given the person, and *	�2� �  is
the prior probability of observing each person. We have
found that this method works relatively well with a small
database of few people. However, an approach using Eigen-
faces (Turk & Pentland 1991), may be more desirable for
a larger database. Figure 4 (top row) shows a set of exem-
plars in a database of three persons. Along the bottom row
is shown a series of input images linked to their best-match
exemplars. Also shown is the skin segmentation for each
image. Below each image is the best match score and the
reported person among none, other, person 1, person 2 or
person 3. The face recognition module waits for an instruc-
tion from the manager to start classifying any faces in its
field of view. It then analyzes five images taken over about a
10-20 second period, and classifies each as having no face,
an other face, or the face of 354�687)9;: � . *�4)6<7)9;: � then gets
reported only if three or more (out of five) images are con-
sistently reporting that person as the most likely candidate.
The system reports an other face if there are valid skin re-
gions, but no valid template match, and otherwise reports no
face.

Locating People
In order to find message recipients, HOMER must maintain
some model of people’s behaviors and their usual where-
abouts. At present, HOMER’s people-finding module main-
tains a location likelihood function of finding the = /2> person
at each location, ?@ , in the map: A � ��?@  . These maps are ini-
tially constructed by the designer and are updated dynami-
cally as the robot recognizes people during his quests. When
searching for a message recipient, HOMER maintains a dy-
namic version of the likelihood function, ACB/ , for the subject
of the search at each time, D . When starting the search for



person = , A!B� ��?@ ! A � ��?@  . The people finding module then
reports the closest unvisited maximum of ACB as the next best
location to search for the message recipient. The dynamic
map is updated as the search progresses and HOMER dis-
covers that the recipient is not present at various locations.

Our experiments in various locations have shown that this
likelihood function produces reasonable goals. If no infor-
mation about a person is available, HOMER will wander the
room in an exploratory fashion. Otherwise, HOMER will
start going through all the possible locations starting from
the one closest to him. Once all possible known locations
are searched, the people finding module indicates that the
recipient is not currently reachable. However, more sophis-
ticated people behavior models could be implemented. For
example, person following behaviors may be necessary for
HOMER to chase down a person who is on the move. Mod-
eling people’s temporal behavior patterns may also be useful
for finding people who have recently been observed (Ben-
newitz, Burgard, & Thrun 2002).

Management and Planning
The manager collects information from each module, and
integrates it together into a single, fully observable state vec-
tor. That is, the state of the system is described by a vector�  ��

"��&(' � � , where
� � is the state vector for each module

and � is the number of modules. The manager’s job is to
map between the outputs of the modules and the inputs to
the planning domain specification. Since we use a planner
which requires full observability of the state, the manager
may be responsible for compressing the probabilistic belief
state reported by a module by choosing a maximum value.
For example, the face recognition module reports a vector
of *	���	� � ��.� = � � � ��� ��� . The manager must then report to
the planner a binary vector describing the presence of each
person

����� � ��� � � . To do so, it must be able to threshold the
input vector. Of course, the module itself can take care of
the thresholding, in which case the manager simply appends
it to the state vector.

This belief compression technique clearly removes infor-
mation which may be useful to the planner. In general, the
modules will not only report their state, but also some vari-
ance information about the measurement of the state. If
this information is included in the message from manager
to planner, the planner, to take best advantage of all infor-
mation available, should use a partially observable Markov
decision process (POMDP). However, it is P-SPACE hard
in the general case to find policies for POMDPs. Approxi-
mate or hierarchical techniques have been used for robotics
applications (Simmons & Koenig 1995; Theocharous, Ro-
hanimanesh, & Mahadevan 2001; Montemerlo et al. 2002).
HOMER makes the simplifying approximation of full ob-
servability as a fair tradeoff between the extra computational
burden imposed on the manager, and that taken by the plan-
ner. In general, however, modeling the uncertainty in the
robot’s measurements, if tractable, will improve the high-
level plans generated. A POMDP planner could be easily fit
into HOMER’s architecture if needed.

The planner has access to a specification of the domain in
terms of the random variables for each module, and any oth-

ers the manager may need to define independently, and to a
utility, or reward, function which encodes the goals and pref-
erences of the robot in its domain. The planner models the
temporal progression of the state variables reported to it by
the manager with a fully observable Markov decision pro-
cess (MDP). Markov decision processes (MDPs) have be-
come the semantic model of choice for decision theoretic
planning (DTP) in the AI planning community (Puterman
1994). They are simple for domain experts to specify, or can
be learned from data. They are the subject of much current
research, and have many well studied properties including
approximate solution and learning techniques. An MDP is a
tuple

��� ���	� ��� �	� � , where
�

is a finite set of states and �
is a finite set of actions. Actions induce stochastic state tran-
sitions, with ���)��7 �	
5�+D+ denoting the probability with which
state D is reached when action 
 is executed at state 7 . �1��7)
is a real-valued reward function, associating with each state7 its immediate utility � ��7; .

We use a factored, structured, MDP solver,
SPUDD (Hoey et al. 1999), which takes as input the
conditional probabilities, ��� , and the reward function
� ��7; , and computes an optimal infinite-horizon policy of
action for each state, assuming a expected total discounted
reward as our optimality criterion. SPUDD uses the value
iteration algorithm to compute the policy. The policy can
then be queried with the current state vector reported by
the manager, and returns the optimal action to be taken.
The manager then delegates this action command to the
appropriate set of modules.

SPUDD uses a structured representation of MDPs as de-
cision diagrams. It is able to take advantage of structure in
the underlying process to make computation more efficient,
and is therefore scalable towards larger environments. The
modularity of our system makes representation as a factored
MDP simple and typically results in a sparsely connected
Markov network. Such sparseness leads to very efficient
calculations when using a structured solution approach as in
SPUDD. However, since the optimal policy is defined over
the entire state space, the resulting structure can become in-
tractably large. Such situations require the use of hierarchi-
cal models, or of approximation techniques.

Message delivery
HOMER’s message delivery task consists of accepting mes-
sages, finding recipients and delivering messages. The plan-
ner models this environment using six variables. The first
describes if HOMER has a message or not (has message).
The next three encode whether HOMER has a goal location
(has goal), whether he has reached that goal (at goal), and
if the goal is deemed unreachable (goal unreachable). Fi-
nally, the last two describe whether HOMER has a sender
(has sender) and a recipient (has recipient). HOMER’s
high-level actions are shown in Table 1, along with the mod-
ule that is responsible for performing each action, and the
main state variables which are effected by the action. The
reception and delivery of messages will eventually be dele-
gated to a speech recognition and facial expression interac-
tion module, but is currently handled by the manager. The
optimal policy for this domain specification is to accept a



action module effects
i.d. person face recognition has sender

has recipient
get goal people finder has goal

at goal
navigate navigator at goal

has goal
receive message manager has message
deliver message manager has message

Table 1: Homer’s high-level actions, the modules which ef-
fect them, and the effects of the actions on the robot’s state.

message from a sender, navigate to potential recipient loca-
tions, attempt to recognize the recipient at each location, and
deliver the message once the recipient is recognized. There
are three major components to this task. The first is the inter-
action with humans when accepting or delivering messages.
The second is the modeling of people’s behavior within a
workspace, which allows the message delivery robot to in-
fer where to find a given message recipient. The third is the
navigation and localization necessary to get from place to
place.

In his quiescent state, HOMER waits for a call from a
message sender. A potential sender can initiate an interac-
tion with HOMER by calling his name, or by presenting her-
self to the robot. HOMER uses face recognition to find the
person who has called him. Once a person has been recog-
nized, HOMER accepts a message, which includes a recip-
ient’s name. In the future, HOMER will use speech, facial
expression, and gesture recognition during interaction with
people. At present, we plan to implement these as separate
modules. However, due to the inherent coupling between
these communication modalities, we may wish to integrate
them into a single module in the future.

Once HOMER has a message to deliver, he must find the
recipient. This requires some model of the typical behav-
ioral patterns of people withing HOMER’s workspace. We
use a static map of person locations, which is updated when
new information is obtained about the presence or absence
of persons. This map allows HOMER to assess the most
likely location to find a person at any time. Navigation to
that location is then attempted. If the location is not reach-
able, HOMER finds another location and re-plans. If the
location is reached, then HOMER attempts to find a poten-
tial receiver using face recognition and sound localization.
Upon verifying the receivers presence, HOMER delivers the
message.

Experiments
We have run some simple tests of HOMER’s message de-
livery capabilities in our laboratory. We first built an occu-
pancy grid map of our laboratory, as shown in Figure 5 (a).
We then gathered five templates of each of three persons’
faces, some examples of which are shown in Figure 4. Fi-
nally, we manually specified the location likelihood for each
person.

HOMER waited at home base, attempting to recognize

(a) (b) (c)
time 1 2 3

Figure 5: HOMER test run. Black: obstacles, light grey:
free space, dark grey: unexplored area, white: A B , star:
HOMER, disk: most likely recipient location. (a) HOMER
starts and (b) navigates to the first location. Having not
found the recipient there, he (c) navigates to the second lo-
cation, finds the recipient and navigates home.

people by their faces. The first person he recognized, per-
son 1, was taken as the sender of the message, as shown at
time 1 in Figure 4. The messages consisted solely of a re-
cipient’s name, person 2, who HOMER set out to find. Fig-
ure 5 (a) shows HOMER’s map, the location likelihood func-
tion at the start of the run, and HOMER’s initial position.
The occupancy grid map is shown with obstacles marked as
black, free space as light grey, and unexplored space as dark
grey. The location likelihood function, A B , is shown in white.
HOMER is shown as a star. while the most likely recipient
location is shown as a disk. HOMER proceeds to the most
likely recipient location, as shown in Figure 5 (b). Figure 4
shows how, at time 2, HOMER found some unknown per-
son there (not in his face database), which prompted him to
move to a second location, at which he successfully recog-
nized the recipient, person 2, as shown in Figure 4 at time 3.
After delivering the message, HOMER returned home. The
complete robot trajectory is shown in Figure 5 (c). We also
enabled HOMER to receive a return message from the re-
cipient, at which point the recipient becomes the sender, and
the process repeats. We also performed experiments where
HOMER is not able to locate the recipient, at which point he
returns to the sender and reports the situation.

Conclusion and Future Work
In this paper, we presented the Human Oriented MEssenger
Robot (HOMER). HOMER is a robot designed to solve the
problem of message delivery among people in a workplace.
Even though the robot is designed with a specific task in
mind, we are using algorithms and software in such a way
as to enable us to create,in a straightforward manner, other
robots to perform different tasks. Such ease comes from
building re-usable software components in a distributed con-
trol architecture while task specification is done at a high
level by an expert of the domain using an MDP-based plan-
ner. We have presented experimental results of HOMER
successfully receiving and delivering a simple message in



a dynamic environment.
In the near future, we plan to integrate components from

our previous work in sound localization, gesture recognition
and facial expression analysis and improve the face recog-
nition module. We are also in the process of developing a
module for creating 3D occupancy grid maps that we hope
to use for better navigation, people finding and interaction.
Later, we will focus on adding a natural language under-
standing module in order to remove the restriction on the
interaction among people and the robot.
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