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Abstract— We present a collision avoidance system for powered
wheelchairs used by people with cognitive disabilities. Such
systems increase mobility and feelings of independence, thereby
enabling reversal of some symptoms of depression and cognitive
impairment and improvement of quality of life. We use a novel
3D sensor developed by Canesta Inc. that allows the wheelchair to
“see” obstacles, avoid collisions, and suggest alternatives to users.
The Canesta sensors are ideal, as they combine accuracy with
efficiency in the distance range necessary for collision avoidance.

I. MOTIVATION

High quality of life is of the utmost importance and mobility
is a key component of a positive quality of life. Unfortunately,
many older adults face various impairments and disabilities
that result in their mobility being compromised. Further-
more, many of these people require a powered wheelchair
because they lack the strength to manually propel themselves.
However, powered wheelchairs are not appropriate for older
adults with a cognitive impairment, such as Alzheimer’s
disease, as they do not have the cognitive capacity required
to effectively and safely manoeuvre the wheelchair. In addi-
tion, their sometimes aggressive and unpredictable behaviour
makes wheelchair use unsafe for both themselves and others.
Currently there are an estimated 15 to 18 million people
worldwide who have been diagnosed with dementia with this
number expected to reach 34 million by 2025 [1].

If we can provide these users with some level of inde-
pendence, irrespective of ability, without placing the person
or others at unreasonable risk, then it may be possible to
reverse some symptoms of depression and cognitive impair-
ment and improve quality of life. The goal of this project
is the application of a novel 3D sensor system to adapt a
powered wheelchair, specifically, the Nimble RocketTM so that
it can be driven safely by users with cognitive and other
complex impairments. Figure 1 shows an artist’s rendition of
the Canesta sensor mounted on the wheelchair.

There have been numerous prototypes for automated
wheelchairs in the literature. Perhaps the most well known
are the stereo-vision guided Wheelesley [2], and the sonar
guided NavChair [3]. Further investigations into shared control
were presented in [4], and ultrasound was studies as a failsafe
collision avoidance system in [5]. Our work is distinguished
for these in that we use audio prompts as our method of
communication with the user: the system itself has no control

Fig. 1. Nimble RocketTM wheelchair with Canesta 3D perception sensors.

over the motors other than simply stopping the wheelchair.
This type of interaction fits into our broader goals for assistive
technologies [6].

II. SYSTEM OVERVIEW AND RESULTS

A. Sensor & System

An overview of the system is shown in Figure 2.
The primary sensor is a 3D time-of-flight infrared laser

range sensor built by Canesta 1. The sensor uses a pulsed
laser and measures the phase shift of the pulse in the reflected
light over a 64 × 64 CMOS sensor chip. This chip allows
the depth processing to be done in hardware, giving fast and
accurate results. The Canesta sensor is an ideal choice for this
application. For example, its advantages over a laser range
sensor are its 3D and imaging capabilities, smaller footprint,
and low power requirements.

The input layer is the depth image manager, which takes
output from the Canesta sensor and produces a 64× 64 depth
image, in which each pixel gives the depth of that location.
This depth image is then passed to the map manager, which
constructs an occupancy grid map. We describe occupancy
grids in Section II-B. The occupancy grid is then input to the

1www.canesta.com
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Fig. 2. Schematic of the major components of the wheelchair mobility assistance system. The map manager takes 3D images from the depth manager and
builds an occupancy grid. If a collision is imminent, the wheelchair is stopped through the directional logic control module (DCLM), and the prompt manager
issues an audio prompt to the user through a set of speakers.

collision detector and to the path planner. The collision de-
tector estimates if there is a collision imminent by comparing
the distance to the closest object in the map to a pre-defined
threshold. If an object is too close, then a signal is sent to
the Directional Control Logic Module (DCLM) 2. The DCLM
acts as a filter for the control signals from the joystick to
the motors, only allowing those through that will not lead
to a collision. The collision detector sends the direction of
the hazardous direction to the DCLM, thereby restricting the
motion of the wheelchair in that direction. Internally, the
DCLM consists of a programmable PICSTK-2k chip, using 2
lines of analog input, 2x output, 8x digital input and 8x digital
output. The path planner computes the best direction around
the obstacle from the occupancy grid using the direction of
greatest freedom (DGF). The DGF is the direction around the
obstacle with the largest number of unoccupied grid cell. The
DGF is then sent to the prompt manager, which selects an
audio prompt to play, suggesting a possible alternative action
for the wheelchair user.

B. Occupancy Grid Maps

An occupancy grid is a method for robotic mapping which
represents obstacles in the world using a 2D map of cells.
Each cell has a value from 0 (known obstacle) to 256 (free
space) with 128 representing unknown. We say that a cell is
¡i¿occupied¡/i¿ when it has a value less than a threshold (50 in
our system). The map manager constructs a local occupancy
grid from a range image in three stages, as shown in Figure 3.
First, the depth image (Figure 3(b)) is projected to the floor,
where the closest depth in each column is used, as shown in
Figure 3(c). Given the known camera geometry, the resulting
1D array of depths can be mapped into the 2D horizontal plane
by ray tracing, Figure 3(d). The occupancy grid cell values,
G(i) for each cell i, are then updated using the method of [7],
by adding a constant −K if the cell is in the occupied region
of a radial map, and by +K if its in the clear region. The

2Designed & developed by Gerald Griggs, Centre for Studies in Aging,
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constant K controls how quickly the map evolves over time
and responds to changes.

The accuracy of the Canesta sensor (and hence, the res-
olution of the occupancy grid) depends on the range: more
accurate depth is obtained at closer range. The accuracy can
also be adjusted for a particular depth range. We optimised the
sensor for a fairly close range (from about 50cm-150cm from
the wheelchair), and get a depth resolution of approximately
5cm in this range. More details on the accuracy of the Canesta
sensor can be found at www.canesta.com.

C. Results

Figure 4 shows an example as the wheelchair approaches
a large obstacle. The top row shows a view of the scene
from a different camera, while the second row shows the
depth image output by the depth image manager, and the
bottom shows the occupancy grid constructed. When cells
too close to the chair become occupied (as in frame 190
in Figure 4), the chair stops and a prompt is issued to
suggest a possible direction to the user. Figure 5 shows
a further example as the wheelchair approaches a cane.
This example demonstrates one of the strengths of the
Canesta sensor: the ability to pick out small obstacles
rapidly. Clearly, however, a laser range finder would also
perform well in this situation. Further results can be found at
www.ot.utoronto.ca/iatsl/projects/canesta.htm.

III. CONCLUSION AND FUTURE WORK

We have presented a method for wheelchair obstacle avoid-
ance using the Canesta 3D sensor. The wheelchair stops before
collisions, and suggests alternatives for mobility. The Canesta
sensor’s speed and accuracy make it ideal in this setting. This
system has great potential to improve health and independence
in an increasingly elderly population.

Our current work involves integrating our current system
with global mapping and localisation methods [8], and with
control methods using partially observable Markov decision
processes, or POMDPs [6]. The wheelchair will build a global
map of its environment and be able to locate itself within the
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Fig. 3. Constructing a map from a depth image. A depth image(b) is produced by the sensor from the scene (a), and projected onto the ground (c). Rays
are then computed from the sensor position to give the radial map (d).

187 190 194
Fig. 4. Example of avoiding a collision. Scene view (top row), depth
images(top row) and corresponding occupancy grids (bottom row). The chair
approaches (frame 187), stops (190), a prompt is issued, suggesting a right
turn, which the user takes, and the obstacle moves to the left (frame 194).

map. The POMDP will model the chair’s location, obstacles in
the map, as well as other context such as the time of day, the
user’s schedule, etc. A policy of action will then seamlessly
combine assisted planning for improved user mobility with
obstacle avoidance. The actions the system can take will
be combinations of physical control of the wheelchair and
audio prompts for the user. We are also investigating adding
haptic feedback to the wheelchair joystick, as an additional (to
prompting) method for imparting information to the user.
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