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Abstract

We considerthe problemof unsupervisealassification
of tempoel sequencesf facial expressiondn video. This
problemarisesin the designof an adaptivevisual agent,
which mustbe capableof identifyingappropriate classeof
visualeventswithoutsupervisiorto effectivelycompletets
tasks. We presenta multilevel dynamicBayesiannetwork
that learns the high-level dynamicsof facial expressions

simultaneouslyith modelsof the expressionghemselves.

We showhow the parametes of the modelcan be learned
in a scalableand efficientway. We presentpreliminaryre-
sultsusingrealvideodataanda classof simulatecdynamic
eventmodels. The resultsshowthat our modelcorrectly
classifiesthe input data compaably to a standad event
classificationapproad, while also learning the high-level
modelparametes.

1. Introduction

The goalsof this paperare twofold. First, we wish to
shaw thatit is feasibleto simultaneouslyearnclasse®f fa-
cial expressioneventsfrom video input andthe high-level
temporalstructureof theseeventsin anunsuperviseaon-
text. Secondwe wish to show thatlearningthe high-level
temporalstructureshelpsthe unsupervisedearningof the
facialexpressiorclassesConsidera studentplayinganed-
ucationalcomputergamewhich is moderatedy a socially
intelligentagentwhich hasinputsfrom a cameraobserving
the student[6]. It is importantfor the agentto be ableto
gaugethe emotionalandintellectualstateof the studentin
orderto mosteffectively presentnformation,but it mustdo
so without supervisionin orderto adaptto newv students.
Althoughsuchanagentwill gatherinformationfrom mary
sourceswe consideronly the recognitionof facial expres-
sionin this paper We assumehe users faceis trackedand
spatiallysegmentedandthatafeaturevectoris givenby the
affine parametersf opticalflow extractedfrom eachpair of
frames.The goal of our systemis to properlyclassifya set

of facial expressioneventsasrepresentedby thesefeature
vectorswithoutsupervisionThispapemwill shawv thatif the
visual eventswhich arebeingclusteredarerelatedaccord-
ing to somehigherlevel dynamicalstructure thenlearning
this dynamicalstructurecanhelpin the disambiguatiorof
eventclassest the lower level. The situationis analogous
to word-level speechrecognition,in which high-level (se-
mantic) structureis usedto guide low-level (syntactic,or
phoneme-leel) structure[19]. Hierarchicalstructuresuch
asthesecan be extendedto include sentence-keel struc-
tures. In a similar way, the dynamicsof eventsduring one
stageof aneducationajamemight bedifferentthanduring
otherstages.Thereforegvenhigherlevel dynamicalstruc-
turesatthe gamestageevel canbelearned.

A modelwhich encompasseboth high-level semantic
structureandlow-level syntacticstructuremusttake tempo-
ral scalednto account.In the caseof aneducationafjame,
the eventswhich malke up a stageof the gameincludethe
variousfacial expression®f theuser eachof whichtakesa
few input video framesto complete. In this case thetime
scalesrangefrom minutesat the stagelevel, throughsec-
ondsat the facial expressiornlevel, to tenthsof a secondat
theinputvideolevel.

This paperwill present hierarchicadynamicBayesian
network to modelthe visual eventsat eachof a numberof
temporallyabstractevels. A level in the network consists
of amixture of Markov chains(MMC). The mixture coefi-
cientsat eachlevel areusedasdistributionsoverthe parent
level's states. The lowestlevel is a mixture of Gaussian
distributions, which quantizesthe affine flow featurevec-
tor, but doesno temporalabstraction.Temporalscalesare
modeledby the characteristidengthscalesof eachMMC,
and can changedynamically Information flow through
the modelis both bottom-upor diagnostic and top-down
or predictive The combinationof both can be usedto
learnthetheparametersf themodelusingtheexpectation-
maximizationalgorithm[7].

The next sectionwill review somepreviouswork onthe
subjectof classifying humanaction. Section3 will de-
scribethe modelin detail, including the parametedearn-



ing. Section4 presentsa simple setof experimentsusing
a databasef real facial expressionsequencesanda sim-

ulatedmodelof the temporaldynamicsof users facial ex-

pressions.The resultsof the experimentsare describedn

Section5, and shav that the parameterof the complete
modelcanbe learnedusingexpectation-maximizatiorand
helpin the classificatiorof visual eventsin caseswith sig-

nificanthigh-level dynamicalstructure.

2. Related Work

Theideaof combininglow-level syntacticabr statistical
modelsof raw inputdatawith high-level semantienodelsof
conceptuastateshave beenresearchedh generaterms[8],
andin the speechrecognitionliterature[19]. However, typ-
ical speechrecognitionsystemsdo not learnhigh-level se-
mantics(at the word or sentencéevel), relying insteadon
prior knowledge. Herewe review recentwork in applying
the sameideasto vision problems. Wren et. al [23] in-
vestigateunderstandingpurposefulhumanmotion using a
combinatiorof akinematicmodelof humanmotion,amix-
ture of hiddenMarkov modelsand a high-level classifier
similar to the modelproposechere. However, they do not
modeltemporaldynamicsatthe highlevel, only classifying
the hiddenMarkov models,resultingin a high-level model
which closelyresembleshe mixture of HMMs [21].

Bobickandlvanor [3] modelprimitive eventsusingaset
of hiddenMarkov models andthenuseastochasticontext-
free grammarnSCFG)to provide high-level semantichelp.
A SCFGenableghe modelingof more complex semantic
patternsof behaior than a hiddenMarkov model. Their
systemis trainedin a supervisedashionandthe high-level
modelis hand-codednot learned. A similar approach9]
usesvariablelength Markov models(VLMMs) to capture
long-rangedependencieis behaiors. Sequencesf human
aerobicsin video are capturedas contoursand quantized
into a discreteset of prototypical featurevectors. These
vectorsarethenmodeledwith variablelengthsof memory
in ahierarchicafashion.VoglerandMetaxaq22] describe
a systemto recognizeAmericanSign Languagg/ASL) by
combining context-dependenHMMs (HMMs with finite
memory) with a three dimensionalmotion analysissys-
tem. The 3D motion analysistakes placein a separate,
rule-basedprocessingstream,which is usedto constrain
the recognitionprocessin the HMMs. Cohen,Gag and
Huang[5] have proposeda multilevel HMM to recognize
facialexpressionsTheir contribution is a methodfor auto-
matically sgmentinga video streaminto facial expression
events,assuminga neutralstatebetweeneachexpression.
However, their modelrequiresa supervisedearningstage.

Eigen-analysiss the mostwell usedapproactfor facial
expressioranalysig15], but oneof themostdiscriminatve
systemds thatof Tian etal. [14], which usesfeaturepoint

trackinganda neuralnetwork. Optical flow fieldsareused
in [2]. However, thesesystemsare completelysupervised,
anddo not dealwith ary high level structure.Furthermore,
thesemethodsleveloprepresentationspecificto facial ex-
pressionsandcould not be extendedto includeothertypes
of humanmotion, which may be usefulfor the application
we areconsidering.

The structureof our proposedmodelis closely related
to that of the switching state-spacenodel [10], in which
theparametersf alineardynamicsystem(LDS) arecondi-
tionedona (discrete)statevariablewhichlivesin a Markov
chain or in the output distributions of a hidden Markov
model. This type of modelhasrecentlybeenappliedto vi-
sionproblemdq17]. Thesemodelsaresimilarto atwo-level
versionof the modelwe propose.Therearethreemaindif-
ferences.First, thesemodelsusea continuousstatespace
at the lower level, and discrete(switching) statesand the
higherlevel, whereasour modelhasdiscretestatesat both
levels. This is a modelingissuehowever, as continuous
anddiscretestatescan be interchangedt the lowestlevel
in eithermodeldependenbn the task. Secondthe transi-
tions occurasynchronouslyat the two levelsin our model.
This is areasonablassumptior(the higherlevel statesac-
tually operateat slower time scales)which alsoimproves
efficiengy, but necessitateadditional constraintsto spec-
ify the differencein time scales. Temporalsegmentation
implementstheseconstraintsn our model. Similar asyn-
chronousmodelsconstrainthetiming directly [11], or con-
strainthe emissionof obsenationsfrom stateg[1]. Third,
whereaghelow-level statesn themodelsof [10, 17], form
onelong continuousMarkov chain,thosein our modelare
broken into temporalsequences.The assumptionis vali-
datedif oneconsiderghatthe obsened sequencenay be
temporallysampledandsothe low-level Markov chainis,
indeed brokenat temporalsggmentatiorpoints.

Smyth[21] andLi [13] bothproposenethoddor cluster
ing temporalsequencessinghiddenMarkov models.They
do not attemptto find high-level dynamicalstructure only
inferring a single mixture of hiddenMarkov models(rep-
resentinga setof events). They do, however, examinethe
structurdearningproblemaswell, whichwe do notattempt
to do here,but which is plannedfor future stagesf our re-
search.The methodof [21] is a specialcaseof the model
presentedbove (asis any hiddenMarkov model),andwe
compareour methodto it in orderto analyzethe benefitsof
modelinghigh-level semanticstructure.

3. Method

We usethe standarchotation,in which variablesarede-
notedwith uppercaséetters(e.g.,X, Y, Z), while particular
valuesof variablesarethe samdetter, butin lowercasde.g.
z,vy, z). Setsor sequencesf variablesarewritten in bold-



Figure 1. Hierarchical

dynamic
network for unsuper vised facial expression
recognition.

Bayesian

face(X = Xy...X7), while the correspondingbold-face
lower-caseletter (x = xy...z7) denotesan assignmenbf
valueto eachvariablein the set.

3.1. Model

Figure 1 shavs a time slice of the proposednodelasa
Bayesiametwork. VariablesX (internalnode)and Z (in-
put node)are subscriptedby temporalindicesand super
scriptedby level indices. Thus X}* indicatesa variableat
level n at time index t. As shawn in the figure, the time
scaleatthelowerlevel (At) is notthe sameasatthe higher
level (A7). Two levels,n andm, with timesscalesAr and
At, respectrely, will have A7 > At if n > m. Figurel
shaws the mixture of GaussiangMG) at the lowestlevel
explaining an input featurevector, Z;, from the sequence
of inputsZ = Zy...Zr, with a distribution over discrete
statesat the O-level, X?. Theresultis a sequencef dis-
cretestatesX = X{...X%. Thetimeintervalsatthelowest
level, At, correspondo the period at which video frames
arerecorded.Figure 1 shaws the fundamentalevel in the
hierarchicalmodelin which a classvariable X! describes
the discretesequenceX® = XJ..X9. This basicstruc-
ture is a mixture of Markov chains(MMC), andwe refer
to the completemodel as a hierarchicalMMC (HMMC).
Theideais thatthereis a sequencef T eventsat the nt"
level, describedby the variablesX™ = X'...X7. Theen-
tire sequencef eventsat this level is classifiedas one of
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Figure 2. Mixture of Markov chains over vari-
ables X™t! and X™. The solid arrows express
conditional dependence , and the dashed ar-
rows show the message passing. (a) MMC for
non-terminal levels. (b) MG for input levels.

anumberof classes X*+1. Thesehigherlevel classesre
theeventsat the next higherlevel, occurringat (event)time
7 in then + 1% level. The highest(Nt?) level in Figurel
canbe considered single-classmixture of Markov chains
aswell, or simply a Markov chain. A MMC in the hierar
chy is thuschagedwith explaining eventsatits level. The
modelmustthereforebe capableof temporallysegmenting
theinput. Thiswill bediscussedn Section3.4.

3.2. Hierarchical Decomposition

Learning and inferencein the completeBayesiannet-
work would not be easilyparallelized andwould not admit
scalingto much more complex hierarchies. That is, net-
work propagationvould not be simple given the presence
of mary loopsin the undirectedgraph. A commontech-
niguefor dealingwith suchloopsis to clusterthe nodesin
the graphto form compoundvariablesin sucha way that
the resultingnetwork of clustersis singly connected18].
The generalmethodinvolvesforming a join tree over the
cliguesof thetriangulatedgraph. This representatiodoes
not have a simpleinterpretation.However, sincethereare
efficient computationgor MMCs, the network canbe clus-
teredasshawn by thedottedlinesin Figurel. Figure2(a)
shows oneof the nodesof the clusteredhetwork, a mixture
of Markov chains. The MMC is completelydescribedby
two parameters.

1. Initialization ©F,, = P(X§ = 2P| Xrt! = z7H)
is the probability that X = z? attime 0 of the 7"
n + 1-level sequencegiventhat X1 = 27!, At
thelowestlevel, thisbecome®) = P(Z;| X} = z9)
whichis parametrizedby a Gaussiardistribution.



2. Transition ©%,,, = PX] = 27X, =
z?, X+ = z7*!) describeghe probability that the
stateX = z7 attimet of ther* sequencgiventhe
stateX | = x? attheprevioustime stepandtheclass
variableX?*+! = z}+! atthenext highestevel. At the
lowestlevel (MG), this parameters nhon-existentsince
all sequenceareof lengthone.

The parameterdor the nt* level will be denoted®” =
{0%,03} The completeset of parametersfor a given
model with N levels will be referredto as ®© =
{0%,0!,..,0N}.

The MMC unit showvn in Figure 2(a) as part of a com-
pletemodel,asin Figurel, mustcommunicatevith its par
entsandchildren. This is accomplishedy messageass-
ing in the clusterednetwork, which we now describe.The
inputs to the input (MG) level, as shavn in Figure 2(b),
are sequencesf continuousfeaturevectors,z. The mix-
ture of GaussiangMG) calculatesthe probability of each
input vector, z;, given the Gaussiargeneratedy the dis-
cretestate,z?. Theresultingdistribution passedup to the
next (0t") level is simply A(z%) = P(z]2%). All other
levels arelike the MMC level shavn in Figure2(a). The
nt* level MMC recevesasequencef A messageBom the
n — 1%t level belaw it. Themessageareinputdistributions
overthestatesof X™. The MMC level will have amethod
for decidingwhento segmenttheinput sequencediscussed
in Section3.4. After a decisionto segment,the n** level
computesan upward message) (z?*+1) = P(e~|z"t1), a
distribution over the statesof X" *! attime 7, wheree~ is
the evidence(input data)being explainedby this temporal
sequenceThis upwardsmessageanbe expandedy sum-
ming over thepossiblevaluesof X" as

ZP nlmn—i-l)

the terms of which can be expandedas P(e |x") =
Ple|aeg..ar) = Tl Ple,ley) =TI, M=) and
P(x?|zpt) = [, P(a} e}y, 27 t1) P(apla?t?), giving
theupwardsmessagé&om thelevel shovnin Figure2(a)as

"‘H ZHA:I;t X:c zy

This upwardsgoing messagés complementedby a down-
wardsgoingmessagérom then + 1%¢ level, whichis either
from a higherlevel, or from a prior distribution atthe high-
estlevel. Thedownwardsmessagitiatesthecomputation
of apredicteddistribution overthe statesof thevariable X
at the next time step,7(z?*) = P(x™|e™), wherethe evi-
denceet, in thistermcomesfrom two places:et anded,
which areall the input datasubsumedy the statesz? for
t < 7 andt > T, respectrely. Thereis a third compo-
nentof evidence e*, which comesfrom the ancestorof

Mazth) = P(e”|o3)

O (D)

the n + 1°¢ level.
factoredas

Thus, the downwards messagecan be

r(@l) =

P(a?|etete™)
P(ct|atetet)P(alletet)
= P(etferet)P(alletet) )

Equation(2) is a productof two terms. Thefirst is a badk-
ward variable,which givesthe probability of all futuredata
giventhe presentstate while the seconds a forward vari-
able,giving theprobability of thepresenttategivenall past
data.Thesetermsareanalogougo thefamiliar forwardand
backwardtermsin theBaum-Welshtrainingprocedurdrom
the HMM literature[19]. Equation(2) posesa dilemma.
While the both termsin (2) can be efficiently computed,
only thesecondcanbedoneattime 7. Thiswill causesome
difficultiesin the parametetearningalgorithm,andwill be
discussedn Section3.3.

Upwardsand downwardsmessagesanbe combinedat
eachlevel to calculatebelief statesfor eachset of vari-
ablesin the hierarchy Thesebelief stateswill be used
for learning the parametervaluesfrom data. The belief
stateover a particularvariable,say z7, givenall evidence
from below (the obsenations)and from above (prior in-
formation)is computedas BEL(z") = P(z"|et,e™) =
aP(e”|z", et)P(2"|et) wherea is a constanf propor
tionality. Usingthe notationof (2) again.thisis

P(zn\ete+e+ )=

P(e™|a})P(z}efedet) = Aa?)n(})

(©)

The upwardsflow of information classifiesthe input at
eachlevel in the hierarchy Thatis, a giveninput sequence
has some maximum likelihood state at eachlevel. The
downwardsflow of information gives a probability distri-
bution (prediction)overthe next time stepsat eachlevel.

3.3. Learningthe parameters

The last sectionshaved how information was propa-
gated through the HMMC presentedin Figure 1. This
sectionshowvs how this information can be usedto learn
the parameter®f the model given input data. We present
thelearningalgorithmasanapplicationof the expectation-
maximization(EM) algorithm[7]. We shav how theEM al-
gorithm naturallyfactorsaccordingto our model. We then
discussanonline version,which doesnot passdownwards
informationfrom backwardpassestall levels.

Givenasetof obsenationsequence«, we wishto find
thevaluesof ® which maximize

P(ZEO) = / P(ZXEQ)
X



wherethe integral is over all the hiddenvariablesin an N
level model, X = {X°, ... X¥}. Any further evidence
from above the top level (e.g usercontrols)aredenotedt.
The optimizationcanbe performedusingthe expectation-
maximization(EM) algorithm[7].

Thefunction f(©) = P(ZX£O) is lower boundedwith
afunctiong¢(X):

s©= [
@)

wheretheinequalityis givenby Jensers inequality Taking
logarithmsof theright sidewe get

P(ZXEO)

P(ZXEO) ) (%)
a(X) ’

i) 2] (7q(x)

G(O,q) = /X 4(X) log P(ZX£0) — ¢(X) log ¢(X). (5)

Then,at the currentguessfor ©, ©’, we choosey to max-
imize GG, sothatG touchesf at ©'. We usethe constraint

that [y ¢(X) = 1 andget
P(ZX£0) P(ZXE0O)
X = = P(X|Z
a(X) = Jx P(ZXEO)  P(ZEO) (X[2£6)
Calculating P(X|Z£®) is the “E” step of EM.

This quantity can be computed as P(X|ZEO) =
P(X°|X1Z£O)P(X1|X2ZEO)...P(XN|ZEO), and is
theproductof thebeliefstatesateachlevel, whichwe know

canbe computedrom upwardsanddownwardsmessages,

However, they neednot be computedexplicitly, aswe will
shaw in the next section.

After computingg(X) = P(X]|Z£O), we canupdate
thevaluesof the parameterdy maximizing(5):

/ P(X|ZE0') log P(ZXEO). 6)
X

with respectto ©. This is calledthe “M” stepof the EM
algorithm.

According to the independenceelationshipsshavn in
theBayesiametwork in Figurel, we canfactorP(ZXé’@)
asP(ZX°0%X1e!)P(X101X20?)..P(XNEON), s
that,writing thelog productasa sumof logs (6) becomes:

/P(x|zge)1ogp(zx°e°\xlel)
X

+

/P(X|Z£®)10gP(X1@1|X2®2)
xX

+

/P(x|zge)1ogP(x“e"\X“+le"+1)
X

+

/ P(X|ZEO)log P(XNeON)
xX

The sumsover X°.. XN — 1 canbe performedin the last
term,leaving

P(XN|Z£0") log P(XNZEON) (8)
XN

This term canbe maximizedin the N*" level, and consti-
tutesthe “M” stepfor thatlevel by itself. The sumsover
XN . Xnt+2 Xn-1 X0 canbeperformedn thent” term
in (7), which canthenbewritten as:

P(X*X"t1|ZEO ) ogP(X Z|0"X 10" P(O™).
ann+1
(9)

Maximizing eachsuchtermin (7) is the “M” stepof the
EM algorithmfor eachlevel by itself. Thefollowing section
describeshow to performthis maximizationin the caseof
multinomialdistributions.

Our goal now is to maximizeall equationdike (9) (of
which (8) canbe consideredh specialcase)with respecto
theparameter®°...0~ We assumehelik elihoodfunction
of thecompletediatais givenby amultinomialdistribution:

n X’LJk n gz’k
H H ®Xz]k Ozk ’

n ijk

P(ZX|©) =

wherethe M sarethesuficientstatisticsfor themultinomial
distributions,e.g. MY, is the numberof times X* = i
whenX , = j andX™*! = k in thedata. Then,we can
setthe derivative of (9) with respecto a parUcuIar@X”k
to 0, subjectto theconstrainthat; ©%,,, = 1, andfind
that

n n
AXx ik + EP(XnX"+1|Z,€®’)(MXijk)
n n
)DF Qx ik T EP(X"X"+1\Z759')(MXijk)

}ijk = (10)
wherea, is themultinomialconjugateDirichlet) prior for
theparamete®?, Theexpectationin (10)is

Epxnxn+tjzer) (M%) =

T
S°P(XTEZE0') Y P(Xp, X, X7 Z0")
T7=1 t=1

The sumsareover thetime indices,t and, atthent® and
n + 1%¢ level, respectiely. The expectationis thereforea
sumof all the probabilitiesof seeingX; and X;* , ; for
somet at level n, giventhat X*+1 = k, weightedby the
probability of seeingX™+! = k. While the sumsovert at
the nt" level canbe performedefficiently, giventhe value
of X"+ by usingaforward-backvarddecompositionthe
welghtmgterms P(X”+1|Z5®’) dependon datanot yet
seenattime T atthen + 1°¢ level. Indeed theseweighting
termsare no more than the belief stateswe have already
seenin (3). As previously noted,the badkwards partof the



downwardsmessagé€2) cannotbecalculatedexactlyattime
7. Thus, the entire model could not be updateduntil all
datahad beenseen,at which point the full EM algorithm
couldberunto completion.Clearlythisis infeasible asthe
highestlevel time scalesnay be extremelylong in general.

Thereareanumberof optionsfor dealingwith this prob-
lem. First and simplest,we canjust forget aboutit, and
useonly forward informationin the downwardsmessages.
Secondgachlevel cancomputedownwardsmessagesnly
aftera completesequencéasbeenobsened (at the given
level) andthe backwardspasshasbeencomputed put be-
fore the parentlevel haspassediown informationfrom its
backwardspasghenceonly usingpredictionsfrom the par
entlevel’'sforwardpass). Thisoptionis usedin our current
implementation.This ideacanbe extendedso that a level
will wait for a moreremoteancestolevel to completeits
backwardspassheforecomputingdovnwardsmessagedn
fact, the ancestorevel may not needto computea back-
wardspassover a completesequencebut only over some
relevantlyrecentportionof it, asindicatedoy somediscount
factor(onlineEM [4]). A furtherextensioncoulduseinfor-
mationfrom ancestotevel backwardspasse$rom previous
EM iterations(genemlizedEM [16]).

3.4. Temporal Segmentation

The modelwe have describedrelieson a sggmentation
at eachlevel in the hierarchy The dynamictime-warping
capabilitiesof HMMs meansthat sggmentationis not re-
strictedto a particulartimeinterval ateachlevel, andcanbe
dynamicallyspecifiedasa sequencés beinganalyzed We
are currently using a manualsegmentationinto sequences
which are representatie of the users currentaffective or
emotionalstate. In practice,sucha segmentationcould be
performedautomaticallyusing,for example themethodof
Rui and Anandan[20]. The temporalsegmentationcould
alsobeincorporatednto thelearningprocessasin [9, 22].
Finally, the temporalsegmentationcould be achieved by
samplingthe input datastream.lt is importantto notethat
althoughtemporal segmentationcould be achiesed auto-
matically at the lowestlevel, wherethe obsenationvectors
have a precisemeaningin termsof the obsenedsequence,
the sggmentatiorat higherlevelsis muchlesswell defined.

4. Experiments

This sectionwill describepreliminary experimentsde-
signedto testour hypotheseshat the hierarchicalmixture
of Markov chains(HMMC) learnsto recognizefacial ex-
pressionevents and the high-level temporaldynamicsof
theseevents,andthatthe additionalinformationlearnedby
the high-level model increaseghe recognitionrates. We
usea simulatedmodelof thetemporalprogressiorof facial

Figure 4. Simulation model. States corre-
spond to facial expressions. Arrows denote
probabilistic transitions with probabilities .

expressionsasshawn in Figure4. The facial expressions
of the userfollow oneanotherin a predeterminedrder (a
left-right modelwith return),with transitionsbetweerstates
governedby a parameter: € [0,0.5]. The simulateddy-
namicsshovnin Figure4 weredesignedsothatthe param-
eterz governshow muchstructurethereis atthehighlevel.
Thus,z = 0 is avery structuredmodel(transitionsarede-
terministic),while z = 0.5 is amodelwith lessstructuret.
A statein the modelgenerates video sequencef a sub-
ject performingthe correspondingacial expression. It is
importantto note that the modelis not meantasa model
of humanemotionalprogressionput only as a simulator
in which a parametelz) governsthe predictability of the
sequencef eventsin someway. The goal wasto simu-
late a well structuredsequencef fairly distinguishablda-
cial expressionsequencesin orderto assessvhat effects
thelearningof high level structurehason the unsupervised
recognitionproblem.

Thevideosequencearetakenfrom adatabasef 69 se-
guencef a single subjectperformingthe 5 expressions.
They areprocessedby first extractingopticalflow andthen
projectingonto the affine basis. The projectionsare com-
putedasasimpledotproductoverthefaceareanormalized
by area. The expressionsvere performedby a single, un-
trained,subjectwho wassimulatingthe 5 emotionalstates.
Figure 3 shows selectedramesfrom two sequencesilt is
the samedatabaseas usedin a supervisedversionof the
facialexpressiorrecognitionproblem[12].

We learntwo modelsfrom a given setof input data: a
two level versionof the HMMC model presentedn Sec-
tion 3, and a mixture of hidden Markov modelsas de-
scribedin [21]. Therearethreemain differencesbetween
the two models. The first is thatthe HMMC cantake ad-
vantageof ary temporalstructureat the high level. The
seconds thatmixture of HMMs hasa separatsetof Gaus-
sianoutputdistributionsfor eachcombinationof high and
low level stateswhereaghe high-level statesn our model
shareGaussiardistributions(known asparametertying, re-

IModelsin this classaremoredifficult to simulatefor z € [0.5,1], as
somestatesmay never bereachedgausingnitialization problems.



Figure 3. Selected frames from a happy(top) and a disgust(bottom) expression sequence

sultingin semi-continuoumodels). Thethird differenceis
thatthe mixture of HMMs is performingcompleteexpecta-
tion stepswhereaur modelonly doespartial expectation
steps.While thefirst differenceis expectedto increasethe
effectivenesof our model,the secondwo areexpectedto
decreasé. Wewill show thatthebenefitsoutweighthedis-
adwantagedor well structurednodels(z — 0 in Figure4)

Themodeldescribedn Section3 hasbeenimplemented
in Java. An abstract_evel classis atthetop of the class
hierarchy andis sub-classethy MGandMVC classesEach
level runsits in its own threadof execution,makingthe ap-
plication distributableand scalable. The MG level in the
HMMC wasinitialized by performingvector quantization
on the input dataspace. The lowest MMC level in the
HMMC wasinitialized using a heuristictechniquewhich
males histogramsof the valuesof X andruns K-means
on the resultingvectors. The top level MMC was ran-
domly initialized. The mixture of HMMs modelwasini-
tialized with the sameGaussiardistributionsasin the MG
level (replicated)andwith the sameinitialization andtran-
sition parameters$n the lowestMMC level. Theinitializa-
tion methodof [21], which involvesclusteringthe datain
log likelihood spacefirst, may give betterresults,but we
assumaet will benefitbothmodelsequally

We performed200 trials with differentinitial random
seedsfor the initialization procedure. Each trial usesa
leave-one-outprocedure. The training dataconsistsof all
sequencesut one (chosenat random)from eachmotion
class. The modelin Figure 4 is simulatedfor about250
stepsduring which video sequencesre chosensequen-
tially (with return) from the training set. Expectation-
maximizationis performedusingthe samedatauntil con-
vergenceis reached. The trainedmodelsarethentested
by againsimulatingfor about250 steps. This time, how-
ever, the outputsare chosenfrom the 4 sequencesvhich
wereleft out of thetrainingdata. Thus,the samesequence
is presentedo the systemwhenthe simulatoris in eachof
the statesn Figure4. The mostlikely statesequencever
thetop level is determinedusingthe Viterbi algorithm,and
comparedwith the (known) sequencef statesin the sim-
ulatedmodel. Classificationaccurag in an unsupervised

contet is not simpleto define.However, thetrainedmodel
only needsa one-to-onecorrespondencleetweerits classi-
fied statesand the actualernvironmentalstates but the or-
der of the correspondencdoesnot matter We determine
the orderingwhich givesthe bestrecognitionrate afterthe
training phaseandusethis orderingto measureclassifica-
tion accuray of trainingandof testphases.

5. Results

Figure 5 shows typical log-likelihoods as a function
of EM iteration during learning of the mixture of hidden
Markov modelsandfor theHMMC. Themixtureof HMMs
outperformgheHMMC in modelingthetrainingdatafaith-
fully. Thisis primarily dueto the sub-optimalityof the ex-
pectationstepasdescribedabove. ?

Table 1 shaws classificationaccuraciedor training and
testsequencessingboth modelsunderconsideration All
percentageareaveragesver the 200trials, eachof which
hasrandomizednitialization parameteranda randomset
of left out sequencesHigh valuesof the transitionparam-
eter xz, aremodelswith morestructure which the HMMC
cantake adwantageof, but the mixture of hiddenMarkov
modelscannot. We seethat, as expected,our hierarchi-
cal model outperformsthe mixture of HMMs model for
low valuesof z = 0.0 — 0.3. Thus, the high-level se-
mantic model, when properly learned,disambiguateghe
facial expressioninput sequences.The HMMC performs
morepoorly for intermediatevaluesof z = 0.4 — 0.5. The
simulatedmodelin thesecaseshaslessstructure,andour
learningprocedures at a disadwantagebecauset is only
performing an approximateexpectationstep. We expect
thatthefull EM procedurevould give betterresultsfor any
valueof z, but would requireadditionalresourcesindpose
time constraintsvhich arenotdesirablefor our application.

To evaluatehow well theunsupervisetearningwasper
forming, we performeda supervisedexperiment. The ex-

2The differencesin log likelihood in the trained model seemlarge
(10%), but the sequencedeing modeledconsistof about250 facial ex-
pressiorsequencegachabout20-30framesin length. Thereforethelog
likelihooddifferencepersequencés ontheorderof 100.
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Figure 5. Typical log likelihood evolution
curves for learning the model in Figure 4
(xz = 0) using mixture of HMMS and HMMC.

X HMMC Mixture of HMM
train test| train test
00| 92 91| 81 81
01| 912 89| 81 82
02| 91 88| 81 84
03| 88 84| 80 82
04| 88 83| 81 82
05| 87 81| 82 83
Table 1. Classification accuracies (%) for

training and test sequences using the HMMC
and the mixture of HMMs presented in [21].

pressiorsequencewerelabeledandusedto train asetof 5

HMMs, onefor eachexpression.The initialization proce-
durewasidentical. Recognitionvasperformedoy choosing
the modelwhich gave the highestlikelihood of the obser

vations. A leave-one-outprocedurewas alsousedfor this
experimentandthe averagerecognitionratewas98%. Un-

supervisedearningdecreaserecognitionrates becausé¢he
learningproceduremustuncover boththe categoriesof ex-

pressionand learnthe modelswithin eachcategory. How-

ever, if we alsomodelthe high-level dynamicsin atempo-
rally well structuredervironment,we canachieve recogni-
tion ratesapproachinghe supervisecase(to within 7%).

Without thesehigh-level dynamics,the recognitionrates
drop (to below 14% lessthanthe supervisedase).

6. Conclusions

We presented hierarchicaldynamicBayesiametwork
for unsupervisedlassificatiorof expressiorsequencediVe
shaved how to simultaneouslylearn low and high level
modelsof events. Currentwork is focussingon automatic
segmentationpn recognizingsubtlefacialexpressionsand
onusingexpressiongo guideatutoringagent.
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