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Abstract

We present a vision-based, adaptive, decision-theoretic model of human
facial displays. Changes in the human face occur due to many factors,
including communication, emotion, speech, and physiology. Most sys-
tems for facial expression analysis attempt to recognize one or more of
these factors, resulting in a machine whose inputs are video sequences
or static images, and whose outputs are, for example, basic emotion cat-
egories. Our approach is fundamentally different. We make no prior
commitment to some particular recognition task. Instead, we learn the
meaning of a facial display by learning its relationship to actions, out-
comes and utilities. The model is a partially observable Markov decision
process, or POMDP, the parameters of which are learned from training
data using an a-posteriori constrained optimization technique based on
the expectation-maximization algorithm. One of the most significant ad-
vantages of this type of learning is that it does not require labeled data
from expert knowledge about which behaviors are significant in a partic-
ular interaction. Rather, the learning process discovers clusters of facial
motions and their relationship to the context automatically. We present
an results from an experiment in which we record two humans playing a
collaborative game, and learn their behaviors. We use the resulting model
to predict human actions.

1 Introduction

Recent research on the communicative function of the face has concluded that facial dis-
plays are often purposeful communicative signals [7], that the purpose is dependent on both
the display and the context of its emission [19], and that the signals vary widely between
individuals [19]. These considerations imply that a rational communicative agent must
learn the relationships between facial displays, the context in which they are shown, and its
own utility function: it must be able to compute the utility of taking actions in situations
involving purposeful facial displays. The agent will then be able to make value-directed
decisions based, in part, upon the “meaning” of facial displays as contained in these learned
connections between displays, context, and utility. Learning these relationships will further
allow an agent to adapt to new situations.

The model we propose is a partially observable Markov decision process, or POMDP,



which realises the design constraints suggested by the psychology literature, combining
the recognition of facial signals with their interpretation and use in a consistent utility-
maximization framework. Video observations are integrated into the POMDP using a
dynamic Bayesian network, which creates spatial and temporal abstractions amenable to
decision making at the high level. The parameters of the model are learned from training
data using an a posteriori constrained optimization technique, such that an agent can learn
to act based on the facial signals of a human through observation. One of the most signifi-
cant advantages of this type of learning is that it does not require labeled data from expert
knowledge about which behaviors are significant in a particular interaction. Rather, the
learning process discovers clusters of facial motions and their relationship to the context
automatically. As such, it can be applied to any situation in which non-verbal gestures are
purposefully used in a task. The advantage of this approach is threefold. First, we do not
need expert knowledge about which facial motions are important. Second, since the system
learns categories of motions, it will adapt to novel gestures or displays without modifica-
tion. Third, resources can be focused on tasks that will be useful for the agent. It is wasteful
to train complex classifiers for the recognition of fine facial motion if only simple displays
are being used in the agent’s context.

2 Prior Work

There are many examples of work in computer vision analysing facial displays [20], and
human motion in general [3, 18]. However, this work is usually supervised, in that models
of particular classes of human motion are learned from labeled training data. There has
been some recent research in unsupervised learning of motion models [1, 9], but few have
attempted to explicitly include the modeling of actions and utility, and none have looked at
facial displays. Action-Reaction Learning [15] is a system for analysing and synthesising
human behaviours. It is primarily reactive, however, and does not learn models conducive
for high level reasoning about the long term effects of actions.

Our previous work on this topic has led to the development of many parts of the system de-
scribed in this paper. In particular, the low-level computer vision system for instantaneous
action recognition was described in [12], while the simultaneous learning of the high-level
parameters was explored in [10]. This paper combines this previous work, explicitly in-
corporates actions and utilities, and demonstrates how the model is a POMDP, from which
policies of action can be extracted. Complete details can be found in [11].

POMDPs have become the semantic model of choice for decision theoretic planning in
the artificial intelligence (AI) community. While solving POMDPs optimally is intractable
for most real-world problems, the use of approximation methods have recently enabled
their application to substantial planning problems involving uncertainty, for example, card
games [8] and robot control [17]. POMDPs were applied to the problem of active gesture
recognition in [5], in which the goal is to model unobservable, non-foveated regions. This
work models some of the basic mechanics underlying dialogue, such as turn taking, channel
control, and signal detection. Work creating embodied agents has led to much progress in
creating agents that interact using verbal and non-verbal communication [4]. These agents
typically only use a small subset of manually specified facial expressions or gestures. They
focus instead primarily on dialogue management and multi-modal inputs, and have not
used POMDPs.

3 POMDPs for non-verbal display understanding

A POMDP is a probabilistic temporal model of an agent interacting with the environ-
ment [16], shown as a Bayesian network in Figure 1(a). A POMDP is similar to a hidden



Markov model in that it describes observations as arising from hidden states, which are
linked through a Markovian chain. However, the POMDP adds actions and rewards, allow-
ing for decision theoretic planning. A POMDP is a tuple 〈S,A, T,R,O,B〉, where S is
a finite set of (possible unobservable) states of the environment, A is a finite set of agent
actions, T : S×A → S is a transition function which describes the effects of agent actions
upon the world states, O is a set of observations, B : S × A → O is an observation func-
tion which gives the probability of observations in each state-action pair, and R : S → R
is a real-valued reward function, associating with each state s its immediate utility R(S).
A POMDP model allows an agent to predict the long term effects of its actions upon his
environment, and to choose actions based on these predictions. Factored POMDPs [14]
represent the state, S, using a set of variables, such that the state space is the product of the
spaces of each variable. Factored POMDPs allow conditional independencies in the tran-
sition function, T , to be leveraged. Further, T is written as a set of smaller, more intuitive
functions.
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Figure 1: (a) Two time slices of general POMDP. (b) Two time slices of factored POMDP
for facial display understanding. The state, S, has been factored into {Bs,Aact, Acom},
and conditional independencies have been introduced: Ann’s actions do not depend on her
previous actions and Ann’s display is independent of her previous action given the state
and her previous display. These independencies are not strictly necessary, but simplify our
discussion, and are applicable in the simple game we analyse.

Purposeful facial display understanding implies a multi-agent setting, such that each agent
will need to model all other agent’s decision strategies as part of its internal state 1. In
the following, we will refer to the two agents we are modeling as “Bob” and “Ann”, and
we will discuss the model from Bob’s perspective. Figure 1(b) shows a factored POMDP
model for facial display understanding in simple interactions. The state of Bob’s POMDP is
factored into Bob’s private internal state, Bs, Ann’s action, Aact, and Ann’s facial display,
Acom, such that St = {Bst, Aactt, Acomt}. While Bs and Aact are observable, Acom
is not, and must be inferred from video sequence observations, O. In general, both Aact
and Bs may also be unobservable. However, we wish to focus on learning models of facial
displays, Acom, and so we will use games in which Aact and Bs are fully observable. For
example, in a real game of cards, a player must model the suit of any played card as an

1This is known as the decision analytic approach to games, in which each agent decides upon
a strategy based upon his subjective probability distribution over the strategies employed by other
players.



unobservable variable, which must be inferred from observations of the card. In our case,
games will be played through a computer interface, and so these kinds of actions are fully
observable.

The transition function is factored into four terms. The first involves only fully ob-
servable variables, and is the conditional probability of the state at time t under the
effect of both player’s actions: ΘS = P (Bst|Aactt, Bact, Bst−1). The second is
over Ann’s actions given Bob’s action, the previous state, and her previous display:
ΘA = P (Aactt|Bact,Acomt−1, Bst−1). The third describes Bob’s expectation about
Ann’s displays given his action, the previous state and her previous display: ΘD =
P (Acomt|Bact,Bst−1, Acomt−1). The fourth describes what Bob expects to see in the
video of Ann’s face, O, given his high-level descriptor, Acom: ΘO = P (Ot|Acomt).
For example, for some state of Acom, this function may assign high likelihood to se-
quences in which Ann smiles. This value of Acom is only assigned meaning through
its relationship with the context and Bob’s action and utility function. We can, however,
look at this observation function, and interpret it as an Acom = ’smile’ state. Writing
Ct = {Bactt, Bst−1}, At = Aactt, and Dt = Acomt, the likelihood of a sequence of
data, {OCA}

1,T

= {O1 . . . OT , C1 . . . CT , A1 . . . AT }, is

P ({OCA}
1,T

|Θ) =
X

k

P (OT |DT,k)
X

l

ΘAΘDP (DT−1,l, {OCA}
1,T−1

|Θ) (1)

where Dt,k is the kth value of the mixture state, D, at time t. The observations, O,
are temporal sequences of finite extent. We assume that the boundaries of these temporal
sequences will be given by the changes in the fully observable context state, C and A.
There are many approaches to this problem, ranging from the complete Bayesian solution
in which the temporal segmentation is parametrised and integrated out, to specification of
a fixed segmentation time [18].

3.1 Observations

We now must compute P (O|Acom), where O is a sequence of video frames. We have
developed a method for generating temporally and spatially abstract descriptions of se-
quences of facial displays from video [12, 13]. We give a brief outline of the method here.
Figure 2 shows the model as a Bayesian network being used to assess a sequence in which
a person smiles.

We consider that spatially abstracting a video frame during a human facial display involves
modeling both the current configuration and dynamics of the face. Our observations consist
of the video images, I , and the temporal derivatives, ft, between pairs of images. The task
is first to spatially summarise both of these quantities, and then to temporally compress the
entire sequence to a distribution over high level descriptors, Acom. We assume that the
face region is tracked through the sequence by a separate tracking process, such that the
observations arise from the facial region in the images only. We use a flow-based tracker,
described in more detail in [13].

The spatial abstraction of the derivative fields involves a projection of the associated optical
flow field, v, over the facial region to a set of pre-determined basis functions. The basis
functions are a complete and orthogonal set of 2D polynomials which are effective for
describing flow fields [13]. The resulting feature vector, Zx, is then conditioned on a set of
discrete states, X , parametrised by normal distributions. The projection is accomplished
by analytically integrating the observation likelihood, P (ft|X), over the space of optical
flow fields and over the feature vector space. This method ensures that all observation noise
is consistently propagated [12]. The abstraction of the images also uses projections of the
raw (grayscale) images to the same set of basis functions, resulting in a feature vector, Zw,
which is also modeled using a mixture of normal distributions with mixture coefficients W .
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Figure 2: A person smiling is analysed by the mixture of CHMMs. Observations, O, are
sequences of images, I , and image temporal derivatives, ft, both of which are projected
over the facial region to a set of basis functions, yielding feature vectors, Zx and Zw.
The image regions, H , are projected directly, while it is actually the optical flow fields,
V , related to the image derivatives which are projected to the basis functions [12]. Zx

and Zw are both modeled using mixtures of Gaussians, X and W , respectively. The class
distributions, X and W , are temporally modeled as mixture, D, of coupled Markov chains.
Probability distributions over X , W and D are shown for each time step as bar charts. H
and V nodes show their expected value, e.g. v is actually 〈v〉 =

∫

v
vP (v|O).

The basis functions are a complete and orthogonal set, but only a small number may be
necessary for modeling any particular motion. We use a feature weighting technique that
places priors on the normal means and covariances, so that choosing a set of basis functions
is handled automatically by the model [12].

At each time frame, we have a discrete dynamics state, X , and a discrete configuration
state, W , which are abstract descriptions of the instantaneous dynamics and configuration
of the face, respectively. These are temporally abstracted using a mixture of coupled hidden
Markov models (CHMM), in which the dynamics and configuration states are interacting
Markovian processes. The conditional dependencies between the X and W chains are
chosen to reflect the relationship between the dynamics and configuration. This mixture
model can be used to compute the likelihood of a video sequence given the facial display
descriptor, P (O|Acom):

P ({O}
1,T

|DT ) =
X

ij

P (ft|XT,i)P (It|WT,j)
X

kl

ΘXijkΘWjklP (XT−1,k, WT−1,l {O}
1,T−1

|DT )

(2)
Where ΘX ,ΘW are the transition matrices in the coupled X and W chains, and

P (ft|XT,i), P (It|WT,j) are the associated observation functions [13]. The mixture com-
ponents, D, are a set of discrete abstractions of facial behavior.



3.2 Learning POMDPs

We use the expectation-maximization (EM) algorithm [6] to learn the parameters of the
POMDP. It is important to stress that the learning takes place over the entire model simul-
taneously: both the output distributions, including the mixtures of coupled HMMs, and the
high-level POMDP transition functions are all learned from data during the process. The
learning classifies the input video sequences into a spatially and temporally abstract finite
set, Acom, and learns the relationship between these high-level descriptors, the observable
context, and the action. We only present some salient results of the derivation here. We
seek the set of parameters, Θ∗, which maximize

Θ∗ = arg max
Θ

[

∑

D

P (D|O,C,A, θ′) log P (D,O,C,A|Θ) + log P (Θ)

]

(3)

subject to constraints on the parameters, Θ∗, that they describe probability distributions
(they sum to 1). The “E” step of the EM algorithm is to compute the expectation over the
hidden state, P (D|O,C,A, θ′), given θ′, a current guess of the parameter values. The “M”
step is then to perform the maximization which, in this case, can be computed analytically
by taking derivatives with respect to each parameter, setting to zero and solving for the
parameter.

The update equation for the D transition parameter, ΘDijk = P (Dt,i|Dt−1,jCt,k), is then

ΘDijk =
αDijk +

∑

t∈{1...Nt}|Ct=k P (Dt,iDt−1,j |O,A,Cθ′)
∑

i

[

αDijk +
∑

t∈{1...Nt}|Ct=k P (Dt,iDt−1,j |O,A,Cθ′)
]

where the sum over the temporal sequence is only over time steps in which Ct = k, and
αDijk is the parameter of the Dirichlet smoothing prior. The summand can be factored as

P (Dt,iDt−1,j |O,A,Cθ′) = βt,iΘA∗i∗P (Ot|Dt,i)ΘDijkαt−1,j

where αt,j = P (Dt,j{OAC}
1,t

) and βt,i = P ({OAC}
t+1,T

|Dt,i) are the usual forwards and

backwards variables, for which we can derive recursive updates

αt,j =
X

k

P (Ot|Dt,j)ΘA∗j∗ΘDjk∗αt−1,k βt−1,i =
X

k

βt,kΘA∗k∗P (Ot|Dt,k)ΘDki∗

where we write ΘA∗j∗ = P (At = ∗|Dt,jCt = ∗) and P (Ot|Dt,i) is the likelihood of
the data given a state of the mixture of CHMMs (Equation 2). The updates to ΘAijk =
P (At,i|Dt,jCt,k) are ΘAijk =

∑

t∈{1...Nt}|At=i∨Ct=k ξj , where ξj = P (Dt,j |OAC) =

βt,jαt,j . The updates to the jth component of the mixture of CHMMs is weighted by ξj ,
but otherwise is the same as for a normal CHMM [2]. The complete derivation, along with
the updates to the output distributions of the CHMMs, including to the feature weights, can
be found in [13].

3.3 Solving POMDPs

If observations are drawn from a finite set, then an optimal policy of action can be computed
for a POMDP [16] using dynamic programming over the space of the agent’s belief about
the state, b(s). However, if the observation space is continuous, as in our case, the problem
becomes much more difficult. In fact, there are no known algorithms for computing optimal
policies for such problems. Nevertheless, approximation techniques have been developed,
and yield satisfactory results [17]. Since our focus in this paper is to learn POMDP models,
we use the simplest possible approximation technique, and simply consider the POMDP
as a fully observable MDP: the state, S, is assigned its most likely value in the belief



state, S = arg maxs b(s). Dynamic programming updates then consist of computing value
functions, V n, where V n(s) gives the expected value of being in state s with a future
of n stages to go, assuming the optimal actions are taken at each step. The actions that
maximize V n are the policy with n stages to go. We use the SPUDD solver to compute
these policies [14].

4 Experimental Results

We trained the POMDP model on videos of two humans playing a cooperative card game.
In each round of the game, players attempt to play matching cards after an initial phase
in which they can communicate with each other through a real-time video link (with no
audio). There are no game rules concerning the video link, so there are no restrictions
placed on communication strategies the players can use. The players naturally came up
with simple head gestures to help them win the game: nodding and shaking. The facial
regions of the players were tracked in the video using an optical flow based tracker, with
corrections from an exemplar database [13].

The data was split into training and test sets, and our POMDP model with Na = 4 dis-
play states was learned with the training set. The learning discovered appropriate motion
sequence models for each of the head gestures the players were using. Two of the learned
display states (d1 and d2) described neutral displays with little or no motion, while one de-
scribed head nods, and the other head shakes. An approximate two-stage policy of action
was computed using the MDP approximation. The value function, V (s), assigns nearly
equal values to the null displays (d1 and d2). This indicates that making the distinction
between these two behaviors is not useful for determining value, and we can merge them,
resulting in a three-state model [13].

The computed policy was consulted, and the recommended actions were compared to Bob’s
actual actions taken in the game. The model correctly predicted 6/7 actions in the testing
data, and 19/20 in the training data. The error in the testing data was due to the subject
glancing at something to the side of the screen, leading to a classification as d4. This
error demonstrates the need for dialogue management, such as monitoring of the subject’s
attention [17].

Figure 3 shows example frames from a sequence in which the subject shook her head. The
entire sequence was classified as facial display state d3 by the final merged model with
three states. Figure 4 shows example frames from a sequence in which the subject nodded
her head, classified as facial display state d2 by the final merged model.

5 Conclusions

We have presented a method for learning decision theoretic models of purposeful human
non-verbal displays using partially observable Markov decision processes. It discovers
spatially and temporally abstract categories of motion sequences and their relationship with
actions, utilities and context automatically from video. No prior knowledge about the types
of displays expected in an interaction is needed to train the model. The learned values of
states are used to discover the number of display classes which are important for achieving
value in the context of the interaction. This type of value-directed structure learning allows
an agent to only focus resources on necessary distinctions.
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Figure 3: Part of a sequence of subject shaking her head, classified as model d3.
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Figure 4: Part of a sequence of subject nodding, classified as model d2.
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