
2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)

Deliberative and Affective Reasoning:
a Bayesian Dual-Process Model

Jesse Hoey
Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

jhoey@cs.uwaterloo.ca

Zahra Sheikhbahaee
Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

zsheikb@uwaterloo.ca

Neil J. MacKinnon
University of Guelph

Guelph, Ontario, Canada
nmackinn@uoguelph.ca

Abstract—The presence of artificial agents in human social net-
works is growing. From chatbots to robots, human experience in
the developed world is moving towards a socio-technical system in
which agents can be technological or biological, with increasingly
blurred distinctions between. Given that emotion is a key element
of human interaction, enabling artificial agents with the ability
to reason about affect is a key stepping stone towards a future in
which technological agents and humans can work together. This
paper presents work on building intelligent computational agents
that integrate both emotion and cognition. These agents are
grounded in the well-established social-psychological Bayesian
Affect Control Theory (BayesAct). The core idea of BayesAct is
that humans are motivated in their social interactions by affective
alignment: they strive for their social experiences to be coherent
at a deep, emotional level with their sense of identity and general
world views as constructed through culturally shared symbols.
This affective alignment creates cohesive bonds between group
members, and is instrumental for collaborations to solidify as
relational group commitments. BayesAct agents are motivated in
their social interactions by a combination of affective alignment
and decision theoretic reasoning, trading the two off as a function
of the uncertainty or unpredictability of the situation. This paper
provides a high-level view of dual process theories and advances
BayesAct as a plausible, computationally tractable model based
in social-psychological and sociological theory.

Index Terms—affect control theory, Markov decision process,
free energy, active inference, social order, artificial intelligence

I. INTRODUCTION

A key element of human experience is emotion, and
enabling artificial agents with the ability to reason about
emotions is a key stepping stone towards a future in which
artificial intelligence (AI) and humans can work together
cooperatively in social dilemmas,1 while respecting ethical,
moral and normative orders in society. Our vision is to build
intelligent computational agents that parsimoniously integrate
both emotion and cognition, that are able to become members
of a socio-technical system. We ground our vision in a social-
psychological theory of affective alignment and social order
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1A social dilemma is a game with uncompensated interdependencies
(externalities) [26]: each person’s actions in the game affect other persons
without their explicit consent (e.g. without compensating them).

called BayesAct [21], [36], which is based on the sociological
Affect Control Theory [19], [29].

Parsimonious models have previously been explored in the
context of perceptual inference. In the Ecological Free Energy
Principle, this has been generalized to include embodied
intelligent agents capable of autonomous action [6]. The core
principle is that agents frequent certain configurations of the
world, and value is placed on those states of the world
that they frequent. BayesAct provides a simple, computational
mechanism that brings a social element into the world, and
into the agent’s world model, and suggests that intelligent
agents living in a social setting may use a sharing mechanism
based on emotion which allows them to attend to (and thereby
frequent) the social order in which they are embedded, their
social econiche [6]. This sharing mechanism generalizes across
actions and world configurations including other social agents,
constituting a highly complex environment.

A key area of application for emotionally aligned AI agents
is collaborative networks. More than ever, technological and
social innovations are enabled by information and commu-
nication technologies and are generated through informal,
distributed processes of collaboration, rather than in formal,
hierarchical or market-based organizations. Although an in-
dividualization narrative pervades much theorizing about hu-
man interactions, an alternative socio-relational narrative has
recently developed in which relational and affective person-
to-group ties are understood as a keystone of networked
coordination and effectiveness [28]. Relational ties grow from
repeated interactions in groups with a shared responsibility
in which positive emotions are created. Attribution by group
members of their feelings (affect) to the group further strength-
ens the relational ties, creating a self-reinforcing mechanism
for group coordination. Shared responsibility and positive
affective interactions make the group salient and endow it
with a moral and normative force upon the group members.
Groups thus endowed are powerful agents for the mobilization
of collaborative human efforts and collective action.

In this paper, we first discuss dual process models in general
in Section II, and BayesAct in particular in Section III. In
Section V, we review two key application areas, one in online
collaborative networks (e.g. GitHub) [22] and the other in
building assistive technologies for persons with dementia [35].
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We briefly discuss ethics in Section VI and conclude. Techni-
cal details about BayesAct can be found at bayesact.ca.

II. DUAL PROCESS MODELS

Human and artificial intelligent agents are faced with the
computational problem posed by the complexity of inputs
to the senses. Agents must find a way to map this high
dimensional input space into an equally high dimensional
action space. Agents can handle the complexity of the input
by constructing a representation of it, and then preforming
calculations over this representation. We will call this the
denotative representation, and it is an abstraction of the physics
of environment. For example, it is able to represent the
positions of pieces on a chess board and make predictions
about how a game will turn out given a sequence of moves,
or it can represent the bids in a negotation. The denota-
tive representation is assumed to be symbolic, but can be
implemented sub-symbolically.2 Regardless of representation,
denotative calculations rapidly become intractable, and are
exacerbated by the inclusion of other intelligent agents [13].

A. Complexity

As the complexity of the environment increases, an agent
with fixed computational resources runs into a bound that
prevents it from modeling the added complexity. This re-
source bound results in a more dispersed estimates of the
denotative state representation because the predictions made
by the agent’s (limited) internal denotative representation have
increasing trouble matching the evidence from the world.
Such an agent can handle this inability to predict the future
by believing the predictions and ignoring the evidence (un-
derfitting), or by relaxing the predictions and believing the
evidence (overfitting). While the first agent will have difficulty
adapting to change (but can see it coming), the second will
have difficulty predicting change (but can adapt to it).

An agent with a hierarchical model can do both, however,
as it can create and track a lower-dimensional version of the
denotative state that allows it to continue making predictions,
albeit with reduced precision. In machine learning, the basic
idea of approximating a complex function with another, sim-
pler, function is referred to as variational, and if the functions
are probabilistic, then variational Bayesian. An intelligent
agent that is using a variational optimization technique to
optimize policies of behaviour can be seen as an instance of
active inference. Active Inference [17] proposes consistency
between an agent’s internal model and the environment in
which it is embedded as a fundamental principle underlying
biological agents. The complexity of the agent’s environment,
defined as the total number of configurations accessible to the
agent, is the true free energy. As an agent’s world becomes
more complex (e.g. with the addition of other social agents),

2 By subsymbolic, we mean as in a neural network, where the “symbols” are
weights on neurons, and therefore somewhat difficult to interpret. However,
we do not rule out the possibility that a subsymbolic representation could be
used to model a symbolic one. For example in a deep reinforcement learning
problem, the symbols are the actions being predicted (in fact, the values of
these actions), while the neural network simply provides the mapping function.

this true free energy becomes intractable to model within an
agent’s resource bound, and so the agent must approximate. An
agent’s variational free energy is an internal measure of how
well its (approximate) model fits the real world. The idea of
minimizing this variational free energy is the same as moving
towards a state of true free energy which is minimal and is
consistent with the world in which it is embedded [16].

B. BayesAct

BayesAct is a computational dual process (hierarchical)
model of intelligence, in which one process is continuous
in one or more dimensions and is equated with human
sentiment, while the other process is discrete or continuous
and models human deliberative reasoning and decision mak-
ing [21], [36]. The dual process is built to handle uncertainty
and surprise, naturally shifting between higher bias (lower
variance) models in the sentiment space in more (denota-
tively) uncertain (invalid/unpredictable) situations, to higher
precision (lower bias) models in the deliberative space in
more certain (valid/predictable) environments. In BayesAct,
we avoid the terms “cognitive” and “emotional”, and refer
instead to a “denotative” representation and a “connotative”
one. The “connotative” is also referred to as “sentiment” or
“feeling”, both of which are “affective”, while “emotion”
refers specifically to a signaling mechanism described in
Section III. The denotative representation requires deliberative
reasoning, in which sequences of futures are examined in
memory to allow for selection of appropriate actions in the
present. The connotative representation, on the other hand,
is the meaning of the world at the level of sentiments or
feelings in a relatively low dimensional space, and produces
indications of social (in)consistency or (in)coherence. Direct
evidence of these meanings is obtained through emotional sig-
nals from other agents. Importantly, the consistency encoded
in sentiments extends to agent actions and provides a rough
(heuristic) guide over policies. The social intelligence provided
by this consistency is shared by agents in a community, and
motivates them to want to do things according to the same
practice (“habitus” [5]) which encodes the “way we do things”.
This shared practice is an approximation built to handle and
alleviate computational complexity of the social world.

Consider a simple example in which people and behaviours
are characterised as either “good” or “bad”. Cultural consensus
is that good people will do good things, and so the denotative
state does not have to model the situation in which good people
are doing bad things, and thus can be simpler. The connotative
state can therefore be linked to the denotative state with some
energy functional dependent on the discrepancy between the
meanings of things out of context and in context. If “good”
people and “good” behaviours (out of context) are expected to
be found together (in context), then inconsistency (good people
doing bad things) will be surpising, will cause increased
dispersion in estimates at the connotative level, and will push
reasoning into the denotative level for analysis and re-labeling
of actors and behaviours (maybe this is not, actually a “good”
person, or maybe the behaviour is not a “bad” behaviour?).



C. Active Inference

In BayesAct, we associate the connotative state as a vari-
ational approximation to the denotative state, and identify
it as a mechanism for encoding efficient policies in the
environment that includes a (potential) social group. Agents
minimizing their free energy using such a dual-process model
will engage in active inference and will learn a model of
emotional dynamics that can ease the computational load
on the denotative representation. Further, if the variational
approximations are linked across agents, then the resulting
social group will learn to share the same approximation in
order to more efficiently solve social dilemmas. It is precisely
because the collaborative solution to the dilemma yields higher
payouts for all individuals that the connotative representation
is selected because it is consistent with that of other agents. A
secondary, normally multi-modal, signaling mechanism is used
to facilitate this linkage across agents. These signals are termed
“emotional” and ensure that the agents’ connotative spaces are
directly linked. This “emotion language” [42], communicated
in part through facial expressions and paralinguistics, allows
agents to communicate what aspects of the denotative state
are worth more fully exploring. As a result, the connotative
state acts as a “flashlight” that illuminates the same part of the
denotative state for all agents who share it. Such “splotlight”
methaphors have been deeply explored in the context of
psychological (usually visual) attention [9]. Once this linking
occurs, then the connotative state encodes a social contract
with the social group in which the agent finds itself.

D. Other Dual Process Theories

Dual process theories are well studied in social psychol-
ogy [8], but many different terms are used to refer to the
two levels of processing. “Cognitive” processing is often
referred to as deliberative, reflective [32], conscious [39] or
“System 2” [40], whereas “emotional” processing as auto-
matic, routine [32], or “System 1” [40]. In many dual process
theories (e.g. [13]), both deliberative and automatic systems
are modeled denotatively in a constraint satisfaction network.
In BayesAct, the connotative level is affective and serves as a
low-dimensional approximation to a denotative representation.
However, the connotative representation is not at the level
of “primary” or reactive emotions (e.g. reflexes), or of core
affect [4], but rather at the level of routine or reflective
interpretations of emotions linked to procedural memory [32].

Behavioural economists have also tackled emotional hu-
man motivations, usually by proposing that humans make
choices based on a modified utility function that includes
some reward for fairness [34] or penalty for inequity [12] or
conformity [30]. However, heuristic adjustments may not be
comprehensive enough to account for human behaviour across
all situations, and a morality concept that is not based on
outcomes can be used as a more parsimonious account [7].
The question of how this morality is defined is left open.

Athough it is increasingly clear that humans operate with
something akin to a dual process model [44], some (e.g.

artificial intelligence practitioners) may argue that a conno-
tative representation is unecessary for general intelligence,
and that sufficient resources (relaxing the resource bound)
will lead to fully denotative, decision-theoretically rational
agents, or “econs”. The higher precision allowed by a de-
notative representation seems to point the way to a super-
intelligence [23], and a decision-theoretically rational social
system. We propose that artificial intelligence requires a dual
process denotative/connotative model to exist as a general-
purpose member of a socio-technical system. We present
computational, evolutionary and social arguments here.

One argument is that an agent’s ability to model the vast
numbers of combinations of other agents becomes challenging
unless a lower dimensional manifold is discovered that enables
cooperation in groups. Consider a multi-agent system consist-
ing of agents of N different types who can behave in NB

different ways. If each agent attempts to model all other agents
in its group, including their first-level (direct) interactions with
each other, the number of combinations would be factorial
in the product N × NB . If N = 150 [10] and NB is 500
or so, then representation is intractable, and even with only
N = NB = 10, the number of combinations is astronomical.

The second argument in support of a connotative state
is offered by Turner [42] from an evolutionary perspective,
who notes that early apes were forced into the forest canopy
by other simians around 25 million years ago, and had to
deal with a more complex, three dimensional space, making
permanent groups more difficult and leading to a species with
no permanent bonds and increased promiscuity. This increased
complexity entailed an increase in the true free energy (number
of configurations the world can be in) that the apes had
to model, and pressured the development of approximations.
When the descendents of these apes, the early hominids,
were forced into the savannah in an era of climate change
around 10 million years ago, the reduced complexity of a two
dimensional world, combined with the need for stronger group
cohesion (because of predators) pushed these approximations
to other uses, fostered the development of early “emotional”
languages, and allowed larger structures of humans to form,
opening the door for collective activities like solving social
dilemmas. From an evolutionary perspective, the perserverance
of this emotional language is an indication of its usefulness
in the context of human groups, and therefore we expect it to
be useful in a group involving artificial agents as well.

Finally, a group of agents who are able to coordinate to solve
social dilemmas will be more suited for survival than a group
that does not. This coordination departs from the principles of
decision-theoretic (individual) rationality, but can be enforced
by a connotative representation that inextricably links agents
through emotional signaling. This inextricable link provides a
mechanism for a group of agents to jointly minimize their free
energy in an uncertain world.

III. BayesAct

We present here a short introduction to ACT and BayesAct,
and refer the reader to longer treatments in [21], [36], covering



relationships to other theories of emotion (e.g. appraisal).
Affect Control Theory (ACT) [19], [29] proposes a fun-

damental link between symbolic, denotative, representations
of the social environment and the continuous, connotative,
representations of the sentiments or feelings associated with
those denotative representations. For example, when one per-
ceives a person in a white coat in a hospital, a denotative
impression is formed of this person that is represented with a
symbol (doctor). This symbol has an associated “fundamental”
sentiment in a three-dimensional affective “EPA” space of eval-
uation (E: good/bad), power (P: strong/weak) and activity (A:
active/inactive). Doctors, for example, usually evoke feelings
of goodness, strength, and modest activity. EPA space has been
found through decades of research to be a cross-culturally
normative representation of meaning [33].

The link between denotative and connotative in ACT is
empirically determined through population surveys using se-
mantic differential scales. These measurements yield a set of
samples from a population distribution in the sentiment space,
which can then be parametrically estimated (e.g. as the mean
and variance of a normal distribution), or non-parametrically
represented (as a set of samples). Lists of such measurements
are called “dictionaries” of mappings from labels to sentiment.
In ACT, only the mean of this measurement is used to link
denotative and connotative. Thus, a doctor is represented
connotatively as (EPA:{2.7, 3.0, 0.2}).3 Given a connotative
(EPA) vector, a denotative label can be assigned in ACT using
a simple nearest neighbour method (e.g. the closest label to
(EPA:{−1.0, 2.0, 2.0}) is politician (EPA:{−0.9, 2.3, 1.5}) -
at a Euclidean distance of 0.35). ACT proposes that events
in the world, interpreted symbolically (denotatively), create
re-assessments at the connotative level called transient im-
pressions that are used to motivate agents towards behaviours
that reduce the incoherence between in-context impressions
and out-of-context sentiments. This motivation to socially con-
forming actions can be interpreted as an instance of Bourdieu’s
“habitus” [5], as explored in more detail in [1].

Emotions in ACT are defined precisely as the vector differ-
ence between fundamental (out-of-context) and transient (in-
context) sentiments, and are a mechanism to help agents signal
(in)coherence to each other (e.g. with facial expressions or
paralinguistics). Importantly, these signals are not scalar indi-
cations of (in)coherence, but rather vector signals giving recip-
ies for restorative behaviour and emotion regulation [18]. For
example, if a doctor “talks down to” (EPA:{−1.6,−0.1, 0.3})
another doctor, the object agent is made to feel less powerful
(drops to −0.1) than expected, and will display exasperation
or indigance. Upon receiving this signal, the acting agent may
restore fundamental sentiments by “making up with” the other.

BayesAct [21], [36] generalises ACT by explicitly represent-
ing the distribution over sentiment in a two-level partially ob-
servable Markov decision process (POMDP). BayesAct models
individual differences as variance in sentiments, and modulates

3For historical reasons, EPA measurements are scaled to lie between -4.3
and +4.3. All data in this paper is taken from a survey of 1742 people in the
USA in 2015, see https://research.franklin.uga.edu/act/.

the predictions of ACT due to the differences between denota-
tive entities with low and high connotative variances [15]. In
the original formulation of the BayesAct model, the sentiment
was directly observed in an interaction as a three-dimensional,
continuous vector that gave a direct measurement of the
sentiment of the behaviour being performed. That is, if a
doctor was observed injecting someone with medicine, then
BayesAct expected a direct observation of the mean EPA rating
for that denotative behaviour, inject someone with medicine:
(EPA:{0.9, 1.7,−0.2}). BayesAct had a denotative state, but
this only represented elements of an interaction outside of
the social definition of identities, such as the state of a game
being played. For example, this might be the positions of both
agents’ pieces on a chessboard, or current bids in a negotiation.

However, the BayesAct model can include a denotative
representation of identities and behaviours of other agents. If
it does so, then these denotative elements are linked to the
connotative state through a potential function that measures
the incoherence (difference) between the current estimate of
the denotative state (e.g. doctor) and the current estimate
of the connotative state (a distribution in the affective EPA
space). For example, if the doctor performs some behaviour
uncharacteristic of a doctor (e.g., abuse a patient), this doctor
would seem less good (lower E) than the culturally accepted
definition of a doctor. The incoherence generated between
the out-of-context sentiment about doctors (high E) and the
impressions created by the observed behaviour pushes the ob-
serving agent to a higher energy state. While behaviours can be
selected (as in ACT) to reduce incoherence (and thus energy),
the energy function can also be used to probabilistically rank
likely identities that could be used for re-identification. Thus,
if a doctor is observed harassing (EPA:{−3.0, 0.6, 1.6}) a
patient (EPA:{0.6,−1.5,−1.3}), agents would be motivated
to act in such a way as to stop the behaviour, or would be
forced to re-interpret the doctor as some other identity (the
optimal in this case would be (EPA:{−4.3, 1.4, 1.7}), with a
closest label of rapist at a distance of 0.44).

Finally, BayesAct has two sets of observations. One repre-
sents signals about the environment giving evidence for the
denotative state. The other represents emotional signals from
other agents, and gives direct evidence for the connotative
state. Information flows into the model from both connotative
and denotative sides, and BayesAct computes posterior distri-
butions that best merge the two in a Bayesian sense. Emotion
signals are crucial for grounding the connotative state, as
otherwise it could be arbitrarily transformed between agents
and would be harder to learn.

IV. UNCERTAINTY, INFORMATION, AND AFFECT

The link in BayesAct between denotative and connotative in-
duces a natural (Bayesian) tradeoff due to relative uncertainty.
As the environment becomes less valid (less predictable or
more uncertain [25], so the distribution over denotative states
is more dispersed or has higher entropy), then the posterior
will be more heavily influenced by the prior in the connotative
state. Agents in less valid (less predictable) environments



will put more weight on the connotative representation: they
will make inferences and choose actions that are more in
line with connotative (socio-cultural) expectations. In more
valid environments, a lower entropy denotative distribution
dominates the posterior. Agents in more valid environments
will thus act more in line with denotative states and predictive
dynamics, and so will be information seekers and utilizers. In
a social dilemma, for example, one would expect the agents in
less valid environments to cooperate (act according to social
prescriptions), while agents in more valid environments will
defect (act decision theoretically rationally). This is in line
with experiments showing how humans tend to act more pro-
socially (cooperate in a public goods game) in ambiguous
situations (ones in which risk is hard to evaluate, see [43]).
In BayesAct, risk is represented by the transition dynamics
parameters in the denotative space. If the distribution over
these parameters has lower entropy, then risk is more well
defined, and so ambiguity (the uncertainty in risk) is lower.

In BayesAct, any denotative state can be mapped into the
same connotative space, allowing for comparisons between
actions and identities, for example. The connotative state is
required to guide an agent towards socially acceptable choices
of behavior that can ensure more globally optimal solutions
to social dilemmas. Note that this is a different concept than
Simon’s bounded rationality (SBR) [37]. In SBR, the agent
first performs an analysis at the symbolic level (denotative),
and then freezes this analysis into a second denotative space
called habits and coping. In ACT and in BayesAct, the agent
gathers a fast impression and then makes predictions in an
emotional space with a simple predictive function which
can rapidly generate somewhat (socially) relevant predictions
about future outcomes involving other agents. In BayesAct, we
see an emergent bounded rationality defined by uncertainty
over outcomes. As the future becomes more uncertain, an
emotional system automatically and softly kicks in to take
up the slack. The subsequent diminishment of uncertainty is
transmitted socially, shared between agents in a group.

The way in which connotative and denotative reasoning and
action selection are trade-offs in BayesAct is a reflection of a
Bayesian view of the mind as an active inference engine [16].
Such a viewpoint treats the mind as operating to improve the
match between internal model and external environment. Im-
proving this match is equivalent to decreasing the total number
of configurations modeled, also known as the variational free
energy. At the limit, the variational free energy is the same
as the true free energy. Agents with better matching models
avoid surprise and are better survivors. BayesAct proposes the
connotative space as performing a (variational) approximation
to the denotative space. This approximation is necessary
because of the impossibility of finding a good match at the
denotative level alone, and more so in social environments
which are inherently harder to predict (are less valid [13]).

Related views of emotion include the identification of nega-
tive valence with increased uncertainty [13] or with change in
free energy [24], or expected free energy [20]. One component
of identity (esteem) is used to modulate a reward function

in [31] in order to make cooperation the more salient policy
in a social dilemma. These approaches show how valence
(and arousal in [20]) may be related to uncertainty (more
precisely to the precision of policies). Affective responses are
proposed as resulting from active inference in the conceptual
model of [39]. BayesAct shows how this relationship can
be linked to social psychological theory, providing a bridge
to sociological analytics, by associating dimensions of senti-
ment with affective response representation in sentiments of
happy vs sad (Evaluation) and of angry vs. afraid (Potency).
However, the sentiment dynamics of BayesAct exist at the
affective response representation and conscious acccess levels
in the three-factor active inference model of [39], and would
be involved in conscious and subconscious interpretations in
working memory [38].

Interestingly, the tradeoffs between connotative and deno-
tative meanings in reasoning link social psychological the-
orizing across many authors. The idea traces back at least
to Durkheim’s instrumental vs. organic solidarity [11], is
also reflected in Lawler’s instrumental vs. relational commit-
ments [28] and in Bales’ forward-backward dimension [3].
When denotative reasoning takes over, individualistic groups
in mechanical solidarity use instrumental commitments (more
rational), and will require authority to control them and
force them to obey social norms (through e.g. penalties
and enforcers). They are thus following “normative” com-
mitments [28], and must be more accepting of authority
(Bales’ forward dimension [3]). In more diverse groups, social
complexity pushes connotative reasoning to take over, and
more collectivity develops in which organic solidarity and
relational commitments are more salient, and groups are less
accepting of authority (more of Bales’ backward dimension).
Such groups will self-regulate, but allow diversity in a pop-
ulation. Bales’ indicates a correlation between forward and
more conservative political beliefs, and between backward and
more liberal political beliefs [3]. Thus, from a computational
sociological point of view, we are led to the suggestion that
the political spectrum of beliefs is defined by uncertainty
and ambiguity management techniques: conservatives overfit,
while liberals underfit.

V. ONGOING PRACTICAL PROJECTS

We apply our theoretical constructs in two primary ap-
plication areas. First, in studying open-source development
platforms such as GitHub in the context of the THEMIS.COG
project (themis-cog.ca) [22], and second, in the develop-
ment of collaborative networks for the design of technologies
to assist older adults in the context of the EMOTEC and VIP
projects [35]. In the following, we give brief overviews.

A. Online Collaboration

Github (github.com) is an online platform that is pri-
marily used for Open Source Software (OSS) development.
However, GitHub is rapidly becoming the platform of choice
for general-purpose collaborative efforts. GitHub contributors
can be seen as forming a large social network that is loosely



bound by some developers spanning multiple projects. GitHub
hosts 35 million projects and 14 million collaborators, and
has seen a super linear growth over the years. At first glance,
GitHub appears to be a meritocracy: contributions are made
by coders with varying skill levels, and projects are advanced
by individual contributions according to their quality and
integrity. However, on closer inspection, it appears there are
many relational factors at play, and social structures that
develop within and across projects have a significant impact on
the progression and biases integrated into the projects [41]. A
group may include a powerful member who bullies weaker
members, leading to exclusions, some of which are based
on factors such as race or gender. Social status within a
collaborative group can play an important role in determining
the direction a project takes, and hence the final software
and products being used by the general public. BayesAct
can be used to model these interactions between GitHub
contributors, and to create artificial group members whose
roles are to promote and enhance inclusive collaboration.
Contributors are each modeled with a BayesAct-based agent.
Comments and interactions are then analyzed for sentiment
(affect/emotion) and used to learn the affective meanings and
identities for each group member. These learned identities
are then used to generate information about group coherence,
and to make suggestions for collaborative enhancements such
as the admittance of new group members, the promotion of
existing group members, or the focus of attention on specific
contributions. Artificial agents, also with a BayesAct back-
end, can become group members themselves, fulfilling certain
roles that fill important gaps in the social order created by the
group. Artificial agents with an understanding of the relational
forces at play can therefore be important moderators helping
to promote inclusive and efficient development [22].

B. Alzheimer’s Care

The second application area is in the realm of healthcare and
is aimed at collaborative networks for the growing cohort of
computer-literate older adults. Within a generation, nearly one
million Canadians will suffer from Alzheimers disease (AD)
or a related dementia, and the costs of dementia care will
reach $153 billion. Faced with this epidemic and fearing the
devastating impact of dementia quality of life, older adults and
their families are increasingly seeking creative solutions for
personal and social engagement that recognize and address the
specific challenges related to dementia. However, in dementia,
cognitive and denotative contextual reasoning suffers, while
emotional and social reasoning remains relatively intact [14],
[27]. For example, a mother may not recognize her son, but
will remember how the interaction should “feel”. It is precisely
the emotional disturbance caused by the lack of a shared
denotative reality that creates difficulties in the interaction.
A deeper understanding of, and coping with, this emotional
disturbance, comes with repeated interactions, but appropri-
ate guidance could be offered to those handling the initial
disturbance in the form of automated recalls, hints or tips
(e.g. delivered through a smartphone) that remind users of the

common patterns of behaviour and the underlying emotional
reasons why [35]. For example, a reminder to a caregiver with
a new resident with dementia at a long-term care facility that
this individual used to work as, and identifies strongly with,
being a teacher, and so interactions such as questions may be
more appropriate than directions. In the EMOTEC and VIP
projects, we study the basis of this interaction using BayesAct,
and propose BayesAct-based agents as virtual assistants that
can provide this form of emotional guidance.

C. Other Applications

Emotionally aware agents can be useful across a wide range
of other application areas, including mechanism design, behav-
ioral economics, games, and conversational agents. Our aim is
to design and build a framework based on social-psychological
theory that allows such agents to be constructed and deployed
across these application areas. A careful dynamic calibration
of uncertainty in connotative and denotative representations
can provide a hierarchical structure necessary to handle the
complexity of the social world.

VI. ETHICAL CONSIDERATIONS

The moral machine experiment [2] showed that people have
shared behaviours as moral decision makers, with consistency
across, and diversity within, a culture. We present a possible
model for this in BayesAct, with this consistency arising in a
sentiment (connotative) space with a simple prior distribution.
This connotative space and associated temporal dynamics has a
direct multimodal (emotional) communication channel provid-
ing it with information, and is learned through interaction with
a social group. With a connotative space and dynamics which
are consistent with others’, agents can benefit by having easier
focus on some aspects of the denotative world, specifically
those that are relevant as solutions to social dilemmas. When
they are able to follow these prescriptions for dilemmas, they
become “members” of the social group in which they are
learning. Thus, any moral decisions made by the agent would
be consistent with those made in its social group, and therefore
be acceptable. Inconsistent agent behaviours result in the
ostracism of offending agents, communicated with emotional
signaling and less cooperative behaviour.

VII. CONCLUSION

In this paper, we have proposed BayesAct as a computational
dual-process model of human group interactions, and shown
how it explicitly represents a tradeoff between the uncertainty
in the denotative space (of e.g. symbolic constructs about the
physics of the world) and in the connotative space (of e.g.
feelings about identities and behaviours). We have argued that
BayesAct captures some of the key elements of known human
dual-process reasoning, and argued that it can be used to build
artificial agents that are well aligned members of a socio-
technical system. We have suggested that the model of social
sentiment in BayesAct is a variational approximation to an
agent’s representation of the world, and that this approximation
is built using a social sharing mechanism based on emotion.
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