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People with cognitive disabilities such as dementia and intellectual disabilities tend to have problems in co-
ordinating steps in the execution of Activities of Daily Living (ADLs) due to limited capabilities in cognitive
functioning. To successfully perform ADLs, these people are reliant on the assistance of human caregivers.
This leads to a decrease of independence for care recipients and imposes a high burden on caregivers. As-
sistive Technology for Cognition (ATC) aims to compensate for decreased cognitive functions. ATC systems
provide automatic assistance in task execution by delivering appropriate prompts which enable the user
to perform ADLs without any assistance of a human caregiver. This leads to an increase of the user’s in-
dependence and to a relief of caregiver’s burden. In this article, we describe the design, development and
evaluation of a novel ATC system. The TEBRA (TEeth BRushing Assistance) system supports people with
moderate cognitive disabilities in the execution of brushing teeth. A main requirement for the acceptance of
ATC systems is context awareness: explicit feedback from the user is not necessary to provide appropriate
assistance. Furthermore, an ATC system needs to handle spatial and temporal variance in the execution of
behaviors such as different movement characteristics and different velocities. The TEBRA system handles
spatial variance in a behavior recognition component based on a Bayesian network classifier. A dynamic
timing model deals with temporal variance by adapting to different velocities of users during a trial. We
evaluate a fully functioning prototype of the TEBRA system in a study with people with cognitive disabili-
ties. The main aim of the study is to analyze the technical performance of the system and the user’s behavior
in the interaction with the system with regard to the main hypothesis: is the TEBRA system able to increase
the user’s independence in the execution of brushing teeth?
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for people with disabilities
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1. INTRODUCTION
People with cognitive disabilities form a primary group of healthcare recipients due to
their limited capabilities in cognitive functioning such as perception, reasoning, and
remembering [Gillespie et al. 2011]. Problems related to this functioning appear in
a human’s daily routine where the successful execution of Activities of Daily Living
(ADLs) is an integral part of an autonomous and self-determined life. ADLs refer to
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everyday tasks such as eating, dressing, or personal hygiene. One problem for people
with cognitive disabilities in the execution of ADLs is task sequencing. Task sequenc-
ing refers to the ability to decompose tasks into substeps. For a successful execution of
the overall task, the substeps need to be combined in an appropriate order. For most
tasks, such as hand washing, tooth brushing, and dressing, the substeps can be com-
bined in a flexible way that allows for different methods of task execution. In a dressing
task, for example, a user might put on the left sock first and the right sock afterwards,
or vice versa.

Flexibility in task execution imposes a high risk of erroneous behavior for people
with cognitive disabilities: users forget steps or get stuck in task execution. In such
cases, external intervention by a human caregiver is necessary for a proper task ex-
ecution. Hence, an inability to perform ADLs leads to a decrease or even a loss of
independence, and makes people with cognitive disabilities highly dependent on a hu-
man caregiver. Furthermore, an inability to perform ADLs might impose security risks
for the well-being of people: for example, a person with Alzheimer’s disease aims to
prepare tea, but forgets to pour water into the kettle. Turning on a kettle without any
water inside is a potential fire hazard. Professional caregivers as well as informal care-
givers such as family members worry about the well-being of the care recipients. This
leads to an emotional burden for the caregiver which might result in chronic stress
and consequent diseases [Bevans and Sternberg 2012].

Assistive Technology for Cognition (ATC) refers to technical interventions that com-
pensate for decreased or missing cognitive capabilities by providing prompts that as-
sist the user in the execution of ADLs. The application of ATC aims at increasing the
independence of people with cognitive disabilities from a human caregiver. This leads
to an increase in self-esteem and self-determination in a care recipient’s life and, fur-
thermore, to a relief of caregiver burden due to the prolonged independence of the care
recipient [Scherer et al. 2005].

The main goal of ATC systems is to foster the independence of the user by provid-
ing appropriate prompts when necessary for a successful task execution. A prompt is
necessary in three situations: first, a person might forget a step in the overall task,
which leads to inappropriate follow-up behaviors. For example, a user rinses hands in
a hand washing task without having taken soap first. Second, a person might not be
able to terminate a substep of the task due to obsessive behavior. Third, a person is not
able to focus on the task and loses track of the overall progress due to environmental
distractions such as noise. In these situations, a prompt is necessary to assist the user
in task execution.

Context awareness enables a system to detect such situations without explicit
feedback from the user about completed steps: a context aware system infers a user’s
current behavior as well as the overall progress in the task based on sensory informa-
tion obtained from the environment. The implementation of a context-aware behavior
is difficult, since an ATC system needs to deal with the spatial and temporal vari-
ance that people with cognitive disabilities show in task execution. In this article, we
refer to spatial and temporal variance in the context of a user’s behavior in ATC: spa-
tial variance refers to differences in the execution of behaviors due to different motor
abilities, which result in different movement characteristics amongst individual users.
Temporal variance denotes differences in the velocities of task execution, which may
vary greatly between individual users. For example, one user might perform substeps
of a task very slowly, but another user might be very quick in execution.

In this article, we describe the design, development, and evaluation of a novel
context-aware ATC system that is robust with regard to spatial and temporal variance
of users: the TEBRA system (TEeth BRushing Assistance system) assists people with
cognitive disabilities in the execution of brushing teeth. Brushing teeth is an important

ACM Transactions on Accessible Computing, Vol. 5, No. 4, Article 10, Publication date: March 2014.



✐
✐

✐
✐

✐
✐

✐
✐

Automatic Task Assistance for People with Cognitive Disabilities in Brushing Teeth 10:3

basic ADL since (1) disregarding oral hygiene can lead to severe medical problems and
(2) people with cognitive disabilities usually have problems with brushing teeth due to
the flexibility and complexity of the task: brushing teeth involves several objects such
as paste and brush that are used in different substeps during the task. The substeps
can be combined in a flexible way for successful task execution.

To handle the spatial variance of people with cognitive disabilities, we infer a user’s
behaviors based on the states of objects manipulated during the behaviors. The be-
havior recognition component is described in Section 4.1. We deal with the temporal
variance in task execution by using a dynamic timing model with a number of different
thresholds that are automatically adjusted during a trial. Section 4.2.2 describes the
timing model in detail.

The target group of users is people with moderate cognitive disabilities such as in-
tellectual disabilities and Autistic Spectrum Disorder, but also age-related disabilities
such as dementia and Alzheimer’s disease. We cooperate with the residential home
Haus Bersaba belonging to v. Bodelschwinghsche Stiftungen Bethel, a clerical foun-
dation in Bielefeld, Germany. Thirty-five people with mild to moderate cognitive dis-
abilities live in Haus Bersaba and receive permanent care by professional caregivers
including assistance in brushing teeth: a caregiver stands beside the person and as-
sists during the brushing task by providing verbal and visual prompts.

In a study with target group users, we evaluate the technical system performance
including the recognition and tracking of a user’s behaviors in the overall task as well
as the appropriateness of prompts. Furthermore, we analyze the user’s reactions to
prompts and discuss aspects of usability and acceptance of the TEBRA system.

We do not address task initiation (getting a person to start the task) in this study.
Although this is an important aspect, our study follows a similar protocol as that in
Mihailidis et al. [2008], and we leave task intitiation for future work.

The article is structured as follows: Section 2 discusses related work; Section 3 de-
scribes the design of the system. A technical overview of the TEBRA system is given in
Section 4, which may be skipped by readers more interested in the user study aspects
of the work. Section 5 describes the design of the user study and discusses the results.
We conclude the article in Section 6.

2. RELATED WORK
In recent years, there were several attempts to classify ATC interventions according
to cognitive functions for which the ATC compensates [Gillespie et al. 2011; LoPresti
et al. 2004]. LoPresti et al. [2004] distinguish between ATC compensating for exec-
utive function impairments and information processing impairments. Gillespie et al.
[2011] provide a systematic classification according to the International Classification
of Functioning, Disability, and Health (ICF). They identified applications of ATC in
the following areas of cognitive functions referring to the ICF classification: attention,
calculation, emotional functions, experience of self and time, and higher-level cognitive
functions.

This article describes a contribution by designing, developing, and evaluating the
TEBRA system, which compensates for missing or decreased higher-level cognitive
functions.

Most ATC identified by Gillespie et al. assist in one of the two areas of higher-level
cognitive functions: organization and planning, and time management. Time manage-
ment refers to scheduling a user’s daily routine dealing with temporal constraints be-
tween different tasks. For example, PEAT (Planning and Execution Assistant Trainer)
is a scheduling aid for people with brain injury [Levinson 1997]. PEAT structures a
user’s daily routine by providing visual and audible cues using a mobile phone. Simi-
lar to the PEAT system, Autominder schedules daily activities of people with mild to
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moderate memory impairments [Pollack et al. 2003]. Autominder models a user’s daily
plan, tracks a user’s execution of the plan and decides whether to provide a prompt to
the user. Both PEAT and Autominder are able to recognize conflicting tasks and to
replan when the daily plan is modified.

In comparison to time management, organization and planning relates to the exe-
cution of single tasks in which the subtasks need to be structured and performed in a
temporal order for a successful task execution. The GUIDE system assists people with
cognitive disabilities in task execution [O’Neill and Gillespie 2008] by simulating the
verbal assistance provided by a human caregiver. The system is able to understand
simple verbal responses such as “yes”, “no”, or “done” and provides assistance accord-
ing to the user’s responses. O’Neill et al. [2010] conducted a study with eight users who
were assisted in donning a prosthetic limb. Six of the eight showed users showed a sig-
nificant increase in task performance with a decreased number of errors and omissions
during system assistance.

The COACH system assists people with mild to moderate dementia in the task of
handwashing [Hoey et al. 2010]. COACH uses computer vision techniques for environ-
mental perception and a Partially Observable Markov Decision Process (POMDP) for
planning and decision making. The COACH system was evaluated in a user study with
6 participants having moderate-to-severe dementia [Mihailidis et al. 2008]. The par-
ticipants’ performance was tested in two alternating conditions: (1) baseline without
the COACH system, and (2) intervention with the COACH system. The average rate
of handwashing steps completed independently was increased by 11% in the inverven-
tion compared to the baseline scenario. Furthermore, intervention of a caregiver was
decreased by 60% when using the COACH system. The COACH system was also ap-
plied to the task of prompting a person with a cognitive disability through a simple
factory assembly process [Melonis et al. 2012].

In comparison to donning a limb and washing hands, the task of brushing
teeth is more complex and flexible: according to the results of the task analy-
sis technique described in Section 3.1, brushing teeth consists of eight substeps
(paste on brush, rinse mug fill, rinse mug clean, rinse mouth clean, rinse mouth wet,
brush teeth, clean brush and use towel). A successful execution of the task involves the
manipulation of four objects (brush, paste, mug, and towel). In comparison, washing
hands consists of five substeps (wet hands, take soap, water on, water off, dry hands)
in which two objects (soap, towel) are involved.

In the COACH system, a user’s behavior is recognized implicitly using pairs of
pre/post-actions: for example, if the hands enter (pre-action), and leave (post-action),
the soap region, COACH infers that the user has taken the soap with a prespecified
probability. In the TEBRA system, we explicitly recognize the different behaviors in-
volved in the brushing task and model the timing dynamics of behaviors in a timing
model. Hence, the TEBRA system is more robust with regard to the spatial and tem-
poral variance in task execution compared to other ATC systems.

Furthermore, the target group in the study described in this article is heteroge-
neous since people with different cognitive abilities such as Autistic Spectrum Disor-
der and intellectual disabilities participate. Hence, the study with the TEBRA system
describes a contribution in the field of ATC by assisting a more heterogeneous user
group in a more complex and flexible task than previous ATC systems.

3. SYSTEM DESIGN
The demands and abilities of users play an important role for the acceptance of ATC
in a user’s everyday life. According to Scherer et al. [2005], psychosocial factors such
as disregarding the user’s requirements during the design process is a common rea-
son why ATC application is abandoned quickly after deployment [Scherer et al. 2005].
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Fig. 1. Example image of the in-situ observation.

User-centered design is a methodology1 that incorporates the users’ demands and abil-
ities early into the design process [Gould and Lewis 1985].

Design decisions need to take into account the characteristics of the task. Task anal-
ysis is an important set of techniques to reveal task characteristics and provide initial
design decisions. In the design of the TEBRA system, we use a task analysis method
called Interaction Unit (IU) analysis which reveals characteristics of the brushing task
using a structured methodology as described in the following section.

3.1. Interaction Unit Analysis
Designing an ATC system based on common-sense knowledge about brushing teeth is
not sufficient. Users of ATC are people with cognitive disabilities who usually show
special characteristics in task execution: first, due to decreased motor abilities, which
often coincide with cognitive disabilities [Kluger et al. 1997], target group users might
show uncommon usage of objects. We aim to take into account such differences from
common behavior as far as possible in the design of the TEBRA system. Second, peo-
ple living in a residential home commonly rely on the assistance of a caregiver while
brushing their teeth. Caregivers aim to impart a routine in the execution of the brush-
ing task that suits the user’s abilities. We analyze the caregiver’s way of task assistance
and consider important aspects in the design phase. We conduct a qualitative data
analysis on in-situ observations made at the residential home Haus Bersaba, where
people with moderate cognitive disabilities permanently live. In-situ observations are
a common way to study a user’s behavior in a natural environment [Intille et al. 2004;
Leroy 2011]. Each observation is a video that shows a user brushing teeth while be-
ing observed and supported by a caregiver. Figure 1 depicts an example image. We
recorded 23 trials performed by eight users on three different days where seven users
conducted three trials each and one user conducted two trials [Peters et al. 2011]. The
users are supported by two caregivers assisting in 10 and 13 trials, respectively. We
use Interaction Unit (IU) analysis as proposed by Ryu and Monk [2009] as a method of
task analysis. IU analysis models user-machine interaction with cycles of interaction
called interaction units. A user executes actions in order to achieve a desired goal. Ac-
tions are triggered using both visible cues of the environment and mental processes of
a user. IU analysis describes actions, goals, environmental states and mental process
in a single model and allows for a description of “the intimate connection between goal,
action, and the environment in user-machine interaction” [Ryu and Monk 2009, p. 1].
Hoey et al. [2011] use an adapted form of IU analysis to facilitate the specification

1According to ISO standard Human-centered design for interactive systems (ISO 9241-210, 2010).
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process of an automatic prompting system using a POMDP. We use a similar form
of IU analysis to extract task-relevant information, which we incorporate in the de-
sign of the TEBRA system. The results of IU analysis, given in Table I, were obtained
by iteratively analyzing the recorded videos. We decompose the brushing task into
seven subtasks given in column UB. We will refer to the subtasks as user behaviors in
the following. User behaviors are paste on brush, fill mug, rinse mouth, brush teeth,
clean mug, clean brush, and use towel. The column Current goals describes a user’s
goal stack, where Final means the overall goal of getting the teeth brushed properly.
Whenever a user behavior is initiated, the behavior is added to the goal stack as the
user’s current goal. When the user behavior is completed, the goal is removed from the
stack and Final is the current goal again. Each user behavior is further subdivided into
single steps as described in the column UB steps. For example, performing rinse mouth
consists of a sequence of three steps: mug is moved to the face, the user rinses his/her
mouth, and the user moves the mug away from the face. The column Mental processes
describes the mental processes involved to initiate user behavior steps (these are called
abilities in Hoey et al. [2011]). Ryu and Monk [2009] distinguish between three mental
processes: recognition, recall, and affordance.

— Recognition (Rn). Recognition means that the user can directly perceive an object’s
state in the environment, e.g. mug is empty in IU 2 in Table I.

— Recall (Rl). The user needs to remember a certain state of the environment, which
is not directly observable. For example, the user has to recall that the mug is dirty
in IU 18 because it was used in a previous step.

— Affordance (Af). Affordance describes the recognition of the meaning of an object
and the way to use it, e.g. the tap can be altered to on, which makes the water flow
in IU 20.

The column Current environment describes the environmental configuration as the
precondition for a single user behavior step. Performing the step changes the environ-
mental configuration, for example, in the first step of paste on brush, the toothpaste
is on the counter and taking the paste changes the location to “in hand.” We utilize
the environmental configuration given in the column Current environment to extract
environmental states that we encode in discrete variables, as depicted in Table II. We
distinguish between behavior and progress variables: we apply behavior variables to
recognize user behaviors in a recognition component. The progress variables are hard
to observe using sensory information due to reasons of robustness: for example, it is
very error-prone to visually detect whether the brush condition is dirty or clean. A
specialized sensor at the brushing head is not desirable due to hygienic reasons. How-
ever, the progress variables are important since they are part of the environmental
state during the task. We utilize progress variables to monitor the user’s progress in
brushing teeth as described later in this section. We abstract from the recognition of
single behavior steps as given in the column UB steps in Table I. Instead, we infer the
user’s behavior based on the behavior variables, which express states of objects ma-
nipulated during a behavior. From the column Current environment, we extract five
behavior variables describing important object states: mug position, towel position,
paste movement, brush movement, and tap condition. The upper part of Table II shows
the five variables and their discrete values. For brush movement, we have the values
no, yes sink, and yes face. The latter are important for discriminating between the
user behaviors paste on brush and brush teeth, based on the movement of the brush.
The values of the variables mug position and towel position are the different regions
identified in the column Current environment where the mug and towel appear during
task execution. No hyp is used if no hypothesis about the mug/towel position is avail-
able. The lower part of Table II shows progress variables and their discrete values,

ACM Transactions on Accessible Computing, Vol. 5, No. 4, Article 10, Publication date: March 2014.
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Table I. Results of the IU Analysis for Brushing Teeth, TT = toothpaste tube, Rn = Recognition, Rl = Recall,
Af = Affordance

See text for a detailed description of the table.
UB IU Current goals Current environment Mental processes UB steps

1 Final mug on counter Rn mug on counter no action
Rl step

2 Final, fill mug mug empty Rn mug empty give mug to tap
Af tap

fil
l

m
ug

3 Final, fill mug mug at tap, tap off Af tap on alter tap to on
4 Final mug at tap, tap on Af tap off alter tap to off

Final mug filled
5 Final mug filled Rl step no action
6 Final, rinse mouth mug filled Af mug give mug to face
7 Final, rinse mouth mug at face Af mug give water to mouth
8 Final mug else Af counter give mug to counter

ri
ns

e
m

ou
th

Final mug counter
9 Final brush on counter Rn brush no action

TT on counter Rn TT on counter
TT on counter Rl step

10 Final, paste on brush TT on counter Af TT take TT from counter
11 Final, paste on brush brush on counter Af brush take brush from counter
12 Final, paste on brush brush and TT in hand Af TT spread paste on brush

pa
st

e
on

br
us

h

13 Final TT in hand Af counter give TT to counter
Final TT on counter, brush in hand

14 Final brush with paste in hand Af brush no action
Rl step

15 Final, brush teeth brush with paste in hand Af brush give brush to face
16 Final, brush teeth brush at face Af brush brush all teeth

br
us

h
te

et
h

17 Final brush at face, teeth clean Rl teeth clean take brush from face
Final brush not at face

18 Final mug dirty at counter Rl mug dirty no action
Rl step

19 Final, clean mug mug dirty at counter Rn mug dirty, Af tap give mug to tap
20 Final, clean mug mug dirty at tap, tap off Af tap on alter tap to on
21 Final, clean mug mug dirty at tap, tap on Rn water on, Af tap give mug to tap

cl
ea

n
m

ug

22 Final mug clean at tap, tap on Af tap off alter tap to off
23 Final mug clean at tap, tap off Af counter give mug to counter

Final mug clean at counter
24 Final brush dirty Rn brush dirty no action

Rl step
25 Final, clean brush brush dirty Rl brush dirty give brush to tap
26 Final, clean brush brush dirty at tap, tap off Af tap on alter tap to on
27 Final, clean brush brush dirty at tap, tap on Rn water on, Af tap give brush to tap

cl
ea

n
br

us
h

28 Final brush clean at tap, tap on Rn water on, Af tap off alter tap to off
29 Final brush clean at tap, tap off Af counter give brush to counter

Final brush clean at counter
30 Final towel at hook, mouth wet Rn mouth wet no action

Rl step
31 Final, use towel towel at hook, mouth wet Af towel give towel to face
32 Final, use towel towel at face, mouth wet Af towel dry mouth

us
e

to
w

el

33 Final towel at face, mouth dry Af hook give towel to hook
Final towel at hook

which we use to monitor the user’s progress in the task. At each time in the task ex-
ecution, the user’s progress is modeled by the set of six progress variables, which we
will denote progress state space in the following. The occurrence of a user behavior

ACM Transactions on Accessible Computing, Vol. 5, No. 4, Article 10, Publication date: March 2014.
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Table II. Behavior and Progress Variables Extracted
from the Environmental Configuration in Table I

State variable Values
behavior

mug position counter, tap, face, else, no hyp
towel position hook, face, else, no hyp

paste movement no, yes
brush movement no, yes sink, yes face

tap condition off, on

progress
mug content empty, water

mug condition dirty, clean
mouth condition dry, wet, foam

brush content no paste, paste
brush condition dirty, clean
teeth condition dirty, clean

Table III. Preconditions and Effects of User Behaviors Extracted from the
Environmental Configuration in Table I

User behavior Preconditions Effects
paste on brush brush content=no paste brush content=paste

teeth condition=dirty brush condition=dirty

fill mug mug content=empty mug content=water

clean mug mug content=empty mug condition=clean
mug condition=dirty

teeth condition=clean

rinse mouth clean mug content=water mug condition=dirty
mouth condition=foam mouth condition=wet
teeth condition=clean mug content=empty

rinse mouth wet mug content=water mug condition=dirty
mouth condition=dry mouth condition=wet

brush teeth brush content=paste teeth condition=clean
teeth condition=dirty brush content=no paste
mouth condition=wet mouth condition=foam

brush condition=dirty

clean brush brush condition=dirty brush condition=clean
teeth condition=clean brush content=no paste

use towel mouth condition=wet mouth condition=dry
teeth condition=clean

during the execution of the task, leads to an update of the progress state space: we
define necessary preconditions and effects of user behaviors in terms of progress vari-
ables. When a user behavior occurs, we check whether the preconditions are met,
and if so, update the progress state space with the effects of the current behavior.
Table III shows the preconditions and effects for user behaviors in terms of progress
variables extracted during IU analysis. We distinguish between rinse mouth wet and
rinse mouth clean: the behaviors are equal with regard to object usage, but differ in

ACM Transactions on Accessible Computing, Vol. 5, No. 4, Article 10, Publication date: March 2014.
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Fig. 2. Washstand setup equipped with sensor technology.

the semantics based on the time at which the behaviors are executed within the overall
task. Video analysis showed that wetting the mouth with water using the mug (before
brushing the teeth) is a common step as part of the user’s regular daily routine. If a
user forgets this step, the caregiver will intervene and prompt the user to do so. This
step is described as rinse mouth wet, whereas cleaning the mouth after the brush-
ing step is rinse mouth clean. The preconditions and effects of rinse mouth wet and
rinse mouth clean differ. Hence, we differentiate between these behaviors in tracking a
user’s overall progress in the task. The main findings of the IU analysis are three-fold:
first, we decomposed the brushing task into the eight user behaviors given in Table III.
Second, we identified variables, as given in Table II, which describe important objects
and the corresponding discrete states that are relevant during task execution. Third,
we determined preconditions and effects of user behaviors as shown in Table III in
order to track a user’s progress in the task. In the following section, we describe the
construction of the washstand setup and the equipping of the setup with sensor tech-
nology in order to recognize behaviors identified in the IU analysis.

3.2. Setup and Sensors
We built a washstand setup as depicted in Figure 2. We installed a typical washbowl
with a single-lever mixer tap and a mirror. All installations comply with the DIN
18024-2 norm for sanitary areas that are accessible for people with impairments. We
equipped the washstand with a TFT display, including speakers as a device to prompt

ACM Transactions on Accessible Computing, Vol. 5, No. 4, Article 10, Publication date: March 2014.
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Fig. 3. View perspectives of the frontal camera (left image) and the overhead camera (right image).

the user during task execution. As shown in Figure 2, the TFT display is installed
between the mirror and the sink. We integrated the prompting device into the setup
in a central position because we didn’t want to shift the user’s attention away from
the washstand during prompting. In order to recognize the user behaviors identified
in the IU analysis as given in Table I, the washstand is equipped with a set of unob-
trusive sensors for environmental perception. Unobtrusive means that the sensors are
smoothly integrated into the environment without attaching sensors to the user’s body
directly. We avoid such wearable sensors because we don’t want to disturb the user in
the execution of the task.

The equipment of the washstand setup with environmental sensors is sensitive with
regard to privacy concerns. Privacy issues arise due to the retrieval and storage of
sensitive personal data in a user’s bathroom. In the design and development process of
the TEBRA system, storing a user’s data is necessary to evaluate and enhance system
performance. We obtained the user’s declaration of consent before collecting sensitive
data throughout the studies described in this article.

We equipped the washstand with two cameras to visually capture the important
areas involved in tooth brushing: one camera observes the environment from an
overhead perspective and captures the counter and the sink region. A second camera
with a frontal perspective observes the user’s upper body, including the face. Figure 3
shows example images. According to Table II, the state of the tap (tap condition) and
the toothbrush (brush movement) are important for the recognition of user behaviors
in tooth brushing. In order to determine the tap condition, we installed a flow sen-
sor (Gentech FCS-03) at the water supply to the tap. The flow sensor measures the
water flow and provides a binary on/off signal. In order to distinguish between the
three states of the brush movement variable, we installed a sensor module into a com-
mercially available, electric toothbrush as shown in Figure 4. The brush is equipped
with an x-imu sensor module manufactured by x-io technologies2 as shown in the bot-
tom right of Figure 4. The sensor module has nine degrees of freedom: a gyroscope
measuring the angular velocity of the change in orientation, an accelerometer provid-
ing gravitational acceleration, and a magnetometer measuring the earth’s magnetic
field in the x, y, and z axes. The x-imu unit is integrated into the handle of the brush3

and provides a Bluetooth connection for wireless data transfer.

2http://www.x-io.co.uk/
3This work was done by Simon Schulz from the Central Lab Facilities (CLF) of the Cognitive Interaction
Technology Center of Excellence (CITEC) at Bielefeld University.
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Fig. 4. Electric toothbrush used in the TEBRA system. The x-imu sensor shown in the bottom right of the
image is installed into the handle of the brush.

3.3. Interviews with Caregivers
A successful prompt in an ATC system needs to be suitable in modality and level of
information in a way that the user can understand and react correctly to the prompt
[Seelye et al. 2012]. We aimed to find out about appropriate modalities and levels of in-
formation of prompts by conducting interviews with three caregivers of Haus Bersaba.
Caregivers are experts in prompting since they provide professional nursing care in
the task of brushing teeth as part of their daily routine. We interviewed the caregivers
independently of each other and recorded the interviews in order to evaluate the care-
giver’s answers. In each interview, we presented prompts of three modalities: audio
prompts, visual prompts, and audio-visual combinations.

Audio. We chose an audio modality due to two reasons: first, users are familiar with
audio prompts since caregivers mainly use verbal instructions. Second, O’Neill and
Gillespie [2008, p. 9], argue that “prompting in the verbal medium rather than the
visual medium provides a more direct augmentation of executive function” due to a
close relationship between language and executive function in the human brain. We
used audio prompts in terms of verbal commands which were prerecorded by the first
author of the article. We presented commands with different levels of detail ranging
from short, specific commands (e.g. “Clean mug.”) to more sophisticated instructions
(e.g. “Please, clean the mug in front of you.”). We asked the caregivers about differ-
ent properties of the commands: (1) Is a male or a female voice more appropriate for
prompting? (2) Is an unknown or a known voice more suitable?

Visual. Visual prompts are cognitively more demanding than audio prompts since
they might shift the user’s attention away from the task. However, visual prompts can
be very effective since a wide range of visualizations from simple cues such as images to
dense information presentations such as videos are possible. We presented two types of
task-related visualizations to the caregivers including different levels of information:
images of objects, which aim to trigger the user’s memory and activate a user’s routine
of task execution by giving appropriate hints. We presented pictograms showing a
behavior, cartoon-like images, and images of real-life objects. A video comprises much
more information in a single prompt than an image: we recorded videos that show the
first author of the article performing a behavior. Hence, the user can directly follow
the behavior shown in the video, which constitutes a more direct way of providing
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Fig. 5. Selection of prompts that were presented to the caregivers in the interviews. (a) cartoon-like image,
(b) frame from a real-life video, (c) real-life image, (d) virtual agent, (e) cartoon-like character, (f) pictogram.

assistance. Figure 5 depicts a selection of visual prompts which were presented to the
caregivers in the interviews.

Audio-Visual. Audio-visual prompts are combinations of the audio and visual
prompts, e.g. a cartoon-like image paired with a verbal command. As a special type of
audio-visual prompt, we augmented an audio command with embodiments of prompts
such as a virtual agent or a cartoon-like character.

The qualitative analysis of the recorded interviews revealed that an audio command
is necessary to attract the user’s attention. A visual cue alone is likely to fail since the
user might miss the visual cue. All caregivers favored short commands, in which the
textual information is reduced to a minimum. For example, “Clean mug,” is preferred
to “Please, clean the mug in front of you,” since the shorter command is less cognitively
demanding than a longer one. Furthermore, a male voice is preferred to a female voice
according to the caregivers. It is negligible whether the voice is known or unknown:
according to the caregivers, the effect of an unknown voice will be immaterial after a
few trials with the system. The caregivers argued that a verbal command should be ac-
companied by a visual cue. Two types of prompts were favored: pictogram prompts and
real-life videos showing the desired behavior. Pictograms are most likely to suit most
of the user’s abilities since users are already familiar with pictogram prompts: such
prompts are already part of a user’s daily routine in Haus Bersaba. However, some
users might not be able to understand pictogram prompts, but need a more sophisti-
cated visualization: real-life videos showing the desired behavior are appropriate for
such users according to the caregivers. Two of three caregivers perceived an embodi-
ment of audio commands such as a virtual agent or a cartoon-like character as inappro-
priate since the characters attract the attention of the users, but do not provide a visual
cue for the desired behavior. Additionally, users might feel infantilized by a cartoon-
like character. We incorporated the results of the interviews in the development of a
two-level prompting hierarchy. Graded prompting hierarchies are a common way to
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Fig. 6. Pictogram prompts and exact wording of audio commands in English and German. The filmstrip
visualization at the bottom shows the real-life video of clean brush in single images.

foster a user’s independence in task execution by increasing the specificity of prompts
during assistance [Demchak 1990]. On the first level, we present pictogram prompts
paired with an audio command. If the user doesn’t react to a prompt, the TEBRA sys-
tem will escalate in the prompting hierarchy. On the second level, we present a real-life
video of the desired behavior paired with an audio command. Figure 6 shows the exact
wording of the audio commands in German and the corresponding English transla-
tion. Furthermore, the pictogram prompts used in the TEBRA system are shown, and
exemplified in the real-life video of clean brush using a film strip visualization. For
a single behavior, the same audio command is used in the pictogram prompt and the
real-life video prompt: according to the caregivers participating in the interview study,
adding more detailed information in the audio command used with the real-life video
prompts would most likely distract the users due to the high cognitive demand on the
visual and verbal cue.

4. TEBRA SYSTEM
Figure 7 gives an overview of the functional components of the TEBRA system. In this
article, we will briefly describe the two main components of the system, the Behavior
Recognition and the Planning and Decision Making components. For a detailed de-
scription of the Behavior Recognition component, please refer to Peters et al. [2012].
The Planning and Decision Making component was introduced in Peters et al. [2013].

4.1. Behavior Recognition
User behavior recognition is challenging due to the spatial variance in the execution
of the task: first, a user shows an individual way of performing single behaviors. For
example, one user may take the paste with the left hand while spreading the paste
on the brush. Another user might use the right hand, which results in completely
different movement characteristics. Additionally, recognizing behaviors of people with
cognitive disabilities is challenging, since cognitive disabilities might coincide with
motor impairments, leading to an even more individualized execution of behaviors
[Kluger et al. 1997]. We abstract from recognizing specific movements by tracking
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Fig. 7. Functional overview of the TEBRA system.

objects or the user’s hands due to the variance in execution. Instead, we infer a user’s
behavior based on the environmental configuration encoded in the behavior variables
mug position, towel position, tap condition, brush movement, and paste movement as
given in Table II, which we use as an intermediate representation in our recognition
component. The variables mug position, towel position, and paste movement are calcu-
lated using computer vision techniques on the camera images. We apply a color-based
object detector that provides a bounding box hypothesis about the location of an object.
The detector is based on a color distribution model of the object that is learned based
on sample images of objects. For a detailed description of the color detector, we refer to
Siepmann et al. [2012].

Figure 8(a) depicts detector results for the mug, towel, and paste locations in terms
of bounding box hypotheses. We compare the center position (x, y) of the best hypothe-
sis of an object to a set of predefined, static regions as depicted Figure 8(b). Important
regions in the brushing scenario are extracted from the IU analysis results. We identi-
fied the counter, hook, tap, face, and else region denoted with a–e in Figure 8(b) (hook
denotes the region where the towel is placed when it’s not being used). For exam-
ple in Figure 8, the mug position, towel position will be set to face and hook, respec-
tively. Movement of the paste is discretized into the two values, yes and no. We assume
that the paste is placed on the counter unless the user applies the paste. Hence, if
the center point of the best hypothesis for the paste is located in the counter region,
paste movement will be set to no, and otherwise, to yes. The condition of the tap will be
set according to the flow sensor: if the flow sensor returns 0, tap condition is set to off,
otherwise to on. We apply the gyroscope data and Euler angles provided by the sensor
module in the brush to estimate the movement of the brush: the gyroscope measures
the angular velocity of the change in orientation. Brush movement will be set to no, if
the angular velocity is below a threshold over three consecutive time steps. In order
to distinguish between paste on brush and brush teeth (the brush is moving in both
behaviors), we use Euler angles which measure the relative orientation of the brush.
Yes sink refers to the case when the brush is oriented towards the mirror of the wash-
stand as is usually done in paste on brush. For yes face, the brush is oriented towards
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Fig. 8. (a) Bounding box hypotheses for mug and towel. (b) Predefined, static image regions used in the
discretization of features. a - counter, b - hook, c - tap, d - face, e - else.

Fig. 9. Distinction between yes sink and yes face for variable brush movement. In this example, the orien-
tation of the brush (dashed line) points into the sink region and brush movement is set to yes sink.

the user which is characteristic for brush teeth. We will set brush movement to yes sink
if the orientation of the z component of the brush is gz ≥ −90 and gz ≤ 60 as illustrated
in Figure 9. Otherwise, we set brush movement to yes face. We determined the thresh-
old values based on test trials where we evaluated different parameter values. We use
a calibration routine prior to a trial, which sets the zero orientation according to a
fixed initial orientation of the brush to ensure that the zero point of the orientation is
consistent over all trials.
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IU analysis decomposes the brushing task into user behaviors, as given in column
UB of Table I. We subsume the user behaviors fill mug and clean mug to a common
user behaviour, rinse mug in the recognition component because the behavior vari-
ables involved as well as the corresponding object states are nearly identical for both
user behaviors: the mug is given to the tap and the water is turned on. The distinction
between filling and cleaning the mug is not observable with the computer-vision tech-
niques used in the TEBRA system. However, we need to distinguish between fill mug
and clean mug in the planning and decision-making components in order to properly
track the user’s progress in the task. In a regular trial of brushing teeth, user behav-
iors don’t follow exactly on each other, but mostly alternate with transition behaviors:
for example, a user’s hands approach or leave a manipulated object. We consider these
transition behaviors by adding a user behavior nothing which we treat as any other
behavior in our recognition model. We infer a user’s current behavior based on the
discretized behavior variables using a Bayesian network (BN). A BN is a probabilistic
graphical model representing a joint probability distribution of random variables. We
apply a BN with Naive Bayes structure, where each behavior variable Oi is condition-
ally independent given the user behavior S

P(o1, ..., o5, s) =
5∏

i=1

P(oi|s) · P(s). (1)

The BN with Naive Bayes structure has the ability to deal with small training sets
since the probability of each oi depends only on the user behavior s. This is impor-
tant in our work, because some user behaviors like clean brush are rare compared to
other behaviors. Hence, the amount of available training data is limited. For a detailed
description of behavior recognition, we refer to Peters et al. [2012].

4.2. Planning and Decision-Making
In the behavior recognition component, we can’t distinguish between rinse mouth
clean and rinse mouth wet because the behavior variables are nearly identical for both
behaviors. Hence, we subsumed the behaviors rinse mouth clean and rinse mouth wet
to a common behavior rinse mouth. In order to track a user’s progress in the overall
task properly, we need to distinguish between rinse mouth clean and rinse mouth wet
since the behaviors have different semantics in the course of the task: rinse mouth wet
describes taking water using the mug before brushing teeth; rinse mouth clean de-
notes removing the foam after brushing by rinsing the mouth with water. Fur-
thermore, the behaviors are different in terms of preconditions and effects, as
given in Table III: rinse mouth clean has the preconditions mug content=water,
mouth condition=foam, and an additional precondition teeth condition=clean. The
preconditions mouth condition=foam and teeth condition=clean can only be provided
by the behavior brush teeth. Hence, brush teeth serves as a logical border between the
behaviors rinse mouth wet and rinse mouth clean during task execution. We use this
fact in a heuristic in order to distinguish between these behaviors: when rinse mouth is
classified by the recognition component, it will be set to rinse mouth wet if brush teeth
has already been recognized during the trial. Otherwise, rinse mouth will be set
to rinse mouth clean. We apply the same heuristic in order to distinguish between
rinse mug fill (when brush teeth has not been recognized) and rinse mug clean (when
brush teeth has already been recognized), which are subsumed to a common behavior
rinse mug in the recognition component due to similarities in the involved behavior
variables.

In case of an inconsistent behavior during task execution, the TEBRA system de-
livers a prompt to the user indicating the correct behavior. A planning component
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Fig. 10. Ordering constraint graph depicting partial orderings of user behaviors in the brushing task. We
depict the preconditions and effects, of paste on brush as an example.

decides whether a user’s progress in the task is consistent as described in the following
section.

4.2.1. Partial-Order Planning. We maintain an ordering constraint graph (OCG), which
models a set of ordering constraints between user behaviors in the overall brushing
task. An ordering constraint is a temporal relation a ≺ b where a and b are actions and
≺ denotes that a precedes b. We calculate the OCG for the tooth brushing task based
on a partial-order planner. In the TEBRA system, we use the results obtained in the
IU analysis to specify the planning domain for the tooth brushing task. The user be-
haviors and corresponding preconditions and effects, as given in Table III, form the set
of actions A. The initial state I and the goal state G are extracted from the IU analysis
in Table I. We manually constructed the OCG as depicted in Figure 10 from the results
of the partial-order planner. An arrow in the OCG describes that the source behavior
provides necessary preconditions for the target behavior. For example, rinse mug fill
provides the effect mug content=water, which is a precondition of rinse mouth wet. The
OCG does not depict a strict execution plan of the task that the user has to follow, but
models the ordering between behaviors in the overall task: for example, the behavior
sequence rinse mug fill, paste on brush, rinse mug fill is consistent with respect to the
partial ordering given in Figure 10. Modeling the partial ordering is desirable in the
TEBRA system since it allows a user to perform the brushing task in an individual
way as long as the overall constraints represented in the OCG are met during task
execution. Furthermore, the OCG representation is much more compact with regard
to memory consumption in comparison to explicitly modeling any allowed transition
from the initial state to the goal state.

A successful execution of the tooth brushing task is a transition from an initial state
to a final state in the progress state space. Transitions between states are triggered
based on the occurrence of user behaviors: due to the limited capabilities of the sensor
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technology we are not able to robustly recognize whether the effects of user behaviors
have occurred. For example, it is nearly impossible to detect whether a user has spread
paste on the brush based on computer vision techniques. Furthermore, an additional
sensor for this purpose is not desirable due to hygienic reasons. Hence, we infer the
occurrence of behavior effects based on the duration of behaviors. When a behavior
is recognized over a certain period of time, we infer that the user has successfully
performed the behavior and we update the progress state space with the effects of the
behavior. An appropriate update is challenging with regard to the temporal variance in
the execution of behaviors due to: (1) different durations of behaviors and (2) different
velocities of users in task performance. In the following section, we will describe a
dynamic timing model that is able to handle the temporal variance.

4.2.2. Dynamic Timing Model. We explicitly model the timing characteristics of user be-
haviors in a dynamic timing model to properly track a user’s progress in the task with
regard to the following principle: we aim to prevent a user from performing an erro-
neous behavior by checking the consistency of the behavior as early as possible. If the
consistency check is too late, the behavior effects might have already erroneously oc-
curred. This might lead to an inconsistent state space and erroneous prompts during
the remainder of the task.

We subdivide user behaviors into three phases: validation, pre-effect, and post-
effect. Transitions between two phases denote important events in the planning and
decision-making components. At the transition from the validation phase to the pre-
effect phase, we check the consistency of the current user behavior with regard to the
progress state space after a validation time tv. The duration of the validation phase en-
sures that a user’s current behavior is persistent over a period of time. Hence, we avoid
delivering erroneous prompts due to temporary errors in the recognition component.
At the transition from the pre-effect to the post-effect phase, we update the progress
state space with the effects of the current behavior after an effect time te. For any user
behavior, a timeout ts

t may occur in the post effect phase. A timeout denotes that the
user might not be able to terminate the behavior, e.g. due a user’s obsessiveness in task
execution. We model the phases of behaviors using a Finite State Machine (FSM). For
a detailed description of the FSM and the exact calculation of the timing parameters,
we refer to Peters et al. [2013].

In order to cope with the variance in the duration of individual behaviors, we main-
tain a timing model ts = (ts

v, ts
e, ts

t ) for each user behavior s. For example, the duration
of use towel is usually much shorter compared to brush teeth. Hence, the effect time ts

e
and timeout ts

t of the behaviors are completely different. The validation time ts
v can be

set higher for longer behaviors to avoid a misdetection of the behavior due to percep-
tion errors.

In addition to different durations of user behaviors, users show different velocities
in the execution of behaviors due to individual abilities. In the TEBRA system, we al-
low for different user velocities by maintaining timing models for three different user
velocities corresponding to fast, medium and slow execution velocity. The three veloc-
ity categories were chosen manually by the authors based on the in-situ observations
described in Section 3.1.

Table IV gives an overview of the timing parameters in seconds. We manually ad-
justed the timing parameters in two ways: first, we set a minimum time for the be-
havior brush teeth proposed by the caregivers in order to ensure that the teeth are
sufficiently cleaned. Hence, we set the effect time ts

e = 60s for behavior s = brush teeth
in each velocity model. Second, we check the consistency of a user behavior after a
maximum behavior duration of 5s in order to prevent a user from performing an in-
consistent behavior over a long period of time. Hence, we set the validation time, after
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Table IV. Parameters of the Dynamic Timing Model in Seconds for User Behaviors in Velocities tv,
tt, and te—Validation, Timeout and Effect Time

User behavior fast medium slow
tv te tt tv te tt tv te tt

paste on brush 1.4 3.7 17.5 3.4 10.3 35.8 5.0 24.0 60.5
rinse mug fill 0.5 1.6 6.4 1.1 3.3 11.0 2.3 7.3 21.9

rinse mug clean 0.6 1.9 6.8 1.2 3.5 12.0 2.4 7.3 22.9
rinse mouth wet 0.4 1.4 4.4 0.7 2.0 6.2 1.0 3.1 9.2

rinse mouth clean 0.5 1.6 5.6 0.9 2.6 8.7 2.2 6.1 25.0
brush teeth 3.1 60.0 55.7 5.0 60.0 194.7 5.0 60.0 426.5
clean brush 0.5 1.4 6.6 1.7 5.0 18.6 4.5 11.8 56.0

use towel 0.8 2.3 10.3 1.7 5.1 17.7 3.1 9.7 30.0

which a consistency check is triggered, to ts
v = max(ts

v, 5) for each behavior s in each ve-
locity model. The adjustments of the validation time affected behavior paste on brush
in velocity slow and brush teeth in velocities medium and slow. We apply the learned
timing parameters in a dynamic timing model that chooses the timing parameters of
the FSM according to the user’s current velocity in a trial. When the user terminates
a behavior s, we determine the duration ts. We categorize the duration into one of the
velocity classes fast, medium, and slow, using the probability density functions of the
Gaussian distributions of behavior s (see Peters et al. [2013] for details). The velocity
class of behavior s is the class that has most likely produced the behavior with the cur-
rent duration. During a trial, we count the number of occurrences of behaviors of each
velocity class. We set a user’s current velocity by applying a winner-takes-all method
on the velocity counts, which chooses the velocity occurring most frequently during the
trial so far. In the beginning of a trial, we don’t use prior knowledge about a user’s
velocity in former trials. Hence, we allow for differences in a user’s velocity between
trials that might arise due to daily mood or effects of temporary medication.

4.2.3. Prompt Selection. We select an appropriate prompt using a search procedure in
the OCG. We determine the open preconditions of the inconsistent user behavior s. We
search for a user behavior s′ which is a predecessor of s in the OCG and provides at
least one open precondition. If s′ exists, we check the consistency with regard to the
progress state space. When s′ is consistent, s′ is an appropriate prompt. If s′ is also
inconsistent due to open preconditions, we recursively search for a behavior resolving
the open preconditions of s′. Hence, we are able to resolve chains of open preconditions
over several user behaviors by iterating backwards through the OCG. If no predeces-
sor of s is found providing the open precondition, we search for a consistent behavior
by iterating backwards through the OCG, starting at the finish node. By starting at
the finish node, we aim to find a consistent behavior that is closest to the desired
goal state. Furthermore, we avoid prompting for a behavior that the user has already
performed or which doesn’t yield progress in the overall task. In case of a timeout,
a user’s current behavior is consistent without open preconditions since the behav-
ior has already passed the consistency check during performance. Hence, the prompt
selection mechanism directly searches for a consistent follow-up behavior starting at
the finish node.

5. USER STUDY
The study using people with cognitive disabilities described in this section is the first
one where we deploy a prototype of the TEBRA system to target group users. We coop-
erate with the residential home Haus Bersaba belonging to the v. Bodelschwinghsche
Stiftungen Bethel, a clerical foundation in Bielefeld. Thirty-five people with cognitive
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Table V. Demographic Information About the Study Participants

user gender age disabilities
1 m 41 intellectual disabilities, autistic spectrum disorder, epilepsy
2 f 56 intellectual disabilities
3 f 53 behavioral disorder, intellectual disabilities
4 f 45 autistic spectrum disorder, intellectual disabilities
5 m 56 intellectual disabilities, epilepsy
6 m 48 behavioral disorder, intellectual disabilities
7 f 55 intellectual disabilities

disabilities live permanently in Haus Bersaba and receive professional nursing care in
their everyday lives.

The recruiting of participants—called users in the following—was based on inclu-
sion and exclusion criteria that we assessed in conjunction with the caregivers of
Haus Bersaba. We included users who, (1) are motivated to participate in the study,
(2) are reliant on a caregiver for successful execution of the tooth brushing task,
(3) show appropriate perception and responsiveness to react to verbal and visual as-
sistance, (4) are aged between 18 and 75 and have an IQ greater than 35. Exclusion
criteria were severe physical disabilities that prevent the user from fulfilling the task.
For example, a user needs to have the motor skills to hold and use the toothbrush.
Furthermore, a decreased ability in visual perception that prevents a user from per-
ceiving prompts on the screen and serious medical conditions such as heart deficiency
and cancer are exclusion criteria.

The data recorded during the study is sensitive with regard to privacy concerns:
we record data with different sensors including cameras that show users in tooth
brushing which is a private activity in a user’s bathroom. All participants in the study
(caregivers and users/legal guardians) signed a declaration of consent and a sheet of
information where we described the study procedure as well as the privacy policy.
The privacy policy includes that we, (1) treat the acquired data strictly confidentially,
(2) restrict the data access to the investigators of the study, and (3) anonymize the
data prior to evaluation. Furthermore, a user is able to terminate participation in the
study at any time without giving any reasons. In order to ensure the appropriateness
of the study with regard to privacy issues as well as ethical and nursing aspects, we ap-
plied for ethical approval at the ethics committee of Westfälische Wilhelms-Universität
Münster. The ethics committee approved the application without limitation.

5.1. Study Design
The group of participants in our study consists of seven users. Table V shows demo-
graphic information about the participants. All participants have an IQ greater than
35. The exact IQs of individual participants are not known to the authors. All partic-
ipants have a working knowledge of all objects used in the task. The target group is
heterogeneous, since the users have different types of moderate cognitive disabilities.
Due to the heterogeneous user group and the small sample size of seven users, general
hypotheses in terms of diagnostic assessment and therapeutic treatment of users with
specific disabilities are not feasible. Instead, we evaluate the influence of the TEBRA
system on a user’s individual behavior in brushing teeth.

We follow a single-subject design approach widely used in behavioral science
[Richards et al. 1998; Robson 2002]. We evaluated the user’s behavior in, an AB study
design where A and B correspond to the baseline and intervention phases, respectively.
The treatment variable here is the entity that provides a user’s assistance: either the
caregiver or the TEBRA system. In the caregiver (CG) scenario (baseline phase), users
brush their teeth at the washstand. The TEBRA system is working in a way that

ACM Transactions on Accessible Computing, Vol. 5, No. 4, Article 10, Publication date: March 2014.



✐
✐

✐
✐

✐
✐

✐
✐

Automatic Task Assistance for People with Cognitive Disabilities in Brushing Teeth 10:21

sensor data is recorded and the user’s overall progress in the task is tracked, but the
delivery of prompts is suppressed. Instead, a caregiver standing beside the washstand,
assists the user in the brushing task. The CG scenario is the regular means of task as-
sistance in Haus Bersaba, since all users in our study are reliant on the assistance of
a caregiver in brushing teeth during their daily routine. In the system (SYS) scenario
(intervention phase), users are assisted by the TEBRA system, which provides audio-
visual prompts via the display installed at the washstand. A caregiver, who is hidden
behind a room divider, is present in each SYS trial in order to intervene and take over
the assistance in case of fatal system errors.

The seven users conducted trials on nine different days. Each user performed only
a single trial in the recording session of a day. We ensured that the trials smoothly
integrate into a user’s daily routine in order to evaluate the user’s behaviors in regular
situations as far as possible. Hence, we aimed to align the study times with the regular
tooth brushing times of the users by conducting the trials in the evenings. We recorded
a total of 55 trials: 20 in the CG scenario and 35 in the SYS scenario. One user skipped
five trials (1 CG, 4 SYS) due to motivational reasons and participated only in two CG
and SYS trials, each. Two trials of user 2 and a single trial of user 3 were terminated
due to a system crash and the caregiver assisted the users in the remainder of the
task. In CG, the same caregiver assisted in each of the 20 trials.

The main aim of the study is to analyze the user’s behavior in the interaction with
the system with regard to the main hypothesis: Is the TEBRA system able to support
the independence of users in the execution of brushing teeth? Our study results provide
evidence that this support is being provided by the TEBRA system.

We present and discuss the results of the study in the following section.

5.2. Results and Discussion
In order to assess quantitative results, we segmented the trial data into the behav-
iors given in Table IV. We followed a systematic coding scheme using a conjunction of
events that describe the beginning and the end of a behavior, respectively. Table VI
gives an overview of the segmentation methodology: for example, the beginning and
end of behavior paste on brush is determined using the movement of the paste. When
the paste dispenser leaves the counter region, paste on brush starts. The behavior ends
when the paste dispenser enters the counter region after the paste was taken. The seg-
mentation was manually done by the first author of the article. Given the precise na-
ture of the coding scheme, it is very unlikely that using a different coder would result
in any substantial differences.

The TEBRA system aims to increase the independence of users and improve their
self-confidence by providing appropriate assistance in task execution. An important
measure of the influence of the TEBRA system is the number of independent steps—
the number of steps that a user is able to perform without the help of a caregiver. For
example, a user adapting his/her behavior due to a system prompt is an independent
step of the user since no caregiver is involved in prompting. In the SYS scenario, the
number of independent steps is significantly increased compared to the CG scenario.
Figure 11(a) shows the average number of independent steps on the nine days of the
study, where the CG scenario comprised three and the SYS scenario six study days.
The average number of independent steps in the CG scenario is stable on days 2 and 3
with around 2.7 steps. In total, the caregiver gave 105 prompts during the trials which
makes an average of 5.8 prompts per trial. On day 1 of the CG scenario, the average
number is very low with 1.0 independent steps only. The users brushed their teeth
at the unfamiliar washstand for the first time. According to the caregiver, users were
highly excited due to the start of the study and the recording of their performance.
Hence, the users were unconcentrated which resulted in a poor performance in terms
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Table VI. Segmentation Methodology Used to Annotate the User Behaviors

.

User behavior Start events End events
paste on brush paste leaves counter region paste enters counter region

rinse mug fill mug enters tap region mug leaves tap region
water running brush teeth not done, yet

brush teeth not done, yet
rinse mug clean mug enters tap region mug leaves tap region

water running brush teeth already done
brush teeth already done

rinse mouth wet mug enters frontal image mug leaves frontal image
brush teeth not done, yet brush teeth not done, yet

rinse mouth clean mug enters frontal image mug leaves frontal image
brush teeth already done brush teeth already done

brush teeth brush moving brush moving
brush oriented towards the user brush oriented towards the mirror

clean brush brush enters tap region brush leaves tap region
water running

use towel towel enters frontal image towel leaves frontal image

Fig. 11. (a) Average number of independent steps per trial day. (b) Boxplot of number of independent steps
in the CG and SYS scenarios. The different steps of the brushing task are listed in Table III.

of the low number of independent steps. The average number in the SYS scenario
is stable over five days with around 7. During the SYS trials, the caregivers had to
step in 17 times. The caregiver stands behind a room-divider and follows the perfor-
mance of the user. We briefed the caregivers to step in at any time if they feel that the
user’s performance is bad or if the user is confused by the system prompts. The care-
giver did not step inactively in any of the SYS trials. However, the caregiver reacted
to the users in situations where a user directly approached the caregiver throughout
the trials by asking for help. These situations concentrate mainly on the trials of user
2 who approached the caregiver in 14 of the 17 CG prompts. In 29 trials, the care-
giver did not provide any assistance at all. We briefed the caregivers to finalize the
brushing task in an case of an insufficient performance. Since the caregiver did not
finalize in any of the SYS trials, the users successfully brushed their teeth in all SYS
trials. The average result on the last day of the SYS trials is decreased due to a single
user’s performance: user 6, who completely skipped four SYS trials due to motivational
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issues, quit the trial after three steps and left the room due to unknown reasons. Up to
the time where user 6 left the room, the performance of the system was not overly
erroneous. We conclude that the user left due to personal reasons and not due to
inappropriate assistance by the TEBRA system. The decreased number of independent
steps in this trial decreased the average rate shown in Figure 11(a). In the following,
we will drop the results of user 6 due to the limited amount of data available (only
two CG trials and a single SYS trial). Visual inspection of the average number of inde-
pendent steps reveals a significant difference between the CG and the SYS scenarios.
The statistical significance of the difference is tested using a nonparametric test. We
apply a nonparametric, Mann-Whitney U-Test since the average number of indepen-
dent steps is skewed and hence, not normally distributed according to Figure 11(b).
Based on the empirical data, the test provides a significant result with U = 16 and
p = 3.5 · 10−9. We reject the null hypothesis since the value of p < 0.05. We infer that
the application of the TEBRA system has an effect in terms of an increased average
number of independent steps taken by the users.

The average results over all users hide variations between individual users.
Figure 12 shows the number of independent steps for individual users over trials. A
red cross denotes a trial in which the system crashed due to technical problems with
the Bluetooth connection of the brush, which occurred in three SYS trials. Users 3 and
4 show excellent results using the TEBRA system: all trials of user 4 were perfect in
that all eight substeps of the task were performed independently of a caregiver. User
3 has similar results with an average number of 7.8 independent steps per trial. In
comparison to users 3 and 4, user 2, for example, has a lower number of independent
steps, with 5.5 per trial. In the last trial of user 2, the number of independent steps
drops from about five or six independent steps in the previous SYS trials to three: in
this trial, user 2 wore a yellow shirt which was very similar in color appearance com-
pared to the yellow mug used in the trials. Parts of the yellow shirt were erroneously
recognized as the mug on the frontal image. Hence, the discretization of the mug de-
tector hypothesis into the position of the mug was error-prone throughout the whole
trial. This resulted in errors in the classification of user behaviors, and hence to an
increased number of false prompts during the course of the trial. The false prompts
confused user 2 in task execution which led to the decreased number of independent
steps in this trial. All users show an increase in the number of independent steps
from the CG to the SYS scenario. The amount of increase varies between individual
users, as shown in Table VII. User 7 shows the best performance in the CG scenario
amongst all users, with 4.7 independent steps on average. However, the increase of
independent steps from the CG to the SYS scenario is low, with 1.6. The benefit of the
TEBRA system is quantitatively lower for user 7 compared to other users. However,
the quantitative increase of 1.6 might be clinically meaningful for the user and the
caregiver. User 3 showed an increase of 6.5 independent steps from the CG to the SYS
scenario, which is an outstanding increase. Hence, the benefit of using the TEBRA
system is great for user 3, who showed a low average of 1.3 independent steps in the
CG scenario. In the following sections, we further analyze the overall performance by
evaluating the recognition component and the TEBRA system’s ability to deal with
spatial and temporal variance in task execution.

5.2.1. Technical Evaluation. A key challenge for providing appropriate prompting is
the recognition of user behaviors. The major challenge in behavior recognition is the
spatial variance in task execution: spatial variance describes the different movement
characteristics of individual users during behavior execution. For example in the exe-
cution of clean brush, one user was holding the tap while cleaning the brush. Another
user cleaned the whole brush under the tap. Furthermore, the user’s hands are partly
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Fig. 12. Number of independent steps per trial for individual users.

Table VII. Average Number of Independent Steps in the CG and SYS
Scenario for Individual Users, and Increase in the Number of Independent

Steps from CG to SYS

user

1 2 3 4 5 7

avg no. CG 1 1.3 1.3 3 1.7 4.7
of ind. steps SYS 6.7 4.8 7.8 8 7.2 6.3

CG to SYS +5.7 +3.5 +6.5 +5 +5.5 +1.6

or fully occluded. A recognition using a hand or an object tracker would not be fea-
sible due to occlusions. We abstract from the recognition of movement trajectories of
objects or the user’s hands, but instead infer user behaviors based on states of objects
involved in the behaviors. Table VIII shows the results of the user behavior recogni-
tion component for the trials in the SYS scenario. The average recognition result over
all user behaviors is 69.3%. The classification rates of single behaviors vary between
97.8% for paste on brush and 41% for rinse mouth clean. The results of the behaviors
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Table VIII. Classification Rates of User Behaviors in the SYS Scenario in %.
RMgC - rinse mug clean, RMgF - rinse mug fill, UT - use towel, PB - paste on brush,

RMC - rinse mouth clean, RMW - rinse mouth wet, BT - brush teeth, CB - clean brush,
N - nothing

RMW RMC RMgF RMgC BT PB CB UT N
RMW 82.5 0.0 4.8 0.0 0.0 1.2 0.6 0.0 10.9
RMC 31.6 41.0 1.1 5.3 0.0 0.9 0.1 2.6 17.4

RMgF 1.3 1.9 54.9 24.2 0.0 0.0 0.5 1.9 15.1
RMgC 0.0 0.0 1.2 80.4 0.0 2.3 8.1 3.0 5.0

BT 7.0 0.8 1.3 0.4 50.1 25.1 2.7 0.3 12.3
PB 0.3 0.0 0.0 0.0 1.5 97.8 0.0 0.0 0.4
CB 0.0 0.3 0.0 4.3 0.0 3.2 79.9 10.6 1.7
UT 0.0 2.2 0.0 3.3 0.0 2.2 2.5 75.5 14.3

N 4.6 3.0 1.6 2.4 4.4 13.2 4.1 4.7 62.0

rinse mouth wet, rinse mug clean, clean brush, and use towel range from 75.5% to
82.5%. These results are good with regard to the spatial variance in task execution.
However, the rates of rinse mouth clean, rinse mug fill and brush teeth are poor: 41%,
54.9%, and 50.1%, respectively. Brush teeth is mixed up with paste on brush in 25.1%
of the cases. Obviously, the classification based on the orientation of the brush is error-
prone. The classification rates of brush teeth vary extremely between different users.
For example, user 3 has an average classification rate of 97% for brush teeth over all
SYS trials. The average classification rate of user 1 is only 9% for brush teeth. User
1 leans over heavily while brushing teeth. The brush is oriented in a way that the
discretization of the brush movement is set to yes sink instead of yes face which leads
to a misclassification of brush teeth as paste on brush. Hence, the poor classification
rates of specific users decrease the overall recognition rate of brush teeth to 50.1%. The
recognition rate of brush teeth influences the recognition rates of rinse mouth clean
and rinse mug fill which are 41% and 54.9%, respectively. Rinse mouth clean was mis-
classified as rinse mouth wet with 31.6%. The misclassification was concentrated in
trials in which the recognition rate of brush teeth was poor: rinse mouth clean, which
is performed after brush teeth, is classified as rinse mouth wet because brush teeth
was not recognized properly. Rinse mug fill is misclassified as rinse mug clean, with
24.2%. The misclassification mainly concentrates on trials in which brush teeth was
properly recognized. Users tended to wet their mouth prior to brush teeth until no
water was left in the mug due to obsessive behavior. When they aimed to perform
rinse mouth clean after a successful execution of brush teeth, they started to fill the
mug with water again. Hence, a regular rinse mug fill behavior was misclassified as
rinse mug clean, since the heuristic doesn’t model these situations. The classification
results show that the recognition component used in the TEBRA system is able to
deal with variances in spatial task execution for most behaviors in the brushing task.
However, we aim to improve the overall recognition rates by improving two aspects:
first, the recognition rates of behaviors are highly dependent on the rate of brush teeth.
Hence, the improvement of recognizing brush teeth is very important for a successful
user behavior recognition in the overall task. Second, we need to improve the heuristic
which discriminates between rinse mouth wet (rinse mug fill) and rinse mouth clean
(rinse mug clean) in order to avoid misclassifications due to modeling errors.

In addition to the spatial variance, temporal variance is expressed in both interbe-
havior and intrabehavior timing differences: interbehavior differences are variations
in the duration of behaviors amongst each other. Table IX gives an overview of average
durations of behaviors for all SYS trials. The average duration of individual behaviors
in the brushing task ranges from 2.4s for rinse mouth clean to 67.9s for brush teeth.
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Table IX. Minimum, Maximum and Average
Duration of User Behaviors

User behavior Durations in sec.
avg min max

paste on brush 9.8 2.8 28.4
rinse mug fill 2.5 0.5 9.5

rinse mug clean 3.2 0.8 7.9
rinse mouth wet 2.5 0.9 9.5

rinse mouth clean 2.4 0.6 8.6
brush teeth 67.9 19.0 143.0
clean brush 5.2 0.7 16.1

use towel 12.0 1.8 73.3

As shown with the classification rates of Table VIII, the recognition component is
able to deal with behaviors varying significantly in duration: for example, the aver-
age durations of paste on brush and rinse mouth wet are 9.8s and 2.5s, respectively.
The classification rate for rinse mouth wet is very good, with 82.5% and excellent for
paste on brush, with 97.8%.

The durations vary not only between different behaviors, but also in different exe-
cutions of a single behavior (called intra-behavior difference in the following). Intra-
behavior difference arises from different velocities in task execution due to a user’s
individual abilities. For example, the durations of single executions of paste on brush
range from 2.8s to 28.4s. We apply a dynamic timing model to deal with intra-behavior
variations and different velocities of users. We will describe the benefit of the dynamic
timing model in two situations. Figure 13 visualizes the state of the FSM (black line),
the estimate of the user’s behavior according to the recognition component (blue line),
the estimate of the user’s velocity (thick red line), and the ground truth annotation of
behaviors (thin red line). The visualization covers an interval of about six seconds in
a trial of user 5. User 5 finishes paste on brush at about 40.3s. Due to the duration
of paste on brush and the velocities of the preceding behaviors, the velocity model is
updated from medium to fast at 40.5s. At 41.8s, the user starts rinse mug fill, which
is performed for 2.2s. Due to velocity model fast, the effects of the behavior occur after
1.6s, which is depicted by the vertical blue line at 43.4s. With the model for medium
velocity, rinse mug fill would not have been recognized correctly since the effect time
of 3.3s would not have been reached. Hence, the effects of rinse mug fill would not
have been applied to the progress state space leading to erroneous prompts in the re-
mainder of task execution. Figure 14 shows a second situation from a trial of user
2. The user performs rinse mug fill, which is successfully recognized by the TEBRA
system. The progress state space is updated with the effects of rinse mug fill after
about 25.6s, which is depicted by the vertical blue line. The user forgets to perform
rinse mouth wet and paste on brush, and erroneously starts brush teeth at 32s. Due to
the inconsistency of brush teeth, a pictogram prompt for rinse mug fill is delivered at
about 35s, which is shown by the vertical black line. The dynamic timing model with
velocity fast delivers a prompt that is appropriate in time, in that the user is assisted
in the erroneous performance of the task as soon as possible. With a medium or slow
velocity, the prompt would have been delayed and the user would have performed the
erroneous behavior for a longer period of time.

A disadvantage of the dynamic timing model is the inclusion of durations of erro-
neously classified behaviors in determining a user’s velocity in a trial. For example,
brush teeth is misclassified as paste on brush for a duration of 3s. The duration of 3s
is classified into velocity fast. Hence, the dynamic timing model erroneously increases
the frequency counter of velocity model fast, which leads to a skewed distribution of
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Fig. 13. Section of a trial of user 5 showing the state of the Finite State Machine (black line), the estimate
of the user’s behavior according to the recognition component (blue line), the estimate of the user’s velocity
(thick red line), and the ground truth annotation of behaviors (thin red line). The vertical blue line denotes
the update of the state space by applying the effects of the current user behavior, which is rinse mug fill
here.

counts over the velocity classes. This might result in a wrong application of timing
parameters and the delivery of false prompts in the remainder of the trial. However,
as shown in the previous examples, the TEBRA system can deal with intra-behavior
variances in temporal execution of behaviors by adapting to the user’s velocity during
task execution. In the following section, we will analyze the prompting behavior of the
system and the user’s reaction behavior in detail.

5.2.2. Prompting Behavior and Users’ Reactions. An important measure for a user’s re-
sponsiveness to system prompts is the reaction behavior. We classify the reactions of
users into three categories: correct, false, and no reaction. A user’s reaction to a prompt
is correct when the user adapts his/her behavior according to the prompt by perform-
ing the behavior he/she was prompted for. If the user reacts to the prompt, but does
not perform the desired behavior, the reaction will be classified as a false reaction ac-
cording to the prompt. If the user does not show any reaction at all, we will refer to it
as no reaction. In order to further evaluate the appropriateness of prompts, we take
into account the number of semantically correct prompts as a measure of appropriate-
ness. Semantically correct means that the type of prompt is appropriate with regard
to the user’s progress in the task so far. For example, a user has successfully filled the
mug with water and gets stuck in task execution. An appropriate prompt in this situ-
ation would be either rinse mouth wet or paste on brush. We determine the semantic
correctness by using the ground truth annotation of the behaviors in the task that
was done by the first author of the article. The left plot in Figure 15 shows the ratio
of semantically correct prompts in the SYS scenario for individual users. The ratio of
user 4 is excellent, since 93.8% of the prompts are semantically correct. For users 2
and 3, the ratios of semantically correct prompts are good, with 82.7% and 81.7%,
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Fig. 14. Section of a trial of user 2. For a description of the lines, see Figure 13. The vertical black line
denotes that a prompt was triggered by the TEBRA system at that time. Here, a pictogram prompt for
behavior rinse mouth wet was delivered.

respectively. However, the percentage for users 5 and 7 are decreased, with 57.2% for
user 5 and 44.9% for user 7. The low ratios of semantically correct prompts stem from
erroneous follow-up prompts due to perception errors in the recognition component:
for example, a user performs rinse mug fill, but the TEBRA system misses the be-
havior. The user performs rinse mouth wet subsequently, which is a correct behavior
according to the course of the trial. However, the system prompts the user to perform
rinse mug fill, which is semantically incorrect at that time. If the user does not react
to the prompt, the system is likely to issue follow-up prompts for rinse mug fill that
are also semantically incorrect. The TEBRA system is able to limit the number of erro-
neous follow-up prompts using the following heuristic. After three consecutive prompts
of the same behavior (one pictogram and two video prompts according to the escala-
tion hierarchy), the system infers that it has made a perception error and applies the
effects of the prompted behavior to the state space. Due to the heuristic, the system is
able to recover from perception errors in which a user’s behavior was missed during
the execution of a trial.

In order to assess a user’s responsiveness to prompts, we focus on reactions to
semantically correct prompts because the appropriateness of semantically correct
prompts is ensured. The right plot in Figure 15 shows a user’s reactions to seman-
tically correct prompts. Users 3 and 4 show 82% and 75% correct reactions to se-
mantically correct prompts. Users 2 and 7 show only 45% and 20% correct reac-
tions. By contrast the ratio of no reactions to semantically correct prompts is 60%
for user 7. Two explanations are possible for the reaction behaviors of users 2 and
7: first, they might not be willing to react to the prompts given by the TEBRA sys-
tem although the prompts are semantically correct. Second, they might not be able
to understand and react correctly to the majority of system prompts because the pre-
sentation of prompts is inappropriate. In the TEBRA system, we use pictogram and
real-life videos to prompt the users. We analyze whether pictogram or video prompts
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Fig. 15. Left plot: ratio of semantically correct prompts in the SYS scenario for individual users; Right plot:
ratio of reactions to semantically correct prompts in the SYS scenario for individual users.

are inappropriate for an individual user. Figure 16 shows the ratio of correct reac-
tions to semantically correct prompts for pictogram and video prompts. During the
analysis of trials with people who have cognitive disabilities, we observed that the
TEBRA system provides prompts that are consistent with regard to a user’s over-
all progress, but which are not necessary for the user because they were triggered
due to perception errors for behaviors with a long duration. For example, the TEBRA
system misclassifies brush teeth as paste on brush prior to the effect time of 60s for
brush teeth. According to the progress state space, paste on brush is inconsistent.
Hence, a brush teeth prompt is triggered that is consistent with regard to the user’s
overall progress in the task. Although the prompt occurred due to a perception error
and the prompt might not have been necessary for the user since he/she is already per-
forming brush teeth, it is semantically correct with regard to the progress state space:
the effect time of the behavior has not been reached and the progress state space has
not yet been updated with the effects of the behavior. We refer to such prompts as
random semantically correct prompts. Such prompts are in contrast to adequate se-
mantically correct prompts. Adequate prompts help the user to initiate a next step
when the user gets stuck in the task or to interrupt an erroneous performance of
the user during the task. Figure 16 contains both adequate and random semantically
correct prompts. The figure contains a total number of 89 pictogram and 44 video
prompts. User 3 shows a ratio of 89% correct reactions to pictogram prompts and 100%
correct reactions to video prompts. Both kinds of prompts seem to be appropriate for
user 3 with regard to the level of information provided in the prompts. Users 4 and
5 also show 100% correct reactions to video prompts, but only about 70% correct re-
actions to pictogram prompts. Pictogram prompts seem to be appropriate for users 4
and 5 in most situations. However, users 4 and 5 reacted incorrectly or not at all in
30% of the pictogram prompts. Video prompts seem to be more appropriate in such
situations. Users 4 and 5 both reacted correctly in 100% of the cases. User 2 shows a
different reaction behavior: the ratio of correct reactions to pictogram prompts is 50%.
For video prompts, the ratio is increased, with 60% correct reactions. Video prompts
seem to be more appropriate compared to pictogram prompts. We found three possi-
ble explanations: first, video prompts are better suited to grab the attention of users
than pictogram prompts because the movement in the videos is more salient than the
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Fig. 16. Ratio of correct reactions to semantically correct pictogram and video prompts for individual users.
pic - pictogram prompts, vid - video prompts.

static pictogram prompts. Some users might miss the static pictogram prompts. Sec-
ond, users might be able to react to a video prompt due to priming effects: a user
might already be primed by a pictogram prompt of the same behavior, which timely
precedes a video prompt in any case. Third, a video prompt provides a higher level
of information about the behavior. Hence, video prompts might be more suited to a
user’s cognitive abilities. We are not able to uncover the reasons from the results of the
study. We might investigate the reasons in more detail in future studies. The reaction
behavior of user 7 is poor for both pictogram and video prompts, with 20% and 25%,
respectively. We found two possible explanations for the user’s behavior: first, user 7
might not be able to react to prompts at all: both pictogram and video prompts seem to
be inappropriate for user 7. Second, the user might not be willing to follow the prompts
given by the TEBRA system. According to the caregivers, user 7 sticks to a strict rou-
tine in tooth brushing in which the user usually doesn’t like distractions. This might
indicate that user 7 is not willing to react to prompts. However, the exact reasons for
the behavior of the user remain unclear. In the evaluation of inappropriate prompts,
we didn’t find any relationship between the number of inappropriate prompts and the
number of reactions where a user ignores the system prompt.

The results show that the responsiveness to system prompts varies amongst individ-
ual users: some users react correctly to pictogram prompts, but other users need video
prompts for proper assistance. The TEBRA system is able to deal with differences
in the responsiveness of users by providing an escalation hierarchy which presents
prompts with increasing level of information until the prompts provide appropriate
assistance to a user.

A further measure of the appropriateness of the TEBRA system is the evaluation of
erroneous system behavior. We distinguish between two types of errors that lead to an
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Fig. 17. Results of the questionnaire: helpfulness of the TEBRA system according to users (left plot) and
caregivers (middle) acceptance of the TEBRA system according to users (right). Answers on a 5-point Likert
scale with 1 being not at all and 5 denoting very good.

erroneous system behavior: false-positives and false-negatives. False-positive errors
(also called false alarms) happen when the system delivers a prompt, but the prompt
is not necessary at that time. False-negative errors occur in situations where the sys-
tem misses a prompt although a prompt would have been appropriate. Both types
were manually annotated by the first author of the article. False-positives were coded
similarly to the annotation of the semantical correctness of prompts described earlier:
when a prompt was issued, we checked to see whether the prompt was consistent with
the overall progress of the user in the whole brushing task. For example, a prompt is
inconsistent if the user has already performed the prompted behavior, but the system
has not recognized it. False-negatives arise in situations where the user performs an
inconsistent behavior, but the system didn’t prompt the user.

Most of the erroneous prompts given by the system were prompts due to false-
positive errors. We conclude that users accept false-positive errors when the sys-
tem assists them properly throughout the remainder of the task by avoiding missing
prompts (false-negatives). A trivial policy of avoiding false-negative prompts is provid-
ing prompts throughout the whole execution of the task. However, such a prompting
behavior is not acceptable since the aim of an ATC system is increasing the indepen-
dence of users by prompting only when necessary. Hence, an appropriate prompting
behavior requires a trade-off between minimizing false-negative prompts by providing
steady prompting and increasing the independence of users by prompting only when
necessary. Future work might deal with this trade-off by studying different levels of
prompting agility of the TEBRA system.

5.2.3. Usability Aspects. The application of an ATC system highly depends on the us-
ability of such a system. Usability in the context of ATC refers to the ease of use with
regard to the overall goal of proper task assistance. The users’ opinions are important
in order to judge the usability of the TEBRA system. After each SYS trial, we asked
the user by whether the system was helpful in task execution by using a question-
naire. The question was asked by a caregiver who rated the answer on a 5-point Likert
scale with 1 being no assistance at all and 5 denoting very good assistance. The aver-
age value of the TEBRA system’s helpfulness is 4.1. The left plot in Figure 17 shows
the distribution of answers on the 5-point Likert scale. Hence, the TEBRA system is
helpful in task execution from a user’s subjective point of view despite a number of
semantically incorrect prompts due to perception errors. In addition to the users, we
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asked the caregivers to judge whether the system helped the user in the brushing task.
The distribution of answers is shown in the middle plot of Figure 17. The average value
of 3.8 is lower compared to the user’s opinion, with 4.1. However, 3.8 is a good result,
which shows that the assistance of the TEBRA system is appropriate from an expert’s
point of view. A further aspect of usability is the user’s acceptance of the system. We
asked the users how much they liked to use the system as part of their daily routine.
The right plot in Figure 17 depicts the distribution of answers. An average value of 4.5
over all users underlines the good acceptance of the TEBRA system. Most of the users
showed reactions such as smiling and laughing when they perceived system prompts.
Furthermore, we observed that some of the users experienced the system as a kind of
interaction partner: they talked to the system when a prompt was given or they reacted
verbally to prompts by saying “ok” or “I will”. In two trials, we observed that the users
were waiting with the execution of behaviors until the system prompted them (due to
a timeout). For these users, the interaction with the TEBRA system was a game-like
situation, where the users provoked a reaction of the system as an interaction partner.
We encountered similar behavior in the CG trials, where users tended to talk to the
caregiver standing beside them. Users who talked frequently to the caregivers, were
distracted more often and didn’t focus on the proper execution of the task. According to
the caregiver’s comments, distraction due to verbal communication with the caregiver
is one of the main sources for insufficient task execution. Since the TEBRA system is
not able to respond to a user, the distraction due to verbal communication is minimized
when using the TEBRA system. However, the communication between the caregiver
and the user is an important social interaction for the user. Understanding the lack
of such social interactions due to system use is an important issue in research of ATC
systems, but is not taken into consideration in this article.

5.3. Threats to Validity of the Evaluation
The small sample size of six participants does not allow for hypotheses about the im-
pact of the system for people with specific disabilities in general. The results presented
are highly individual for different people. However, a trend with regard to a user’s per-
formance is clearly visible: the number of independent steps performed in the brush-
ing task are increased for all participants. One could argue that the study design with
three CG trials in the first days and six SYS trials afterwards might have biased the
task performance of users in such a way that the participants learned how to execute
the task during the first trials. This is untenable due to the following reason: the par-
ticipants in our study receive caregiver assistance in the brushing task throughout
their whole lives. According to the caregivers, very little or even no learning effect took
place for those people in recent years. The very small number of three CG trials won’t
be able to bias a user’s regular performance. Hence, we consider the CG trials as es-
tablishing a baseline, and we conclude that the effects in the SYS trials occurred due
to the TEBRA system and not as a result of a learning effect.

The TEBRA system assists in tooth brushing, which is one of many important tasks
in a user’s daily routine. Hence, the significance of the study results involve only the
brushing task and might not generalize to other tasks such as dressing, shaving and
cooking. However, due the modular implementation of the system, the TEBRA system
is adjustable to assist in different tasks. The following steps would be necessary: first,
an analysis of the task with Interaction Unit (IU) analysis needs to be conducted. From
the results of the IU analysis, the initial design decisions regarding the sensor setup
and the task execution framework for the planning component need to be extracted.
The main components (behavior recognition and planning and decision making) need
to be trained to the new task based on observational sample data. Additional studies
with the TEBRA system assisting in different tasks would help to confirm the results
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presented here and to understand the general impact of ATC systems for people with
cognitive disabilities.

6. CONCLUSION
This article has described the design, implementation and evaluation of the TEBRA
(TEeth BRushing Assistance) system. TEBRA is a novel Assistive Technology for
Cognition (ATC) for people with moderate cognitive disabilities. The TEBRA sys-
tem provides assistance in the execution of brushing teeth by providing audio-visual
prompts to users who are reliant on assistance by a caregiver in brushing teeth.

The main aim of the TEBRA system is to increase the independence of users from
a human caregiver in the execution of brushing teeth. In order to evaluate its utility
in this regard, we have conducted a study with seven people of the target group being
assisted by a fully functioning prototype of the TEBRA system. The study data com-
prises 20 trials with a caregiver’s assistance and 35 trials with the TEBRA system’s
assistance, which is a large interaction corpus in the field of ATC. The results of the
study showed that the TEBRA system is able to increase the independence of users
in the tooth brushing task: all of the users were able to perform significantly more
steps of the task independently, when they had been assisted by the TEBRA system
instead of a human caregiver. The benefit of the system differs amongst users: one user
showed only a slight increase of independent steps while another was able to perform
the brushing task completely independently in all trials with the system. However,
slight increases might be clinically meaningful for the users and their caregivers de-
pending on the overall performance. The results of the study demonstrate the potential
of the TEBRA system for assisting people with cognitive disabilities in task execution.

Future work includes two directions: first, the development of the TEBRA system
towards a pervasive assistance system. Pervasive assistance refers to assistance in
multiple tasks taking place at the washstand, such as washing hands or shaving. An
extension to multiple tasks raises further research problems: how will the TEBRA
system be able to rapidly distinguish between different tasks in order to provide ap-
propriate assistance from the very beginning of a task? How can the system cope with
concurrent and interleaved execution of tasks? Second, the study results presented
in this article are restricted to rather short-term effects in individual trials of users
because the study covered a period of only five weeks. Long-term effects using the
TEBRA system such as an increase in task performance for individual users over sev-
eral months or years still need to be investigated in longitudinal studies in which a
system is deployed for a longer period of time.
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