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This note will give an intuitive derivation of a standard formula for computing the neces-
sary sample size for an experiment. Typical sample size calculators (found online at e.g.
www.surveysystem.com/sscalc.htm) ask for two things:

• the confidence level (usually given as 95% or 99%)
• the confidence interval (usually given as a std. deviation or percentage)

The calculator then computes the necessary sample size: the number of subjects you need in
your experiment to achieve the confidence interval with the given confidence level. In this note,
we will discover what these two fellows with similar names really are.

We assume that we are trying to measure some quantity, X, of a population, and that the values
of this quantity X are normally distributed across the population (see question 1 below). For
example, we may be trying to compute the average weight, X, of all gnus in Africa. We assume
that the distribution of gnu weights follows a normal curve, that is x ∼ N (µ, σ), where N is
a Gaussian curve, µ is the mean value of x across the entire population of gnus, and σ2 is the
variance of x about the mean across the population.

Now, as gnus are difficult to find, we want to measure as few as possible and still be able to
say with some degree of confidence that our calculated average is somewhat meaningful, i.e. it
is reasonably close to the true average we’d get if we really sought out all gnus and measured
all their weights (so we’d get exactly µ if there were infinitely many gnus). So let’s imagine an
experiment (call it experiment number 1) where we find N randomly selected gnus, measure the
weight of the ith gnu, xi, and take the mean, µ̃1 = 1

N

∑N
i=1 xi. Now, if we do this experiment

again (experiment number 2), with another set of N randomly selected gnus, we’ll get another
mean µ̃2. Notice that µ̃2 6= µ̃1 in general (since the actual set of gnus used - the samples - for
each experiment are different). So we have

Experiment 1: take mean of N randomly picked gnus→ µ̃1

Experiment 2: take mean of another N randomly picked gnus→ µ̃2

Experiment 3: take mean of another N randomly picked gnus→ µ̃3

.

.

.
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Now it just so happens that these means, µ̃1, µ̃2, µ̃3 . . . are also distributed as a normal, and
this normal has mean µ and variance σ2

N (where µ and σ2 here are the mean and variance of
the entire population!). This can be derived quite easily by using the fact that the variance of
a sum of uncorrelated random variables is equal to the sum of their variances:

var(
M∑
i=1

xi) =
M∑
i=1

var(xi) (1)

This is known as the Bienaymé formula (see Appendix A for a proof). Using this, we can derive
that (see question 2 below):

var(µ̃i) =
σ2

N
(2)

So this means that the mean we calculate in each experiment with a sample size of N will fall
within ± σ√

N
of the true population mean roughly 66% of the time. Why 66%? Because 66%

of the area under a normal curve lies within one standard deviation σ of the mean. Similarly,
about 95% of the area under a normal curve lies within two standard deviations 2σ of the mean,
and 99% of the area under a normal curve lies within three standard deviations 3σ of the mean.
In fact, there is a formula for computing how much area is under the normal curve within n
standard deviations, and we’ll call this formula f(n), so that f(1) = 66, f(2) = 95, f(3) = 99,
etc (see Appendix B). Aha! Now we see our old friend the confidence level showing up again!
The sample size calculation is trying to choose N such that we have a confidence level chance
that our mean value is “close” to the true population mean, where “close” is defined as some
number of standard deviations, n.

Therefore, if we want our experiment to be within ∆ of the true mean, we want

nσ√
N
< ∆

so, we want a sample size of

N >
(nσ

∆

)2

As long as we specify ∆ as a fraction of σ, then we are all good. The ratio ∆
σ is known as the

confidence interval (sometimes quoted in percentage as 100× ∆
σ ).

Suppose we are trying to find evidence for the hypothesis that gnus are not the same weight as
emus. We would do the same experiment as above for both gnus and emus, using a sample size
of N such that, if gnus and emus are, actually, not the same weight, then the weight difference
will show up in the two mean values we compute. That is, if the actual mean weight of gnus
is µgnu and for the emus its µemu, then we want our estimates of these two quantities with a
sample size of N , µ̃gnu and µ̃emu, to be close enough to the true values so that the difference
will show up.

Let us assume that the variances of the weights of emus and gnus are the same σemu = σmu = σ,
then, with N samples,

• µ̃gnu will be within nσ of µgnu f(n)% of the time, and
• µ̃emu will be within nσ of µemu f(n)% of the time, and
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then, if µgnu and µemu are further apart than 2nσ, we will expect to see µ̃gnu 6= µ̃emu at least
f(n)% of the time!. Call ∆m = |µgnu − µemu|, then we want

∆m >
2nσ
2
√
N

and thus that
N >

( nσ
∆m

)2

But wait! We don’t know what ∆m is, since it involves knowing µgnu and µemu, which is what
we’re trying to measure! And, we don’t know σ either! This is where the black magic starts
that this note will not cover. However, all we really need to know is the ratio of σ

∆m , which we
may be able to figure out.

Questions:

1. Why do we assume the population is normally distributed? In what cases would this not be
true?

2. Using the Bienaymé formula (Equation 1), derive Equation 2

Answers:

1. Central limit theorem: the sum of infinitely many white noise sources is a Gaussian noise
source. The distribution of the sum of infinitely many dice throws is a Gaussian. In cases
where the noise is not white.

2. let z =
∑N

i=1 xi, and z̄ = 1
M

∑M
i=1 z, then

var(µ̃i) = var(
1
N

N∑
i=1

xi) (definition of mean)

= var(
z

N
) (definition of z)

=
1
M2

M∑
i=1

(
z

N
− z̄

N
)2 (definition of variance)

=
1
M2

1
N2

M∑
i=1

(z − z̄)2 (distributivity)

=
1
N2

var(z) (definition of variance)

=
1
N2

N∑
i=1

var(xi) (Bienaymé formula)

=
σ2

N
(assumption: all xi have same variance)
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A Proof of Bienaymé’s formula

Let X1, X2, . . . , Xm be a set of m variables with relative means µ1, . . . , µm and assume that they
are uncorrelated:

i 6= j ⇒
∑
xi

∑
xj

P (xi)P (xj)(xi − µi)(xj − µj) = 0 (3)

Theorem 1. Bienaymé’s formula
V ar (

∑m
i=1Xi) =

∑m
i=1 V ar(Xi)

Proof. For notational easy we will write ~x for the combined variable (x1, . . . , xm).

We start with working out the average of (
∑m

i=1Xi).

∑
~x

P (~x)
m∑
i=1

xi =
m∑
i=1

∑
~x

P (~x)xi =
m∑
i=1

µi (4)

This means the average of the sum of the variables is just the sum of the averages. Now we can
use this in the definition of the variance:

V ar

(
m∑
i=1

Xi

)
=

∑
~x

P (~x)

((
m∑
i=1

xi

)
−

(
m∑
i=1

µi

))2

=
∑
~x

P (~x)

(
m∑
i=1

(xi − µi)

)2

Expanding and changing one of the i’s to a j to avoid confusion:

=
∑
~x

P (~x)

(
m∑
i=1

(xi − µi)

) m∑
j=1

(xj − µj)


=

m∑
i=1

m∑
j=1

∑
~x

P (~x)(xi − µi)(xj − µj) (5)

Using the fact that the variables are uncorrelated (equation (3), we see that the term equals 0
if i 6= j, which simplifies equation (5) to:

V ar

(
m∑
i=1

Xi

)
=

m∑
i=1

∑
~x

P (~x)(xi − µi)2

=
m∑
i=1

∑
xi

P (xi)(xi − µi)2

=
m∑
i=1

V ar(Xi) (6)
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B Derivation of confidence interval function

To derive the function f(n), we first derive an expression for the area under a Gaussian curve
1√
2πσ

e
−(x−µ)2

2σ2 dx between any two points a and b. The expression will contain the error function

erf(x) = 2√
π

∫ x
0 e
−t2dt, and the complementary error function erfc(x) = 2√

π

∫∞
x e−t

2
dt

p(−σ < x < σ) =
∫ b

a
N (x;µ, σ)dx

=
∫ b

a

1√
2πσ2

e
−(x−µ)2

2σ2 dx

change variables t = x−µ√
2σ

=
1√
π

∫ b−µ√
2σ

a−µ√
2σ

e−t
2
dt

use
∫ b
a f(x)dx =

∫∞
a f(x)dx−

∫∞
b f(x)dx

=
1√
π

[∫ ∞
a−µ√

2σ

e−t
2
dt−

∫ ∞
b−µ√

2σ

e−t
2
dt

]

=
1
2

[
erfc

(
a− µ√

2σ

)
− erfc

(
b− µ√

2σ

)]
(7)

Next, we use the expression derived above to write an expression for the probability that a
sample drawn from a Gaussian PDF falls within n standard deviations of the mean. To do this,
we use the following facts: (1) that this answer will be the same regardless of the value of the
mean; (2) that erfc(x) = 1− erf(x); and (3), that erf(x) is an odd function. Writing Equation 7
with with a = −nσ and b = nσ, we get

f(n) =
∫ nσ

−nσ
N (x; 0, σ)dx =

∫ nσ

−nσ
N (x;µ, σ)dx

=
1
2

[
erfc

(
−nσ − µ√

2σ

)
− erfc

(
nσ − µ√

2σ

)]
setting µ = 0 and using the fact that erfc(x) = 1− erf(x)

and so erfc(−x) <= 1− erf(−x) = 1 + erf(x)

=
1
2

[
2erf

(
n√
2

)]
= erf

(
n√
2

)
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This expression can be used directly as f(n) if we use a numerical approximation to erf, as in
Matlab. Alternatively, we can use the fact that f(n) will be the same regardless of the value of
the mean, and the following approximations for erf.

erf(
1√
2

) = 0.6827

erf(x) = 1− e−x
2

√
πx

[
1− 1

2x2

]
As an example, using the above expression with different values of n, we get
n answer
1 0.6827
2 0.9595
4 0.9999
6 0.99999999
8 0.999...to at least 15 digits
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