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Abstract

Activity recognition in intelligent environments could play a key role for support-
ing people in their activities of daily life. Partially observable Markov decision
process (POMDP) models have been used successfully, for example, to assist peo-
ple with dementia when carrying out small multi-step tasks such as hand washing.
POMDP models are a powerful, yet flexible framework for modeling assistance
that can deal with uncertainty and utility in a theoretically well-justified manner.
Unfortunately, POMDPs usually require a very labor intensive, manual setup pro-
cedure. This paper describes a knowledge driven method for automatically gener-
ating POMDP activity recognition and context sensitive prompting systems for a
complex tasks. We call the resulting POMDP a SN̈AP (SyNdetic Assistance Pro-
cess). The method starts with a psychologically justified (syndetic) description of
the task and the particular environment in which it is to be carried out that can be
generated from empirical data. This is then combined with a specification of the
available sensors and effectors to build a working prompting system that tracks a
person’s activities and learns their abilities by using sensor data as evidence in the
context of the SN̈AP POMDP. The method is illustrated by building a system that
prompts through the task of making a cup of tea in a real-world kitchen.

1 Introduction

Dementia is an important problem with serious effects on the society because of the changing de-
mographic towards an aging population The dependency ratio (the ratio of those typically not in the
labor force and potentially needing care to those typically in the labor force and thus able to provide
care) is increasing. For example, the old age dependency ratio (the projected number of persons aged
65 and over expressed as a percentage of the projected number of persons aged between 15 and 64)
in the European Union is projected to increase from 25.9 in 2010 to 50.4 in 2050 [1]. At the same
time the number of people with dementia is increasing. The number of persons with Alzheimer’s
disease worldwide, for example, is expected to double and will top 100 million by the year 2050 [2].
This means that the burden of care will have to shift from the professional arena (e.g. hospitals and
clinics) into the home and community.
Many people with dementia wish to remain living in their own homes as long as possible. However,
they generally require some assistance in order to do so. Difficulties performing activities of daily
living at home, such as preparing food, washing themselves, or cleaning, may trigger the need for
personal assistance or relocation to residential care settings [9]. Moreover, it is associated with di-
minished quality of life, poor self-esteem, anxiety, and social isolation for the person with dementia
and their caregiver [4].



Technology to support people in their need to live independently is currently available in the form
of personal and social alarms and environmental adaptations and aids. Looking to the future, we
can imagine intelligent, pervasive computing technologies using sensors and effectors that help with
more difficult cognitive problems in planning, sequencing and attention. A key problem in the con-
struction of such intelligent technologies is the automatic analysis of people’s behaviors from sen-
sory data. Activities need to be recognized and – by incorporating domain specific expert knowledge
– reasonable conclusions have to be drawn which ultimately enables the environment to perform ap-
propriate actions through a set of actuators. In the example of assisting people with dementia, the
smart environment would prompt whenever the residents get stuck in their activities of daily living.
The technical challenge of developing useful prompts and a sensing and modeling system that al-
lows them to be delivered only at the appropriate time is hard but achievable. Certainly the most
sophisticated of these is the COACH system [12]. COACH uses computer vision to monitor the
progress of a person with dementia washing their hands and prompts only when necessary. COACH
uses a partially observable Markov decision process (POMDP), a temporal probabilistic model that
represents a decision making process based on environmental observations. The COACH model
is flexible in that it can be applied to other tasks [11]. However, each new task requires substan-
tial re-engineering and re-design to produce a working assistance system, which currently requires
massive expert knowledge for generalization and broader applicability to private home scenarios.
An automatic generation of such prompting systems would substantially reduce the manual efforts
necessary for creating assistance systems, which are tailored to specific situations and tasks, and
environments. In general, the use of a-priori knowledge in the design of assistance systems is a
key unsolved research question. Researchers have looked at specifying and using ontologies [6],
information from the Internet [18], logical knowledge bases [5, 14], and programming interfaces for
context aware human-computer interaction (HCI) [21].
In this paper we present a knowledge driven method for automatically generating POMDP activity
recognition and context sensitive prompting system for a kitchen task, as an example. The developed
approach starts with a description of a kitchen task and the kitchen in which it is to be carried out
that is relatively easy to generate. Interaction Unit (IU) analysis [20], a psychologically motivated
method for transcoding interactions relevant for fulfilling a certain task, is used for obtaining a
formalized, i.e., machine interpretable task description. This is then combined with a specification
of the available sensors and effectors to build a working model that is capable of analyzing ongoing
activities and prompting someone. The method is illustrated by building a system to prompt someone
through the task of making a cup of tea in a particular kitchen.
The long-term goal of this approach is to allow end-users, such as health professionals, to specify
and develop their own context sensitive prompting systems for needs as they arise. In the fullness of
time, a proper evaluation would involve implementing the idea in a clinical or commercial service
and then evaluating that service in terms of the value to a specific population of people that it is
intended to serve.

2 Overview of the method

2.1 Partially observable Markov decision process models

A POMDP is a probabilistic temporal model of a system interacting with its environment [3], and
is described by (1) a finite set of state variables, the cross product of which gives the state space,
S; (2) a set of observation variables, O (the outputs of some sensors); (3) a set of system actions,
A; (4) a reward function, R(s, a, s′), giving the relative utility of transiting from state s to s′ under
action a; (5) a stochastic transition model Pr : S × A → ∆S (a mapping from states and actions
to distributions over states), with Pr(s′|s, a) denoting the probability of moving from state s to s′

when action a is taken; and (6) a stochastic observation model with Pr(o|s) denoting the probability
of making observation o while the system is in state s. Figure 1(a) shows a POMDP as a Dynamic
Bayesian network (DBN) with actions and rewards, where arrows are interpretable as causal links
between variables.
A POMDP for assistance of persons with dementia breaks the state space down into three key factors
as shown in Figure 1(b): states describing elements of the functional task in the real world, T ,
e.g. whether the water has been boiled or not (the ”task factor model”), states capturing the user’s
cognitive capacities, Y , e.g., to remember what they are supposed to do next (the ”ability factor
model”), and states capturing an inferred history of what the user has actually done since the last
update, B, e.g. fill the kettle (the ”behavior factor model”). We use the word ”behavior” here to
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Figure 1: Two time slices of (a) a general POMDP; (b) a factored POMDP for modeling interactions
with cognitive assistive technology; (c) Example hierarchical model for task assistance. The dashed
lines are connections from the previous time step. Dotted and dashed lines are used only for clarity.

describe actions of the user to distinguish them from actions of the system (i.e., prompts to the user).
A preliminary version of this model was explored and used in different contexts in [11, 16, 12]. As
we will see, these three factors relate to the psychological analysis, and keeping them separate will
ease the translation between the two.
The observations O and O′ are states of the sensors at times t − 1 and t. It is convenient to divide
O into the states of sensors relevant to the task environment (K) and states of sensors relevant to
user behavior (V ). Whereas the first type of sensors monitors, for example, movements of objects
in the environment, the latter corresponds to virtual sensors that, for example, monitor the activities
the acting person pursues. The system’s actions are various prompts or memory aids the system can
use to help a user remember things in the task. For persons with dementia, simple audio prompts are
often very effective, and are used in the COACH system along with video demonstrations [16, 12].
Finally, the observations are any information from sensors in the environment that can give evidence
to the system about the user’s behaviors or the task.

2.2 Generating a psychologically justified model for each new task and environment

A key problem is the initial specification of the model for a particular task. The COACH system
has been specified manually by technology designers after consultation with end users (persons with
dementia and carers) over a number of years. This process is extremely time consuming and difficult
to generalize across tasks. In this paper, we describe a method to automatically generate a POMDP-
based prompting system using a syndetic modeling technique to capture the circumstances of a
particular user, task and environment. We call the resulting prompting system a SN̈AP (SyNdetic
Assistance Process).
The methodology is an interaction between two designers: a trained human factors annotator, and
a ubiquitous sensing technician. First, the human factors annotator uses the syndetic Interaction
Unit (IU) modeling technique described below, and applies it to videos showing a person attempting
to do the task with the help of a human assistant. The end-result is an IU analysis that uncovers
the various elements of the task, the user’s cognitive abilities, and the user’s behaviors. Second,
the ubiquitous sensing technician proposes a set of sensors and actuators that can be retrofitted
to the user’s environment for the particular task, and provides a specification of the sensors that
consists of three elements: (1) a name for each sensor and the values it can take on (e.g. on/off);
(2) a mapping from sensors to the states and behaviors as given by the human factors annotator
showing the evidentiary relationships, and (3) measurements of each sensor’s reliability at detecting
the states/behaviors it is related to in the mapping.
The IU analysis and the sensor specification are then fed into a software that automatically generates
a SN̈AP POMDP for this particular user/task/environment combination. The SN̈AP POMDP is
solved to yield a policy of action, and a generic software controller then runs the SN̈AP POMDP,
taking input from the sensors through the ubiquitous sensing technician’s interface. In the following,
we first describe the IU analysis, followed by the sensor modeling, and the conversion to a SyNdetic
Assistance Process.



3 Specifying the task and environment: Interaction Unit Analysis

The starting point for the automatic generation of a POMDP prompting system is a psychologically
justified description of the task and the particular environment in which it is to be carried out. To
illustrate the method we are using we thus needed a real example of someone with dementia carrying
out a real task that has not previously been modeled using a POMDP. Serendipitously we had access
to videotapes of the same woman (JF) making a cup of tea on two occasions in her own kitchen.
These are part of a collection that was the basis of an analysis of the problems that people with
dementia have with kitchen tasks [22]. JF has dementia of the Alzheimer’s type and lives with her
husband who now does all the cooking. They store tea and coffee making items on a tray on the
counter as they believe this helps her when making hot drinks for herself. She can do other tasks
alone (e.g., dressing and cleaning). They lived in the same house before the onset of dementia when
she used to do all the kitchen tasks.
The POMDP prompting system was built into the Ambient Kitchen, a high fidelity prototyping
environment for pervasive technologies [17] at Newcastle University (figure 2). The videos were
used to select appliances and utensils similar to those used by JF.

Figure 2: Set-up of the test environment used for the SN̈AP evaluation. Left: Overview of the
Ambient Kitchen in Culture Lab at Newcastle University. Right: Close-up of the main work surface
for the tea preparation task.

Task analysis has a long history in Human Factors [13] and Occupational Therapy [8] where tasks
are referred to as ”activities of daily living” (ADL). In both cases the emphasis is on describing the
actions taken by a user and the intentions (goals and sub-goals) that give rise to those actions. There
has been less emphasis on how actions are driven by the current state or changes in the environment.
Syndetic modeling [7] remedies this omission by describing the conjunction of cognitive and envi-
ronmental precursors for each action. Modeling both cognitive and environmental mechanisms at
the level of individual actions turns out to be much more efficient than building separate cognitive
and environmental models [20].

3.1 IU analysis

The task analysis technique [22], breaks a particular task down into a set of goals, states, abilities
and behaviours, and defines a hierarchy of tasks that can be mapped to a POMDP, a policy for which
will be a situated prompting system for a particular task. The technique involves an experimenter
video-taping a person being assisted during the task, and then transcribing and analysing the video.
The end-result is an Interaction Unit (IU) analysis that uncovers the states and goals of the task,
the client’s cognitive abilities, and the client’s actions. A simplified example for the first step in
tea-making (getting out the cup and putting in a tea-bag) is shown in Table 1. The rows in the table
show a sequence of steps, with the client’s current goals, the current state of the environment, the
abilities that are necessary to complete the necessary step, and the behaviour that is called for. The
abilities are broken down into ability to recall what they are doing, to recognise necessary objects
like the kettle, and to perceive affordances of the environment.
The IU analysis shown in Table 1 can be converted to a POMDP model by factoring the state space
as shown in Figure 1(b). The method is described in detail in [10], here we give a brief overview.
The task variables are a characterisation of the domain in terms of a set of high-level variables, and
correspond to the entries in the state column in Table 1. For example, in the first step of tea making,
these include the box condition (open, closed) and the cup contents (empty or with teabag). The
task states are changed by the client’s behavior, B, a single variable with values for each behaviour
in Table 1. For the first IU group in tea making, these include opening/closing the box, moving the



IU Goals Task States Abilities Behaviours
1 Final cup empty on tray,

box closed
Rn cup on tray, Rl step No Action

2 Final, cup TB cup empty on tray,
box closed

Af cup on tray WS Move cup
tray→WS

3 Final, cup TB cup empty on WS,
box closed

Rl box contains TB,
Af box closed

Alter box to open

4 Final, cup TB cup empty on WS,
box open

Af TB in box cup Move TB
box→cup

5 Final cup tb on WS, box open Af box open Alter box to closed
Final cup tb on WS, box closed

Table 1: IU analysis of the first step in tea making. Rn=recognition, Rl=Recall, Af=Affordance,
tb=teabag, ws=work surface.

teabag to the cup, and doing nothing or something unrelated (these last two behaviours are always
present). The client’s abilities are their cognitive state, and model the ability of the client to recall
(Rl), recognise (Rn) and remember affordances (Af). For the first IU group, these include the ability
to recognise the tea box and the ability to perceive the affordance of moving the teabag to the cup.
The system actions are prompts that can be given to help the client regain a lost ability. We define
one system action for each necessary ability in the task. The actions correspond to a prompt or
signal that will help the client with this particular ability, if missing. Task and behavior variables
generate observations, O. For example, in a kitchen environment there are sensors in the counter-
tops to detect if a cup is placed on them, and sensors in the teabags to detect if they are placed in the
cup. The sensor noise is measured independently (as a miss/false positive rate for each state/sensor
combination) [19, 10].
The dynamics and initial state are produced directly from the IU analysis (Table 1), by looking
across each row and associating state transitions between rows. We take this to be deterministic,
as any uncertainty will be introduced by the client’s abilities (so we assume a perfectly able client
is able to always successfully complete each step). Each action improves its associated cognitive
ability. For example, the ’prompt recognition cup’ action (e.g a light shone on the cup) makes it
more likely that the client can recognise the cup if they can’t already. The reward function specifies
the goal states (in Table 1), and assigns a cost to each prompt, as client independence is paramount.

3.2 Hierarchical control

The IU analysis breaks an ADL like making a cup of tea down into a number of sub-tasks, or sub-
goals. For tea making, there are five sub-goals. This decomposition arises naturally according to
the major elements of recall noted in the videos from which this IU analysis was made. The five
sub-goals are partially ordered, and the partial ordering can be specified as a list of pre-requisites
for each sub-goal giving those sub-goals that must be completed prior to the sub-goal in question.
Since each sub-goal is implemented as a separate POMDP controller, a mechanism is required to
provide hi-level control to switch between sub-goals. The controller we use is very simple, main-
taining a current control index, and passing all observations made to the control sub-goal
POMDP. The control is switched when either the control POMDP has reached its goal (to within
some threshold), or a new sensor measurement (change) is made that does not correspond to the cur-
rent control sub-goal. The newly selected control is either the sub-goal that this new sensor
measurement is associated with if all pre-requisite sub-goals are complete, or the first pre-requisite
sub-goal if not. This allows a user to switch sub-goals during execution, but only to those that
respect the partial ordering referred to above.
In fact, the syndetic task analysis contains an explicit reference to client goals being organised in a
stack structure. We can use this structure and assume that there are two different types of cognitive
abilities: goal-recall and behaviour-recall. The goal-recall abilities are those that affect only the
mental state of the client and their goal stack. These abilities allow a person to recall a sub-goal that
is necessary to complete during the task. For example, if a person is making a coffee, and has put
granules in the cup, then they must recall that the next step is to boil the water. This act of recall
pushes a new goal onto their goal stack, and has this effect only. The behaviour-recall abilities are
then required to accomplish the subtask of boiling water (e.g. recognising the kettle), but these call
for specific environmental behaviours (e.g. filling the kettle). However, these abilities will not be
relevant if they client does not first have the appropriate goal-recall ability. The goal-recall abilities



define a hierarchical breakdown, whilst the behaviour-recall abilities define sequential steps within
a level in the hierarchy.
Figure 1(c) shows an example for a hierarchical model involving four subtasks (with state spaces
Si i = 1 . . . 4 (possibly containing behaviour-recall abilities), with related observation sets (Oi i =
1 . . . 4), and two sets of goal-recall abilities C5 and C6). This figure is showing the same POMDP
model as in Figure 1(b), except we have factored the goal-recall abilities C out of Y , and organised
these factors graphically in a tree structure for clarity. The tree structure shows that, to perform
subtask S1, a client will need to recall goals C5 and C6, and to have abilities for S1 (in that order).
For example, if C6 is the goal of making a breakfast of tea and toast, then C5 may be making the
tea, which involves getting the teabag out of the box and placing it in the cup (S1) and then boiling
water (S2) and adding it to the cup (S3), while S4 may be making the toast. Note that the tree
structure will be specific to each individual and each environment. In the example above, the task of
making toast involves no goal-recall abilities (other than the recall of the goal of making the toast
in the first place). However, some other client may forget that the toast is in the toaster (e.g. an
old-fashioned toaster that does not pop up automatically), and require an additional level in the tree
for a goal-recall ability to get the toast out of the toaster.
The dynamics of the subtasks at the leaves are such that progress toward the goal is only made if the
entire path of goal-recall abilities leading to the root of the tree are true (the client has these goals
on their stack), otherwise, progress will stall (as the client will have forgotten what they are doing).
The dynamics can be further complicated by the fact that some subtasks rely on other subtasks to be
complete before they can begin (e.g. the arrows S1 → S2 → S3 in Figure 1(c)).
The full model will become intractably large for even a moderate number of subtasks. To handle
this complexity, we break the hierarchy into a set of individual controllers, one for each node in
the tree, by adding two new variables to each node that are an abstract representation of the state
of its parent and its children. The addition of these two variables turns each node in the tree into
a POMDP model as shown in Figure 1(b) if we make the association of the child variables with a
macro-behaviour/task (indicating which subtask is currently being pursued by the client - behaviour
- and which have been completed - task) and of the parent variables with a macro-ability (indicating
that the client has all abilities higher up the tree to complete the subtask). This elegant decomposition
means that a single class of POMDP model can be used at each node. The formulation can also be
viewed as a type of resource allocation problem [15] in which the resource is not fully under the
control of the system. This more sophisticated form of hierarchical control is our current work, and
the examples we present in the next section only use the simple deterministic controller described at
the beginning of this section.

3.3 Implementation issues

The central controller described in the last section and the POMDP controllers for each sub-goal are
implemented in Java, and run as separate processes on three PCs with 2 GHz processors and 2GB of
RAM. The sensors are sampled at 1 second intervals by an observer process. The central controller
polls the observer (at step 3 in the algorithm above), and receives the most recent observations. Note
that this polling arrangement may miss brief events. For example, if a person opens and then closes
a box during the time when the controller is processing at step 1, the most recent sensor values will
be read, and no change will be registered. We will see how this ”sensor memory” issue affects our
results in the next section.
There are a number of solutions for the sensor memory problem. The simplest is to adjust the sensor
reliabilities to reflect this. The POMDP controllers will then be able to adjust their policies to take
into account the additional uncertainty related to this. However, this solution is not ideal as it will
lead to less ”confident” policies, i.e., policies that are based on belief states with more uncertainty,
and only due to a lack of a proper temporal model for the sensor readings. The second solution is
to include some additional ”sticky” virtual sensors that indicate an event happening in the past (e.g.
the box has been opened and then closed again). Our experiments in the following section avoided
this heuristic solution in order to clearly demonstrate the abilities of the POMDP model to deal even
with incorrectly specified sensor reliabilities.

4 Demonstrative Examples

To test our method, we asked two volunteers who had no knowledge of the system to work through
two scenarios derived from the original scenario of JF making tea. In the first, All-Unresponsive, the



participant was instructed to wait for prompts before doing anything, but to respond to all instruc-
tional prompt, i.e., to follow exactly the commands given by the system. In the second scenario,
Subgoal-Unresponsive, the participant was instructed to hesitate after each subgoal has been com-
pleted, and to wait for a prompt before continuing. In both scenarios, participants were asked to
ignore inappropriate prompts although these were recorded for our analysis.
Our general criteria for success in this test of the system were that in the All-Unresponsive scenario
the system would come up with the appropriate prompt for each action at the right time, while in
the Subgoal-unresponsive scenario the system would only prompt at the junction between subgoals.
In general, these criteria were met (see [10] for details). Where they were not we were able to infer
some possible refinements that could be made to the process. Snapshots of the system state for the
All-Unresponsive scenario are shown in Figure 3 (see [10] for details of the Subgoal-unresponsive
scenario). Each snapshot includes a still of the video footage, observations (i.e. sensor readings at
the particular step), and the beliefs of the system at the time the system prompted. For the system
beliefs, prefixes are used to associate beliefs to either abilities, i.e. recognition (rn), recall (rl), and
affordance (af); behaviors (b); task (no prefix). Five snapshots have been selected that correspond
to significant events in the sequence.
SN̈AP successfully guided the participant through the tea preparation process. In total it provided
21 prompts of which 16 were appropriate, i.e., they were given at the correct time within the tea
preparation process. Otherwise, the system appeared to “do nothing” at the appropriate times. The
five inappropriate prompts were either: (1) appropriately timed but inappropriate for the situation
(i.e., a prompt was needed but the system gave an incorrect one), or (2) inappropriately timed (i.e.
not needed or an incorrect prompt). We will refer to the first type of error as misprompts and the
second type as false positive prompts. The errors were due to one of three possible causes: sensor
errors are sensors that are not behaving according to the reliability measurements; sensor memory
errors arise from timing issues as discussed in Section 3.3, and model errors are due to incorrect
specification of the controllers, i.e., transcription errors between the IU analysis and the POMDP
specifications. By analyzing the snapshots, and these errors in particular, we can gain an insight into
the SN̈AP’s behavior and overall capability.
Figure 3(a) shows the initial state, with the cup empty and on the tray, and the teabox closed. The
abilities optimistically estimated to be very high (close to 1), to give the person a chance if she is
capable of doing the task on her own. The first prompt, in Figure 3(b) cues the person to move
the cup to the work surface, which she does, as indicated by the non-zero belief in the behavior
b mv cup ws in Figure 3(c). The first false positive prompt, shown in Figure 3(d), asked for the
tea box, although the tea bag had already been taken and put into the cup. The source of the false
prompt was a sensor memory error (as explained in Section 3.3) that resulted from the participant
rapidly opening and then closing the box without a prompt: the sensor event was missed by the
SN̈AP controllers. When this box-lid open/close event is missed, the POMDP assigns a very low
probability to this event having actually happened (it was assigned the minimum miss rate of 0.1%
since it was never observed to occur in our sensor reliability study). Since SN̈AP also observed the
teabag in the cup, which has a much lower reliability (75% miss rate), it concluded that, with high
probability, the teabag is actually not in the cup, and continues to prompt the person to recognize
the tea box. If the reliability of the tea box sensor had accounted for this sensor memory problem
(i.e. had a lower reliability), confidence in the teabag in cup sensor would have been greater, and
prompt rn box prompt less likely to occur. Although erroneously prompting, the subgoal was
successfully completed (shown in Figure 3(e), where the goal is reached), since subsequent sen-
sor readings lowered the system’s propensity to prompt for recognition of the box. This elegantly
demonstrates the capabilities of POMDPs to cope with uncertain and noisy data and incorrect sensor
reliability measurements, and to recover from potential dead ends.

5 Conclusions and discussion

This paper has demonstrated a method for generating a working partially observable Markov deci-
sion process (POMDP) prompting system from a psychologically justified description of the task
and the particular environment in which it is to be carried out (IU analysis) together with a speci-
fication of the available sensors and effectors. In the process of developing this method a working
system was constructed in the Ambient Kitchen at Newcastle University. This was demonstrated
by having volunteers work through certain scenarios of use. The POMDP successfully modeled
uncertainty in sensor measurements and in the dynamics of interaction. The resulting controller was
able to deal flexibly and gracefully with errors in sensor readings and with unpredicted user interac-



Figure 3: Experiment for All-Unresponsive case (selected scenes for overview): snapshots with
observations and beliefs. Each snapshot includes a still of the video footage, observations (i.e.
sensor readings at the particular step with dark color and a dot indicating the sensor is ’on’), and
the beliefs of the system at the time the system prompted. For the system beliefs, prefixes are used
to associate beliefs to either abilities, i.e. recognition (rn), recall (rl), and affordance (af); behaviors
(b); task (no prefix).

tions. However, this exercise also pointed up a number of outstanding issues still to be addressed,
including more sophisticated hierarchical control, sensor error handling, and appropriate prompting.
There were three sources of errors in our initial prototype: sensors that are not responding according
to the reliability measurements; sensor memory errors arising from timing issues (Section 3.3), and
model errors due to transcription errors between the IU analysis and the POMDP specifications.
Perhaps the most challenging errors are timing problem in the implementation. The sensors are
operating on a fast update schedule (∼ 1Hz), whereas the POMDP controllers are updating much
more slowly, in part due to the large size of the models and somewhat inefficient implementations.
The mapping between these two timescales was achieved by having the controller simply poll the
sensors whenever it needed new readings. This led to sensor memory errors where an event could
take place, be registered by the sensors, but go unnoticed by the POMDP controllers, since they
were busy doing other processing. Solutions to this problem include “sticky” virtual sensors that
maintain some memory of their previous state, ensuring that the sensor reliabilities take timing into
account, and making the POMDP operations more efficient.
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