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Abstract. Wandering is one of the behaviors experienced by people
with dementia that presents high risks and causes significant concern
to caregivers. The frequency and manner in which a person wanders
is highly influenced by the person’s background and contextual factors
specific to the situation. In this paper, we propose a decision-theoretic
context-aware assistant that runs on a mobile (handheld) device, and
uses multiple sources of local contextual information to provide verbal
prompts, visual aids, or other help to the person when they wander. The
system models uncertainty, learns about a person’s patterns of behaviour,
and can reason decision theoretically about the costs of sensors (e.g.
battery charge) and the relative costs of different types of assistance.
The system can be tailored to a particular person’s needs by the user
themselves or by their caregiver. The paper demonstrate a particular
instance of this assistance system running on an Android platform.

1 Introduction

People with dementia suffer from spatial disorientation and memory loss, which
causes them to get lost and wander, one of the behaviors of dementia least
understood [1] and one of the main causes of concern among caregivers [9]. The
Alzheimer’s Association estimates that 60% of those suffering from dementia
wander at some point, and half of those not found within a day suffer serious
injuries or death. Solutions for the wandering problem usually take the form of
a simple “virtual fence” that sends an alarm by text message or email to the
caregiver when the user goes beyond a certain distance from home or provide a
web interface for more detailed location information and monitoring 3. However,
these systems have a limited range of communication options, do not reason
about long-term effects of actions or uncertainty, and do not take into account the
wide variety of other contextual information that may be available, such as the
detailed movements of the person, local network information, weather, battery
state, etc. Further, sending alarms or notifications in situations where the user
can find her way with a small bit of assistance will be an unnecessary burden
on the caregiver, and infringes on privacy and independence. Current systems
do not model these detailed preference tradeoffs. It is known that wandering
encompasses a variety of behaviors [5] that are originated by diverse factors [1],
and thus demand different types of interventions.

3 see alz.org/comfortzone for example



Previous research has looked at this problem from a variety of angles. The Ac-
tivity Compass [10] was a tool designed to help disoriented people find their desti-
nation. An extension of the Activity Compass project is Opportunity Knocks [7],
a system designed to provide directional guidance to a user navigating through
a city. iWander is a mobile application that uses contextual information such as
the time of day and weather conditions to estimate the probability that the user
of the mobile is wandering [12], but does not reason decision theoretically about
the relative assistance mechanisms. Vuong et al. proposed an algorithm to detect
wandering behaviors such as random, lapping, pacing and direct wandering [14].

In this paper, we discuss a novel context-aware sensing system, called La-
Casa (Location and Context Aware Saftey Assistant), implemented on a hand-
held device that can reason about stochastic temporal events and make deci-
sion theoretic choices about help for a person with dementia (PwD). The sys-
tem’s controller is based on a partially observable Markov decision process, or
POMDP [11]. One of the strengths of the POMDP formalism is that it allows
designers to specify the model and a utility function, rather than a policy di-
rectly. The result is a more flexible design process that allows the system to be
more easily customized for different users and different contexts. The POMDP
model we describe in this paper was constructed in part based on our initial user
requirements analysis and use-case scenarios [4].

2 Decision Theoretic Model
A POMDP consists of a finite set S of states; a finite set A of actions; a stochastic
transition model Pr : S × A → ∆(S), with Pr(t|s, a) denoting the probability
of moving from state s to t when action a is taken, and ∆(S) is a distribution
over S; a finite observation set O; a stochastic observation model with Pr(o|s)
denoting the probability of making observation o while the system is in state s;
and a reward assigning R(s, a, t) to state transition s to t induced by action a.

The system actions cause stochastic state transitions, with different transi-
tions being more or less rewarding (reflecting the relative utility of the states
and actions). States cannot be observed exactly. Instead, the stochastic obser-
vation model relates observable signals to the underlying state. The POMDP
can be used to monitor beliefs about the system state using standard Bayesian
tracking/filtering. Finally, a policy can be computed that maps belief states (i.e.,
distributions over S) into choices of actions, such that the expected long-term
discounted sum of rewards is (approximately) maximized.

The POMDP model is specified using the SNAP system [3], which is a user-
friendly system for specifying POMDP models for assistance. The SNAP system
breaks the state space down into three factors:task (T ), ability (Y ) and behaviour
(B). The task variables are a characterisation of the domain. For example, in
LaCasa, these include the location of the person and whether they are near a
known location, along with additional context of the situation (e.g. time of day,
weather, battery power). The task states are changed by the client’s behaviour,
B. In LaCasa, these include wandering or navigating to a known location. The
client’s abilities are their cognitive state, and model, e.g., the ability to recognise
a known location, and the ability to find their way home.

The system actions are prompts that help the client regain a lost ability.
There are two further actions: to call caregiver (when the system is unable to
help) and to (remind the person to) recharge battery when the battery is running



low. The observations are the sensor outputs, and measure the location (GPS
or network), accelerations, their connectivity (wi-fi or cellular), and these give
information about the person’s current task state (e.g. are they wandering or
not?). Complex virtual sensors can also be used, such as for detecting activities
and social contact [13], affect [8] or location awareness (see Section 3). POMDPs
can gracefully handle missing observations (from e.g. non-functioning sensors)
by interpreting this as missing evidence in a Bayesian update.

The POMDP has an additonal variable for the battery level. This is critical
to include explicitly in the model, because the POMDP can reason directly
about the cost of querying different sensors, and can make decisions about which
sensors to get information from in which states [6]. This can be an important
consideration on a mobile device, where battery resources are at a premium. For
example, the POMDP can reason about the measurement precision and battery
cost trade-off for different location sensors (e.g. GPS and network-based).

3 Learning Patterns of Behaviour
A key element of LaCasa is to determine how likely it is that a person can
wayfind (navigate to a known location) independently, possibly with assistance
from LaCasa, but without assitance from a human. This allows the POMDP
model to evaluate whether to call for human assistance, or to continue trying
to help them. In the latter case, LaCasa may opt for different strategies based
on the probability that the person can independently get home or to a known
location. For example, they may be able to easily get to a coffee shop nearby
with a small amount of assistance from LaCasa, but will not be able to make
the longer trip all the way home, even with assistance. In some instnaces, just
reaching a known location might reduce anxiety in the PwD, which in turn could
make it easier for her to find her way home.

As LaCasa optimises battery life by only occasionally querying sensors, it
only has a discrete set of points with labels showing whether the person was able
to get home or not from there. Each time a person returns home, LaCasa saves
the set of all locations X = {x1,x2, . . . ,xm} = {x1, y1}, {x2, y2}, . . . , {xm, ym}
from their most recent trajectory along with a label for each point Sxi

= 0
if they required human assistance to get home and Sxi

= 1 if they made it
home independently. Note that the set of points X is at locations determined
by LaCasa for battery efficiency reasons [6], not because of their geographic
significance (e.g. distance apart in space or time).

LaCasa therefore has a set of N data points (from all trajectories so far)
with labels Sx1 = s1, Sx2 = s2, . . . , Sxn = sn as defined above, and needs to
compute the probability that a person can make it home independently from
any location xi = {xi, yi}. To accomplish this, we imagine a single Bernouilli
experiment (weighted coin flip) at each location with an unknown probability
θ(x) = Pr(Sx = 1). We then use a beta distribution as a conjugate prior for
each experiment, and we make the assumption that locations close to one an-
other (with distance measured by a kernel function K(x,x′)) will have similar
probabilities. After observing the outcome s of a set of experiment Sx1 , . . . , Sxn ,
we update the distribution over θ(x) to obtain the approximate posterior [2]:

Pr(θ(x)|Sx1 = s1, Sx2 = s2, . . . , Sxn = sn)

∝ θ(x)α(x)−1+
∑n

i=1 δ(si=1)K(xi,x) × (1− θ(x))β(x)−1+
∑n

i=1 δ(si=0)K(xi,x) (1)



where δ(a) is a Dirac delta that returns 1 when a is true and 0 otherwise. The
resulting posterior Pr(θ(x)) is an estimate of the distribution of the probability
that the person will wayfind independently. We can then use the mean of this
distribution µθ = α/(α+β), as a point estimate of the probability, or we can use
a confidence adjusted version µθ − γσθ, where σθ =

√
αβ/((α + β)

√
α+ β + 1)

is the standard deviation and ν is a constant between −1 and 1 that ranges
from optimistic to pessimistic estimates. This probability map will be used as
a virtual sensor giving indications of whether a person is in a known location
or not (see Section 4). Note that conflicts in labels are handled gracefully, the
probabilities adjusting based on the relative frequency of the two labels.

We have considerable flexibility in choosing the kernel function, K, and
here we consider that, if a person can wayfind from location x, they will be
more likely to wayfind from another location x′ if x and x′ are (i) close in
walking distance (not as the crow flies) and (ii) within sight. We therefore use

K(x,x′) = e−(c(x,x)d(x,x)/b)
2

, where d(x,x) is the walking distance, b is the ker-
nel bandwidth, and c(x,x′) is a line-of-sight function that is < 1 and smaller if
x and x′ lie within sight.

Figure 1 shows three examples given a set of randomly generated points at
intersections in a latitude-aligned grid of streets in which the PwD can more
easily wayfind if they are closer to the central value of y. We use a line-of-sight
function c = C if the locations x and x′ lie on the same latitude or longitude
(but not both) to within the street width, and c = 1 otherwise. Figure 1 shows
the learned probability functions for three settings of the parameter C. As C
gets smaller, the line-of-sight is more meaningful, and the effect of a person
wayfinding from a certain location “spreads” along the associated streets.

Fig. 1. Examples of learned probability map for a person for different C values.

4 Mobile Implementation
The system is implemented on Google’s Android (Gingerbread) operating sys-
tem. The POMDP belief updates and policy queries are handled by a remote
desktop machine that communicates with the smartphone over TCP/IP using
simple XML messages. The device, on starting, queries the server and gets in-
formation about the set of observations and actions that its POMDP model can
handle. LaCasa runs as a foreground service on the Android platform, and has
a list of sensors (on the device or remotely in the local environment) that it is
currently able to get information from. It can register listeners for each of these
sensors, and each sensor has a method to convert the raw sensor readings into a
discrete observation label for a particular POMDP observation variable. Adding
a new sensor involves implementing an abstract sensor class, defining sensor con-
version methods, and publishing the new sensor name. When a user selects a



POMDP model to use (from a set they have created using SNAP), the LaCasa
service queries the POMDP server for information about this model, and regis-
ters a new process with the server for the model. Subsequently, upon receiving an
updated sensor reading, the Android device updates its current observation set
and sends the subset required by the model to the server. The POMDP running
on the server updates its belief and consults its policy, returning an action from
a discrete set to the mobile device. The mobile then has a set of user-defined
action mappings that translate this discrete action label into an action to take.

Observations Task Behaviour Ability
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0 close home yes donothing

3 close far from home yes donothing

4 close home yes know path home

7 close close to home no call caregiver

8 far far from home no rn known location

9 close far from home no know path to known

10 close far from home no rn known location

18 far far from home no know path to known

25 close far from home no rn known location

32 close home yes donothing

Table 1. Example simulation for LaCasa, battery and caregiver variables not shown.

We now present a simple example of a LaCasa system that has a variable de-
scribing whether the persons is at-home or not, and another describing whether
they are close to a known location, and a third describing whether they are at
a known location currently. Known locations are those from which the user can
more easily find their way home, e.g. known landmarks. A person will be deemed
to be “at” a known location if the device can connect to a trusted wireless net-
work (wi-fi), or if the P (θ(x)) (Section 3) is above a threshold (these two evidence
sources have different strengths, wireless connectivity being the stronger). The
modeled abilities are whether the PwD knows the path home, knows the path to
a known location, and recognizes a known location (rn known location). The ob-
servations are the persons location ∈ {home, close to home,far from home}, the
battery charge, whether they are at a known location, whether they are close to
a known location, and whether the caregiver is present or not.

Table 1 shows part results of a demonstration carried out with the mobile
device. A test subject (one of the authors) started at their home location, and
went out for a walk. There are four known locations in the vicinity of their home,
but none of them have a trusted wi-fi connection, so they are simply locations
the person might know how to get to, rather than locations where the person
can spend some time. Initially, when in close proximity of their home, the system
does nothing and only monitors the user. When the person moves far enough
from home to have their location labeled as far-from-home, at which point the
system prompts them for the path homewards (step 4). The person ignores that
prompt, and continues to move farther from the home. The system then calls
for caregiver assistance (step 7), but continues to try to help the person find



a known location (steps 8-25). Once the person regains their home, the system
returns to only monitoring (step 32).

5 Conclusions and Future Work

Wandering is a common and complex behavior among PwDs while being one of
the major causes of concern among caregivers. We have proposed the use of a
partially observable Markov decision process to account for the many forms in
which this behavior is expressed and the different actions that are required to deal
with it. In this paper, we further propose a framework for learning the behaviours
of a client based on data. The model has been implemented on a mobile device
that is used to gather contextual information to feed the model, to provide
assistance to the PwD and to communicate with the caregiver when considered
appropriate. Our future aims are to further develop the learning methodology,
and to elicit requirements from end users to further define the system. This
includes tackling the problem of how to design effective prompts using mobile
device notifications that do not increase user confusion.
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