
Expe
tation Maximization for Hidden MarkovModels:Derived from First Prin
iplesJesse HoeyDe
ember 15, 2000Abstra
tExpe
tation Maximization is a popular te
hnique for deriving MAPestimation of model parameters. A su

essful appli
ation is learning pa-rameters of hidden Markov models (HMMs). This note derives the Baum-Welsh learning algorithm for HMMs from �rst prin
iples.1 Introdu
tionA hidden Markov model is a Bayesian network as shown (unrolled) in Figure 1.A set of hidden states Xt generates a set of observed variables Zt at ea
h of a setof times t = 0; :::; T . We refer to the set of states at all times asX = fX0; :::; XT gand Z = fZ0; :::; ZT g. We assume for now that both the observations and thehidden variables are dis
rete valued with Nz and Nx values ea
h. At timet, Zt, is assumed 
onditionally independent of all other variables at all othertimes given its parent Xt, and the usual Markovian independen
e assumptionholds between the Xts. The parameters of the model are threefold. First,the transition probabilities, �xij = P (xt;ijxt�1;j), give the probability that thehidden state at time t will be Xt = i, given that the state at the previous time
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Figure 1: Hidden Markov model as a dynami
 Bayesian network.1



step t � 1 was Xt = j. Se
ond, the starting probabilities, �i = P (X0;i), arethe probabilities that the system starts in state X0 = i. Third, the emissionprobabilities, �zij = P (Zt;ijXt;j), are the probability that observation Zt = iwill be made while in state Xt = j. We refer to the set of all parameters as� = f�X ;�Z ; P ig.Hidden Markovmodels have been extensively studied in the 
ontext of spee
hre
ognition [5℄, along with many other appli
ations in areas su
h as vision [2, 4℄.The fo
us of this note is the learning the maximum a-posteriori estimates ofthe parameters, �, given by the values whi
h maximize P (Z;�). The standardte
hnique is an appli
ation of the expe
tation-maximization (EM) algorithmof [1℄, whi
h results in an eÆ
ient re
ursive estimation te
hnique known as theBaum-Welsh or forward-ba
kward training pro
edure. This note will providea simple derivation of this parti
ular appli
ation of the EM algorithm. The�rst part, (Se
tion 2), borrows heavily from the derivation in [3℄, as 
on
iselydes
ribed by Thomas Minka 1, and gives a general derivation of the expe
tationand maximization steps whi
h 
an be applied to any model. This is followed inSe
tion 3 by a derviation of the forward-ba
kward equations assuming multino-mial distributions and Diri
hlet priors.2 EM derivation2.1 General EMWe wish to �nd the values of � whi
h maximizef(�) = P (Z;�) = ZX P (Z;X;�);where the integral is over the values of the hidden variables X in the HMM. Welower bound the value of f(�) with a fun
tion q(X):f(�) = ZX P (Z;X;�)q(X) q(X) �YX �P (Z;X;�)q(X) �q(X); (1)where the inequality is given by Jensen's inequality. Taking logarithms we getG(�; q) = ZX q(X) logP (Z;X;�)� q(X) log q(X): (2)Then, at the 
urrent guess for �, �0, we 
hoose q to maximize G, so that gtou
hes f at �0. We use the 
onstraint that RX q(X) = 1 and getq(X) = P (Z;X;�)RX P (Z;X;�) = P (Z;X;�)P (Z;�) = P (X jZ;�)The idea is then to1See his ex
ellent set of tutorial notes at http://www-white.media.mit.edu/ tpminka/papers/tutorial.html. The EM tutorial is atftp://vismod.www.media.mit.edu/pub/tpminka/papers/minka-em-tut.ps.gz2



1. Choose q(X) to maximize the bound at the 
urrent guess, �0. This justmeans getting P (X jZ;�) and is the \E" step of EM.2. Maximize the bound over �. This means maximizing 2 with the q(X)derived in the \E" step. That is, we maximizeZX P (X jZ;�0) logP (Z;X;�): (3)2.2 Multinomial-Diri
hlet EMThis se
tion will spe
ialize the above pro
edure for probability distributions inthe multinomial family, with Diri
hlet 
onjugate priors. We show the derivationfor �Xij in what follows. The other parameters 
an be similarily derived. Max-imization of equation 3 
an be performed by noting that there is a 
onstrainton �Xij , Xi �Xij = 1;whi
h means that we want to solve���Xij "ZX P (X jZ;�0) logP (Z;X;�)� �(Xi �Xij � 1)# = 0whi
h is ZX P (X jZ;�0) ���Xij [logP (Z;X j�)P (�)℄ = �: (4)Assuming that the likelihood fun
tion of the 
ompleted data is given by a multi-nomial distribution, P (Z;X j�0) =Yij �NXijXij �NZijZij �Nii ;were NXij is the number of times Xt = i when Xt�1 = j in the (
ompleted)data. Assuming further that the priors are given by a Diri
hlet distributionP (�) = P (�X)P (�Z)P (�) = Dir(�j�Xij)Dir(�Z j�Zij)Dir(�j�i);then equation 4 be
omesZX P (X jZ;�0) ���Xij [Xij (NXij + �Xij) log�Xij +Xij (NZij + �Zij) log�Zij +Xi (Ni + �i) log�i℄ = �:3



And therefore, ZX P (X jZ;�0)NXij + �Xij�Xij = �� =Xi ZX P (X jZ;�0)�Xij = RX P (X jZ;�0)NXij + �XijPi RX P (X jZ;�0)NXij + �Xij= RX P (X jZ;�0)NXij + �XijPi RX P (X jZ;�0)NXij + �Xij= �Xij +EP (XjZ;�0)(NXij)Pi �Xij +EP (XjZ;�0)(NXij)So we see that the parameters 
an be updates by simply taking the expe
ted
ounts, whi
h form the suÆ
ient statisti
s for the multinomial distribution.3 Baum-Welsh DerivationOur goal is then to �nd the expe
tations EP (XjZ;�0)(NXij), whi
h isEP (XjZ;�0)(NXij) = ZX P (X jZ;�0)NXij= ZX0:::XTP (X0:::XT jZ0:::ZT ;�0)Xt Æ(Xt;i)Æ(Xt�1;j) (5)(6)where Æ(Xt;i) = � 1 if Xt = i0 otherwiseThe sum over t 
an be taken outside the integrations in (6), and the integrationsover X0:::Xt�2; Xt+1:::XT 
an be immediately performed, ea
h giving fa
torsof 1. Further, the integrations over Xt�1 and Xt 
an be performed, sin
e theÆ-fun
tions simply pi
k out a parti
ular value of these varibles: Xt�1;j and Xt;i.Thus, we are left with:EP (XjZ;�0)(NXij) = TXt=1 P (Xt;i; Xt�1;j jZ;�); (7)the expe
ted number of times Xt = i and Xt�1 = j given the data, Z =Z0:::ZT , and the 
urrent model parameters, �. Fa
toring the term in the sumby splitting the data Z up into two sets Z0:::Zt�1 and Zt:::ZT gives the Baum-Welsh equations for updating the parameters of the HMM using expe
tation4



maximization (we leave out the � upon whi
h every term is 
onditioned)P (Xt;i; Xt�1;j jZ;�)= P (Zt:::ZT jXt;i; Xt�1;j ; Z0:::Zt�1)P (Xt;i; Xt�1;j ; Z0:::Zt�1)= P (Zt:::ZT jXt;iXt�1;j)P (Xt;ijXt�1;jZ0:::Zt�1)P (Xt�1;j jZ0:::Zt�1)= P (ZtjXt;iXt�1;jZt+1:::ZT )P (Zt+1:::ZT jXt;iXt�1;j)P (Xt;ijXt�1;j)P (Xt�1;jZ0:::Zt�1)P (Z0:::Zt�1)= P (ZtjXt;i)P (Zt+1:::ZT jXt;i)P (Xt;ijXt�1;j)P (Xt�1;jZ0:::Zt�1)= �Zt�i�t;i�Xij�t�1;jwhi
h is exa
tly the (unnormalized) equation (37) from [5℄. We use �Zt�i, wherethe � represents the value of the observation Zt. We have left to evaluate the� and � terms (the forward and ba
kward variables, respe
tively). The alphaterm is simply the joint probability of Xt = j and all the observations prior totime t. It 
an be expanded re
ursively by summing over the previous states,Xt�1, as follows:�t;j = P (Xt;jZ0:::Zt)= P (ZtjXt;jZ0:::Zt�1)P (Xt;jZ0:::Zt�1)= P (ZtjXt;j)Xk P (Xt;jXt�1;kZ0:::Zt�1)= P (ZtjXt;j)Xk P (Xt;j jXt�1;k)P (Xt�1;kZ0:::Zt�1)= �Zt�jXk �Xjk�t�1;kSimilarly, the beta term is the probability of all observations posterior to timet, given the state at time t, Xt. It 
an be expanded re
ursively by summingover all next states, Xt+1 as follows:�t;i = P (Zt+1:::ZT jXt;i)= Xk P (Zt+1jXt+1;k)P (Zt+2:::ZT jXt+1;k)P (Xt+1;kjXt;i)= Xk �Zt+1�k�t+1;k�XkiThe terms �0 and �T must be evaluated separately. The �T is initialized evenly,and the �0;i = �Z0i�i.4 Baum-Welsh for POMDPsConsider further that we not only have eviden
e 
onditioned on (or generatedby) the hidden states, X , but that there is eviden
e whi
h the hidden states are5
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onditioned on, as shown in Figure 2. This type of model is 
alled a partiallyobservable Markov de
ision pro
ess if the eviden
e e+t are a
tions, a, takenfrom a set of possible a
tions, A. Now the transition probabilities, �X arerepla
ed by 
onditional probabilities for the hidden states given the a
tionsand the previous states, �Xijk = P (Xt;ije+t;kXt�1;j). Now we are interested inexamining the probability distributions 
onditioned on both sets of eviden
e e+and e�. We refer to the set of both eviden
es as simply e = e+0 :::e+T ; e�0 :::e�T ,and et = e+t ; e�t .P (Xt;i; Xt�1;j je;�)= P (et:::eT jXt;i; Xt�1;j ; e0:::et�1)P (Xt;i; Xt�1;j je0:::et�1)= P (et:::eT jXt;iXt�1;j)P (Xt�1;j je0:::et�1)P (Xt;ijXt�1;je0:::et�1)= P (etjXt;iXt�1;jet+1:::eT )P (et+1:::eT jXt;iXt�1;j)P (Xt�1;je0:::et�1)P (e0:::et�1) P (Xt;ijXt�1;j)= P (e�t e+t jXt;iXt�1;j)P (et+1:::eT jXt;i)P (Xt�1;je0:::et�1)P (Xt;ijXt�1;j)= P (e�t jXt;ie+t )P (e+t jXt;iXt�1;j)�t;i�t�1;j"Xk P (Xt;ije+t;kXt�1;j)P (e+t;kjXt�1;j)#= P (e�t jXt;i)P (Xt;ije+t Xt�1;j)P (e+t jXt�1;j)�t;i�t�1;j"Xk �XijkP (e+t;kjXt�1;j)#= �e�t �i�Xij�P (e+t jXt�1;j)�t;i�t�1;jXk �XijkP (e+t;kjXt�1;j)The new term whi
h shows up is the P (e+t jXt�1;j), whi
h is referred to as thepoli
y in a POMDP. With a deterministi
 poli
y, this term simply �xes the6



value of e+t as the a
tion taken. However, in a more general 
ase, the poli
y isprobabilisti
, and the 'a
tions' e+ are not �xed. We 
an evaluate the alpha andbeta terms mu
h as before, but they now in
lude the poli
y term as well. Thealpha term is:�t;j = P (Xt;je0:::et)= P (etjXt;je0:::et�1)P (Xt;je0:::et�1)= P (e+t e�t jXt;j)Xk P (Xt;jXt�1;ke0:::et�1)= P (e�t jXt;j)P (e+t jXt;j)Xk P (Xt;j jXt�1;ke0:::et�1)P (Xt�1;ke0:::et�1)= �e�t �jXk �Xjk��t�1;kThe beta term gives:�t;i = P (et+1:::eT jXt;i)= Xk P (e�t+1jXt+1;k)P (et+2:::eT jXt+1;k)P (Xt+1;kje+t+1Xt;i)P (e+t+1jXt;i)= Xk �e�t+1�k�t+1;k�Xk�iP (e+t+1jXt;i)The new term whi
h shows up is the P (e+t jXt�1;j), whi
h is referred to asthe poli
y in a POMDP. With a deterministi
 poli
y, this term simply �xes thevalue of e+t as the a
tion taken.Referen
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