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Abstract

Expectation Maximization is a popular technique for deriving MAP
estimation of model parameters. A successful application is learning pa-
rameters of hidden Markov models (HMMs). This note derives the Baum-
Welsh learning algorithm for HMMs from first principles.

1 Introduction

A hidden Markov model is a Bayesian network as shown (unrolled) in Figure 1.
A set of hidden states X; generates a set of observed variables Z; at each of a set
of timest = 0, ..., T'. We refer to the set of states at all times as X = {Xo, ..., X7}
and Z = {Zy, ..., Zr}. We assume for now that both the observations and the
hidden variables are discrete valued with N, and N, values each. At time
t, Z;, is assumed conditionally independent of all other variables at all other
times given its parent X;, and the usual Markovian independence assumption
holds between the X;s. The parameters of the model are threefold. First,
the transition probabilities, ©,;; = P(x4i|z:—1,5), give the probability that the
hidden state at time ¢ will be X; = i, given that the state at the previous time
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Figure 1: Hidden Markov model as a dynamic Bayesian network.




step t —1 was X; = j. Second, the starting probabilities, II; = P(Xo;), are
the probabilities that the system starts in state Xo = ¢. Third, the emission
probabilities, ©,;; = P(Z;;|X,,;), are the probability that observation Z; = i
will be made while in state X; = j. We refer to the set of all parameters as
0 ={0x,0z, Pi}.

Hidden Markov models have been extensively studied in the context of speech
recognition [5], along with many other applications in areas such as vision [2, 4].
The focus of this note is the learning the maximum a-posteriori estimates of
the parameters, ©, given by the values which maximize P(Z, ©). The standard
technique is an application of the expectation-maximization (EM) algorithm
of [1], which results in an efficient recursive estimation technique known as the
Baum-Welsh or forward-backward training procedure. This note will provide
a simple derivation of this particular application of the EM algorithm. The
first part, (Section 2), borrows heavily from the derivation in [3], as concisely
described by Thomas Minka ', and gives a general derivation of the expectation
and maximization steps which can be applied to any model. This is followed in
Section 3 by a derviation of the forward-backward equations assuming multino-
mial distributions and Dirichlet priors.

2 EM derivation
2.1 General EM

We wish to find the values of ® which maximize
1©)=r(z.0) = [ Pzx.0).
X

where the integral is over the values of the hidden variables X in the HMM. We
lower bound the value of f(©) with a function ¢(X):

_ [ P(7,X,0) P(Z,X,0)\ ™
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where the inequality is given by Jensen’s inequality. Taking logarithms we get
G(®.0) = [ a(X)log P(Z,X,0) - (X) loga(X). )
X

Then, at the current guess for ©, @', we choose ¢ to maximize G, so that g
touches f at ©'. We use the constraint that [, ¢(X) =1 and get

P(Z,X,0) P(Z,X,0)

q(X) = = = P(X]Z,0)
fXP(ZaXag) P(Za®)
The idea is then to
ISee his excellent set of tutorial notes at http://www-
white.media.mit.edu/ tpminka/papers/tutorial.html. The EM tutorial is at

ftp://vismod.www.media.mit.edu/pub/tpminka/papers/minka-em-tut.ps.gz



1. Choose ¢(X) to maximize the bound at the current guess, ®'. This just
means getting P(X|Z,0) and is the “E” step of EM.

2. Maximize the bound over ©. This means maximizing 2 with the ¢(X)
derived in the “E” step. That is, we maximize

/ P(X|Z,0")1log P(Z, X, ©). (3)
X

2.2 Multinomial-Dirichlet EM

This section will specialize the above procedure for probability distributions in
the multinomial family, with Dirichlet conjugate priors. We show the derivation
for ©x;; in what follows. The other parameters can be similarily derived. Max-
imization of equation 3 can be performed by noting that there is a constraint

on Oxj,
> Oxi =1,

which means that we want to solve

P(X|Z,0")1og P(Z, X, 0) Ox; =
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which is
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Assuming that the likelihood function of the completed data is given by a multi-
nomial distribution,

iz, xje) = [k 035 m

were Nx;; is the number of times X; = ¢ when X; ;1 = j in the (completed)
data. Assuming further that the priors are given by a Dirichlet distribution

P(@) = P(@X)P(ez)P(H) = DiT((‘)|OéXij)DiT(@Z|OéZij)DiT(H|ai),

then equation 4 becomes

0
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Z(NZij +azij)log ©zi; +
ij

> (Ni + ;) logIL;] = X.
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And therefore,
Nxij + axij

/ P(X|Z,0") =
X

Xij

A= Z/X P(X|Z,0")

fx P(X|Z,0")Nxij + axij
>i [x P(X1Z,0")Nxij + axij
_ fX P(X|Z,0")Nxi; + axij
o ZZ fX P(X|Z, 9')NXij + axij

axij + Epx|z,0)(Nxij)
> axij + Ep(x|ze(Nxij)

Oxij =

So we see that the parameters can be updates by simply taking the expected
counts, which form the sufficient statistics for the multinomial distribution.

3 Baum-Welsh Derivation

Our goal is then to find the expectations Ep(x|ze/)(Nxi;), which is
Ep(x|zon(Nxij) = / P(X1Z,0")Nxi;
b'e

_ /XP&XO...XT|Z0...ZT,®’)Z&(Xt,i)é(Xt_Lj) (5)
(6)

where
1 fX; =1
0 otherwise

sxi) = {

The sum over ¢ can be taken outside the integrations in (6), and the integrations
over Xo...X¢ 92, X¢41...X7 can be immediately performed, each giving factors
of 1. Further, the integrations over X; ; and X; can be performed, since the
d-functions simply pick out a particular value of these varibles: X;_1 ; and Xy ;.
Thus, we are left with:

T
Epx|z,0(Nxij) = ZP(Xt,i,th,ﬂZa 0), (7)

t=1

the expected number of times X; = i and X;_; = j given the data, Z =
Zy...Z7, and the current model parameters, ©. Factoring the term in the sum
by splitting the data Z up into two sets Zy...Z;_1 and Z;...Z7 gives the Baum-
Welsh equations for updating the parameters of the HMM using expectation



maximization (we leave out the ©® upon which every term is conditioned)

P(Xy.4,X-1,|7,0)
= P(ZZr| X5, Xt 1jy ZoonZi 1) P(Xpiy Xo 14y Zoo-Zi 1)
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which is exactly the (unnormalized) equation (37) from [5]. We use ©z,.;, where
the x represents the value of the observation Z;. We have left to evaluate the
a and S terms (the forward and backward variables, respectively). The alpha
term is simply the joint probability of X; = j and all the observations prior to
time ¢. It can be expanded recursively by summing over the previous states,
X¢—1, as follows:

Oét,j = P(Xt,jZO...Zt)
= P(Zi|X:jZ0... 2t 1)P(Xt;Z0.-Zt 1)
= P(Zi|X1;) Y P(Xy ;X1 11Z0.-Z11)
k

= P(Zt|Xt,j)ZP(Xt,j|Xt_1,k)P(Xt_LkZO...Zt_l)
k

= @Zi*jg Oxjpa—1k
%

Similarly, the beta term is the probability of all observations posterior to time
t, given the state at time ¢, X;. It can be expanded recursively by summing
over all next states, X;y; as follows:

,8,577; = P(Zt+1---ZT|Xt,i)

= Y P(Zisa| Xes1 0) P(Zugoe- Zr| X 1) P(Xip1 1] Xi0)
k

E Oz, 1 +kBt+1,6O xki
%

The terms ag and S must be evaluated separately. The 7 is initialized evenly,
and the o, = eZOiHi-

4 Baum-Welsh for POMDPs

Consider further that we not only have evidence conditioned on (or generated
by) the hidden states, X, but that there is evidence which the hidden states are
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Figure 2: POMDP as a dynamic Bayesian network.
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conditioned on, as shown in Figure 2. This type of model is called a partially

observable Markov decision process if the evidence e;” are actions, a, taken

from a set of possible actions, A. Now the transition probabilities, @ x are
replaced by conditional probabilities for the hidden states given the actions
and the previous states, @ x;j, = P(Xt,i|€:_kXt71,j)- Now we are interested in

examining the probability distributions conditioned on both sets of evidence et

and e~. We refer to the set of both evidences as simply e = e ...e5, eg ...er,

and e; = e e} .
P(X,:,X,_1le, ©)

= P(es...er| X, Xi—1,j,€0.-€—1)P(Xy i, Xi—1,j]€0---€-1)

= P(et...er|XiXi—1,;)P(Xi—1,jleo...es—1)P(Xt 5| Xi—1,j€0...€4-1)

= P(e| X1 Xi—1 jer41...em)Plepyr...er| Xy i Xi—1,5)
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The new term which shows up is the P(e; | X;_1 ), which is referred to as the
policy in a POMDP. With a deterministic policy, this term simply fixes the



value of e} as the action taken. However, in a more general case, the policy is
probabilistic, and the ’actions’ e™ are not fixed. We can evaluate the alpha and
beta terms much as before, but they now include the policy term as well. The
alpha term is:

Qg5 = P(Xt7j60...6t)

= P(et|Xt,jeo...et,1)P(Xt,jeo...et,l)

= P(e;"eﬂXt,j)ZP(Xt,th,Lkeo...et,l)
k

= Plej |Xe;)Plef X1 5) Y P(Xe j|Xi—1 keo--e—1) P(Xi—1 keo...€4-1)
k

= 96;*j§ OX jkxOtt—1 1
&

The beta term gives:

Bt,i = P(et+1---€T|Xt,i)

= > PlegialXep1 1) Plerro-er| Xepr k) P(Xep lefiy X, Plef1 1 X,:)
k

Z 96;+1*k5t+1,k9Xk*iP(62L+1 | Xt,0)
k

The new term which shows up is the P(e;"|X;_1 ;), which is referred to as

the policy in a POMDP. With a deterministic policy, this term simply fixes the
value of €] as the action taken.
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