
Expetation Maximization for Hidden MarkovModels:Derived from First PriniplesJesse HoeyDeember 15, 2000AbstratExpetation Maximization is a popular tehnique for deriving MAPestimation of model parameters. A suessful appliation is learning pa-rameters of hidden Markov models (HMMs). This note derives the Baum-Welsh learning algorithm for HMMs from �rst priniples.1 IntrodutionA hidden Markov model is a Bayesian network as shown (unrolled) in Figure 1.A set of hidden states Xt generates a set of observed variables Zt at eah of a setof times t = 0; :::; T . We refer to the set of states at all times asX = fX0; :::; XT gand Z = fZ0; :::; ZT g. We assume for now that both the observations and thehidden variables are disrete valued with Nz and Nx values eah. At timet, Zt, is assumed onditionally independent of all other variables at all othertimes given its parent Xt, and the usual Markovian independene assumptionholds between the Xts. The parameters of the model are threefold. First,the transition probabilities, �xij = P (xt;ijxt�1;j), give the probability that thehidden state at time t will be Xt = i, given that the state at the previous time
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Figure 1: Hidden Markov model as a dynami Bayesian network.1



step t � 1 was Xt = j. Seond, the starting probabilities, �i = P (X0;i), arethe probabilities that the system starts in state X0 = i. Third, the emissionprobabilities, �zij = P (Zt;ijXt;j), are the probability that observation Zt = iwill be made while in state Xt = j. We refer to the set of all parameters as� = f�X ;�Z ; P ig.Hidden Markovmodels have been extensively studied in the ontext of speehreognition [5℄, along with many other appliations in areas suh as vision [2, 4℄.The fous of this note is the learning the maximum a-posteriori estimates ofthe parameters, �, given by the values whih maximize P (Z;�). The standardtehnique is an appliation of the expetation-maximization (EM) algorithmof [1℄, whih results in an eÆient reursive estimation tehnique known as theBaum-Welsh or forward-bakward training proedure. This note will providea simple derivation of this partiular appliation of the EM algorithm. The�rst part, (Setion 2), borrows heavily from the derivation in [3℄, as oniselydesribed by Thomas Minka 1, and gives a general derivation of the expetationand maximization steps whih an be applied to any model. This is followed inSetion 3 by a derviation of the forward-bakward equations assuming multino-mial distributions and Dirihlet priors.2 EM derivation2.1 General EMWe wish to �nd the values of � whih maximizef(�) = P (Z;�) = ZX P (Z;X;�);where the integral is over the values of the hidden variables X in the HMM. Welower bound the value of f(�) with a funtion q(X):f(�) = ZX P (Z;X;�)q(X) q(X) �YX �P (Z;X;�)q(X) �q(X); (1)where the inequality is given by Jensen's inequality. Taking logarithms we getG(�; q) = ZX q(X) logP (Z;X;�)� q(X) log q(X): (2)Then, at the urrent guess for �, �0, we hoose q to maximize G, so that gtouhes f at �0. We use the onstraint that RX q(X) = 1 and getq(X) = P (Z;X;�)RX P (Z;X;�) = P (Z;X;�)P (Z;�) = P (X jZ;�)The idea is then to1See his exellent set of tutorial notes at http://www-white.media.mit.edu/ tpminka/papers/tutorial.html. The EM tutorial is atftp://vismod.www.media.mit.edu/pub/tpminka/papers/minka-em-tut.ps.gz2



1. Choose q(X) to maximize the bound at the urrent guess, �0. This justmeans getting P (X jZ;�) and is the \E" step of EM.2. Maximize the bound over �. This means maximizing 2 with the q(X)derived in the \E" step. That is, we maximizeZX P (X jZ;�0) logP (Z;X;�): (3)2.2 Multinomial-Dirihlet EMThis setion will speialize the above proedure for probability distributions inthe multinomial family, with Dirihlet onjugate priors. We show the derivationfor �Xij in what follows. The other parameters an be similarily derived. Max-imization of equation 3 an be performed by noting that there is a onstrainton �Xij , Xi �Xij = 1;whih means that we want to solve���Xij "ZX P (X jZ;�0) logP (Z;X;�)� �(Xi �Xij � 1)# = 0whih is ZX P (X jZ;�0) ���Xij [logP (Z;X j�)P (�)℄ = �: (4)Assuming that the likelihood funtion of the ompleted data is given by a multi-nomial distribution, P (Z;X j�0) =Yij �NXijXij �NZijZij �Nii ;were NXij is the number of times Xt = i when Xt�1 = j in the (ompleted)data. Assuming further that the priors are given by a Dirihlet distributionP (�) = P (�X)P (�Z)P (�) = Dir(�j�Xij)Dir(�Z j�Zij)Dir(�j�i);then equation 4 beomesZX P (X jZ;�0) ���Xij [Xij (NXij + �Xij) log�Xij +Xij (NZij + �Zij) log�Zij +Xi (Ni + �i) log�i℄ = �:3



And therefore, ZX P (X jZ;�0)NXij + �Xij�Xij = �� =Xi ZX P (X jZ;�0)�Xij = RX P (X jZ;�0)NXij + �XijPi RX P (X jZ;�0)NXij + �Xij= RX P (X jZ;�0)NXij + �XijPi RX P (X jZ;�0)NXij + �Xij= �Xij +EP (XjZ;�0)(NXij)Pi �Xij +EP (XjZ;�0)(NXij)So we see that the parameters an be updates by simply taking the expetedounts, whih form the suÆient statistis for the multinomial distribution.3 Baum-Welsh DerivationOur goal is then to �nd the expetations EP (XjZ;�0)(NXij), whih isEP (XjZ;�0)(NXij) = ZX P (X jZ;�0)NXij= ZX0:::XTP (X0:::XT jZ0:::ZT ;�0)Xt Æ(Xt;i)Æ(Xt�1;j) (5)(6)where Æ(Xt;i) = � 1 if Xt = i0 otherwiseThe sum over t an be taken outside the integrations in (6), and the integrationsover X0:::Xt�2; Xt+1:::XT an be immediately performed, eah giving fatorsof 1. Further, the integrations over Xt�1 and Xt an be performed, sine theÆ-funtions simply pik out a partiular value of these varibles: Xt�1;j and Xt;i.Thus, we are left with:EP (XjZ;�0)(NXij) = TXt=1 P (Xt;i; Xt�1;j jZ;�); (7)the expeted number of times Xt = i and Xt�1 = j given the data, Z =Z0:::ZT , and the urrent model parameters, �. Fatoring the term in the sumby splitting the data Z up into two sets Z0:::Zt�1 and Zt:::ZT gives the Baum-Welsh equations for updating the parameters of the HMM using expetation4



maximization (we leave out the � upon whih every term is onditioned)P (Xt;i; Xt�1;j jZ;�)= P (Zt:::ZT jXt;i; Xt�1;j ; Z0:::Zt�1)P (Xt;i; Xt�1;j ; Z0:::Zt�1)= P (Zt:::ZT jXt;iXt�1;j)P (Xt;ijXt�1;jZ0:::Zt�1)P (Xt�1;j jZ0:::Zt�1)= P (ZtjXt;iXt�1;jZt+1:::ZT )P (Zt+1:::ZT jXt;iXt�1;j)P (Xt;ijXt�1;j)P (Xt�1;jZ0:::Zt�1)P (Z0:::Zt�1)= P (ZtjXt;i)P (Zt+1:::ZT jXt;i)P (Xt;ijXt�1;j)P (Xt�1;jZ0:::Zt�1)= �Zt�i�t;i�Xij�t�1;jwhih is exatly the (unnormalized) equation (37) from [5℄. We use �Zt�i, wherethe � represents the value of the observation Zt. We have left to evaluate the� and � terms (the forward and bakward variables, respetively). The alphaterm is simply the joint probability of Xt = j and all the observations prior totime t. It an be expanded reursively by summing over the previous states,Xt�1, as follows:�t;j = P (Xt;jZ0:::Zt)= P (ZtjXt;jZ0:::Zt�1)P (Xt;jZ0:::Zt�1)= P (ZtjXt;j)Xk P (Xt;jXt�1;kZ0:::Zt�1)= P (ZtjXt;j)Xk P (Xt;j jXt�1;k)P (Xt�1;kZ0:::Zt�1)= �Zt�jXk �Xjk�t�1;kSimilarly, the beta term is the probability of all observations posterior to timet, given the state at time t, Xt. It an be expanded reursively by summingover all next states, Xt+1 as follows:�t;i = P (Zt+1:::ZT jXt;i)= Xk P (Zt+1jXt+1;k)P (Zt+2:::ZT jXt+1;k)P (Xt+1;kjXt;i)= Xk �Zt+1�k�t+1;k�XkiThe terms �0 and �T must be evaluated separately. The �T is initialized evenly,and the �0;i = �Z0i�i.4 Baum-Welsh for POMDPsConsider further that we not only have evidene onditioned on (or generatedby) the hidden states, X , but that there is evidene whih the hidden states are5
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− − − −Figure 2: POMDP as a dynami Bayesian network.onditioned on, as shown in Figure 2. This type of model is alled a partiallyobservable Markov deision proess if the evidene e+t are ations, a, takenfrom a set of possible ations, A. Now the transition probabilities, �X arereplaed by onditional probabilities for the hidden states given the ationsand the previous states, �Xijk = P (Xt;ije+t;kXt�1;j). Now we are interested inexamining the probability distributions onditioned on both sets of evidene e+and e�. We refer to the set of both evidenes as simply e = e+0 :::e+T ; e�0 :::e�T ,and et = e+t ; e�t .P (Xt;i; Xt�1;j je;�)= P (et:::eT jXt;i; Xt�1;j ; e0:::et�1)P (Xt;i; Xt�1;j je0:::et�1)= P (et:::eT jXt;iXt�1;j)P (Xt�1;j je0:::et�1)P (Xt;ijXt�1;je0:::et�1)= P (etjXt;iXt�1;jet+1:::eT )P (et+1:::eT jXt;iXt�1;j)P (Xt�1;je0:::et�1)P (e0:::et�1) P (Xt;ijXt�1;j)= P (e�t e+t jXt;iXt�1;j)P (et+1:::eT jXt;i)P (Xt�1;je0:::et�1)P (Xt;ijXt�1;j)= P (e�t jXt;ie+t )P (e+t jXt;iXt�1;j)�t;i�t�1;j"Xk P (Xt;ije+t;kXt�1;j)P (e+t;kjXt�1;j)#= P (e�t jXt;i)P (Xt;ije+t Xt�1;j)P (e+t jXt�1;j)�t;i�t�1;j"Xk �XijkP (e+t;kjXt�1;j)#= �e�t �i�Xij�P (e+t jXt�1;j)�t;i�t�1;jXk �XijkP (e+t;kjXt�1;j)The new term whih shows up is the P (e+t jXt�1;j), whih is referred to as thepoliy in a POMDP. With a deterministi poliy, this term simply �xes the6



value of e+t as the ation taken. However, in a more general ase, the poliy isprobabilisti, and the 'ations' e+ are not �xed. We an evaluate the alpha andbeta terms muh as before, but they now inlude the poliy term as well. Thealpha term is:�t;j = P (Xt;je0:::et)= P (etjXt;je0:::et�1)P (Xt;je0:::et�1)= P (e+t e�t jXt;j)Xk P (Xt;jXt�1;ke0:::et�1)= P (e�t jXt;j)P (e+t jXt;j)Xk P (Xt;j jXt�1;ke0:::et�1)P (Xt�1;ke0:::et�1)= �e�t �jXk �Xjk��t�1;kThe beta term gives:�t;i = P (et+1:::eT jXt;i)= Xk P (e�t+1jXt+1;k)P (et+2:::eT jXt+1;k)P (Xt+1;kje+t+1Xt;i)P (e+t+1jXt;i)= Xk �e�t+1�k�t+1;k�Xk�iP (e+t+1jXt;i)The new term whih shows up is the P (e+t jXt�1;j), whih is referred to asthe poliy in a POMDP. With a deterministi poliy, this term simply �xes thevalue of e+t as the ation taken.Referenes[1℄ A.P. Dempster, N.M.Laird, and D.B. Rubin. Maximum likelihood frominomplete data using the EM algorithm. Journal of the Royal StatistialSoiety, 39(B), 1977.[2℄ Jesse Hoey and James J. Little. Representation and reognition of omplexhuman motion. In Pro. IEEE CVPR, Hilton Head, SC, June 2000.[3℄ Stephen P. Luttrell. Partitioned mixture distribution: an adaptive Bayesiannetwork for low-level vision proessing. IEEE Pro. on Vision, Image andSignal Proessing, 141(4):251{260, 1994.[4℄ Carlos Morimoto, Yaser Yaoob, and Larry Davis. Reognition of headgestures using hidden Markov models. In Proeeding of ICPR, pages 461{465, Austria, 1996.[5℄ Lawrene R. Rabiner. A tutorial on hidden Markov models and seletedappliations in speeh reognition. Proeedings of the IEEE, 77(2):257{296,February 1989. 7


