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Abstract

We present a vision-based, adaptive, decision-theoretic model of human facial dis-

plays and gestures in interaction. Changes in the human face occur due to many

factors, including communication, emotion, speech, and physiology. Most systems

for facial expression analysis attempt to recognize one or more of these factors, re-

sulting in a machine whose inputs are video sequences or static images, and whose

outputs are, for example, basic emotion categories. Our approach is fundamentally

different. We make no prior commitment to some particular recognition task. In-

stead, we consider that the meaning of a facial display for an observer is contained

in its relationship to actions and outcomes. Agents must distinguish facial displays

according to their affordances, or how they help an agent to maximize utility. To

this end, our system learns relationships between the movements of a person’s face,

the context in which they are acting, and a utility function. The model is a par-

tially observable Markov decision process, or POMDP. The video observations are

integrated into the POMDP using a dynamic Bayesian network, which creates spa-

tial and temoral abstractions amenable to decision making at the high level. The

parameters of the model are learned from training data using an a-posteriori con-

strained optimization technique based on the expectation-maximization algorithm.

The training does not require labeled data, since we do not train classifiers for indi-

vidual facial actions, and then integrate them into the model. Rather, the learning

process discovers clusters of facial motions and their relationship to the context au-

tomatically. As such, it can be applied to any situation in which non-verbal gestures

are purposefully used in a task. We present an experimental paradigm in which we

record two humans playing a collaborative game, or a single human playing against

an automated agent, and learn the human behaviors. We use the resulting model

to predict human actions. We show results on three simple games.
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Chapter 1

Introduction

This thesis describes a model of human gestures and facial expressions that unifies

computer vision, uncertain reasoning, and decision theory. The motivation is that,

since humans use non-verbal signals in communication, computational agents that

interact with humans will need capabilities for learning, recognising and using the

extensive panoply of human non-verbal communication skills. The verb use is im-

portant: non-verbal signals are useful. For example, they may predict the future

actions of the signaler, or they may request actions from the perceiver. The per-

ceiver of a non-verbal signal must not only recognise the signal, but must understand

what it is useful for. The signal’s usefulness will be defined by its relationship to the

joint space of both signaler and receiver, their joint actions, their possible futures

together, and their individual ways of assigning value to these futures. The model

we present in this thesis aims to unify the computer vision aspects of automati-

cally perceiving human non-verbal behaviors with the decision-theoretic aspects of

putting those perceptions to use. The ability to explicitly reason about uncertainty

plays an important role in this unification. If an agent is to take decisions based

upon noisy visual data, then the agent must explicitly model its own uncertainty

about its perceptions. Bayesian networks are the ideal tool for modeling uncertainty

in video measurements and in decision theoretic models, providing a solid theoret-

ical basis for these models to co-exist. All the models presented in this thesis are

Bayesian networks (with utility).

We claim that it is important not to separate computer vision from decision

theory when modeling human behavior. It is not sufficient to build computer vision

sensors that deliver information to decision-theoretic reasoning modules, which then

decide upon actions. Recognition and action are too tightly coupled for this kind

of one-way communication. Decision making is difficult, and is best dealt with at a

high level of abstraction. Humans seem capable of acting in the world based upon

abstract representations of their sensory inputs. If these abstract representations are

1



sufficient for decision making, then there cannot be more useful information in the

stimuli than there is in the abstractions. Therefore, an efficient perceptual system

(which is presumably what humans have evolved to have) will be able to adapt its

low-level representation system to only pick up those parts of the signal that are

sufficient for building the high-level abstractions. It is important for low-level vision

components to not only send, but also receive information from high-level decision-

making components. We believe that a unified model of the two aspects is the most

effective method for approaching this problem.

This thesis presents a vision-based, adaptive, Bayesian model of human fa-

cial displays and gestures. The model is, in fact, a partially observable Markov

decision process, or POMDP, with observations over the space of video sequences of

human facial displays and gestures. The POMDP model integrates the recognition

of the non-verbal signals with their interpretation and use in a utility-maximization

framework. To ease the burden on decision-making, the model builds temporal and

spatial abstractions of input video data. The model can be acquired from data, and

can be used for decision making based, in part, on the non-verbal behavior of a

human through observation. However, optimal decision making in the face of large

output spaces is still an open problem, which this thesis does not attempt to solve.

Instead, we apply some simple approximate solution techniques to compute policies

of action based on non-verbal displays. These approximate policies work fairly well

in the examples we present, but would be insufficient in more complex situations.

Finding better approximate solutions is part of our current research.

Our work is distinguished from other work on recognising human non-verbal

behavior primarily because it does not require labeling of training data for particular

facial displays or gestures. We do not train classifiers for different behaviors and

then base decisions upon the classifier outputs. Instead, the model training process

discovers categories of behaviors in the data. This discovery is based, in part, upon

what non-verbal displays are important for making value-directed decisions. The

advantage of this approach is threefold. First, we do not need expert knowledge

about which displays are important. Second, since the system learns categories of

motions, it will adapt to novel displays without modification, and without a-priori

specification of said displays. Third, resources can be focused on tasks which will

be useful for the agent. It is wasteful to train complex classifiers for the recognition

of fine motion if only simple displays are being used in the agent’s context.

In constrast, psychologists have advocated the use of coding systems for

the description of facial action. In particular, the Facial Action Coding System

(FACS) [EW78] has become the standard for psychological inquiries into facial ex-

pression. Computer vision researchers have also adopted it as the standard to strive

2



towards [EP97, TKC01, BLB+03]. However, although the the recognition of facial

action units may give the ability to discriminate between very subtle differences in

facial motion, or “microactions”, it requires extensive training and domain specific

knowledge. For example, Bartlett et al. write that it would require approximately

250 minutes, or nearly half a million hand-coded frames of video to train their sys-

tem for most facial action units [BLB+03], while their current data set contains only

17 minutes of coded video frames. Notwithstanding this hurdle, which will surely be

cleared eventually, these systems are still not able to accurately distinguish action

units from each other in spontaneous video. The current state of the art is only

to distinguish brow lowering from random facial motion 75% of the time [BLB+03]

with less than 20 training examples. Their system needs over 50 labeled training

examples to achieve recognition rates over 90%. As Pentland has pointed out, the

importance of such a fine level of representation is not clear for computer vision

systems that intend to take actions based on observations of the human, and the

action unit analysis may only be useful for the behavioral sciences [Pen00]. Finally,

the same type of analysis is not applicable to gestures or body motion, as these do

not have well defined standards of form [McN92]: it will be difficult to come up with

a small set of “basic” action units which span the space of all possible gestures.

The next section gives a basic introduction to the human facial displays from

a psychology perspective. Psychology provides guidelines which we use to design a

model of facial displays and gestures for decision making in Section 1.2. Section 1.3

then gives an overview of our model. Section 1.4 describes how the model could

be used to for decision making in an autonomous agent. Section 1.5 describes the

experiments we have performed. Contributions of the thesis are given in Section 1.6.

Finally, Section 1.7 gives an outline of the main body of the thesis.

1.1 Non-Verbal Displays

Communication plays a critical role in life. Be it a conversation, a business trans-

action, the writing of a letter, or a choice of dress, the diversity of the human act

of communication is clearly evolutionarily dominant, allowing for collusion and col-

laboration [Fri94]. Although the auditory-speech language channel appears to carry

the most weight, communication occurs in multiple channels, adding the generation

and visual interpretation of gesture and facial expressions to speech and hearing.

Gestures and other actions complement speech, adding information and increasing

effect. Aristotle, in Rhetoric, points out ( [Ari], Book II, Chapter 8):

. . . those who heighten the effect of their words with suitable gestures,

tones, dress, and dramatic action generally, are especially successful . . .
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Falling under the umbrella of non-verbal communication, or gesture, the

human face, hands and body all perform communicative acts, which have been ex-

tensively practiced [dJ32], and studied [Dar72, ER97, Fri94, McN92]. The creation

and interpretation of signs has clear evolutionary advantages [Fri94], and these abil-

ities are deeply rooted in the history of the human species, far before the evolution

of spoken language. The perception and use of signs, and in particular facial ex-

pressions, develops in human children at a very young age. Three month old babies

can generate and recognize smiles [RFD97a]. The antecedence of facial expression

learning to spoken language acquisition in individual humans seems to mirror the

evolutionary development of non-verbal to verbal signals in the human species.

The advantages of non-verbal communication are rapidity and ease of in-

terpretation. Displays of aggression in males, for example, do not require higher

intellectual processing, and can be accomplished more effectively with simple ges-

tures or sounds. A more complex example is the initiation of conversation between

two humans, a joint action which requires a great deal of synchrony. In fact, timing

in conversations in general is critical, yet seems effortless for adult humans. At-

tempting to negotiate such synchrony using spoken utterances would be costly and

slow. Instead, the face, gaze and body posture are used as rapid and effective timing

signals. For example, the raising of hands by a listener is a signal that the listener

wants to say something, and so is asking the speaker to give her the floor [Cas00].

A speaker who lowers their eyes during a pause in a conversation may be indicating

that they still wish to hold the floor, and need only a moment to figure out what

to say next [Cho91]. Another well known example is the back-channel display of

acknowledgment, which is used by a listener to assure the speaker that their message

to date has been properly received, without causing an interruption.

The multiple channels used by humans in their communication also has evo-

lutionary advantages, since they allow for meaning to be more richly conveyed,

opening the door to more complex messages. Hand gestures in humans, for ex-

ample, may complement speech in a global way, adding an overall context to an

utterance which could not be simultaneously and synchronously achieved through

language alone [McN92]. Hand gestures may also be used to abstract concepts, such

as imperatives. For example, the spoken instruction to “put it down on the table

beside the record player” can be summarized as “put it there”, if accompanied by

a pointing gesture to the table beside the record player. The increased efficiency

this allows is typically cited as one of the primary evolutionary advantages of multi-

modal communication. Many animals use multiple modalities for communication.

A defensive feline does not simply hiss, but raises her hair and tail, and arches her

back. In fact, even spiders use vibration, vision and chemical senses for multimodal
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communication [UR02].

There has been a growing body of work in the past decade on the com-

municative function of the face [Fri94, RFD97b] and of the hands [McN92]. This

psychological research has drawn three major conclusions. First, non-verbal ges-

tures are often purposeful communicative signals [Fri94]. Second, the purpose is

not defined by the gesture alone, but is dependent on both the gesture and the

context in which the gesture was emitted [RFD97b, Cho91]. Third, the signals

are not universal, but vary between individuals in their physical appearance, their

contextual relationships, and their purpose [RFD97b]. We believe that these three

considerations should be used as critical constraints in the design of computational

communicative agents able to learn, recognise, and use human facial signals.

1.2 Model Design

Psychologists have found that gestures and facial displays are context dependent,

are often used for a purpose, and are individually variable. Therefore, the design

of a communicative agent that uses non-verbal displays must include the following

constraints:

1. Context dependence implies that the agent must model the relationships be-

tween the displays and the context in which they are shown.

2. If the agent is to act rationally, then it must be able to compute the utility of

taking actions in situations involving purposeful non-verbal displays. It must

understand the relationships between the displays, the context, and its own

utility function.

3. The signals are individual and context dependent, and so the agent needs to

adapt to new interactants and new situations, by learning new relationships

between non-verbal signals and other context.

These constraints can be integrated in a decision-theoretic, vision-based

model of human non-verbal signals. The model can be used to predict human

behavior, or to choose actions which maximize expected utility. We present this

model using the example interaction shown in Figure 1.1. Charlie (on the left) is

trying to decide upon an action to take. He is considering stealing a cake from the

cook’s tray, but is watching the cook’s behavior. He is trying to optimise over the

outcomes that will occur as a result of his actions. However, he is not in complete

control over the outcomes, as they also depend on the cook’s actions (on the left).

Nevertheless, he can observe the non-verbal actions of the cook, and use these to
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Outcome:

don’t steal cake
steal cake

Action:

get cake
get caught

Context:
previous

world
state

hunger/jail
Utility:

Display
Facial

Figure 1.1: Interaction between two humans as a partially observable Markov deci-
sion process (POMDP).
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predict what the cook’s actions will be, and what resulting outcomes are. In general,

the outcomes are dependent on both person’s actions, and other contextual factors,

such as the plate of cakes on the counter 1. The dependencies shown in Figure 1.1

are those of a partially observable Markov decision process, or POMDP [KLC98].

A POMDP describes the effects of an agent’s actions upon its environment,

the utility of states in the environment, and the relationship between observations,

the actions and the states. The Markovian assumption is that the agent’s history

is contained in its current state. A POMDP model allows an agent to predict

the long term effects of its actions upon his environment, and to choose valuable

actions based on these predictions. The POMDP framework addresses the design

constraints above in the following ways.

1. The observations of the POMDP are the displays of a human partner in a

video stream. The state of the POMDP is the context in which the displays

are emitted, and thus, the POMDP models the relationship between displays

and context. As psychologists tell us, the displays are only meaningful when

analysed in context. Their meaning, then, is this relationship between displays

and context modeled by the POMDP.

2. A utility function is part of a POMDP, and allows the agent to make decisions

leading to valuable states based, in part, upon the “meaning” of displays as

contained in the model.

3. POMDPs can be learned from data, allowing for adaptivity. Our work is novel

in this regard in that it does not use any prior knowledge about the kinds of

facial displays that are expected, but rather builds classes of facial displays

from unlabeled data. The models we learn discover the ways in which the

learned classes of non-verbal signals are related to the expected utility of the

agent’s actions. This type of learned model opens the door to the ability to

only model those aspects of the signal which are important to the agent. It is

not necessary to learn models of all possible facial displays, but only those the

recognition of which is useful for achieving value.

Rational agents must rapidly make value-directed decisions about actions

based on sensory information, and so must have some system for assigning value to

states of the world. Decision making is expensive, however, and raw video inputs

are far too information intensive for any hope of tractability. The agent must con-

struct abstract representations of the world over which a resource-bounded decision

making process can occur. In a POMDP, these abstractions are the non-observable

1To see what the outcome was, visit www.cs.ubc.ca/∼jhoey/dtfaces.
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states which describe facial displays at a high level. For example, one such state may

correspond with the wink of an eye, whereas another may correspond to a smile.

These abstract, high-level states condition the raw video signals using a multi-level

dynamic Bayesian network which incorporates both spatial and temporal abstrac-

tion. This model is summarized in the next section.

There will be little discussion of speech recognition and natural language

understanding in this thesis. Our work focuses solely on recognizing and using

non-verbal communicative acts. However, it is well known that gesture and facial

expression are intimately tied to speech [McN92, CBC+00], and one might object to

our omission. Nevertheless, research has shown that gestures take place globally and

synthetically, as opposed to language, which is linear-segmented (can be broken down

in to individual units) [McN92]. Further, semantic gestures do not combine to form

larger gestures, but remain one to a clause. Finally, gestures and facial expressions

vary from person to person [McN92, Cho91]. These findings give us good reason

to keep speech and gesture recognition at a distance, unifying them at some higher

level of temporal abstraction. That is, it does not make sense to try to correlate

a particular phoneme with one 30ms snapshot taken during a gesture. We must

instead seek to correlate some description of the entire gesture with the recognized

words or concepts conveyed by the language. Our Bayesian model shows how we

can classify sequences of motions in video, and how to learn correlations between

those classifications and modeled data from other modalities. With the important

assumption of independence at the lowest levels, we can easily incorporate modeled

data from any other sensor, so long as it can be described by a set of discrete states.

1.3 Model Structure

This thesis presents a unified Bayesian model of these vision-based aspects of non-

verbal display recognition and understanding. The model is a multi-level dynamic

Bayesian network, the parameters of which can be learned from unlabeled training

data. We consider that the context and the raw video signal are observable, but

the model is “free” to come up with an internal intermediate representation to map

between fast, continuous input signals to slowly changing, discrete context signals.

The parameters are learned using an a-posteriori optimization technique based on

the expectation-maximization (EM) algorithm [DNR77]. The model also includes

utility, and can be used to compute optimal or approximate policies of action. In

turn, these computations can guide the classification of the signals towards those

which are useful for achieving value. The model performs both spatial and temporal

abstraction in order to alleviate the burden on the decision process.
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Figure 1.2 shows an schematic overview of the model. We will describe it here

using facial displays as an example, but it can be applied equally well to gestures.

At the top we see the same model shown in Figure 1.1, with outcomes depending on

outcome
display

context
action

input video

motion &

descriptors
pose

temporal derivatives

discrete
Y

continuous
Z

Figure 1.2: Schematic overview of POMDP and its output function for creating spa-
tially and temporally abstract descriptions of video sequences. Actions and context
are shown at the top (the utility function is not shown explicitly). The observa-
tion (in this case facial expression) is a video sequence shown at the bottom. The
intermediate levels are for spatially and temporally abstracting the video.

actions, context, and high-level descriptors of non-verbal displays. At the bottom,

we see the input video sequence. The goal is to learn a mapping between the video

sequence and the abstract, high-level descriptor of the display. This means that

we want to compute the likelihood of observing an input video sequence, given this

high-level descriptor: P (video|display).

We consider that analyzing human facial displays from video streams involves

modeling both the current configuration or pose of the face and the way the face is

currently moving, or the dynamics of the face. Dynamics and configuration comple-

ment one another, and are akin to momentum and position in classical dynamics.

They can be both useful in describing what a human face does. The instantaneous
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pose of the face is given by the image region, I, containing the face. The region is

given by an independent tracking process. The instantaneous dynamics of the face

is given by the temporal derivative over the region of interest, dI, between succes-

sive images. Thus, video = {I,dI} = {I1, . . . , IT , dI1, . . . , dIT−1} and we seek to

compute P ({I,dI}|display). We use bold face symbols to denote sets of variables.

We factor the likelihood computation of P ({I,dI}|display) into three terms:

P ({I,dI}|display) =

∫

Z,Y
P (I,dI|Z)P (Z|Y)P (Y|display), (1.1)

where each Z is a continuous feature vector representing both the instantaneous

dynamics and pose of the face, but in a much lower dimensional space than the input

videos and derivatives. The continuous vectors, Z, are then discretized through

P (Z|Y) to a set of multinomial variables, Y, which are high-level descriptors of

instantaneous pose and motion over the course of the sequence. Finally, these high-

level, discrete variables are temporally abstracted to the display descriptor through

the mapping P (Y|display). The primary contribution of this thesis is a method

for analytically computing the likelihood in Equation 1.1 given a parametrization of

the three distributions, and for learning the parameters of these distributions from

unlabeled training data.

We give a brief description of each of the three terms in Equation 1.1. The

details can be found in Chapter 3.

P (I,dI|Z) The images and temporal derivatives are considered independent given

the continuous feature vectors at each time step and independent of one an-

other given their continuous descriptors. Thus,

P (I,dI|Z) =
∏

t

P (It|ZI,t)P (dI|ZdI,t).

The likelihood functions, P (It|ZI,t) and P (dI|ZdI,t), are computed using a

projection to a set of a-priori basis functions. Using pre-determined basis

functions defers any commitment to particular types of motion to higher lev-

els of processing, without affecting computational efficiency. We use the com-

plete and orthogonal basis of Zernike polynomials [vZ34], which have useful

properties for modeling flow fields [HL00], and images [TC88]. The images

are projected directly to the Zernike basis functions. Projections of temporal

derivatives are slightly more complex, since they do not characterise motion

directly. Instead, the projection is done through the intermediary of the (un-

known) optical flow field, which is probabilistically related to the derivative.

One of the main contributions of this thesis is a analytical method for evalu-

ating the probability distribution over this projection. This is important, as
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the flow fields include noise which is data dependent: it varies spatially across

the image according to the local structure. The method we have presented de-

scribes how to account for this noise when computing the likelihoods of spatial

derivatives given high-level classes [HL03].

Since we do not know which of these basis functions will be useful for any par-

ticular task, we use a feature weighting technique that works by placing priors

on the cluster means, such that basis functions which discriminate between

classes are weighted more highly.

P (Z|Y) Again, we assume the continuous features are independent given their dis-

crete counterparts, such that

P (Z|Y) =
∏

t

P (ZI,t|Wt)P (ZdI,t|Xt),

where Yt = {Xt,Wt}. The likelihoods of continuous features given discrete

descriptors are modeled with mixtures of Gaussian distributions, such that

P (ZI,t|Wt) = N (ZI,t;µW ,ΛW ) and P (ZdI,t|Xt) = N (ZdI,t;µX ,ΛX)where µW

and ΛW (µX and ΛX) are the mean and covariance, respectively, of the Gaus-

sian distribution for a particular value of W (X). States of X and W corre-

spond to classes of instantaneous motion and pose, respectively. For example,

during a smiling display, classes of X may correspond to smile expansion or

smile relaxation motions, while classes of W may correspond to smiling or

neutral poses.

P (Y|display) This likelihood involves temporal abstraction. Recall that Y is a se-

quence of discrete motion and pose descriptors, which independently charac-

terize the instantaneous dynamics and configuration in the input video. When

used to describe facial motion, they may represent a smiling facial pose, or

motions observed during contraction of the eyebrows. On the other hand,

display is a high-level display descriptor. For example one display may de-

scribe sequences in which a person’s face expands into a smile. Another may

describe the contraction of the face into a frown, and the subsequent relaxation

back to a neutral pose. The mapping from sequences of instantaneous motions

and poses to high-level descriptors of facial display sequences is achieved with

mixture of coupled hidden Markov models (CHMM). A CHMM is a dynamic

Bayesian network which couples two Markovian processes over the high level

descriptors of dynamics and configuration, X and W . The CHMM models

the temporal progression of both motion and pose descriptors, as well as the

interaction between them. The similarity between the two output distribution
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models over dynamics and configuration makes this model elegant and simple

to describe, yet powerful in its ability to model facial displays. Each display

state has a separate CHMM, combined in a mixture model. The distribution

over high-level displays can be computed using belief propagation [Pea88] in

each CHMM.

Chapter 3 describes how to compute the likelihood in Equation 1.1. Chap-

ter 4 shows how the parameters of the model, including the means and covariances

of the Gaussian output distributions, the feature weights, and the parameters of the

mixture of CHMMs, can learned using a Bayesian a-posteriori optimization based on

the expectation-maximization algorithm [DNR77]. The use of priors allows learning

of the model even in the face of little training data, or online in a reinforcement

learning situation.

1.4 Using the Model

It would be foolhardy to attempt to learn models of full-blown human interactions

directly. Much work in understanding the learning process must be done before we

can hope to reach this lofty goal. Instead, we develop an experimental paradigm

which allows us to focus only on a subset of displays in a restricted context. We

record human subjects playing cooperative, interactive games which require the use

of non-verbal communication. The games are designed such that the communication

is critical for winning in the game. Cooperative games are used for two reasons.

First, we believe that most simple human interaction is cooperative. This is what

makes a species survive! Second, cooperative games are simpler to model because

we can assume that each player is working towards the same goal. Thus, a player

can do sufficiently well without explicitly modeling his partner’s utility function.

The video data taken during play of a particular game is used to learn a

decision-theoretic model that can be used to compute strategies of action for a ra-

tional agent. There are many ways of approaching the task of finding optimal action

plans for multi-agent games. A game-theoretic solution concept involves examining

the models and utility functions of all players, and attempting to understand the

behavior of all the players in the game simultaneously, assuming that they are all

rational agents. However, these types of solutions are used to understand the way in

which humans will interact together. We would like our methods to be useful for an

artificial agent playing a game with a human. In this case, it is not possible, in gen-

eral, to know the utility functions of each player in the game, and we must instead

adopt the decision-analytic approach to games [Mye91]. This approach considers

the game from the perspective of individual agents. Each agent’s optimal strategy
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is to maximize its expected payoff with respect to its beliefs about the strategies of

all the other agents. There are problems with this approach. The possible strategies

of all other agents will inevitably include their assessments of the possible strategies

of all other agents as well. Therefore, to figure out how to behave rationally, an

agent would have to know how another rational agent would expect him to behave,

which is the problem he started out with. This infinite regress makes it difficult to

justify decision-analytic solution concepts from a game theoretic standpoint.

However, a decision-analytic agent can attempt to explicitly model this in-

finitely nested system of beliefs, as described in [Gmy02]. The idea is that the agent

can perform sufficiently well in a game by “cutting off” the infinite nesting at some

point. For example, agent A can explicitly model the beliefs of agent B, but not

the beliefs that agent B has about agent A’s beliefs. This type of analysis may

be particularly relevant in cooperative games, in which agents may assume that all

collaborators share roughly the same utility function. The games we consider in

this thesis are simple enough that these types of considerations do not play a major

role. Further work into the use of decision-analytic models for multi-agent systems

is warranted for more complex situations.

1.5 Experiments and Results

We present experimental results on data sets taken during play of three games: the

imitation game, a robot control “game”, and the card matching game. The first

(imitation game) only involves facial displays as actions, and so does not have a

reward function. This game is used to explore the representational power of our

computer vision modeling techniques. The second (robot control) involves a single

human performing gestures for robot control. The robot control experiments are

intended as a simple demonstration of our system working with something other

than facial expression, and of our value-directed structure learning techniques. The

experimental setup for the robot control experiments is very simple, and we do not

claim a gesture recognition system that would deal with orientation, time scaling,

or robot movement and viewpoint. The third (card matching game) involves two

humans playing a collaborative game. The facial displays are fairly simple, but the

decision theory problem is much more complex than the other two games. This data

is used to demonstrate how a policy can be computed based, in part, on non-verbal

displays.

During play of the imitation game, a human tries to mimic the facial displays

of an animated cartoon face. These displays involve some complex facial motions,

and we use this game primarily to demonstrate the computer vision modeling tech-
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niques. We perform three analyses on this data in order to gain understanding

of the different components involved in the model. The first analysis looks at the

spatial abstraction of instantaneous motion, and assumes temporal independence:

each flow field is independent of all others. This allows understanding of the motion

representation we use, and shows how clusters of similar instantaneous motions can

be discovered in a data set. The second analysis does the same as the first, but

for the facial configuration. The third analysis includes the temporal abstraction of

both instantaneous motion and configuration, and looks at how similar sequences of

motions (temporally extended facial displays) can be clustered together. We present

these three separate treatments because each model performs a different function,

and the first two are an integral part of the third. The simple mixture of Gaussians

model assumes temporal independence, and learns models which spatially abstract

each frame of the video data. The coupled hidden Markov models use these spatial

abstraction models as their lowest level, and perform temporal abstraction, learning

the temporal progression of the data. We show results from a leave-one-out cross-

validation experiment for each of three subjects playing the imitation game, where

we attempt to infer the cartoon display that produced the observed facial motion

on unseen data. These results are compared to those obtained if the training data

is labeled, and we find our clustering method performs well.

Robot control using gestures is the second “game”. An operator signals

navigation commmands to a robot using hand gestures forwards, stop, go left and

go right, and rewards the robot for performing the correct action after each gesture.

The robot learns the gesture categories, their number, and their relationships to

its actions and utility functions. It can then use the learned model to take actions

after subsequent gestural commands. We perform a leave-one-out cross-validation

experiment and measure how much reward the robot would gain by taking these

actions on unseen data. We find error rates of only 2% over 48 test sequences.

The card matching game is played by two humans through a computer in-

terface. The players can see, but not hear, one another. They are allowed to

communicate through this visual link, but no restrictions are placed on the type of

communication. Each player has a hand of three cards, but can only see their own

cards, not their partner’s. Each player gets to play a single card, and they both win

if the suits of their played cards match. The idea is that the players must somehow

agree, using only visual communication, about which card to play. This general form

of the card matching game has a similar flavor to the Krauss-Glucksberg referential

test used to study the development of language [KG77]. In a Krauss-Glucksberg

test, the two subjects can hear, but not see, one another, and must choose match-

ing “nonsense” symbols from identical sets. To pass the test, they must develop a

14



common referential language for the symbols, which often involves one subject imi-

tating the symbols of the other. The general card matching game is similar because

there are no pre-defined standard gestures for playing cards, and the players have

to develop a communication system for referring to card suits.

We present results on a simplified version of the card matching game, in

which one player has the ability to make a “bid” of a card suit. The other player

must then simply agree or disagree with the bid. This game simplifies the analysis

because it allows the players to use a pre-defined set of gestures: head nods and head

shakes. The data is used to train a decision-theoretic model, which must learn the

relationship between what a player is doing, the state of the game, what the future

actions will be, and how the outcome will benefit the players. The model must also

learn what a player expects his partner to display, given the state of the game. The

model is used to compute a policy of action using an approximation technique, and

is demonstrated on a test data set.

1.6 Contributions

The major contributions of this thesis are as follows. They are ranked in order of

importance, and references to our published work on these subjects are shown.

• [Hoe01, Hoe02, HL04, Hoe04] A novel and unified model of human non-verbal

behavior in video streams, integrated with decision making over high level

context states and actions. A Bayesian a-posteriori learning procedure for

adapting the parameters of the model to training data. This model aims at

unifying computer vision with decision theory. The goal of computer vision

systems has traditionally been exactly the task that the computer vision is

performing: the goal of a face recognition system is to recognise faces, while

the goal of a pedestrian tracker is to track pedestrians. However, the field

is ready to move on to domains in which the goal is something larger than

just the computer vision task. For example, facial expression recognition can

be used by an embodied conversational agent, and pedestrian trackers can be

used by smart buildings. Integrating computer vision with actions and goals

is an important step, not just for the larger systems that use computer vision,

but also for the computer vision task itself. In fact, the task of the computer

vision system is defined by the goals it is being used to reach. It is important,

therefore, not to consider the computer vision task alone, but rather in the

context of whatever it is being used for.

Decision theory is the standard method used by rational agents to choose

actions, and most planning tasks can be formulated as decision theoretic mod-
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els. This thesis shows how computer vision modeling of human action can be

unified with decision theoretic planning in a single, Bayesian model.

• [HL03] A novel probabilistic method for spatially abstracting optical flow fields

to a set of basis functions. The usual method for constructing simple descrip-

tions of classes of optical flow fields is to first compute the flow field from the

spatio-temporal image derivatives, then to project it to some low dimensional

subspace, and finally to model the distribution over projections as arising from

a number of discrete categories. However, each stage of this process discards

information about the noise inherent in the estimation. We have presented a

Bayesian approach that directly models the distribution over spatio-temporal

image derivatives given the motion classes. The method includes the appli-

cation of a Bayesian feature weighting technique, obviating the need for prior

selection of basis functions.

• [HL00] Use of Zernike polynomials as descriptors of optical flow. The Zernike

polynomial basis functions have been used for analysis of shapes [TC88, BSA91,

HSJ95, KK00]. Their advantages are efficiency of computation, and accuracy

of reconstruction. Our work is the first to apply the Zernike polynomial basis

for representing optical flow [HL00].

1.7 Thesis Outline

The thesis is structured as follows. Chapter 2 discusses some of the previous work

on the psychology of facial movement, on the modeling of facial motion and hu-

man body motion in general using computer vision, and on the decision-theoretic

modeling of human action. Chapter 3 presents a detailed description of a general

class of Bayesian hierarchical models of human facial displays which conform to

the assumptions made above. This chapter also describes the method we use for

tracking a face in a video sequence. Chapter 4 show how the parameters of the mod-

els can be learned from data using the expectation-maximization algorithm. Some

implementation details are also given in this chapter. Chapter 5 then describes

how the learned models can be used to predict human actions in repeated Bayesian

games with non-verbal communication, and how to choose optimal actions for a

computational agent in an interaction with a human. Chapter 6 demonstrates the

model learning techniques described in Chapter 4, and shows results on three sets

of data. Our conclusions and directions for future work are described in Chapter 7.

There are four appendices which follow the bibliography. They contain most of the

mathematical derivations which are not critical an understanding of the work, but
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would be necessary for an implementation. The first is a small proof of an equation

used in the derivation of the optimization algorithm we use for learning the model.

Appendix B shows a derivation used in the tracking equations. Appendix C derives

the learning equations for the simple time-independent mixture model, including

feature weighting. Appendix D derives the learning equations for the temporal

sequence models.
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Chapter 2

The Study of Faces and

Gestures

This chapter examines some of the prior work on human non-verbal behaviors from

the perspective of psychologists and of computer scientists. The literature on this

subject is vast, and arises in at least four major research areas. Indeed, much of the

work on facial expression and gesture analysis is inherently inter-disciplinary, bridg-

ing cognitive science, computer vision, artificial intelligence, and human-computer

interaction (HCI) [LS00]. In this chapter, we will first give a broad summary of

each of these disciplines, and the relationships between them. The summary will

be annotated with some key references to the major works in each field and in each

cross-disciplinary endeavour. These will be books, survey articles, or conference

proceedings where possible, to give the reader an idea of the broadest place to look

for further information. We will then proceed to give a more in depth review of

the work in each area. In particular, we will focus on the work in psychology, and

the work in computer vision. This will be followed by a review of some of the

work bridging these topics. We will show how our work falls into this last category,

combining ideas from each of the major research areas.

Figure 2.1 is a schematic of the four major research areas which are impor-

tant to this thesis. The cognitive science and psychology literature is an important

factor, as it studies human behavior, and can give indications about what to ex-

pect. Psychologists have been studying facial expression from Darwin’s 1872 The

expression of the emotions in man and animals [Dar72] and Ekman’s 1972 Emo-

tion in the human face [EFE72], to the more recent expositions in McNeill’s 1992

Hand and Mind: What Gestures Reveal about Thought [McN92], Fridlund’s 1994

Evolution of Facial Expression [Fri94], and Russell’s 1997 The Psychology of Facial

Expression [RFD97a]. Section 2.1 discusses this literature in more detail.

18



[FG02,FL03,WHT03]

Computer VisionCognitive Science
[Dar72,EFE72]

[McN92,Fri94,RFD97a]

[MV00,PH00]

[LS00]

[vNM53,Mye91,Put94]

Decision/Game Theory

HCI
[CHI03,UM03]

[CSPC00,Pen00]

[DP96][GL00]

Figure 2.1: Four major research areas (rectangles) and key references for decision
theoretic modeling of facial expressions and gestures. Links show that research
areas draw from one another. Ellipses show inter-disciplinary research areas and
key references. HCI and computer vision both draw heavily from cognitive science,
so the links between these fields are emphasised. Finally, the central star shape
denotes this thesis topic, and its links to the four major research areas.

Computer vision scientists have been describing human motion for many

years. The bi-yearly Proceedings of the International Conference on Automatic Face

and Gesture Recognition publishes the frontier of research in the field [FG02]. A

recent survey on facial expression analysis is Fasel and Luettin’s 2003 Automatic

Facial Expression Analysis: A Survey [FL03], while a more general review of hu-

man motion analysis is Wang et al.’s 2003 Recent Developments in Human Motion

Analysis [WHT03]. Much of the computer vision literature on the analysis of faces

and gestures draws from cognitive science, but primarily from a small number of

works relating to emotion in the human face [EFE72], and from McNeill’s book on

gestures [McN92]. Section 2.2 delves further into the vast computer vision literature.

Decision theory and game theory play an important role in the design of ratio-

nal agents. Von Neumann and Morgenstern laid the groundwork for this field in their

1953 Theory of Games and Economic Behavior [vNM53]. A more recent book on

the subject is Myerson’s 1991 Game Theory: Analysis of Conflict [Mye91]. Markov

decision processes (MDPs) are discussed at length in Puterman’s 1994 Markov De-

cision Processes: Discrete Stochastic Dynamic Programming [Put94]. Partially ob-

servable Markov decision processes (POMDPs) are discussed by Kaelbling, Littman

and Cassandra [KLC98]. We will leave discussion of more recent work with decision
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theoretic models to the discussion on MDPs and POMDPs in Chapter 5.

Human Computer interaction, or HCI, considers methods for getting hu-

mans and computers to interact more easily. Two major yearly conferences cover

much of the most recent research in this field: the CHI (computer-human inter-

action) conference covers many areas from privacy to video-conferencing [CHI03],

while the UM (user modeling) conference deals more specifically with adaptive user

models [BCdR03].

Some of the most interesting recent work takes place in the intersections be-

tween the four major fields we have just described. Some of these cross-disciplinary

areas are also shown in Figure 2.1. Lisetti and Schiano’s 2000 Automatic facial ex-

pression interpretation: Where human-computer interaction, artificial intelligence

and cognitive science interact [LS00], gives an informative overview of research

combining HCI, computer vision and cognitive science. Cassell’s 2000 Embodied

Conversational Agents [CSPC00] gathers a number of papers from researchers in-

terested in using computer vision in HCI-related tasks. Pentland’s 2000 Looking

at People [Pen00] gives another overview from a computer vision perspective. A

new workshop has been initiated to discuss research in using computer vision for

HCI: the IEEE Workshop on Computer Vision and Pattern Recognition for Human

Computer Interaction [CVP03]. The yearly International Conference on Multimodal

Interfaces (ICMI) also presents much of the work in this field [ICM03].

Efforts have recently been made at integrating decision theory with HCI.

Murray and VanLehn’s 2000 paper on DT Tutor shows how decision theoretic models

can be used to select optimal tutor actions in an intelligent tutoring environment.

Paek and Horvitz describe how decision theory can be used to model conversation

in their 2000 Conversation as Action under Uncertainty [PH00]. Gmytrasiewicz and

Lisetti have recently described emotional dynamics using decision theoretic models

in their 2000 Using decision theory to formalize emotions for multi-agent system

applications [GL00]. However, none of these efforts at bringing decision theory to

HCI uses computer vision. Active vision is an exception. Darrell and Pentland used

decision theoretic models (POMDPs) to control the foveation of an active camera in

their 1996 Active Gesture Recognition using Partially Observable Markov Decision

Processes [DP96].

The work we present in this thesis finds common ground with all four of the

major fields we have been discussing. It is motivated by recent work in cognitive

science, and uses decision theoretic models with computer vision observations. We

learn these models from data taken during interactions between humans and com-

puters. They explicitly integrate computer vision observations with actions, and are

designed for human computer interaction.
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2.1 Psychology of Facial Expression

Changes in the human face arise from many sources. While it is commonly held that

the face is primarily used for the expression of emotion, there are other, perhaps

more significant reasons behind facial displays 1. This is particularly important from

a computer vision perspective, for we only have to notice the prevalence of speech-

related lip movement during interaction to realise that the modeling of facial motion

will involve much more than just emotion recognition. We first give an overview of

the research into the expression of emotion in the human face, followed by some of

the more recent explorations into other motivations behind facial displays.

Facial expressions and gestures in both humans and animals have been ex-

tensively studied over the course of history. Charles Darwin’s The expression of the

emotions in man and animals is perhaps the oldest writing that is still influential

today [Dar72]. In it, he attempts to link the emotions with the human face in a two-

factor model. He posited that facial expressions were either involuntary expressions

of emotion or ”willful and employed to social ends” [Fri94]. Darwin’s two-factor

model was more recently taken up in the facial expression program [ER97, Iza97].

The facial expression program assumes that there are somewhere between five and

nine basic emotions, and that these emotions are innate, universal and discrete.

Other emotions are mixtures, or blends of the basic emotions. Furthermore, each

emotion has an involuntary characteristic facial expression associated with it. Ex-

pression of emotion in the face can, however, be voluntarily masked, replaced or

imitated, but the ”true emotion” always leaks out and can be detected in the face.

The facial expression program led to the development of the Facial Action

Coding System, or FACS [EW78]. FACS describes the pose of the human face

as a combination of basic facial deformations, called action units, or AUs. Each

action unit is essentially binary, is numbered and is objectively described. For

example, AU 1 corresponds to a raised inner brow, while AU10 is the upper lip

raised, and AU46 is a wink. A trained human FACS coder can observe a still image

of a face, and determine which action units are ”on”, and which are not. Ekman

claims that combining AUs allows a human to express emotion. For example, the

expression of happiness corresponds to a mixture of AU 1 + 2 + 10 + 25 + 26. The

FACS coding system has been used extensively in research on the motion of the

face [GLW01, Rus97, DBH+99].

Ekman’s facial expression program used an experimental method that con-

sisted of showing still photographs of people’s faces who were in the midst of dis-

playing what he claimed were prototypical expressions of emotions. The subjects

1Hence our use the terminology display rather than expression to avoid restricting our-
selves to emotional expression in the human face.
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were then asked to choose one of the five emotions (fear, happiness, surprise, anger

or disgust) as the one most associated with the photographs. Stripped of context

as they were, the photographs were very often classified as the emotion they were

supposedly displaying [EFE72]. However, in a different experiment, Carroll and

Russell [CR96] showed the same photographs to a different set of subjects. Before

showing the photographs, they gave the subjects a story to read and told them that

the face in the photograph was the face of the person in the story. The subjects were

then asked to describe the emotion the person in the photograph was feeling. The

results showed that the interpretation of meaning in the face was heavily biased by

the context. Subjects ascribed “anger” to “fear” photographs, “hope” to “surprise”

photographs. If there is an emotional content to the meaning of facial displays, it

does not appear to be categorical and universal, but rather dimensional and contex-

tual. That is, emotions do not occur in discrete categories, such as “happiness” or

“sadness”, but vary continuously along dimensions such as arousal (high-low) and

valence (positive-negative). Further, emotions are not independent entities that are

culturally and individually invariant, but are dependent upon the context in which

they occur.

Russell and Fernández-Dols [RFD97b] and Fridlund [Fri94] both point out

that Darwin may have been misinterpreted, and that there are other, more prag-

matic, ways of understanding facial expressions. They suggest the behavioral ecology

view of human facial expression, and argue that the human face is used primarily as

a communication tool, which complements and associates with speech and language.

For example, Chovil [Cho91], measured people’s facial motion during conversations

and noticed that displays rarely are expressions of emotion, but rather constitute

syntactic and semantic signals. She classified facial displays in terms of their infor-

mative function, rather than their physical description. She found that movements

in speaker’s faces occurred primarily as syntax markers, as illustrations of words,

and as additional information. Listeners, on the other hand, used their faces to

non-invasively comment on the speaker’s dialogue.

There is much evidence to support the hypothesis that faces, as gestures, are

only interpretable within the context in which they are displayed, and are individu-

ally unique [Fri97, Cho91, McN92]. Context is defined as all circumstances relevant

to the display, and may include concurrent or proximate speech and gestures of ob-

server and performer, as well as other environmental factors. For example, eyebrows

are sometimes raised during conversation when the speaker is thinking or remember-

ing. However, eyebrows are also raised in back-channel displays of acknowledgment,

or when an individual is taking turn in a conversation [Cas00]. In any case, the

observed facial display carries little meaning by itself, while the combination of the
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current context and the observed facial display is meaningful. Russell provides the

following description of an experiment conducted in Russian director Lev Kuleshov’s

workshop just after the 1917 revolution (From [Rus97], p295):

... Kuleshov created three silent film strips each ending with the same

footage of a deliberately deadpan face of the actor Ivan Mozhukhin. In

one strip, Mozhukhin’s face was preceded by a bowl of hot soup, in the

second by a dead woman lying in a coffin, and in the third by a young girl

playing with a teddy bear. The result was an illusion: Audiences saw

emotions expressed in Mozhukhin’s expressionless face. [One student]

recalled, ”The public raved about the acting of the artist. They pointed

out the heavy pensiveness of his mood over the forgotten soup, were

touched and moved by the deep sorrow with which he looked on the dead

woman, and admired the light, happy smile with which he surveyed the

girl at play. But we knew that in all three cases the face was exactly the

same.”

This quote exposes the idea that the interpretation of expressions in faces cannot

be decoupled from the context in which they occur.

Non-verbal behavior, including facial displays and gestures, are important

aspects of human communication. Agents can use non-verbal signals to facilitate

or manage face-to-face interactions. The use of modalities other than speech is an

important advantage, which allows for more efficient communication. Consider that

agents in a conversation are working together on a joint project [Cla96]. That is, they

are trying to achieve some common goal which holds value for all involved agents.

The agents are working on this goal by communicating propositional content with

speech. Using non-verbal displays, however, they can simultaneously issue performa-

tive signals, which indicate the reasons for the communication [Aus62, PP00]. Raised

eyebrows and rising intonation of speech are typical performatives accompanying a

question, and indicate to the listener that they are expected to give an answer. In

this case, the content of the question is the proposition, while the raising eyebrows

and rising intonation of speech are indicating that the speaker is communicating this

statement because he wants the listener to answer a question. Performative acts,

therefore, are an efficient method for each agent to inform their partner of which

actions they are expected to take. That is, the speaker’s performative efficiently

biases the listener’s choice of response action [PP00].

For example, the speaker who raised his eyebrows at the end of a question was

telling the listener to answer the question. Suppose the listener, however, was about

to make a statement (utter a proposition). She now has two choices. She can either

ignore the speaker’s performative, and go ahead with her statement, or she can take
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the speaker’s suggestion and answer the question. In general, she may be able to

choose some intermediate actions which attempt to optimise all agent’s preferences.

The performative is necessary for cooperation in this simple example. Without it,

the listener would only have the option of going ahead with her question (she does

not know the speaker’s utterance required an answer), leading to possible missed

goals for the speaker (he does not get his answer). In general, the performative only

biases the listener’s actions towards those that are of maximal value the speaker. To

cooperate, the listener must then choose an action based upon both his values and

those of the speaker, which are indicated by her performative. At this stage, other

factors come into play, such as the power structure between speaker and listener,

which may influence how the two values are combined.

This psychology literature lead us to the conclusion that, in order to interact

naturally with humans, computational agents will need to recognize (and generate)

situated and purposeful non-verbal signals, which vary widely across individuals and

contexts [RN96, Cas00]. That is, they will need to understand the relationship

between the observed displays, the context of the interaction, the expected utility

(including goals of all involved agents) in order to use the information to make

cooperative action choices.

2.2 Describing Human Motion with Computer Vision

Eadweard Muybridge was perhaps the first to analyse human and animal motion

from video sequences [Muy87]. Commissioned by Leland Stanford, he attempted to

find out what animals and humans actually were doing during typical movements,

and his findings shed light on the kinesiology of human and animal motion. For

example, his careful analysis of videos of galloping horses demonstrated that the

commonly held belief about symmetrical foreleg motion was incorrect, and that

galloping was actually a complex, asymmetrical pattern of leg movements.

More recently, computer vision researchers have been trying to automatically

analyse human motion. Research has focussed on three major categories: facial ex-

pression [MP91, TP91, BY97, EP97, OPB97, LTC97, CET98, DBH+99, TKC01],

gesture [SP95, DEP96, WBC97, CT98, VM99, WB99, WPG01], and whole body

motion [NA94, BH96, JBY96, Bre97, LB98, LF98, RB99, Bra99a, WCP00, KM00,

GJH01, BD01, OHG02]. There is also a large body of work in recognising lip and

facial motions connected to speech [LT97, RE01, VBPB03], and on generation of

facial motion from speech using models learned from data [BCS97, Bra99b, DH01].

This work has a wide range of potential applications, from visual surveillance to

advanced user interfaces. Survey articles have recently been published on both hu-
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man motion analysis [Gav99, WHT03], gesture recognition [PSH97], and on facial

expression analysis [PR00, FL03]. Lisetti [LS00] also gives an informative mul-

tidisciplinary review on facial expression analysis. Our research is distinct from

most of this work in that we do not attempt to learn pre-defined categories of

motions, instead building a system to automatically discover the important pat-

terns in the data. Research which is similar in spirit to this has been carried out

by [DEP96, Bra97, CP99, WCP00, WPG01].

Feature

Extraction
ClassificationAcquisition/

Tracking

video / images

categories

Figure 2.2: General computer vision approach to recognition of human motion maps
video inputs to categorical output. It typically involves three stages: acquisition of
regions of video, extraction of features, and classification.

Analysis of human motion involves three major stages, as shown in Fig-

ure 2.2. First, the acquisition or segmentation of the part(s) of video to be analysed.

For example, detecting and tracking of faces, hands, or entire human bodies is the

usual first step towards any facial expression, gesture or human motion recogni-

tion system. We cover some of the literature on tracking in Section 3.7. Second,

the extraction of features from these acquired parts. This is usually done by first

estimating some quantity of interest at the pixel level, and then spatially abstract-

ing this to a low dimensional feature vector. Optical flow [MP91, BY97, EP97,

CT98, LKCL98, DBH+99], color blobs [SP95, Bre97], deformable models [LTC97],

motion energy [BD01], and filtered images [BLB+03], are the more well used pixel-

level features. Spatial abstraction is achieved, for example, by using the pixel-level

features to modulate a 3D model [EP97], or by projecting them to a low dimen-

sional subspace [TP91, BY97]. The third stage is to classify the extracted features

into a discrete set of non-verbal behaviors, such as facial expressions or gestural

primitives. Since the extracted features are extended in time, this usually involves

some kind of temporal modeling. Spatio-temporal templates [EP97], Dynamic time

warping [DEP96], and hidden Markov models [SP95] are all popular approaches.

While much research in the analysis of human motion separates the tasks
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of representing the motion and deformation of the body from that of analysing its

temporal trajectory, as we have just described, some of the early work considers the

spatio-temporal space directly. For example, Niyogi and Adelson [NA94] analysed

walking figures by searching the XYT (spatio-temporal) volume of a video segment

for repetitive patterns of motion.

The work described in this thesis uses an optical flow and skin-color based

tracker to locate and track a human face, described in Section 3.7. Our features

are projections of optical flow fields and raw intensity values to a pre-defined set

of orthogonal Zernike polynomials, described in Chapter 3. Our method for tem-

poral abstraction uses a multi-level dynamic Bayesian network, also described in

Chapter 3. Finally, our model explicitly includes actions and utility functions at

the highest level (Chapter 5), an addition that is made by none of the above-cited

works.

The remainder of this section describes in more detail the previous work

the second and third stages of analysis: the representation and classification of

human motion. Tracking is not a major focus of this thesis, and we leave review

of relevant work to Section 3.7. Most of the methods we review will be strictly

supervised, in that models are trained for one of several pre-defined categories of

human behaviors, and are tested for recognition of the same behaviors. Research

on the automatic discovery of human motion patterns from video is more closely

related to the approach presented in this thesis, and is reviewed in Section 2.2.3.

2.2.1 Representing the Human Body in Video

One of the most well-used approaches for analysis of human body motion is find-

ing the principal subspace of variation [Koh89]. The basic idea is that although

the dimensionality of image space is extremely large (number of dimensions =

number of pixels), there is some (typically) low dimensional sub-space in which

a particular type of motion can be accurately represented. Finding this subspace,

called the principal eigenspace, is achieved using a singular-value decomposition,

also known as principal components analysis (PCA). This method has been ap-

plied to describing facial structure for face recognition (eigenfaces) [TP91], mo-

tion in the face [LKCL98, FBYJ00], and spatio-temporal variation in body mo-

tion [BH96, LF98] 2. One of the difficulties with standard linear PCA is that it

can only deal with one mode of variation (e.g. identity or expression), but faces

vary in many ways at once (e.g. lighting, pose, expression, identity). View-based

eigenspaces approach this problem by computing a different sub-space for each

2Eigenspaces have been used for many other purposes as well, e.g. modeling pose of
static objects [MN95]
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view [PMS94]. Another approach is an extension to the standard PCA approach

that decomposes along multiple modes at once. This has been called N-mode SVD,

or TensorFaces when applied to faces [VT02, WA03]. The modes of variation found

using PCA are generative, in that they describe the overall variation across all

classes, and so can be used for accurate reconstruction of images in a dataset. Dis-

criminative methods, on the other hand, find modes of variation that discriminate

between classes. The Fisher linear discriminant (FLD), for example, find modes

that that describe variation which maximizes the ratio of betweeen class scatter

to within class scatter. While FLDs are not useful for describing all images in a

dataset, they are very good for distinguishing classes within that dataset [BHK97].

Principal component analysis and Fisher linear discriminants both operate

using the second order statistics (variance) of the data. However, much relevant in-

formation in a facial expression analysis task may be contained in the higher order

relationships between pixels. Independent component analysis (ICA) is a generaliza-

tion of PCA which capitalises on these higher order statistics for representing images.

ICA has an information theoretic and a biological motivation [BS95]. While PCA

finds the modes which maximize the variance, ICA finds the modes that maximize

the entropy. Bartlett has used ICA for facial expression analysis [Bar01].

Another popular type of motion and image representation is to project op-

tical flow fields or images to a pre-defined set of basis functions. Translational or

affine models are typical for optical flow fields. Mase and Pentland [MP91] used

optical flow to model muscle motion over coarse areas of the face. Yacoob and

Davis [YD94], and Black and Yacoob [BY97] use a low-order parameterisation of

flow fields to describe local areas of deformation in the human face during expres-

sions. Their work is extended in [JBY96] to include models of leg motion. Zernike

moments, Hu moments, Legendre moments, and rotational moments have also been

studied [TC88, BSA91] for representing images and optical flow fields. Moments of

images or optical flow fields are also extensively used. In particular, central moments

were used by Little and Boyd [LB98] for representing motion of the human body for

gait recognition. The angular radial transform (ART) basis is a type of rotational

moment used in the MPEG-7 standard for video encoding [Bob01]. Another pop-

ular type of basis set are the Gabor filters, which are attractive due to their close

relationship with the receptive fields of simple cells in the visual cortex. Bartlett et

al. used Gabor-filtered images to train support vector machines for the recognition

of action units [BLB+03]. They used hand-labeled feature points on human faces to

warp the faces to a canonical view in a pre-processing stage. Gabor wavelets have

also been used for face recognition [LBA99].

Template-based approaches store a number of exemplars of face or body
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poses, and use some correlation metric to match unlabeled data to the stored ex-

emplars. Bobick and Davis used temporal templates called motion history images

(MHIs), which encode temporal information in a single image, with more recently

occurring events more heavily weighted [BD01]. These MHIs are then spatially ab-

stracted using the Hu moments, and compared to stored templates. The method is

tested on aerobics movement sequences, and was used in an interactive play-space for

children called the KidsRoom. Efros et al. use optical flow templates to characterise

motions of soccer players, tennis strokes and ballet steps [ABMM03].

There are a number of model-based approaches in the literature, which at-

tempt to fit facial or body motion and structure to a model of the face or body.

Three dimensional models in particular are useful for synthesising computer graph-

ics characters. Terzopoulus and Waters [TK93] used three dimensional wire-frame

model of the face driven by tracked facial features. However, their system required

facial markers. A similar, but non-invasive, method was used by Essa and Pent-

land in an approach that uses optical flow to estimate muscle motion [EP97]. They

first register the 3D wire-frame mesh to the face by locating the positions of eyes,

nose and lips. Optical flow is then measured between registered images, and used

in conjunction with the 3D model to estimate the forces underlying the facial mo-

tion. The 3D model is also used to constrain the flow field, which can then be used

to construct spatio-temporal templates for recognition. Three dimensional mod-

els promise to avoid the problems with view-based approaches have with different

views of the face or body. Bartlett et al. use a 3D face model to which the image

is registered [BLB+03]. They currently do the registration manually, although they

plan to eventually do so automatically. Models are also extensively used for other

body parts. For example, the Vogler and Metaxas fit 3D models of arms to motion

capture data [VM98]. Inferring stick figures from motion-capture data is a standard

procedure for recovering physically-based models of human motion for graphics ap-

plications. However, 3D modeling usually comes at the cost of heavy computational

requirements.

Feature points are used for representing motion of faces, hands and bodies.

Perhaps the simplest way of doing this is using motion capture systems, or colored

markers, which unfortunately are invasive and expensive. Other methods usually

involve some kind of model-based approach, in which feature points or edges are

located and tracked according to their fit to a model. For example, Lanitis, Taylor

and Cootes use flexible shape models which track and adjust to a set of facial feature

points [LTC97]. Similar models are used to represent human body silhouettes by

Galata et al. [GJH99]. Feature points and edges are also used by Tian et al. [TKC01]

for recognising facial expressions from static images.
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A simple and robust method for representing the positions of hands and face

regions is the use of image intensity or color “blobs”. A blob a statistical model of the

distribution of image intensity, color, or optical flow over an oriented region of space.

Blobs are estimated from training image, can be simply tracked, and give a coarse

estimate of the position and orientation of hands and face. Blobs have been used

for analysis of gestures [SP95, JP98, CT98], body motion [Bre97, Bra97, WADP97],

and faces [OPB97].

Our work uses Zernike basis functions [vZ34] for holistic representation of

the face and facial motion. The Zernike polynomial basis provides a rich and data

independent description of optical flow fields and grayscale images which can be

seen as an extension of the affine basis. These characteristics make it a desirable

approach for unsupervised classification of patterns of motion in the face. When

applied to optical flow, the Zernike basis can be seen as an extension of the stan-

dard affine basis [HL00]. In fact, Black and Yacoob [BY97] have used the first

three orders of the Zernike basis for local representations of motion in the face.

The Zernike representation differs from approaches such as Eigen-analysis [TP91],

or facial action unit recognition [TKC01] in that it makes no commitment to a par-

ticular type of motion, leading to a transportable classification system (e.g., usable

for gesture clustering). The Zernike basis has also been used extensively for shape

descriptions [Tea80, TC88]. Teh & Chin show that Zernike and pseudo-Zernike mo-

ments perform best in terms of noise insensitivity and image reconstruction [TC88].

Zernike moments have also been proposed as shape descriptors for the MPEG-7

video coding standard [KK00], although angular-radial transformations (ARTs) are

currently used [Bob01]. ART bases, however, are not orthogonal, making recon-

struction (and visualisation) not possible. Zernike polynomials have been used in

the vision community for recognising hand poses [HSJ95], handwriting and silhou-

ettes [BSA91], shape-based image retrieval [ZL02], and optical flow fields [HL00].

2.2.2 Classification

Once a region of a set of images containing some human body part(s) has been

simply represented, the final task is to classify these representations. The usual

method here is to gather and manually label a set of training examples of each

motion that needs to be recognised. These training examples are then used to train

a classifier, which is tested on unseen data.

Features extracted from a single image can be used directly for classification

of the facial pose. For example, the model fits used by Tian et al. are used as

inputs to a neural network for the classification of FACS units, which are defined

for static images [TKC01]. Other methods represent the spatio-temporal volume
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using a set of features, explicitly taking the temporal nature of the signal into

account [NA94, BD01]. Cutler and Davis analyse periodic motion using Fourier

analysis applied to image differences [CD00]. However, one of the most popular

approaches is to model the temporal progression of features extracted from images

or flow fields using some kind of dynamical model. Simple temporal models of facial

expressions were used by Yacoob and Davis and by Black and Yacoob [YD94, BY97].

They characterised the progression of an expression in three phases (beginning,

peak and ending), and used a rule-book to classify emotions. Cutler and Turk also

use a rule-based temporal classification scheme with features based on the Fourier

analysis of blob motions [CT98]. Hidden Markov models (HMMs) are perhaps the

best known dynamical model, as their use in speech recognition has been extensively

advocated and practiced [RH93]. A hidden Markov model is a generative model, in

which the observations (feature vectors) arise from one of a discrete set of states. The

expected distribution of feature vectors for each such discrete state is characterised

with some kind of mixture model, such as a mixture of Gaussians (for continuous

features), or a mixture of multinomials (for discrete features). The discrete states

are then assumed to be temporally connected in a Markovian chain.

HMMs have been recently been applied to many problems in computer vi-

sion. Schlenzig, Hunter and Jain used them to classify hand gestures [SHJ94], while

Starner and Pentland used them to recognise American Sign Language (ASL) ges-

tures in a view-based method using color blobs [SP95]. Vogler and Metaxas also

recognised ASL signs with HMMs, but used three-dimensional models [VM98]. Their

data, however, was captured using magnetic sensors, not computer vision. Mori-

moto, Yacoob and Davis recognised head gestures using HMMs in a view-based

approach [MYD96]. Lien et al. and Bartlett et al. use HMMs to distinguish FACS

facial action units [LKCL98, BLB+03]. While Lien et al. use principal compo-

nents analysis and a vector quantizer to represent the images, Bartlett et al. use

Gabor filters and support vector machines. Our work used HMMs to recognize

facial expressions represented holistically over the face region using projections to

Zernike polynomial basis functions [HL00]. Although not in a temporally dynamic

setting, HMMs have recently been successfully applied for face recognition, where

the Markovian chain is defined over the spatial extent of the face [NI00].

Hidden Markov models are usually only first order, so that the observation

at time t is independent of the history given the observation at time t−1. However,

HMMs with more “memory” represent higher-order temporal dependencies, and

can be useful for more complex action recognition. Vogler and Metaxas use second-

order HMMs to recognise ASL gestures [VM98], while Galata, Johnson and Hogg

use models in which the “memory” length is also learned from the data [GJH99].
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Hidden Markov models use a Markov chain over a discrete set of states. A closely

relative of the HMM uses continuous state, a model usually referred to as a linear

dynamical system (LDS) [Min99]. State estimation in LDSs (forward propagation)

is better known as a Kalman filter [Kal60], which has been extensively used in

computer vision.

HMMs are really only the beginning of the story on statistical temporal

models, however. They are, in fact, a special case of the more general dynamic

Bayesian networks (DBNs), which are Bayesian networks in which a discrete time

index is explicitly represented. Inference and learning in DBNs is simply an applica-

tion of network propagation in Bayesian networks [Pea88]. A comprehensive review

of DBNs is given by Murphy’s thesis [Mur02]. DBNs usually make a Markovian

assumption, but explicitly represent conditional independencies in the variables,

allowing for more efficient and accurate inference and learning.

A simple DBN extension of HMMs is the coupled hidden Markov model, in-

troduced by Brand, Oliver and Pentland [BOP97] for recognition of simultaneous hu-

man actions. CHMMs have two Markovian chains, each modeling a different stream

of data. The two chains are coupled to allow modeling of the inter-dependence

between the two data streams. They used these models for analysing patterns of

pedestrian motions. The coupling between the chains models the interactions be-

tween the people. Vogler and Metaxas [VM99] use a similar model for American

Sign Language (ASL) recognition, in which the two Markovian chains model the

two arms. As pointed out earlier, they do not use computer vision data, but in-

stead capture motion information from wearable magnetic sensors. They show that

removing the coupling between the chains leads to increases in efficiency without

significantly affecting performance.

Some of the most interesting DBNs model the data at multiple temporal

scales. This has been an important issue in speech recognition, where phoneme-

level models are combined at a higher level into word or sentence models [RH93].

However, as noted in [BF95], speech recognition systems do not learn high-level

semantics (at the word or sentence level), relying heavily on prior knowledge. Com-

puter vision, on the other hand, has made significant progress in learning hierarchical

temporal models. A general formulation of hierarchical hidden Markov models is

given by Fine, Singer and Tishby [FST98]. Murphy and Paskin have shown how the

parameters of this model can be learned efficiently [MP01]. We review some of the

work on hierarchical models in computer vision here.

Bregler [Bre97] used a multi-level system which analysed the motion of color

blobs using over short time scales using linear dynamical systems (LDSs), and then

modeled the LDSs as arising as outputs from a hidden Markov model. The idea is
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that long, complex motions can be represented as concatenations of shorter, more

simple motions. For example, the motion of the foot during running is bi-phasic

(one phase while its on the ground, one while its in the air), and the running

motion alternates between the two phases. A similar hybrid dynamical model model

has more recently been proposed by Pavlovic, Frey and Huang [PFH99], who also

advocate the use of variational methods for estimating parameters.

Bobick and Ivanov [BI98] used a multi-level model that described primitive

events using a set of hidden Markov models, and then used a stochastic context-free

grammar (SCFG) to provide high-level semantic help. A SCFG enables the modeling

of more complex semantic patterns of behavior than a hidden Markov model. They

use the SCFG and HMMs to model positions of head and hands acquired using

a stereo vision system during the performance of simple gestures, and of musical

conducting.

Cohen et al. [CSG+03] have recently proposed a multilevel HMM to recognize

facial expressions. Their main contribution is a method for automatically segment-

ing a video stream into facial expression events, assuming a neutral state between

each expression. Oliver et. al [OHG02] learned a multi-layer model of office activity

to choose actions for a computational agent. The model uses multimodal inputs,

making only very slight use of computer vision. Our work uses a similar model,

called the abstract hidden Markov model, to describe facial expressions [Hoe01].

2.2.3 Unsupervised Classification

Most of the methods we have been describing use extensive training processes with

labeled data. That is, their goal is to classify gestures, facial expressions, or body

motions into a pre-defined set of categories. Training data is acquired for each of the

categories, and is used to train models independently. The likelihood of test data

given the learned models is then used for classification of unseen examples. The most

significant drawback to such methods is that training data must be manually labeled

in a time consuming process. This also implies that adaptation to novel types of

motions requires new training data to be acquired and labeled. The alternative is

to develop systems that can discover categories of motions in training data. These

latter systems are more unsupervised than the former, and have been much less

extensively researched. We give an overview here.

Clustering sequences of data using mixtures of hidden Markov models was

proposed by Smyth [Smy97], and has been further investigated by Li and Biswas [LB99].

A mixture of hidden Markov models is a mixture model in which the mixing com-

ponents are hidden Markov models. Such a model can be trained on unlabeled

data, and finds clusters of entire sequences of data: it discovers which sequences
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are similar to each other. This is in contrast to the supervised HMM classification

experiments we described in the last section, in which an expert human explicitly

labeled this similarity by grouping training data into pre-defined categories.

The mixture of hidden Markov models, and other closely related models

have been used in computer vision for unsupervised clustering of data. Clarkson

et al. [CP99] examine understanding purposeful motion is discussed in the context

of wearable computing devices. The idea is to have a camera which is attached

to the human subject, and which performs unsupervised, hierarchical modeling of

the situations in which the subject finds itself. Their results are promising, and

show that unsupervised learning can provide fruitful classes of video data. Alon

et. al. [ASKP03] have also recently examined such models for action recognition.

Darrell, Essa and Pentland [DEP96] examine the same kind of models, but use

dynamic time warping (DTW) instead of hidden Markov models as mixture com-

ponents. They also use these models for generation of facial expressions. They do

not explicitly model actions and utilities, however.

2.3 Purposeful modeling of human action

The previous section examined automatic recognition of human actions. However,

most of this work takes the slant that the recognition itself is the goal. Clearly,

it is what to do with the recognised states which is of most interest. Here, we

discuss work on integrating the recognition of human action with decision making.

Most of this work lies between computer vision and human-computer interaction

(HCI), in which computer vision systems provide information about the state or

actions of a human user of a computer application. This information is used by the

application to tailor its interface. Currently, most HCI systems only make use of

human interface actions, such as mouse or keyboard actions, some have begun to

integrate visual and auditory information. Clearly, if we want to leave keyboard and

mouse behind and progress to more natural interfaces, these multi-modal cues are

of utmost importance. Perhaps the simplest application of computer vision for user

interfaces is in using head gestures for controlling mouse actions, as described by

Kjeldsen [Kje01]. Leibe et al. describe a system for interaction with the “perceptive

workbench”, a virtual reality device in which a user can manipulate objects on a

virtual table using their hands [LSR+00]. The device locates and tracks the user

with computer vision methods. Pentland reviews a number of systems which make

use of facial or gestural inputs [Pen00].

Cassell has stressed the importance of recognising and generating both verbal

and non-verbal signals for embodied conversational agents (ECAs) [CSPC00]. ECAs
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are built upon a conversational architecture: they are designed based upon the psy-

chology of human conversational behaviors. This involves the high-level modeling of

communicative and domain goals, the understanding and synthesis of propositional

and interactional information, and low-level issues related to recognition of speech

and gesture, and to timing. Cassell’s group has built an ECA named Rea who in-

teracts with a human as a real-estate agent (hence the name). Rea’s visual inputs

are the positions and orientations of head and hands from color “blob” trackers.

Jebara and Pentland [JP98] presented action-reaction learning, in which a

dynamic model was learned from observing video of two persons interacting. The

model was then used in a reactive way to simulate interactions for a single user.

The features are color blobs of head and hands, and the joint likelihood of the each

person’s features is accomplished using a variant of the expectation-maximization

algorithm. Our work bears a close resemblance to action-reaction learning, but gen-

eralizes it by adding high-level context states, actions and utilities. Action-reaction

learning is designed strictly for imitation-type tasks, while our model is applica-

ble to interactions in more general contexts, in which plans need to be developed

autonomously.

A number of robotic systems have made use of computer vision for interac-

tions with humans. Fong et al. survey some of the most recent work in building

socially interactive robots [FND03]. Breazeal’s robot Kismet interacts with peo-

ple on an emotional level, using stereo vision to detect presence, proximity and

color [BS99]. Thrun’s group have been developing robotic guides. The latest em-

bodiment, Pearl, is a robotic helper for the elderly that uses stereo vision [MPR+02].

José is a robotic waiter that uses stereo vision for navigation and person detection

to accomplish its task of delivering food at a social gathering [EHL+02]. HOMER,

Joseé’s successor, is a messenger robot that interacts with people [EHL03].

The model we focus on in this thesis is the partially observable Markov

decision process, or POMDP. POMDPs were applied to the problem of active

gesture recognition in [DP96], in which the goal is to model unobservable, non-

foveated regions. POMDPs have also been applied to the dialogue management

problem [PH00, RPT00, ZCMG01] for human-computer and human-robot interac-

tion. This work, as Cassell’s work on ECAs, models some of the basic mechanics un-

derlying dialogue, such as turn taking, channel control, and signal detection. These

agents typically use very few (or none at all) manually specified facial expressions

or gestures.

Decision theoretic models have yet to make solid contact with computer

vision. The reason is probably because of the lack of optimal or efficient solution al-

gorithms for continuous inputs. However, many approximation techniques have now
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been studied [Hau00], and we believe they are appropriate for use in modern com-

puter vision systems. The advantage of using a decision theoretic model is its ability

to make provably rational choices in situations involving uncertainty. This thesis

presents a method which promises to begin filling this important gap in the inter-

disciplinary work bridging computer vision, decision theory and human-computer

interaction. Its main strength, and what distinguishes it from other research in

this area, is that it presents the method as a unified whole, using the paradigm of

POMDPs to combine computer vision with actions for user interfaces.
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Chapter 3

Modeling Facial Displays

This chapter describes the modeling of human facial motion from video. We are

interested in computational models which can recognize and adapt to facial displays

and the relationships between the displays and other states of context. These context

states, however, exist in a temporally and spatially abstract space as compared to the

raw video signal. Our models must therefore perform spatio-temporal abstraction in

order to find appropriate correlations between facial displays and context. We first

discuss the spatial abstraction methods, which summarize video frames and spatio-

temporal derviatives of video frames with projections to a set of basis functions. We

then describe how the resulting spatial summarizations are temporally abstracted

using dynamic Bayesian networks.

We consider that the instantaneous state of a human’s face during a facial

display consists of a pose, or configuration, and an instantaneous motion, or dynam-

ics. Dynamics and configuration complement one another, and are akin to velocity

and position in classical dynamics. They can be both useful in describing the way

a human face moves. In particular, modeling the configuration of the face disam-

biguates temporal sequences of dynamics, while the dynamics of the face can predict

future configurations. Configuration and dynamics are both useful for tracking.

The pose data is simply an image containing the face, while the dynam-

ics data are the spatio-temporal derivatives over the same region from one video

frame to the next. Thus, the measurements we start from contain simultaneous de-

scriptions of the instantaneous configuration and dynamics of the face. The spatio-

temporal derivatives induce a dense optical flow field, by assuming that the image

intensity structure is locally constant across short periods of time. The optical flow

field is a projection of the 3D scene velocity to the image plane, and gives the motion

in the image at each pixel. The same method is used for spatial abstraction of both

the configuration and dynamics of the face. Image regions and optical flow fields are

each projected to a set of basis functions, yielding finite dimensional feature vectors.
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The distributions of each of these feature vectors (for configuration and dyanmics)

are modeled by a mixture model. The states of the mixture model correspond to

classes of instantaneous configuration and dynamics of the face in the training data.

For example, the configuration classes may correspond to characteristic facial poses,

such as the apex of a smile, the apex of an eyebrow raise, or a neutral expression.

The dynamics classes are motion classes, and may correspond to, for example, mo-

tion during expansion of the face to a smile, or during contraction of the eyebrows

from raised to neutral.

The resulting configuration and dynamics mixtures are then each tempo-

rally connected in a Markov chain, and the two chains are coupled. This coupled

Markov model describes a temporal sequence of facial movement with two inter-

acting distributions over instantaneous pose and dynamics states. Keeping the two

chains separated, but coupled, allows additional independencies to be leveraged in

the temporal chains. We temporally abstract finite length sequences in this coupled

chain by modeling it as the output distribution of another mixture model. This

high-level mixture model, then, represents entire sequences of video with a distri-

bution over a finite set of facial display classes. For example, one such class may be

a smiling facial display. The corresponding coupled Markov chain would represent

sequences of instantaneous facial poses and flows during a typical smiling display.

Typically, there will be a small number of classes (< 10), but the model does not

preclude more.

Throughout most of this chapter, we will assume that an image region has

been selected in each video frame. When modeling facial expression, the human face

must be located throughout the video sequence. Specifying these regions involves

some method for tracking the region of interest. We discuss the tracking method

we have used at the end of this chapter.

This chapter will be structured as follows. The next section describes the

Zernike polynomial basis set, which is used for spatial abstraction of images and

flow fields. Section 3.2 describes spatial abstraction of the dynamics of the face.

including computation of optical flow, projections to basis functions, and modeling

of the resulting feature vector using normal distributions. Section 3.3 then describes

spatial abstraction of the facial pose, which is very similar to that for the dynamics,

but is slightly simpler because it does not involve the computation of optical flow.

Section 3.4 briefly discusses some issues related to changes of lighting. These are

mainly encountered in more unconstrained environments than we use in our exper-

iments, but are important considerations for future work. Section 3.5 discusses the

temporal modeling of sequences of facial pose and dynamics using coupled Markov

models, and Section 3.6 describes the temporal abstraction of sequences using mix-
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ture models. This section also discusses how to integrate context measurements.

We show how the context states can be integrated into the model as conditioning

or being conditioned by the mixture components. Section 3.6.4 touches on the issue

of temporal segmentation. Finally, Section 3.7 discusses the tracking method we

use to locate the face in the video stream, as well as considerations about how to

fully integrate the tracking process into the Bayesian model we use for facial motion

representation.

3.1 Zernike Polynomial Basis Functions

Spatial abstraction of flow fields and images involves finding appropriate subspaces

in which the motions and poses we are trying to categorize are sufficiently well

separated. A standard approach to this problem is to compute a data-dependent

subspace using principal components analysis, or PCA. This approach has been

used for representing general 3-D objects [MN95], facial pose [TP91], and facial

motion [FBYJ00]. However, there are two problems with this method. First, the

dimensionality of the subspace must be manually specified. While principal compo-

nents analysis finds a set of basis functions that span the entire observation space,

it does not find which correspond to a useful subspace. Typically, the subspace is

chosen as the one that accounts for the most variability in the data. However, other

choices may be more conducive to the clustering we wish to perform. The second

problem with PCA-based approaches is that a separate basis set must be computed

and stored for every type of motion we wish to recognize.

We believe that a data independent subspace surmounts the two aforemen-

tioned problems. We choose a complete and orthogonal set of basis functions a-

priori, and use them for all our modeling methods. The advantage of data indepen-

dence is that the basis can equally well be used for representing any motion. For

example, while we learn classes of face motions in this paper, our system could be

easily applied to gestures or gaits, without re-computation of a set of basis func-

tions. Leaving any commitment to particular motions to higher level processing is

an advantage in many cases. The usual objection to this type of modeling is that

we do not know which set of basis functions are best for a particular modeling task.

However, our method includes a feature weighting technique which learns the subset

of basis functions which are most useful for the classification task. Thus, as long

as we use a complete set of basis functions, we should be able to learn the subset

which is best, while only storing the feature weights for each type of motion we wish

to recognize, not complete basis sets. We believe that this is an improvement over

PCA-based approaches. Further comparison of the PCA approach with the Zernike
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basis functions can be found in [HL00].

Data independent basis sets have been used for shape representation in com-

puter vision for many years. In particular, analysis of images using moments has

been well studied, including geometric moments, rotational moments, Legendre mo-

ments, Zernike and pseudo-Zernike moments [Tea80, TC88]. Teh & Chin show that

Zernike and pseudo-Zernike moments perform best in terms of noise insensitivity and

image reconstruction [TC88]. Zernike moments have also been proposed as shape

descriptors for the MPEG-7 video coding standard [KK00], although angular-radial

transformations (ARTs) are currently used [Bob01]. ART bases, however, are not

orthogonal, making reconstruction (and visualisation) not possible. In this work, we

use the basis of Zernike polynomials as our a-priori basis set [vZ34]. The Zernike

polynomial basis provides a rich and data independent description of optical flow

fields and grayscale images which can be seen as an extension of the affine ba-

sis. Zernike polynomials have been used in the vision community for recognising

hand poses [HSJ95], handwriting and silhouettes [BSA91], shape-based image re-

trieval [ZL02], and optical flow fields [HL00].

Zernike polynomials are an orthogonal set of complex polynomials defined

on the unit disk [PR89]. The lowest two orders of Zernike polynomials correspond

to the standard affine basis. Higher orders represent higher spatial frequencies.

The basis is orthogonal over the unit disk, such that each order can be used as an

independent characterization of a 2D function, and each such function has a unique

decomposition in the basis. Zernike polynomials are expressed in polar coordinates

as a radial function, Rm
n (ρ), modulated by a complex exponential in the angle, φ,

as follows:

Um
n (ρ, φ) = Rm

n (ρ)eimφ (3.1)

with radial function,Rm
n (ρ), given by

Rm
n (ρ) =

(n−|m|)/2
∑

l=0

(−1)l(n− l)!

l![ 12 (n+ |m|)− l]![ 12 (n− |m|)− l]!
ρn−2l

for n and m integers with n ≥ |m| ≥ 0 and n−m even. The first few radial basis

functions are therefore:

R0
0 = 1 R1

1 = ρ R0
2 = ρ2

R2
2 = 2ρ2 − 1 R1

3 = 3ρ3 − 2ρ R3
3 = ρ3

The indices, n and m, are indicators of the spatial frequency of the Zernike

basis function. The larger the value of n, the higher the spatial frequency in the

radial direction. Similarly, the larger the value of m, the higher the spatial frequency

in the angular direction. For each n, polynomials are defined for a selection of values
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for m in the range {0, n}. Thus, each combination of radial and angular spatial

frequencies are available.

The Zernike polynomials are orthogonal on the unit disk and obey the fol-

lowing orthogonality relation:

∫ 1

0

∫ 2π

0
Um

n (ρ, φ)Um′

n′ (ρ, φ)ρ dφ dρ =
π

(n+ 1)
δnn′δmm′ , (3.2)

where δnn′ = 1 if n = n′, and 0 otherwise.

The orthogonality of the basis allows the decomposition of an arbitrary func-

tion on the unit disk, f(ρ, φ), in terms of a unique combination of odd and even

Zernike polynomials. That is, [PR89]

f(ρ, φ) ≈
M
∑

m=0

N
∑

n=m

[Am
n cos(mφ) +Bm

n sin(mφ)]Rm
n (ρ), (3.3)

which can be used to approximate a sufficiently smooth function f(ρ, φ) to any

degree of accuracy by making N and M large enough.

Using the orthogonality relation (Equation 3.2), the coefficients An
m and Bn

m

can be obtained as

Am
n

Bm
n

=
εm(n+ 1)

π

∫ 1

0

∫ 2π

0

f(ρ, φ)Rm
n (ρ)

cos(mφ)

sin(mφ)
ρ dφ dρ, (3.4)

where

εm ≡

{

1 ifm=0

2 otherwise

Zernike polynomials are defined on a disk, and so an elliptical area must be

identified which will be projected onto the Zernike basis. An elliptical region allows

for a more flexible image region than a simple disk, and corresponds roughly to the

shape of the human face. Although we only consider ellipses with axes aligned with

the image axes, it would be possible to allow for rotations of the ellipse in future

work. Our tracking method for updating this region in a video stream is described

in Section 3.7. Once a scale and centroid have been identified for each flow image,

a 2D function (either a flow field or an image region) f(x, y) is projected onto the

Zernike basis using the discrete equivalent of Equation 3.4:

Am
n

Bm
n

=
εm(n+ 1)

π

∑

x

∑

y

f(x, y)Rm
n (ρ)

cos(mφ)

sin(mφ)
(3.5)
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where φ = arctan (y′/x′), ρ =
√

x′2 + y′2 ≤ 1, x′ = (x − xc)/rx, y′ = (y − yc)/ry,

and {xc, yc} and {rx, ry} are the centroid and scales of the region of interest.

We can write the projection equation (3.3) for a 2D function f(x, y) as a

matrix equation if we write f as a N × 1 column vector by reading pixels from f

row-wise from top to bottom, where N is the number of pixels in the function:

f = Pz (3.6)

The Zernike basis functions are the columns of the N ×Nz matrix P (also arranged

row-wise), and the projection coefficients are in the Nz × 1 column vector z, where

Nz is the total number of Zernike polynomial basis functions. The columns of P

(and the rows of z) correspond to the Zernike polynomials in order of increasing n

and m, alternating bewteen Am
n and Bm

n , such that columns 0, 1, 2, 3 . . . are Zernike

polynomials A0
0, A

1
1, B

1
1 , A

2
0 . . ..

3.2 Modeling Facial Dynamics

We wish to classify the dynamics of the human face into a discrete set of classes,

starting from image derivatives, ∇f . However, the image derivatives by themselves

are not sufficient to describe image motion, because there is a many-to-one corre-

spondence between derivatives and motion. We can constrain the derivatives using

the hypothesis that the intensity structure of the scene is locally stable across short

time intervals [HS81b]. This allows us to estimate the way things are moving, or the

optical flow, in the image plane between frames, which is what we want to classify.

Optical flow is the projection of the 3D velocity of objects in the scene relative to

the camera onto the image plane.

Classification of optical flow fields directly is difficult due to the high dimen-

sionality of the signal. Instead, we classify optical flow in a subspace of flow fields

defined by their projections to the Zernike polyomial basis. Thus, we will be find-

ing clusters of subspace optical flow fields by classifying Zernike basis projections.

However, simply computing optical flow and subsequently projecting to the Zernike

basis does not make use of the uncertainties inherent in the estimation process.

We describe an efficient Bayesian solution for directly computing probability dis-

tributions over basis coefficients from image gradients using brightness constancy.

We show how the method’s incorporation of the flow uncertainties improves the

estimation of the parametrized flow by discounting image regions with less certain

flow vectors. Our mixture model includes weights on the basis coefficients, which

describe the effectiveness of each feature at achieving good clusters. Our probabilis-

tic projections ensure that the uncertainties inherent in the calculation of optical
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flow are propagated to the cluster membership variables, leading to a more robust

clustering.

This section will first describe the extraction of optical flow from video

streams. Section 3.2.2 then describes our method for projecting optical flow fields to

the Zernike basis, including a method for weighting or selecting features of the pro-

jection basis. Some simple experiments are also described, which show the usefulness

of the probabilistic projection method.

3.2.1 Optical Flow

As will be shown in Section 3.6, our estimation of optical flow is tightly integrated

with the projection to a basis set, and the subsequent classification. Here we de-

scribe the underlying mechanics of optical flow estimation. There are many ways

to estimate optical flow, usually based on the assumption that local image regions

maintain their intensity structure over small periods of time [HS81b]. If some small

part of the world appears at time t at some position in the image, then we assume

it will appear the same at t + 1, albeit in a different position in the image. The

difference in position is the (true) optical flow, v:

I(x, y, t) ≈ I(x+ vxδt, y + vyδt, t+ δt) (3.7)

The motion in the image is denoted by a vector optical flow field, v(x, y), which

describes the direction and magnitude of the motion of the image pixel at (x, y).

That is, if some image region, at (x, y), undergoes an optical flow of v(x, y), the same

region can be found after the flow at (x + vx(x, y), y + vy(x, y)), where vx, vy are

the components of v in the x and y directions, respectively. The assumption (3.7)

is known as brightness constancy, and can be used to derive optical flow estimation

techniques based on phase, on correlation, or on gradients [BB95].

Gradient based techniques use a Taylor expansion of Equation 3.7, and drop

terms above first order [LK81]. Writing the image brightness function as f , such

that the spatial and temporal derivatives of the image are (fs = {fx, fy}) and (fτ ),

respectively, the brightness constancy assumption is that 1

fτ + fsv = 0 (3.8)

The equation says that the change of brightness at a pixel over a time interval is ex-

actly the brightness difference between the current pixel and a pixel separated from

1These variables are fields over all N pixels in the image: fτ is a N × 1 column matrix,
fs = [fxfy] is a N × 2N matrix (where fx is a N ×N matrix with the horizontal spatial
derivative fx along the diagonal, and similarly for fy) and v = [vxvy]′ is a 2N × 1 matrix
with the components of horizontal and vertical flow.
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the current pixel by v, assuming a planar function separating the two pixels. Equa-

tion 3.8 actually only constrains the flow in the direction of the spatial derivative

(normal to the spatial image orientation), since if the flow is normal to the spatial

derivative, fsv = 0, and thus v is unconstrained. Typically this is dealt with by intro-

ducing constraints on the smoothness of the optical flow field [HS81b, BA96, SAH91].

Since we are projecting to a set of basis functions, we are implicitly constraining the

flow to be globally smooth, and so do not need any further regularization.

We also know that the brightness constancy assumption is often violated.

Occluding edges and reflections are some obvious examples, which can be dealt

with using robust methods, for example [BA96]. However, the primary sources

of violations of the assumption are failures of the planarity assumption, camera

noise, and errors in the derivative calculations. Simoncelli [SAH91] has described

how to account for such violations in a Bayesian framework, in which the variabil-

ity due to each error source is explicitly included in the model. We describe the

noise as arising from two independent zero-mean Gaussian noise source, n1 and n2,

which account for failures of the planarity assumption, and errors in the temporal

derivative measurements, respectively. The brightness constancy assumption thus

becomes [SAH91]

fτ + fs · (v − n1) = n2, ni ∼ N (0,Λi). (3.9)

We can assume that the errors in the spatial derivatives are minimal compared

to those in the temporal derivatives, since the temporal sampling is much coarser

than the spatial sampling. Equation 3.9 thus describes the conditional probability

P (ft|v, fs):

P (∇f |v) ∝ N (fτ ;−fsv, fsΛ1f
′
s + Λ2), (3.10)

where Λ1 = σ1IN , Λ2 = σ2IN (IN is N×N identity). The important thing to notice

about this distribution is the dependence of the variance on the spatial derivative,

fs. The magnitude of the spatial derivative, ‖fs‖
2, is the image contrast, which plays

an important role in determining the distribution of flow fields [SAH91]. Optical

flow is difficult to estimate (and so has high variance) in regions of low contrast.

Using Bayes’ rule, we can compute the probability distribution over the flow

fields as

P (v|fs, ft) =
P (ft|v, fs)P (v)

P (ft)
(3.11)

where P (v) is a prior distribution over flow vectors. This distribution is useful if

one is interested in the optical flow field itself, in which case a zero-mean prior

P (v) ∼ N (v; 0,Λp) is used in Equation 3.11. Since the likelihood and prior are both
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Gaussian, the posterior is also Gaussian, with mean and covariance [SAH91]

µv = −Λvfs(f
′
sΛ1fs + Λ2)

−1ft (3.12)

Λv = [fs(f
′
sΛ1fs + Λ2)

−1f ′s + Λ−1
p ]−1 (3.13)

If this solution is computed at each pixel independently, then the mean, µv, will be

approximately the component of the optical flow normal to the local spatial gradient.

Estimates of the true optical flow field can be obtained by including a regularizer to

enforce smoothness [HS81b]. A simple regularization technique is to simply average

over small regions in the image, such that the mean and variance are

µv = −Λv

∑

i

wifsi(f
′
siΛfsi + Λ2)

−1fti

Λv = [
∑

i

fsi(f
′
siΛ1fsi + Λ2)

−1f ′si + Λ−1
p ]−1

where the sums are over small image regions around each pixel, fsi and fti are the

spatial and temporal derivatives at pixel i, wi is a weighting function such that

points further away are weighting less. We refer to this as the Simoncelli method in

the following, and is what we will use to compute optical flow fields where needed.

However, we are concerned in this work with interpreting the optical flow field as

a distribution over a small, temporally and spatially abstract set of discrete states.

As we will see in the next section, this will mean replacing the prior over flow fields

with a conditional distribution over flow fields given the high-level discrete states.

We further parameterize this distribution by projecting to our basis set.

3.2.2 Projections of Optical flow fields

The lowest orders of the Zernike basis, when used to describe optical flow fields, cor-

responds to the affine basis, which is capable of representing simple planar motions

such as translations, rotations, and expansions. The next order polynomials corre-

spond to extensions of the affine basis, roughly the planar projections of yaw, pitch

and roll. In particular, Black & Yacoob found these next orders to be particularly

useful for modeling motion around the mouth region [BY97].

Equation 3.5 applied to the horizontal flow field, vx(x, y), gives the projection

coefficients, uAm
n and uBm

n :

uAm
n

uBm
n

=
εm(n+ 1)

π

∑

x

∑

y

vx(x, y)Rm
n (ρ)

cos(mφ)

sin(mφ)
(3.14)

A similar set of equations is obtained for the vertical flow estimates, vAm
n and vBm

n .

Figure 3.1 shows some example flow fields reconstructed from different orders (values
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of n and m) of Zernike polynomials. Higher orders of Zernike polynomials result in

flow fields with higher spatial frequencies, representing more complex motions.

The flows can be reconstructed from the coefficients using Equation 3.3,

as shown for an example flow field in Figure 3.2. As we reconstruct with more

coefficients, we are including higher spatial frequencies, leading to a more accurate

reconstruction of the original.

As in Equation 3.6, we can represent the optical flow field projections as

v = Mz, where

v =

[

vx

vy

]

M =

[

P 0

0 P

]

z =

[

zx
zy

]

. (3.15)

The columns of P are the Nz basis vectors and zx, zy are the Zernike coefficients for

horizontal and vertical flow, respectively, {uAm
n ,

uBm
n } and {vAm

n ,
vBm

n }. In practice,

M will be some subset of the Zernike basis vectors, the remaining variance in the flow

fields being attributed to zero-mean Gaussian noise. Thus, we write v = Mz + np,

where np ∝ N (0,Λp), and so

P (v|z) = N (v;Mz,Λp) (3.16)

The noise, np, is a combination of three noise sources: the reconstruction error (en-

ergy in the higher order moments not in M), the geometric error (due to discretiza-

tion of a circular region), and the numerical error (from discrete integration) [LP98].

The choice of a subset of basis elements to use will depend on what the projections

are being used for. We discuss a consistent method for making this choice in Sec-

tion 3.2.4.

3.2.3 Probabilistic Projections

We wish to use these flow field projections for classification tasks, in which some flow

field, v, is classified as originating from one of a set of causes, X. In the remainder

of this section, we show how to perform this classification using the maximization

of a probability function over X. We only discuss classifying individual flow fields

in this Section, but the analysis is also used in classifying sequences of flow fields,

as will be shown in Section 3.6.

Given a set of images, I1 . . . INt , we wish to assign each of the Nt−1 flow

fields one of Nx cluster labels X1 . . . XNx , such that the optical flows with the same

label are as similar as possible to each other, but as dissimilar as possible from

the flow fields with any other label. For example, if describing motion over the

human face, states of X may correspond to instantaneous motion fields during

smiling (mouth expansion), frowning (contraction between the eyes), or talking (lip
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uA0
0 = 0.5, vA0

0 = 0.5 uB1
1 = 0.5, vA1

1 = −0.5

uB2
2 = −1.0, vA2

2 = 1.0 uA1
1 = 0.5, vB1

1 = 0.5

uA3
3 = 0.5, uB3

3 = −1.0, vA3
3 = −0.5 uB4

2 = 1.0, vA4
2 = 1.0, vB4

2 = −0.5

Figure 3.1: Example flows generated from ZPs corresponding to the indicated sub-
sets of the feature dimensions.
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first 3 ZPs
(affine)

first 10 ZPs
flow fields

reconstructed

zernike projection

original flow field

first 128 ZPs

Z t−1

reconstruct flows from Z

project to Zernike basis

Figure 3.2: Reconstructing flow fields from Zernike projections. Shown are three
reconstructions, using increasing number of coefficients from left to right: 3 ZPs or
affine (n = m = 1), 10 ZPs (n = m = 3) and 128 ZPs (n = m = 14).
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motion). The determination of Nx is discussed in Section 5.3. Figure 3.3 shows

our model represented as a Bayesian network. We consider the measurements to be

the image spatial (fs = {fx, fy}) and temporal (ft) derivatives, calculated using a

centered difference method. We can express classification of an image motion as the

maximization of the probability distribution over the classes, X, given the spatial

and temporal derivatives,

P (X|∇f,Θ) ∝ P (∇f |X,Θ)P (X|Θ), (3.17)

where Θ are the parameters of the model, and ∇f = {fx, fy, ft}. Since we wish to

X

zΛ

zµ

Λ Λ
1 2

V
α

Z

a

b µ*

*

Λp

Λ

T
xα

f τ
f s

xΘ

Figure 3.3: Bayesian network for the mixture of Gaussians over optical flow fields
with feature weighting. Shaded nodes are observed or fixed (known), while un-
shaded nodes are unknown random variables. Boxes are fixed hyper-parameters.
The dashed line delineates the priors for feature weighting. X ∈ 1 . . . Nx are discrete
motion classes, Z is the Zernike feature vector (projection of optical flow field), V is
the optical flow field, fs are the spatial derivatives, and ft is the temporal derivative.
µz,Λz are the parameters of the mixture of Gaussians over the Z vector space, and
T are the feature weights. ΘX are the class probability parameter (a multinomial),
and αX is the parameter of the (conjugate) Dirichlet prior over ΘX . µ∗ and Λ∗ are
the mean and variance over all classes (of all the data).

classify optical flow fields, we expand the probability distribution over the classes,

X, as

P (X|∇f,Θ) =

∫

v
P (∇f |v,Θ)P (v|X,Θ)P (X|Θ)
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where we have assumed the image derivatives to be independent of the high level

motion class given the optical flow.

There are three terms in the integration. The prior over classes, P (X|Θ),

is part of our model, parametrized with a multinomial Θx,i = P (X = i). The dis-

tribution over spatio-temporal derivatives conditioned on the flow, P (∇f |v,Θ), is

estimated in a gradient-based formulation using the brightness constancy assump-

tion, and is given by Equation 3.10.

We do not represent P (v|X) directly in our model, but instead we parametrise

this distribution using a probabilistic projection of v to the basis of Zernike poly-

nomials. As shown in Equation 3.16, this projection can be written as a distribu-

tion over v, given the projection coefficients, z, P (v|z) ∝ N (v;Mz,Λp). We then

parametrise the distribution over z givenX with a normal P (z|X) = N (z;µz,x,Λz,x).

We are assuming that the flow fields will be normally distributed in the space of the

basis function projections. The Gaussian noise can be attributed to performance

differences in the flow fields (on the part of the human being observed).
We can now write down the likelihood of the image derivatives given the

high-level motion class as

P (fτ |X, fs,Θ) =

∫

v,z

N (fτ ;−fsv,A)N (v;Mz,Λp)N (z;µz,x,Λz,x) (3.18)

where A = fsΛ1f
′
s + Λ2.

A more näıve approach avoids the integrations over z by first computing the

mean optical flow field, µv, using the Simoncelli method, projecting this field to

the Zernike basis, and taking the resulting feature vector, z, as the input data to

a classification scheme using P (z|x) [HL00]. That is, the näıve approach considers

P (X|∇f) ∝ P (M ′µv|X,Θ)P (X|Θ). However, this approach ignores the variance

information in the flow calculation, leading to less accurate results. For example,

Figure 3.4 shows two frames from a video sequence of a person’s face. There is

significant motion upwards near and above the eyebrows and downwards along the

sides of the jaw. The mean flow field, µv, calculated using the method of Simon-

celli [SAH91], is shown in Figure 3.4, for the image region of the subject’s face as

indicated. The certainty of the flow vectors (the trace of the inverse flow variances),

is also shown in Figure 3.4 (brighter means the flow estimates are more certain).

Large variance flows are prevalent in regions with little contrast since we are using

a gradient based optical flow calculation. The jaw, forehead and the background

wall are examples. A projection of these flow fields to a low dimensional basis will

suffer because of these regions, unless the flow variances are taken into account. The

bottom row in Figure 3.4 shows reconstructions of the flow fields from projections

to the Zernike basis. On the left, we see a simple projection (dot product), while
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t t+1

flow certainty

näıve probabilistic

Figure 3.4: Top: two sequential frames from a video sequence. Middle: flow field
computing using Simoncelli method (zero-mean prior) and certainty in the flow
(trace of inverse variance of the flow). Bottom: näıve and probabilistic reconstruc-
tions from low dimensional basis

on the right is the projection which takes the variances on the flow into account.

Improvements can be seen in the low contrast area just above the subject’s left

eyebrow. The Simoncelli method flow field finds nearly horizontal flow vectors in

this area, which bias the näıve projections (incorrectly) towards the horizontal. The

probabilistic projections discount this area, and the reconstructed flow field is less

biased by these errors. We compare our probabilistic projection approach with the

näıve approach further in Section 3.2.5.

In the remainder of this section, we show how the integrations in Equa-

tion (3.18) can be performed analytically, leading to an efficient method for calcu-

lating P (X|∇f), taking all variance information in the flow fields into account. We

then show how to implement weights on the dimensions of the projections, and how

our methods can be implemented in a multi-scale approach. Chapter 4 shows how

the distribution P (X|∇f) is used to learn the parameters of the model using the

expectation-maximization algorithm.

Note that the model does not take violations of the brightness constancy
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assumption, such as occlusions, reflections, or transparent motions, into account.

It is possible to extend the brightness constancy assumption to account for overall

brightness changes [NY93]. We discuss this further in Section 3.4.

Computing the likelihood

Since all terms in Equation 3.18 are Gaussian distributions, we can perform the
integrations over v and z analytically by successively completing the squares in v
and z to obtain

P (fτ |Xfs) =

√

|Λ̃z,x|
√

|A||Λz,x|
e

1

2
(µ̃′

z,xΛ̃−1

z,xµ̃z,x−µ′

z,xΛ−1

z,xµz,x−ε) (3.19)

where

Λw = (f ′sA
−1fs + Λ−1

p )−1

Λ̃z,x = (Λ−1
z,x +M ′(Λp + (f ′sA

−1fs)
−1)−1M)−1

µ̃z,x = Λ̃z,x(Λ
−1
z,xµz,x −M

′Λ−1
p Λww) (3.20)

ε = f ′τA
−1fτ + w′Λww w = f ′sA

−1fτ

If we normalize this distribution over X, we can remove all terms which are inde-

pendent of X, and obtain

P (fτ |Xfs)
∑

x P (fτ |Xfs)
=

√

|Λ̃z,x|
√

|Λz,x|
e

1

2
(µ̃′

z,xΛ̃−1
z,xµ̃z,x−µ′

z,xΛ−1
z,xµz,x). (3.21)

The mean, µ̃z,x, and covariance, Λ̃z,x, are the parameters of the distribution of basis

vector coefficients, z:

P (z|X∇f) = 2π−
Nz
2 |Λ̃z,x|

− 1

2 e−
1

2
(z−µ̃z,x)′Λ̃−1

z,x(z−µ̃z,x),

The expected value of the Zernike vector for a particular state of X = xi, z̃x,i, is

therefore

z̃x,i =

∫

z
zP (z|xi∇f) = µ̃z,i (3.22)

and the expected value of Z given the entire model is

z̃ =

∫

z
zP (z|∇f)

=
∑

i

∫

z
zP (z|xi,∇f)P (xi|∇f)

=
∑

i

µ̃z,iP (xi|∇f). (3.23)
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The distribution over X in this expression is computed as

P (xi|∇f) =
P (∇f |xi)Θx,i

P (∇f)

where P (∇f |xi) is given by Equation (3.19), and P (∇f) normalizes the distribution.

The expected flow field, ṽ, for a given state, ṽx, and for the whole model, ṽ, can be

computed as

ṽx = Mµ̃z,x ṽ = Mz̃ (3.24)

Multi-scale implementation

The brightness constancy assumption fails if the velocity v is large enough to

produce aliasing. Therefore, a multi-scale pyramid decomposition of the opti-

cal flow field must be used. This results in distribution over the flow vectors,

P (v|∇f) ∼ N (v;µv,Λv), where Λv = (f ′sA
−1fs)

−1 and µv = −Λvf
′
sA

−1fτ [SAH91].

Using these coarse-to-fine estimates, Equations 3.20 become

Λ̃z,x = (Λ−1
z,x +M ′(Λp + Λv)

−1M)−1

µ̃z,x = Λ̃z,x(Λ−1
z,xµz,x +M ′(Λp + Λv)

−1µv) (3.25)

The mean of this distribution, µ̃z,x, is a weighted combination of the mean Zernike

projection from the data (M ′µv), and the model mean, µz,x. The weighting of the

data involves the variance Λv, which, if we take Λ1 to be diagonal with entry λ1,

and the scalar variance Λ2 = λ2, is

Λv =

[

f ′sfs

λ1‖fs‖2 + λ2

]−1

In regions of low contrast (σ1‖fs‖
2 � σ2), the data weighting increases with the

contrast (Λv decreases as ‖fs‖
2 increases). In regions of high contrast, the λ1‖fs‖

2

term in the denominator normalizes the numerator, f ′
sfs, and so the data weighting

stays constant. This seems intuitively reasonable, since we would not expect the

data to continue being more heavily weighted once the contrast (or signal-to-noise

ratio) has increased above the noise level.

3.2.4 Feature weighting

In general, we will not know which basis coefficients are the most useful for our

classification task: which basis vectors should be included in M , and which should

be left out (as part of np). Further, selecting a relevant subset of the basis vectors for
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clustering can lead to significant computational savings. We use the feature weight-

ing techniques of [CdFGT03], which characterize the relevance of basis vectors by

examining how the cluster means, µz,x, are distributed along each basis dimension,

k = 1 . . . Nz. Relevant dimensions will have well separated means (large inter-class

distance along that dimension), while irrelevant dimensions will have means which

are all similar to the mean of the data, µ∗. Note that the feature weights do not play

a role in the recognition task, only in the learning of the model, as we will describe

in Chapter 4. The feature weights change the learning process, however, in such a

way that the model will be less sensitive to dimensions with lower feature weights.

To implement these notions, we place a conjugate normal prior on the cluster

means, µz,x ∼ N (µ∗, T ), where T is diagonal with elements τ 2
1 ...τ

2
Nz

, and τ2
k is the

feature weight for dimension k. The prior biases the model means to be close

to the data mean along dimensions with small feature weights (small variance of

the means), but allows them to be far from the data mean along dimensions with

large feature weights (large variance of the means). Thus, τ 2
k will be large if k is a

dimension relevant to the clustering task, while τ 2
k → 0 if the dimension is irrelevant.

Feature selection occurs if we allow τ 2
k = 0 for some k.

Conjugate priors are placed on the feature weights, τ 2
k , and on the model

covariances, Λz,x. Each feature weight is univariate, and so an inverse gamma

distribution is the prior on each τ 2
k :

P (τ2
k |a, b) ∝ (τ 2

k )−a−1e−b/τ2
k . (3.26)

This prior allows some control over the magnitude of the learned feature weights,

τ2
k . The model covariances are multivariate, for which the conjugate prior is an

inverse-Wishart prior:

P (Λz,x|α,Λ
∗) ∝ |Λz,x|

−(α+Nz+1)/2e−
1

2
tr(αΛ∗Λ−1

z,x), (3.27)

where Λ∗ is the covariance of all the data, and α is a parameter which dictates

the expected size of the clusters (the intra-class distance). This prior stabilizes the

cluster learning.

3.2.5 Experiments with Probabilistic Projections

We performed two experiments to examine the advantages of using the probabilis-

tic projection described by Equation (3.25) over the näıve projection. In the first,

flow fields were reconstructed from 500 twenty-dimensional Zernike vectors, with all

coefficients randomly generated in the interval [−1, 1]. The resulting flows (< 5 pix-

els/frame) were used to warp a synthetic 120×120 image using linear interpolation.
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The original image, shown in Figure 3.5(a), is a sine grating with added Gaussian

noise σ = 5 greyscale values. An additional amount of Gaussian noise (σ = 5

again) was added after the warp. Figure 3.5 (b) and (c) show an example flow field

and the corresponding warped image, respectively. Optical flow was projected to

(a) original (b) flow field (c) warped

Figure 3.5: Synthetic images and flows.

the Zernike basis using both näıve and probabilistic methods. The probabilistic

projection used a single x state with a zero mean prior, µz,x = 0, and a diagonal

covariance Λz,x = σz,xI, with σz,x = 0.01. The coefficients were compared with the

ground truth. The mean Euclidean distances were 1.08 ± 0.32 for the probabilistic

projection, and 1.55 ± 0.37 for the näıve projection. The mean difference (näıve-

probabilistic) was 0.48±0.13, showing that the probabilistic projection outperforms

the näıve method, as expected.

Our second experiment used the synthetic Yosemite flow-through sequence,

constructed from an aerial image and a depth map [BFB94]. Ground truth over

the ground region is used to evaluate the performance of the projection methods.

There are fourteen 316x252 frames in the sequence, and the flow fields range up

to 4 pixels/frame. The ground sections of two frames are shown in the top row

of Figure 3.6, while the middle row shows the ground truth and the estimate of

the flow field using the method of [SAH91]. We pre-smoothed each image using

separable Gaussian filters (σ = 1.0), and used a 3-level Gaussian pyramid. The noise

parameters were set to σ1 = 0.08, σ2 = 1.0, σp = 10.0, σ0 = 0.5 and σd = 0.1. The

angular error 2 on the flow estimate is 8.4 ± 12.0. The first 10 Zernike coefficients

were estimated for all frames using both näıve and probabilistic projections, and

were used to reconstruct flow fields over an ellipsoidal region covering the rigid

portion of the scene using Equation 3.3. We used a single zero-mean µz = 0.0

model with diagonal covariance Λz = 0.001. The bottom row in Figure 3.6 shows

the reconstructed flow fields for the two projections. The average angular errors

over all frames for the reconstructions were 6.27± 6.36 for the näıve and 5.66± 6.22

2The angular error, E, between ground truth vc and estimate ve is E = arccos(vc · ve),
where v = 1√

u2+v2+1
(u, v, 1)T
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(frame 7) (frame 8)

truth estimate

näıve probabilistic

Figure 3.6: Top: two frames from the Yosemite sequence. Middle: Ground truth
flow and estimate using [SAH91]. Bottom: reconstructed flow fields.
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for the probabilistic projections. Again, we see the advantage of the probabilistic

projection.

3.3 Modeling Facial Configuration

We use the Zernike polynomial basis to describe image regions as facial poses. We

use a small subset (only the first 32 basis polynomials), which gives a very coarse

approximation to the brightness structure over the face. However, the modeling of

configuration is only secondary to the dynamics modeling we have just described,

and is used to disambiguate zero-motion flow fields from each other, as we discussed

in the beginning of this chapter. Our focus has been primarily on the dynamics

modeling. It may be desirable in the future to build more precise models of con-

figuration. The temporal modeling techniques we describe in Sections 3.5 and 3.6

would still be applicable, however, and we proceed with this simplified model.

Equation 3.5 is used directly to compute the coefficients, Am
n and Bm

n , of the

projection of an image region, H, to the Zernike basis. H is the model estimate

of the image over the projection region. Equation 3.6 allows us to represent H as

H = Pz, where the columns of P are the Nz basis vectors and z are the Zernike

coefficients, Am
n and Bm

n . As with the flow fields, we can write H = Pz + nq, where

nq ∝ N (0,Λq), and so P (H|z) = N (H;Pz,Λq). As we will show, the same feature

weighting techiques apply equally well here for selection of basis vectors.

Figure 3.7 shows some examples of Zernike polynomials of different orders

(values of n and m) as grayscale images. Higher orders of Zernike polynomials

represent more complex brightness patterns.

Images can be reconstructed from the coefficients using Equation 3.3, as

shown for an example image in Figure 3.8. As we reconstruct with more coefficients,

we are including higher spatial frequencies, leading to a more accurate reconstruction

of the original.

In the following, we only discuss classifying individual images, but the anal-

ysis will be combined with that for the flow field projections in Sections 3.5 and 3.6.

The classification of image configurations is to assign each of a set of images,

I1 . . . INt , to one of Nw cluster labels W1 . . . WNw , such that the images with the

same label are as similar as possible to each other, but as dissimilar as possible from

the images with any other label. For example, if describing the human face, states

of W may correspond to instantaneous poses during smiling (mouth expanded),

frowning (contraction between the eyes), or talking (lips in a particular configura-

tion). We use the same model described in the last section, as shown in Figure 3.9,

which is the same as Figure 3.3, except the labels have changed. The measurements
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Figure 3.7: Example images generated from individual ZPs as shown.

are now the images, I. The subspace projections over image regions are labeled H.

We can express classification of an image as the maximization of the probability

distribution over the classes, W , given the image:

P (W |I,Θ) ∝ P (I|W,Θ)P (W |Θ), (3.28)

where Θ are the parameters of the model. Since we plan to classify image projec-

tions, we expand this probability distribution as

P (W |I,Θ) =

∫

h,z
P (I|h,Θ)P (h|z,Θ)P (z|WΘ)P (W |Θ)

There are four terms in the integration. The prior over classes, P (W |Θ), is

part of our model, parametrized with a multinomial Θw,i = P (W = i). The distri-

bution over z given W is parametetrised with a normal P (z|W ) = N (z;µz,w,Λz,w).

The distribution over the image regions given the Zernike projection is normal,

P (h|zΘ) = N (h; z,Λq), as previously described. The distribution over images given

the subspace image region, h, P (I|h,Θ), can be approximated using a normal dis-

tribution at each pixel, P (I|h,Θ) ∼ N (I;h,Λh).

The integrations over h and z can be performed since all the distributions

inside the integral are Gaussian. The results are similar to that for the dynamics

(Equation 3.21):

P (W |I,Θ) ∝ eµ′

�
Λ−1
� µ�−µ′

z,wΛ−1
z,wµz,w (3.29)
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first 3 ZPs
(affine)

reconstructed

zernike projection

original image

first 32 ZPs first 64 ZPs
images

Z t−1

reconstruct image from Z

project to Zernike basis

Figure 3.8: Reconstructing images from Zernike projections. Shown are three re-
constructions, using increasing number of coefficients from left to right: 3 ZPs or
affine (n = m = 1), 32 ZPs and 64 ZPs.
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Figure 3.9: Bayesian network for the mixture of Gaussians over images with feature
weighting. Shaded nodes are observed or fixed (known), while unshaded nodes are
unknown random variables. Boxes are fixed hyper-parameters. The dashed line
delineates the priors for feature weighting. W ∈ 1 . . . Nw are discrete image classes,
Z is the Zernike feature vector (projection of image), H is the projected image region,
and I is the full image. µz,Λz are the parameters of the mixture of Gaussians over
the Z vector space, and T are the feature weights. ΘW are the class probability
parameter (a multinomial), and αW is the parameter of the (conjugate) Dirichlet
prior over ΘW .

where

µ� = Λ−1
q

[

Λ−1
h + Λ−1

q

]−1
Λ−1

h I ′ + Λ−1
z,wµz,w (3.30)

Λ� =
(

M ′Λ−1
q M −M ′Λ−1

q

[

Λ−1
h + Λ−1

q

]−1
Λ−1

q M − Λ−1
z,w

)−1
(3.31)

In this case, however, there are no data-dependent variances as in the flow field case.

Therefore, the näıve projection is a good approximation to the full integration, and

we write P (W |IΘ) = P (zW |WΘ)P (W |Θ), where zW = M ′I is the projection of the

image region to the basis set.

3.4 Lighting Changes

The modeling of pose and dyanmics is sensitive to lighting changes which are due

to factors other than motion in the face. Shadows passing over and reflections onto
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the face are both examples of environmental lighting changes that will seriously

affect the models we have described. Such violations are common in videos taken

outdoors or with a moving camera. The data we analyse, however, is taken in

a laboratory setting, with constant diffuse light, and we do not encounter these

problems. Nevertheless, we give a brief discussion of the problem here, as it would

have to be dealt with for a system operating outdoors, or on a mobile platform.

The dynamics process is also affected by external lighting changes. As de-

scribed in Section 3.2.1, optical flow is estimated using brightness constancy, which

assumes that any brightness changes in the image are due only to motion in the

scene (which is what we are trying to estimate). Brightness changes that occur due

to external causes violate the brightness constancy assumption, and result in erro-

neous flow estimates. An example is shown in Figure 3.10, in which a face (which

is stationary) undergoes a lighting change due to a new light source. The flow esti-

mation algorithm assumes the changes in brightness are due to motion of the face,

and estimates flow accordingly.

frame 2515 2519 erroneous flow

Figure 3.10: Example of erroneous flow generated by a large lighting change. The
subject’s head does not move, but the flow estimates are large due to the lighting
cast on the subject’s face by a passing object.

frame 2541 2542 erroneous flow

Figure 3.11: Example of erroneous flow generated by a small lighting change
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Large brightness differences can be easily detected since they result in large

violations of brightness constancy. Ixu+ Iyv+ It = Eb � 0. Thus, we can threshold

the value of Eb and reject the corresponding (erroneous) flow fields. Unfortunately,

even small brightness changes can cause erroneous flow measurements, as shown in

Figure 3.11, in which a small lighting change on the subject’s face causes a violation

of brightness constancy of the same magnitude as that encountered in normal motion

estimation, and so escapes the thresholding operation. It is possible to extend the

brightness constancy assumption to account for overall brightness changes [NY93].

The effects on the configuration modeling are clear: the images with lighting

effects will project to different regions of the Zernike vector space. This is a well

studied (and difficult) problem in computer vision. One solution is to have different

models for each possible lighting condition, or to estimate the lighting condition

based on the image. However, this involves adding much complexity to the method.

Another solution is to use spatial filters to remove the effects of lighting. For exam-

ple, working in hue-saturation space only (removing luminosity) has been known to

remove some of the problems.

3.5 Temporal Modeling

We have seen in the last two sections how to compute spatially abstract repre-

sentations of images and their derviatives. These models are applicable only for

individual time frames, however, and we would like to describe what happens over

longer time periods. To this end, we combine the two spatial representations to-

gether in a single temporal model, as shown in Figure 3.12. This dynamic Bayesian

network is a flavor of hidden Markov model, known as a coupled hidden Markov

model, or CHMM [BOP97]. The idea is to model the temporal dependencies of

the dynamics and configuration, as well as the interaction between the two, at a

high level of abstraction. The coupled hidden Markov model represents the tem-

poral evolution of the dynamics and configuration using two Markovian processes

over X and W , which we call the dynamics process and the configuration process

respectively. The transition probabilities in these two processes are parametrized

by θX = P (Xt|Xt−1Wt), θW = P (Wt|Wt−1Xt−1), while the intial state probabilities

are parametrized with πX = P (X0) and πW = P (W0). Note that the coupling in

this model is reduced from the usual full coupling in a CHMM [BOP97]: we have

introduced the additional independency that Xt is independent of Wt−1 given Wt

and Xt−1. This is because we do not expect the dynamics to depend on the previous

and current configurations given the previous dynamics. We do, however, expect

that our beliefs about the dynamics will be affected by the current configuration (the

61



I t−1 t−1
f

∆

I
t tf

∆

t−1
V VtH

t−1
H t

Z

Xt−1

Wt−1

X t

Wt

Z Zx
t

Zw
t

x
t−1

w
t−1

Θ
Θ

w

xα
x

w

α

Figure 3.12: Two time slices of a dynamic Bayesian network (DBN) for simultane-
ous modeling of pose and dynamics. This model combines the mixture models in
Figure 3.3 and 3.9 by coupling the high-level mixture variable, X and W in a cou-
pled temporal Markov chain. We have left out explicit representation of the model
parameters µz,ΛZ , T , and other low-level noise terms, but included the transition
parameters, ΘX and ΘW and their priors, αX and αW , respectively.

pose gives us information about what changes may be expected) and the previous

dynamics (smoothness of the dynamics process).
Computing the likelihood of a sequence of T images and derivatives, I,∇f

given the parameters of the coupled hidden Markov model, Θ, is accomplished by us-
ing an extension of the usual “forward” computation from HMM estimation [Rab89].
We can derive a recursive formula for this computation, in which we write O ≡ I∇f ,
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and an entire sequence of data as O = {O}
1,T

= {I1 . . . IT ,∇f1 . . .∇fT},

P (O|Θ) =
∑

ij

P (XT,iWT,j{O}
1,T

|Θ)

=
∑

ij

P (IT∇fT |XT,iWT,j {O}
1,T−1

Θ)P (XT,iWT,j {O}
1,T−1

|Θ)

=
∑

ij

P (IT |WT,iΘ)P (∇fT |XT,jΘ)
∑

kl

P (XT,iWT,jXT−1,kWT−1,l {O}
1,T−1

|Θ)

=
∑

ij

P (IT |WT,iΘ)P (∇fT |XT,jΘ)
∑

kl

ΘXijkΘWjklP (XT−1,kWT−1,l {O}
1,T−1

Θ)

(3.32)

where

θWjkl = P (Wt = j|Wt−1 = k,Xt−1 = l)

and

ΘXijk = P (Xt = i|Xt−1 = jWt = k)

Given that we have a coupled hidden Markov model such as we have just

described, we may be interested in estimating the temporal state evolution of the

dynamics and configuration processes for some set of observations. That is, we want

to find the single best state sequences, X1 . . . XT , and W1 . . .WT given observations,

O1 . . .OT , which can be formulated as maximizing P ({X,W}
1,T

|{O}
1,T

Θ). The Viterbi

algorithm performs this maximization. It needs to be modified slightly to accomo-

date the two temporal chains. Appendix D.1 derives the Viterbi algorithm for this

model.

3.6 Temporal abstraction

We have just described the modeling of sequences of input data using the hidden

state of two Markovian processes. A single such model is only useful for classifying

data on a frame by frame basis, so, except for the tracking and the addition of

temporal dependence in the dynamics and configuration processes, we are no further

ahead than at the end of Section 3.3. However, recall that we wish to build temporal

abstractions into our model, and infer high-level states which can be used in a

decision-making agent. The state of the dynamics and configuration processes at

any time, t, will be descriptions of instantaneous motion and pose. Over some

longer period of time, however, the sequence of states will be a description of the
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longer term trajectories of motion and pose. For example, suppose two states of the

dynamics process, Xi, Xj , correspond to instantaneous flow fields observed when

the subject raises or lowers their eyebrows, respectively. If the subject “flashes”

their eyebrows (raises, then quickly lowers them), the sequence of states in the

dynamics process over the course of the display may start in Xi at the beginning of

the expansion phase, change to Xj at the apex of the display, and remain there until

the end of the retraction phase. However, the subject may also hold their eyebrows

raised for a period of time, during which the dynamics process will be in a state Xk

corresponding to no motion. The sequence of states will then start in Xi, change to

Xk at the apex of the display, and change to Xj at the beginning of the retraction

phase of the display.

If it is important to distinguish these two displays, then we must hypothesise

a higher level, discrete, variable, D, which conditions the lower level variables, as

shown in Figure 3.13. This figure shows a mixture of CHMMs like the one in

Figure 3.12. For clarity, some of the variables have been grouped together: the joint

space of the mixture variables is denoted Y ≡ {X,W}, the joint space of the Zernike

projections is Z ≡ {Zx, Zw}, the joint space of the image and flow projections is

G ≡ {H,V }, and the joint space of observations is denoted O ≡ {I,∇f}. The

high-level motion state at some time τ , Dτ , explains the sequence of observations,

0, from t = gτ . . . gτ+1 − 1. The indicator variables, gτ , are indices to frame times

which demarcate the beginning of each sequence explained by a Dτ . In general,

the sequence of data from gτ to gτ+1 − 1 will be part of a longer sequence. The

question of how to find the temporal segments, g, is discussed in Section 3.6.4. The

parameters of this model are the prior over high-level states, ΘDi = P (Di), and a

set of parameters as in the coupled hidden Markov model (CHMM) for each state,

D. For example, the transition probability over the dynamics process, X, will now

be conditioned on D: ΘXijkl = P (Xgτ+t,i|Xgτ+t−1,jCgτ+t,kDτ,l). This model is a

mixture of hidden Markov models [Smy97]. The estimation of the likelihood of a

sequence of data, O, given this model can be computed as by summing over D as

follows

P (O) =
∑

k

P (O|Dk)P (Dk) (3.33)

The likelihood of the data for a particular high-level state, Dn, P (O|Dn), is com-

puted using the same equations as for the CHMM model (Equation 3.32), with all
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Figure 3.13: Mixture of coupled hidden Markov models as a dynamic Bayesian
network. The mixture variable, D, conditions a CHMM like the one shown in
Figure 3.12, where we have grouped sets of variables together: Y ≡ {X,W}, Z ≡
{Zx, Zw}, G ≡ {H,V }, and O ≡ {I,∇f}. The multinomial mixture parameter is
ΘD, and αD is the parameter of its Dirichlet prior.
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Figure 3.14: Simplified mixture of hidden Markov models as a Bayesian network.
This is the same model as shown in Figure 3.13, except we have left out explicit
representation of the hidden variables, Y,Z and G.

parameters conditioned on Dn:

P (O|DnΘ) =
∑

ij

P (IT |WT,iDnΘ)P (∇fT |XT,jDnΘ)

∑

kl

ΘXijknΘWjklnP (XT−1,kWT−1,l {O}
1,T−1

|DnΘ)

(3.34)

We may also want to compute the most likely high-level motion sequence

class, D∗, given a set of observations, O, which means solving

D∗ = arg max
i
P (Di|O) = arg max

i
P (O|Di)ΘDi

where P (O|Di) is computed using Equation 3.34, and ΘDi is the model parameter.

The model in Figure 3.13 is a mixture of coupled hidden Markov models,

which we will refer to as a 3MG in the following (there are three ’M’s in MCHMM).

We can simplify notation by representing the network in Figure 3.13 as by the one

in Figure 3.14. In this figure, Oτ = 0gτ . . . 0gτ+1−1, and we have left out explicit

representation of the hidden states, Y,Z,G. This representation makes clear the

fact that we are again dealing with a mixture model, as we were in Section 3.2.2,

and will be useful in the following section.

3.6.1 Context Dependent Mixtures of Hidden Markov Models

Recall that we are interested in modeling the dependence of facial displays on con-

text. We assume that context is observable, and comes in two flavors: context which
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Figure 3.15: Context Dependent Mixture of hidden Markov models as a dynamic
Bayesian network, including context variables, C and A, and the additional param-
eter, ΘA = P (A|D).

affects the facial displays, and context which is affected by the facial displays. In

the simple games we consider in Chapter 5, the state of the game affects what kinds

of facial displays the players use, and the actions of the players are affected by the

displays of their partner. Thus, the context can either condition (in which case we

label it C) or be conditioned by (in which case we label it A), the high-level mo-

tion state, D. This gives us the model in Figure 3.15. We refer to this model as a

C3MG (a Context dependent 3MG). Since the context is observable, the likelihood

of interest is now the likelihood of all the observations,

P (OCiAj |Θ) =
∑

k

P (DkOCiAj |Θ)

=
∑

k

P (Aj |Dk)P (O|Dk)P (Dk|Ci)P (Ci)

=
∑

k

ΘAjkΘCkiP (O|Dk)P (Ci) (3.35)

where we have introduced two new parameters, ΘAjk = P (Aj |Dk) and ΘCki =

P (Dk|Ci), and the likelihood of the data, P (O|Dk), is computed using Equa-

tion 3.34.

Again, we want to compute the most likely high-level motion sequence class,

D∗, given a set of observations, O, Ck, Al, which means solving

D∗ = arg max
i
P (Di|O, Cj , Ak) = arg max

i
P (O|Di)ΘAkiΘDij
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Figure 3.16: Markov chain of mixtures of hidden Markov models (4MG) as a dy-
namic Bayesian network.

where P (O|Di) is computed using Equation 3.34, and ΘDij,ΘAki are the model

parameters.

3.6.2 Markov chains of Mixtures of Hidden Markov Models

The highest level motion descriptors, D, in a 3MG may also not be temporally

independent. If we assume that their dependence is also Markovian, then we have

the dynamic Bayesian network shown in Figure 3.16. This is a Markov chain of

mixtures of hidden coupled hidden Markov models, which we refer to as a 4MG (4

’M’s in MMCHMM). Such a model is also known as an embedded hidden Markov

model [NI00], or a hierarchical mixture of Markov chains [Hoe01]. The likelihood

for this model can be computed in the same way as for a normal hidden Markov

model (HMM), using the likelihood function given by Equation 3.34:

P (O|Θ) =
∑

k

P (DT,k{O}
1,T
|Θ)

=
∑

k

P (OT |DT,k)
∑

l

P (DT,k|DT−1,l)P (DT−1,l {O}
1,T−1

|Θ)

=
∑

k

P (OT |DT,k)
∑

l

ΘD,klP (DT−1,l {O}
1,T−1

|Θ) (3.36)

This is a recursive formula which can efficiently computed using the usual forwards

algorithm from HMM estimation [Rab89].

To compute the most likely sequence of D1 . . . DT given a set of sequences

of observations O1 . . .OT , we use the standard Viterbi algorithm [Rab89], using

P (O|D) as given by Equation 3.34 as the likelihood function.
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Figure 3.17: Context dependent Markov chain of mixtures of hidden Markov models
(C4MG) as a dynamic Bayesian network, including context variables, C and A.

3.6.3 Context Dependent 4MGs

Adding context variables to the model shown in the last section gives us the one

shown in Figure 3.17. This model is a C4MG (context dependent 4MG). This model

is known as an input-output hidden Markov model, or IOHMM [BF96]. In this

case, the context variable, C, is the input observations, and both the image data,

O, and the conditioned context, A, are output observations. Again, the likelihood

is computed using a recursive formula which combines elements from Equation 3.36

and 3.35.

P (O,C,A|Θ)

=
∑

k

P (DT,k{OCA}
1,T

|Θ)

=
∑

k

P (ATj |DT,k)P (OT |DT,k)
∑

l

P (DT,k|CT,iDT−1,l)P (DT−1,l{OCA}
1,T−1

|Θ)

=
∑

k

ΘAjkP (OT |DT,k)
∑

l

ΘD,kilP (DT−1,l{OCA}
1,T−1

|Θ) (3.37)

The likelihood is the same calculation as for an IOHMM, except that the output

observation distribution, P (A,O|D), is factored into two terms, P (A|D)P (O|D).

To compute the most likely sequence of D1 . . . DT given a set of sequences

of observations O1 . . .OT , C1 . . . CT , A1 . . . AT , we again use the Viterbi algorithm,

except that now the likelihood function is a product of two terms, P (O|D) and

P (A|D), and the transition function over D is selected based on the value of C for
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each time frame.

3.6.4 Temporal Segmentation

The models we have just presented all describe a finite length sequence of data,

denoted by the indicator variable, gτ . In a complete Bayesian model, these indi-

cators will be part of the model, and must be integrated out, as in a hierarchical

hidden Markov model [FST98]. Although linear time algorithms exist for such mod-

els [MP01], we claim that the segmentation can be achieved by looking at the context

variables, C and A. We have assumed these to be fully observable, and to be hap-

pening at event times which span multiple frame times in general. Thus, the frame

time of occurence of these context states can be used directly as the indicators, g.

For example, in the simple card game we consider in Chapter 5, players take turns

playing cards or making bids. These plays and bids are clear temporal markers

in the games, and we do not expect facial displays to span the plays. We expect

the players to communicate and play sequentially, not simultaneously. Previous

authors have approached this temporal segmentation problem by manually fixing

it [OHG02], exhaustive search for the most likely time scale [WCP00, WBC97], or

by searching for discontinuities in the temporal trajectories [WPG01, RA00].

3.7 Tracking

The previous sections all assumed that some region in the image had been selected

for projection. While in some cases we may be interested in the camera’s field of view

(the entire image), in most we will be interested in the motion of some figure upon

some background, for example. Whatever aspect of this figure we are interested

in describing the motion of (for example, the human face) must be located in each

frame that we wish to process. In a video stream, however, images occur at regular

33 millisecond intervals, and we can use temporal continuity to make this location

process much simpler.

One of the primary requirements of our face tracker is that the tracked region

be consistently registered to the face: the facial features must show up in exactly

the same positions relative to the tracked region. Furthermore, the tracker must be

robust to failures and so must be able to re-initialize automatically. For example,

if we envision an online user interface, then the tracker must be ready to lock onto

people when they appear, and re-initialize after they turn their heads, or bend down

to pick up a dropped pencil. However, since our tests are performed with humans

using a computer, their faces will tend to be fairly stationary, and will be facing the
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camera (mounted above the screen). Therefore, we can focus more resources on the

registration than on the localization.

While many head and body trackers have been implemented, most are de-

signed to robustly maintain a rough lock on the tracked region, but maintain track-

ing through occlusions, full 360◦ rotations, and distractions (other faces present).

For example, the Birchfield tracker uses color histograms and intensity gradients to

fit an ellipse to the head region [Bir98]. Jepson et al. describe robust, adaptive,

appearance models which are learned on-line using the EM algorithm for tracking

of natural objects (including faces) [JFEM01]. Again, these models are tailored

for robustness in the face of occlusions and variations in 3D pose. There are many

other examples of tracking algorithms in the litterature. Our method uses an optical

flow tracker with corrections from an exemplar database and skin color detection.

It is similar to the method used by Kruger [KZ02]. Exemplars give the ability to

accurately register the face. Skin color gives the ability to re-initialize after failure.

It may also be desireable to also track facial features, such as pupils or eyes, for

additional registration.

Section 3.7.1 gives a procedural description of the optical flow tracker with

corrections from exemplar images to avoid long term drift, and briefly discusses

some experiences we have had with this tracker for very long video sequences. Sec-

tion 3.7.2 then describes how the tracker is actually a special case of a more general

class of dynamic Bayesian models. This interpretation would allow us to integrate

tracking with modeling of facial displays, as described in previous sections, in a con-

sistent framework. Further investigations into this Bayesian tracking model would

be necessary in the future.

3.7.1 Tracker: procedural description

The tracking problem is to update a region as described by centroid and scale

parameters αt = {xc, yc, rx, ry} from one frame, t, to the next, t+1. The centroid is

{xc, yc} (pixels) while the sides of the image region are {rx, ry} (pixels). We assume

that there is only one region to be tracked in all frames. A schematic of our tracking

method is shown in Figure 3.18.

Since optical flow is an estimate of the change between two frames, we get

an initial tracker update from the first and second order coefficients of the projected

flow estimates

x′c = xc + uÃ0
0 y′c = yc + vÃ0

0

r′x = rx + uÃ1
1 r′y = ry + vB̃1

1 (3.38)

where Ã, B̃ are components of z̃t (Equation 3.23). However, updates using only
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Figure 3.18: Procedural description of the tracking process. Estimates of optical
flow are used to update the track, with corrections to prevent long term drift by
matching raw image regions to an exemplar database. Skin segmentation is used to
re-initialize after tracker failure.

the flow are prone to significant drift over any sequence longer than roughly 600

frames (20 seconds). We correct for this drift at each frame using color template

image matching. We maintain a set of templates (also called exemplars), which are

example images of the region we are tracking in a variety of poses under different

lighting conditions. These exemplars should span the space of poses and lighting

conditions we expect to see in the subject’s face, and restrict the tracker to operate

only for a particular subject. Although it may be possible to automatically select

the exemplars [KZ02], we select them by hand in the following way. The tracker

is run with human supervision until it fails, at which point an exemplar is selected

which allows the tracker to recover from failure. This process is continued until

the tracking is stable, and then the sequence is re-tracked from the start without

supervision. In a typical laboratory setting, only about 20-30 exemplars are needed.

In more complex environments, this tracker would probably not suffice, and would

need further work.

The exemplars are all scaled to be the same size: Ne ×Ne. The scaling can

be done using the Mitchell algorithm [Sch92], or using graphics rendering hardware

if available. We search over small local corrections to the scale prediction, α ′
t =

{x′c, y
′
c, r

′
x, r

′
y}, and compare the image in each corrected region to each exemplar

by first scaling the image region to the fixed exemplar size (Ne × Ne) and then

computing the distance using the sum of squares pixelwise metric. The most likely

scale correction (which could be nothing) is then computed based on these distances.
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Severe tracker failure can still occur for a variety of reasons, including head

rotations, changes in lighting, and occlusions by the subject’s hands, such as when

scratching the face. Tracker failures also occur when the subject’s face leaves the

camera’s field of view. For example, they may bend down to pick up a dropped

item. Therefore, a robust tracker needs some way of initializing a track without

prior knowledge of the previous location of the region of interest. Tracker failure is

signaled if either of two error measures crosses a threshold: first, the degree to which

the brightness constancy assumption is violated in the flow estimate, and second,

the exemplar match scores. The thresholds are assigned manually after observing

the tracker behavior.

We accomplish tracker initialization using skin color segmentation and the

exemplar database. We transform the RGB color images to HSV (hue-saturation-

value) space, and segment the image using simple thresholding in hue and saturation.

Median filtering removes noisy estimates, and we find the connected components in

the resulting binary image. The bounding box, b0, of the largest skin component

is our initial estimate of scale. However, such an image region will not necessarily

be the same as any exemplar in the database, since the exemplars are manually

selected regardless of skin color segmentation. Thus, for each exemplar, say hk,

we maintain a skin scale mapping, M s
k , which maps the bounding box, bk, of hk’s

largest connected skin component, to the actual bounding box that was selected for

the exemplar manually, b†: M s
k(bk) = b†. The inverses of the skin scale mappings

are M s−1

k (b†) = bk. For a given exemplar, k, our estimate of the scale in the image,

αk
0 , given the bounding box b0 is then αk

0 = M s
k(b0). The most likely initial scale

is then computed as before, but using these skin-based predictions instead of the

usual flow-based predictions. The skin-scale mapping enables the initialization of

the tracker to be fairly independent of the performance of the skin segmentation

procedure. For example, the skin segmentation shown in Figure 3.18 only classifies

about half the subject’s face as skin pixels. In this particular example, it is because

the HSV thresholds had to be tightened in order to deal with a nearly skin-colored

portion of the background. However, as long as the mapping between the skin

segmentation bounding box and some exemplar is consistent, the correct scale can

still be correctly estimated.

Figures 3.19 and 3.20 show some representative results of the tracker’s per-

formance on data of a human’s face while she is playing a simple card game through

a video link with another player (see Chapter 5). The figure shows part of the in-

terface to the tracker software, with the image on the left with the current location

of the track. On the right, the interface shows the most recently computed skin

segmentation and connected components results (from the last failure, since the
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skin estimate is only recomputed when the tracker fails). Components are shown

in different colors or shades of grey. Along the bottom of each image are shown a

selection of the exemplars, ranked by their match scores from left to right: the best

match is on the far left. Only the 10 best exemplars are shown out of a total of 26

in this example. Note that the frame rate in this example is only 12 frames per sec-

ond, making the tracking more difficult than some of our other experiments, which

were run at 30 frames per second. The tracker is operating normally in Figure 3.19,

with updates usually based only on optical flow estimates, and occasionally on skin

color. Figure 3.20 shows the tracker failing due to the subject throwing her head

back while laughing. This pose, in which the face is barely visible, is not contained

in the exemplar database, and so the tracker locks onto another part of the image.

The tracker recovers after the subject’s face returns to a normal, frontal pose. This

sequence is nearly 10,000 frames long, or about 14 minutes at 12 fps. The tracker

successfully recovered from failure in all but two instances, where manual interven-

tion was required due to the tracker locking onto an image region that was not the

face, but had close enough template matches to pass the failure detector. Typical

tracker speeds are over 10 frames per second for an tracked region of about 100×80

pixels.

3.7.2 Tracker: Bayesian model

The last section described an optical flow based tracker, with corrections from tem-

plate database matches. However, this approach separates the tracking problem

from the recognition problem, although the two are tightly coupled. This section

gives a rough overview of how tracking and recognition can be combined in a single

Bayesian model. The method described in this section has not been implemented,

and is described for future work only. Nevertheless, we show how our tracker can

be derived as a special case of the more general version presented here. The model

implements essentially the same tracker as we described in the last section, except

that the exemplars are replaced with the configuration modeling described in Sec-

tion 3.3. Thus, optical flow provides predictions about the tracked region, and the

configuration model provides corrections to the track. Addition of the track causes

efficiency problems, however, as it must be integrated out during the computation of

any quantities of interest. We discuss some approximation methods for surmounting

these difficulties.

Figure 3.21 shows the same model as in Figure 3.12, but with the facial

region, α, explicitly represented. The scale, α forms another Markovian chain,

called the transformation process, which conditions both measurements, ∇f and I.

In our previous derivations, we have always assumed that the scale is fixed, such
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8456 8457

8469 8472

8479 8481

8482 8483

Figure 3.19: Tracker successful operation. Top left of each frame is the image and
the tracked region. Top right is the skin color segmentation connected components.
Different shades of grey denote different components. Exemplars are shown along
the bottom, ranked by increasing match scores from left to right (best exemplar on
the left). The frame rate in this sequence is 12 fps. The tracker is operating normally
at this point. Re-initialization occurs at frames 8469, 8482 and 8483 due to large
motions of the head. The track holds successfully, as exemplars in the database are
found that closely match the current pose. However, the tracker is about to fail at
frame 8484, shown in Figure 3.20.
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8484 8485

8487 8493

8499 8508

8509 8515

Figure 3.20: Continued from Figure 3.19, the tracker begins to fail at frame 8484
due to a large motion upwards of the face. By the following frame (8485) it has
completely failed, and is tracking the subject’s neck, because no appropriate exem-
plar was found in the database of this face pose. However, after the subject’s face
returns to a frontal pose at frame 8499, the tracker only needs 10 more frames to
lock back onto the face and find matching exemplars.
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Figure 3.21: Dynamic Bayesian network for full recognition and tracking model.

that, P (∇f |Xα) = P (∇fα|X) and P (I|Wα) = P (Iα|W ), where ∇fα and Iα are the

regions of∇f and I delineated by α. In the full Bayesian model shown in Figure 3.21,

this is no longer the case, and the scales must be explicitly included, and integrated

out. Given a scale, α, the likelihood functions are computed as they were shown in

Sections 3.2 and 3.3.

The Zernike projections of the optical flow field, Zx, are inputs to the tran-

formation process: they condition the scale. Recall that the flow field projections,

Zx, are computed from the spatio-temporal image derivatives between the current

and previous frames, It and It−1. These projections give us evidence about where

the tracked region is at time t, given where it was at time t−1: αt = αt−1 + zt. The

flow-based updates are not exact, however, and we model deviations from them with

additive, zero-mean Gaussian noise, αt = αt−1 + z̃t−1 + nα, where nα ∼ N (0,Λα).

Therefore, we can write

P (αt|αt−1z̃t−1) = N (αt;αt−1 + z̃t,Λα) (3.39)

This noise will cause significant drift in the track, as noted in the last section.

The tracking problem is to estimate the expected scale, α̃t, at time t given
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all previous observations, {O}
1,t−1

, and the current image, It:

α̃t =
∑

αt

αtP (αt|{O}
1,t−1

, It) (3.40)

Using Bayes’ rule we can write a recursive update for the distribution over αt:

P (αt|It{O}
1,t−1

) (3.41)

=
∑

WtXt−1

P (αtWtXt−1|It{O}
1,t−1

)

=
∑

WtXt−1

P (It|αtWt)P (αtWtXt−1|{O}
1,t−1

)

=
∑

Wt

P (It|αtWt)
∑

αt−1Xt−1

ξ(αt,∇ft−1)
∑

Wt−1

ΘW

∑

Xt−2

ΘXP (Xt−2Wt−1αt−1|It−1{O}
1,t−2

)

(3.42)

where

ξ(αt,∇ft−1) =

∫

zx,t−1

P (αt|αt−1zx,t−1)P (∇ft−1|αt−1zx,t−1)P (zx,t−1|Xt−1)

We show in Appendix B that this integration over zx,t−1 can be performed analyti-

cally, giving

ξ(αt,∇ft−1) = N (αt; µ̃α, Λ̃α)eγ (3.43)

where

µ̃α = αt−1 + µ̃z,x

Λ̃α = Λα + Λ̃z,x (3.44)

γ ∝ µ̃′αΛ̃−1
α µ̃α − f

′
τA

−1fτ +w′Λ−1
w w − µ′z,xΛ

−1
z,xµz,x (3.45)

As we expect, the mean scale is given by the updates based on the mean Zernike

basis projection as given by Equation 3.20, and the covariance on the scale is the

sum of the noises from the estimation of z, and from the transformation process.

When the tracker re-initializes after failure, there is no prior evidence in the

transformation process, but there is new evidence given by the skin segmentation

algorithm, as described in the last section. This is in the form of a bounding box,

b0, which is related to the scale for each exemplar through the skin-scale mapping,

M s. In this case, the expected scale is

α̃0 =
∑

α0

∑

k,i

α0P (I0|α0, hk)P (b0|hk, α0)P (hk|ci)P (ci)
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Although it is possible to incorporate the skin segmentation evidence at every frame

(not just the initial one), the exemplar matches are far more accurate, rendering the

skin evidence only useful at the initial frame.

Due to the complex dependence of the image and image derivative regions

on the scale, the double sums over scales, αt, αt−1, in Equation (3.42) cannot be

performed analytically, and will make the updates very inefficient. Therefore, we

need some way to approximate these updates. Note that any terms in the sums

with αt far (in terms of Λ̃α) from the µ̃α will be small, and can be neglected without

significantly affecting tracking accuracy. Therefore, we can approximate the scale

updates using a particle filter, and we can expect the number of particles necessary

for accurate tracking will be small. The particle filter implements Equation (3.42)

as follows, starting from an initial set of particles and their weights at time t − 1,

{αi
t−1, a

i
t−1} i ∈ 1 . . . Np:

1. re-sample the particles according to their weights, ai
t−1

2. project each particle to time t according to the deterministic dynamics αi
t =

αi
t−1 + z̃(αi

t−1)

3. add noise Λ̃α by moving each particle by an amount randomly sampled from

N (α; 0, Λ̃α)

4. compute new weights, ai
t using Equation (3.43).

The complexity of this procedure is multi-linear in the size of the image region being

tracked and on the number of particles necessary for maintaining and accurate track.

Typically, only a small number of particles are needed for accurate tracking over

long periods. The tracker we described in Section 3.7.1 uses only a single particle,

but makes it active [Jen02]. To make a particle active, we simply add a step in

which the particle locally performs gradient descent in the likelihood space.
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Chapter 4

Learning Models of Facial

Displays

The preceding chapter described a method for representing flow fields and poses over

a discrete set of normal distributions. It showed how to combine the modeling of

facial dynamics and configurations in a temporal model, and how to build temporal

abstractions of the sequences, leading to descriptions of entire sequences of motions

and poses over extended periods of time. It also demonstrated high level observable

context can be included. In this chapter, we show how to learn the parameters of

these models from data.

Our models fall into the general class of Bayesian mixture models with hid-

den state. We make some noisy observations of the world, which we hypothesise

arise from some number of discrete causes. We assume that the causes generate

the observations through some process, and that this process is corrupted by noise.

We also assume that the observations are generated in a multi-stage process, during

which temporally and spatially more complex states are generated. The last chapter

described how to compute the likelihood of a set of observations given such a model.

This likelihood can be used, along with Bayes’ rule, to estimate the distribution over

the high-level discrete causes given the observations. The current chapter addresses

the more difficult problem of estimating the most likely model which could have

given rise to our entire set of observations. This problem can be formulated as a con-

strained optimization of the likelihood of the observations given the model, over the

constrained model parameters. We use the well-known expectation-maximization,

or EM, algorithm to find a locally optimal solution [DNR77]. If we can find a good

initialization to the model, then the EM algorithm will optimize this model locally.

Section 4.1 is a general presentation of the EM algorithm, including a simple proof

of convergence. Section 4.2 then shows a particular application of the EM algo-
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rithm to the simple mixture model over flow fields discussed in Section 3.2. Only

the major results are presented, the details are shown in Appendix C. Section 4.4

then discusses how to learn the parameters of, including dynamics, configuration

and transformation chains, as described in Section 3.7. The learning equations are

very similar as those for a hidden Markov model[Rab89], but include propagation

of information forwards and backwards through all three Markovian chains, and use

the likelihood functions for flow fields and configurations as described in Chapter 3.

Appendix D derives the equations in full.

Sections 4.4, 4.5, and 4.6 describe learning the parameters of the more com-

plex models which were presented in Section 3.5. These last two models will be

the primary models for analysing the experimental data in Chapter 6. Section 4.9

discusses initialization techniques for the EM algorithm applied to our models. The

chapter concludes with a discussion of the implementation of the learning algorithms

in software.

4.1 Expectation Maximization

The expectation-maximization (EM) algorithm is a statistical technique for esti-

mating the maximum likelihood values of model parameters in cases where there is

missing or incomplete data. It addresses the situation where we have observed some

set of data, y, but not the values of some other, unobserved data, X. The random

variable X is related to Y through some model or function parametrized by θ. We

additionally may have some constraints on the values of θ. Thus, we wish to find

the maximum a-posteriori (MAP) values of the parameters, θ∗. That is, we wish to

solve

θ∗ = arg max
θ
P (y|θ)P (θ) = arg max

θ

∑

X

P (y,X|θ)P (θ),

subject to the constraints on θ. Since P (y,X|θ) is typically a product over all

observations in y, the expression above is usually hard to evaluate since it involves

a large sum of a large product. The EM algorithm simplifies this problem by allowing

us to work with the logarithm of the product, leading to a double sum which can

be manipulated to yield tractable solutions. The EM algorithm operates by first

computing the expected values of the hidden variables, given the observations, the

current guess at the model parameters, and the model constraints. This essentially

fills in the hidden data, and is the expectation step of EM. The maximization step of

EM then follows by updating the model parameters from the (now complete) data

by counting over expectations. This description is slightly simplistic, because the

filling in of the data is done probabilistically, so each data has a certain probability
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of being generated by each hidden state. The update is not simple counting, but

rather a constrained optimization of the expected complete data likelihood over the

model parameters.

To derive the EM algorithm, we use the fact that
∑

X P (X|y, θ′) = 1, so that

P (y|θ) = P (y|θ)
P

X
P (X|y,θ′)

=
∏

X

P (y|θ)P (X|y,θ′)

=
∏

X

(

P (y,X|θ)

P (X|y, θ)

)P (X|y,θ′)

= exp

{

∑

X

P (X|yθ′) log

(

P (y,X|θ)

P (X|y, θ)

)

}

(4.1)

Taking the logarithm of both sides, we obtain:

log
∑

X

P (yX|θ) =
∑

X

P (X|yθ′) log P (y,X|θ)−
∑

X

P (X|y, θ′) log P (X|y, θ). (4.2)

If we define

L(θ) = log
∑

X

P (yX|θ)

Q(θ|θ′) =
∑

X

P (X|yθ′) log P (y,X|θ)

= EP (X|yθ′) [log P (y,X|θ)]

H(θ|θ′) =
∑

X

P (X|y, θ′) log P (X|y, θ)

= EP (X|y,θ′) [log P (X|y, θ)]

so that

L(θ) = Q(θ|θ′)−H(θ|θ′)

Now, suppose that we arbitrarily choose some value for θ ′, and then find the values

of θ that maximize Q(θ|θ′) (using whatever method we want). We can show that

the log likelihood of the observations with this new set of parameters will always

be greater than or equal to the log likelihood of the observations with the old set

of parameters, θ′: if θ
′′

= arg maxθ Q(θ|θ′), then L(θ
′′

) ≥ L(θ′). To see why, notice

that by definition of our maximization over θ, Q(θ
′′

|θ′) ≥ Q(θ′|θ′). Further, an

application of Jensen’s inequality gives (see proof in Appendix A)

H(θ
′′

|θ′) ≤ H(θ′|θ′). (4.3)
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Therefore,

L(θ
′′

)− L(θ′) = Q(θ
′′

|θ′)−Q(θ′|θ′) +H(θ′|θ′)−H(θ
′′

|θ′) ≥ 0.

If, instead of maximizing Q(θ|θ′) (which is the maximum likelihood, or ML esti-

mates), we maximize Q(θ|θ′) + log P (θ), the same conclusion holds, but we obtain

the MAP estimates. Given a value for the model parameters, θ ′, the following

procedure is guaranteed to find a new value of θ, θ
′′

, with higher log posterior,

L(θ
′′

) + logP (θ
′′

):

Procedure EM iterate(θ′,y)

1. compute P (X|y, θ′)

2. find θ
′′

= arg maxθ Q(θ|θ′) + logP (θ).

return θ
′′

The expectation maximization algorithm can now be defined as

Procedure EM(θ,y)

do

1. set θ′ ← θ

2. set θ ← EM iterate(θ′,y)

while L(θ)− L(θ′) + log P (θ)
P (θ′) > ε

return θ

Since the likelihood is guaranteed to increase at each step, the EM procedure is guar-

anteed to converge to the set of parameters, θ, at which L(θ) has a local maximium

(ignoring the possibility of saddle points).

The EM algorithm works well because Q(θ|θ ′) and P (X|y, θ′) are easy to

maximize over, whereas L(θ) is hard. Notice that we could replace the function

P (X|y, θ′) in the above derivation with any proper probability distribution over X.

In fact, this function need only be chosen so that it increases the log likelihood at

each iteration of the EM algorithm. The resulting algorithm is a generalized EM

(GEM) algorithm, which can lead to incremental versions of the algorithm [NH93].

However, the function that gives the optimal increase is the one we have selected

above. We do not discuss GEM algorithms further here, although our results could

be easily generalized to allow for incremental variants. The following sections derive

implementations of the EM alogrithm for specific models.

4.2 Clustering Individual Flow Fields

The model presented in Section 3.2 is a mixture of Gaussians, with output distri-

butions over the space of Zernike polynomial projections of optical flow fields. The

83



X

zΛ

zµ

Λ Λ
1 2

V
α

Z

a

b µ*

*

Λp

Λ

T
xα

f τ
f s

xΘ

Figure 4.1: Bayesian network for the mixture of Gaussians over optical flow fields
with feature weighting. Repeat of Figure 3.3.

Bayesian network, originally shown in Figure 3.3, is repeated in Figure 4.1. To learn

the parameters of this model using the expectation-maximization (EM) algorithm,

we optimize Q(θ|θ′) over the model parameters, θ, subject to constraints on θ. In

this case, the observations, y are the spatio-temporal image derivatives, ∇f . Since

we are attempting to learn the distribution over the Zernike vector space, it will be

convenient to explicitly include the integration over this space in the Q function.

Since the observations in this model are independent, the conditional expectation is

written

P (X|∇f , θ′) =

Nt
∏

k=1

∫

zk

P (Xkzk|∇fk, θ
′) (4.4)

where Nt is the number of data points, which is computed using Equations (3.17)

and (3.19). The complete data posterior is

P (X∇f |θ) =

∫

Z

P (∇fXZ|Θ) =

Nt
∏

k=1

P (∇fk|ZkΘ)P (Zk|XkΘ)P (Xk|Θ)

Thus, we are trying to find Θ∗

Θ∗ = arg max
Θ

[

∑

X

∫

Z

P (XZ|∇f , θ′) log P (∇fXZ|Θ) + log P (Θ)

]

(4.5)
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over the model parameters, Θ, where θ ′ are the current estimates.

The complete set of parameters is Θ = {µz,Λz ,Θx, τk,Λ1,Λ2,Λp, α, a, b}.

While {µz,Λz ,Θx, τk} are learned from data, {Λ1,Λ2,Λp, α, a, b}, are fixed. Recall,

the bold face variables indicate sets of variables, X = {X1, ...XNt}, where Nt is

the number of flow fields, and similarly for Z and ∇f . The number of dynamics

and configuration states, Nx, must still be chosen. A method for doing so auto-

matically is discussed in Section 5.3. The EM algorithm alternates between “E”

and “M” steps until the increase in the log-posterior becomes smaller than some

convergence threshold. The expectation, or “E”, step of the EM algorithm is the

calculation of the posterior according to Equation (4.4), using the current model

parameters, Θ′. The “M” step is then to solve Equation (4.5) for the most likely

model parameters, Θ∗. Analytical expressions for these updates can be found by

taking derivatives, setting to zero and solving subject to the parameter constraints.

The update equations differ from those for a standard mixture of Gaussians with

feature weighting [CdFGT03] because of the integrations over Z. To derive the EM

update equations, we only perform the integrations at the end. The update equa-

tions for each parameter are derived by setting the derivative of the argument in

Equation (4.5) with respect to that parameter to zero, and solving for the parame-

ter. The derivations are given in Appendix C, here we present the update results for

the mean, µz,i, the covariance, Λz,i, the feature weights, T , and the class probability,

ΘX .

µz,i = (ξ·,iΛ
−1
z,i + T−1)−1

[

Λ−1
z,i

(

Nt
∑

k=1

µ̃z,xξk,i

)

+ T−1µ∗

]

(4.6)

τ2
k =

b

a+Nx/2 + 1
+

1

2a+Nx + 2

Nx
∑

i=1

(µz,i,k − µ
∗
k)

2 (4.7)

Λz,i =

∑Nt

k=1[Λ̃z,x + (µ̃z,i − µz,i)(µ̃z,i − µz,i)
′]ξk,i + αΛ∗

ξ·,i + α+Nz + 1
(4.8)

Θx,i =
αi +

∑Nt

k=1 ξk,i

αi +
∑Nx

i=1 ξ·,i
(4.9)

where ξk,i = P (Xk,i|∇fk), ξ·,i =
∑Nt

k=1 ξk,i, and Nz is the number of features. Thus,

the most likely mean for each state x is the weighted sum of the most likely values

of z as given by Equation (3.25). Dimensions of the means, µz,i, with small feature

weights, τ 2
k , will be biased toward the data mean, µ∗, in that dimension. This is

reasonable, because such dimensions are not relevant for clustering, and so should be

the same for any cluster, X. The updates to the feature weights (Equation 4.7) show

that those dimensions, k, with µz,i,k very different from the data mean, µ∗
k, across all
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states, will receive large values of τ 2
k , while those with µz,i,k ∼ µ

∗
k will receive small

values of τ 2
k . Intuitively, the dimensions along which the data is well separated (large

inter-class distance) will be weighted more. The covariance is updated based on a

combination of the most likely covariance, Λ̃z,i and the covariance of the most likely

mean, µ̃z,i, about the model mean µz,i, for each data point, k = 1 . . . Nt, weighted

by the probability of state i given the data (Equation 4.8). The prior covariance

is represented with αΛ∗, which stabilizes the updates, avoiding matrix singularity

problems in the inverses in Equation (3.21). The updates to the distribution over

X are simply the summed weights for each datum given each state of X.

4.3 Clustering Individual Poses
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Figure 4.2: Bayesian network for the mixture of Gaussians over images with feature
weighting. Repeat of Figure 3.9.

The mixture model over facial poses described in Section 3.3 is very similar

to the mixture of flow fields. The Bayesian network, originally shown in Figure 3.9,

is repeated in Figure 4.2. The difference is that it is no longer necessary to integrate

over the Zernike feature vector. In this case, the update equations are the same as

in [CdFGT03]. We are trying to find the parameters Θ∗ that maximize

Θ∗ = arg max
Θ

[

∑

W

P (W|I, θ′) log P (IW|Θ) + log P (Θ)

]

(4.10)
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Note that we are re-using many of the symbols here as in the last section. This

should not cause confusion, as we will make the difference clear when necessary.

The update equations are as follows:

µz,i = (ξ·,iΛ
−1
z,i + T−1)−1

[

Λ−1
z,i

(

Nt
∑

k=1

zwξk,i

)

+ T−1µ∗

]

(4.11)

τ2
k =

b

a+Nw/2 + 1
+

1

2a+Nw + 2

Nw
∑

i=1

(µz,i,k − µ
∗
k)

2 (4.12)

Λz,i =

∑Nt

k=1[(zw − µz,i)(zw − µz,i)
′]ξk,i + αΛ∗

ξ·,i + α+Nz + 1
(4.13)

Θw,i =
αi +

∑Nt

k=1 ξk,i

αi +
∑Nw

i=1 ξ·,i
(4.14)

where ξk,i = P (Wk,i|Ik), ξ·,i =
∑Nt

k=1 ξk,i, and Nw is the number of states of W .

4.4 Learning Temporal Models

As we described in Section 3.5, the addition of temporal continuity to the basic

Gaussian mixture models leads to two temporal Markov chains: the dynamics and

configuration processes. The Bayesian network, originally shown in Figure 3.12, is

repeated in Figure 4.3. The optimization we are trying to perform is to find Θ∗

Θ∗ = arg max
Θ

[

∑

Y

P (Y|O, θ′) log P (O,Y|Θ) + logP (Θ)

]

(4.15)

Recall that Y ≡ {X,W} is the joint space of the mixture variables and O ≡ {I,∇f}

is the joint space of observations. The expectation step of the EM algorithm is

to evaluate P (Y|O, θ′), which is slightly more complex now, as Y and O are sets

of variables spanning some time interval. Thus, estimating this quantity involves

propagating information forwards and backwards through both temporal chains.

Appendix D derives the EM algorithm for this model. The resulting update equa-

tions are similar to those for a simple hidden Markov model [Rab89], but involve

forwards and backwards variables over both dynamics and configuration chains. The

updates for the means and covariances of the output distributions in the dynamics

and configuration chains are the same as those derived in the last two sections. The

only difference is in the computation of ξk,i, which in this case is conditioned on the

data for the entire sequence, ∇f or I, not only that for the current frame, k. That

is, for the dynamics chain, we have

ξk,i = P (Xk,i|∇fΘ
′).
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Figure 4.3: Two time slices of a dynamic Bayesian network (DBN) for simultaneous
modeling of pose and dynamics. Repeat of Figure 3.12.

while for the configuration chain, we have

ξk,i = P (Wk,i|IΘ
′).

The forward-backward algorithm derived in Appendix D is used to compute this

quantity, as well as the sufficient statistics for the transition parameters.

4.5 Mixtures of Hidden Markov Models (3MGs)

Learning equations for a mixture of hidden Markov models (a 3MG), as shown in

Figure 4.4 (a repeat of Figure 3.13), are simple to construct once we have the update

equations for the hidden Markov model components in the mixture. We are trying

to find Θ∗

Θ∗ = arg max
Θ





∑

Y,D

P (Y, D|O, θ′) log P (O,Y, D|Θ) + logP (Θ)




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Figure 4.4: Mixture of coupled hidden Markov models as a dynamic Bayesian net-
work. Repeat of Figure 3.13.

However, since P (O,Y, D|Θ) = P (O,Y|DΘ)P (D|Θ), this is

Θ∗ = arg max
Θ

[

∑

Y,D

P (Y|D,O, θ′)P (D|O, θ′) log P (O,Y|DΘ)+

+
∑

D

P (D|O, θ′) log P (D|Θ) + log P (Θ)

]
(4.16)

The second term in this expression only varies in the optimization over the mixture

weight parameter, ΘD, while the first does not vary over ΘD. Thus, when optimizing

this expression with respect to ΘD, only the second and last terms are involved. On

the other hand, when optimizing with respect to all other parameters in the model,

only the first and last terms are involved. Therefore, the update to the mixture

weight parameter is similar to those for any mixture model (e.g. Equation 4.9):

ΘD,i =
αD,i +

∑Ns

k=1 ξk,i

αD,i +
∑Nx

i=1 ξ·,i

where in this case, ξk,i = P (Dk,i|Ok), and Ns is the number of training sequences.

The updates to the component hidden Markov models are then weighted by the

posterior probability over the mixture weights, P (Dk|O), which is

P (Dk|O) =
P (O|Dk)ΘD,k

∑

Dk
P (O|Dk)ΘD,k
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where ΘD are the mixture weight parameters, and P (O|Dk) is computed from Equa-

tion 3.34.

4.6 Context Dependent Mixtures of Hidden Markov

Models (C3MGs)

The addition of the observable context changes the learning slightly. We are trying

to find Θ∗

Θ∗ = arg max
Θ

[

∑

YD

P (YD|OCAθ′) log P (OYDCA|Θ) + log P (Θ)

]

However, since P (OYDCA|Θ) = P (OYAD|CΘ)P (C|Θ), we again obtain two

terms

Θ∗ = arg max
Θ

[

∑

YD

P (YD|OACθ′) log P (OYAD|CΘ)

+
∑

D

P (D|OCAθ′) log P (C|Θ) + logP (Θ)

] (4.17)

The first term in Equation 4.17 is the term that is maximized for a mixture of

hidden Markov models, conditioned on the (observed) variable C. The addition

of the observable A only adds an extra multiplicative factor into the equations.

Maximizing the second term in Equation 4.17 updates the parameterized probability

distribution ΘDij = P (D = i|C = j) by counting the expected number of times the

cluster variable D = i when the context variable C = j, NDij. That is,

ΘDij =
EP (D|OCA)NDij
∑

iEP (D|OCA)NDij

where EP (D|OCA)NDij =
∑

τ P (Dτ = i|OCA)δ(Cτ = j). Thus, the update equa-

tions for the probability of the weight parameter given the context state, ΘD,ij =

P (D = i|C = j) becomes

ΘD,ij =
αD,ij +

∑

k|Ck=j ξk,i

αD,ij +
∑Nx

i=1 ξ·,i

where

ξk,i = P (Dk,i|CkAOk) =
P (Ok|Dk,i)P (A|Dk,i)P (Dk,i|Ck)

∑Nx

i=1 P (Ok|Dk,i)P (A|Dk,i)PP (Dk,i|Ck)
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Figure 4.5: Context dependent Markov chain of mixtures of hidden Markov models
(C4MG) as a dynamic Bayesian network, including context variables, C and A.
Repeat of Figure 3.17.

4.7 Context Dependent Markov Chains of Mixtures of

Hidden Markov Models (C4MGs)

As pointed out in Section 3.6.3, the model shown in Figure 4.5 (Repeat of Fig-

ure 3.17) can be seen as an input-output hidden Markov model [BF96]. We are

trying to maximize

Θ∗ = arg max
Θ

[

∑

D

P (D|O,C,A, θ′) log P (D,O,C,A|Θ) + log P (Θ)

]

where O are the sequences of images and derivatives, while C and A are the se-

quences of context variables (input and output, respectively). The update equations

for the parameters are nearly the same as for a normal hidden Markov model, ex-

cept for the factorization of the outputs into two sets, O and A, and the additional

conditioning variable, C. While the additional outputs, A, cause no special prob-

lems, the conditioning variable, C, requires that we compute updates for parameters

separately for each value of C, and use only those data which co-occurred with that

value of C in the updates. The derivation is given in Appendix D.

4.8 Parameter list

Table 4.1 shows all the parameters in the model. The top section shows parameters

that have fixed values. These numbers are set manually based on prior expectations
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Parameter Used for Value
fi
x
ed

σ1, σ2 optical flow 0.08,1.0
σp,x, σp,w projection error 0.01

Nz number of features problem dependent
α, a, b feature weights (X chain) Nz+2,1,0.01
α, a, b feature weights (W chain) Nz+2,1,0.01
αx, αw transition dirichlet priors (CHMM) problem dependent
αD transition dirichlet prior (D) problem dependent
αA action expectation dirichlet prior problem dependent

le
ar

n
ed

µz,x,Λz,x, τx Mix. of Gaussians (X chain) Learned (EM)
µz,w,Λz,w, τw Mix. of Gaussians (W chain) Learned (EM)

ΘX ,ΘW Transition functions (CHMM) Learned (EM)
ΘD Transition (D chain) Learned (EM)
ΘA Action Expectation Learned (EM)

Nx, Nw number of states in X and W chains Learned (initialization)
ND number of states in D chain Learned (Sec. 5.3)

Table 4.1: List of parameters in the model. (TOP) fixed parameters (BOTTOM)
learned parameters

of their values. The bottom section shows the parameters that are learned using the

EM algorithm.

4.9 Initialization

The EM algorithm performs hill climbing on the likelihood surface, converging from

its starting point to a local maximum. It is therefore dependent on the initial choice

of the parameters. In models with many parameters as we have described, the

likelihood surface can contain many local maxima. It is therefore critical to achieve

good initialization, introducing as much prior knowledge about the domain before

attempting a full maximization of the posterior probability of the model given the

data.

Initialization of the simple mixture model (Section 4.2) withNx classes from a

set of single (independent) spatio-temporal derivative fields, ∇f , proceeds as follows:

1. Compute the most likely values of Z for each frame using a single zero-mean

model with diagonal covariance with constant variance σz = 0.001.

2. Select a subset of the data points where |Z| > δ, where δ is some threshold

on the magnitude of the Zernike vector. Since much of our data contains very
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little motion, (so Z ∼ 0), this ensures that the clustering is not biased towards

clustering on the noise in the frames where little is happening.

3. Select Nx such data points are selected randomly as the initial seeds for Nx-

means (K-means with K = Nx) clustering with a Euclidean distance measure

between values of Z.

4. Fit Gaussian distributions to the classes resulting from the Nx-means cluster-

ing.

5. Initialize all the feature weights τ 2
k to 1.

6. Initialize the state assignment probability ΘX evenly.

The results for the simple clustering experiments were relatively insensitive to the

initialization. The mixture model over the configurations (Section 4.3) is initialized

in a similar way, using the projections of image regions to the Zernike basis.

Initialization of the context dependent mixture of coupled hidden Markov

models (Section 4.6) with Nd classes from a set of Nt sequences of spatio-temporal

derivative fields, ∇f , and images, I, proceeds as follows:

1. Perform the initialization of a mixture of Gaussians for the dynamics states, X,

as described above, from the spatio-temporal derivative fields for each frame,

∇f , considering all frames to be independent. Choose Nx larger than the

maximum number of classes of dynamics states we expect (see Section 5.3).

Maximization of the posterior ensures that no singularity problems will be

encountered.

2. Perform a similar initialization for the configuration states, W , Choose the

number of W classes, Nw, larger than the maximum number of classes of

configuration states we expect (see Section 5.3).

3. Classify all the data (including the data that did not pass the thresholding test,

above) using the two mixture models. This gives two sets of state membership

indices, w and x.

4. Find the set of X states visited by each sequence.

5. Find the largest Nd sets of sequences whose sets of visited X states match

exactly, irrespectively of the number of X states visited by the sequences.

These Nd clusters group together the sequences which match closely at the

Gaussian output level in the dynamics process. The sequences which are not

in a group are only similar to a small number of other sequences, and are

93



neglected for the moment. This is a bootstrapping process whereby only the

“best” sequences are used to initialize the model, ensuring that the results are

not “washed out” by noisy data.

6. Find the set of X states visited by all the sequences in each cluster, i. This

gives the number of X states for the dynamics chain of model i, N i
X . Do the

same for the W states, giving N i
W .

7. Initialize a coupled hidden Markov model for each cluster, i, by assigning the

output distributions (including feature weights, if applicable) to be those in

the simple mixture models which are used by the sequences in the cluster.

Initialize the transition and initial state probabilities randomly.

8. Train each coupled hidden Markov model, keeping the output distributions

fixed.

9. Initialize the mixture probabilities for the mixture of coupled HMMs evenly

for each context state.

Smyth [Smy97] suggests a different initialization method for mixtures of hid-

den Markov models, which fits a simple HMM to each individual sequence, evaluates

the log-likelihood of each sequence given every simple HMM, and then clusters the

sequences into K groups using the log-likelihood distance matrix. Simple HMMs

are then fit to each of these K clusters, and the results are used to initialize the

final mixture model. The conditional probabilities of cluster membership, D, given

the context variables, C, are initialized by counting the number of observed states

C in each cluster. We have experimented with this method, using agglomerative

clustering with complete linkage (furthest neighbors merging). However, the result-

ing models tend to be significantly “washed out”, and do not find clusters which

are well matched with the context states. The reason is that the individual HMMs

are not sufficiently well supported by the data, and tend to learn models heavily

biased by the prior distributions. These biases are then propagated to the final

model. We have chosen the method described above to take advantage of the good

initializations that can be performed at the lowest level (the Gaussian and multi-

nomial output distributions). This level is very important since it involves many

parameters and performs the spatial abstraction step which is crucial to the efficient

description of our data.
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4.10 Software Implementation Details

The models we have been discussing in this chapter and in the last are implemented

in software written in C++. The structure of the models lends itself easily to an

elegant class structure, with a small number of base classes providing support for

derived classes for each of the models we have described. We use a data structure

to hold our observations which fits in with the model class structure, allowing for a

simple and intuitive programming interface to the model learning algorithms.

A probability distribution, or PDist, is the fundamental base class. It is pure

virtual, allowing all other classes to include generic PDists without specific class

assignment until runtime. The normal distributions which characterize continuous

outputs are Gaussians, derived from PDist. The probabilistic normal projections

are encapsulated in a class, ZernGauss, derived from Gaussian. The multinomial

distribution is encapsulated in a class, Multinomial, derived from PDist. The

simple mixture model with NX states, a MG, also derives from PDist, and contains an

array of Nx output PDists, and an Nx × 1 array for the mixture weight parameter.

The context-dependent mixture model, or CMG, derives from MG (and so is also a

PDist), and adds the additional parameters necessary for describing the P (D|C).

The hidden Markov model with Nx states, a HMM, also derives from PDist, contains

an array of Nx output PDists, a Nx ×Nx matrix for the transition parameter, and

a Nx × 1 array for the initial state parameter. The coupled hidden Markov model,

or XCHMM, derives from the HMM class (and so is also a PDist), adds the C transition

probability, and another set of output distributions, also PDists.

The mixture model, or MG class, can be used at run time to implement a

mixture of any PDists. For example, a mixture of Gaussians assigns the MG object’s

Nx output PDists to be Gaussian objects. A mixture of HMMs assigns the MG

object’s Nx output PDists to be HMM objects. A Markov chain of mixtures of Markov

chains, or 4MG, is a HMM with output PDists as MG objects, each of which has output

PDists as HMM objects. Thus, we see the class structure leads to an efficient way of

implementing hierarchical models of any depth. In this paper, we only use models

with two layers.

The hierarchical structure of the models requires a hierarchical data struc-

ture, which is encapsulated in the PData class. A PData object can contain raw

floating-point data, or an array of PData objects, allowing for a hierarchical struc-

ture.

The base PDist class defines the three major functions necessary for learning

the model parameters. In the following, let X refer to the model states, and O refer

to the observations.
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1. pdf Computes the posterior distribution over the model states, X, given an

observation (a PData object), O. It first computes the likelihood for each

state X, by calling pdf on each of its children PDists. It then computes

the posterior by multiplying the likelihood by the model parameters. For the

mixture model, MG, this is a simple multiplication by the weights, P (X). For a

hidden Markov model, HMM, this involves the forwards and backwards passes.

2. addSuffStats Called after a call to pdf, with a single argument giving the

weight assigned to the previous piece of data by a higher level (or 1.0 if at

the highest level). This function updates the sufficient statistics for the PDist

by adding in the data passed to pdf weighted by the posterior distribution

computed in pdf and by the passed in higher level weights.

3. update Updates the model parameters based upon the accumulated sufficient

statistics, and resets those statistics.

Thus, the EM algorithm for any PDist given any set of data in a PData

object can be implemented as a member function trainModel as follows

function trainModel(PData **O)

while (!converged)

for each data in O

pdf(data)

addSufficientStats(1.0)

end

update()

end

4.10.1 Numerical Scaling

The computation of the data likelihood, described in Chapter 3, involves taking the

exponential of what can be a very large quantity. This causes numerical problems

in an implementation. However, the exponentials are only used to compute the

the sufficient statistic, which is always normalized over higher level states. This

normalization allows us to get around the numerical problems with a simple scaling

trick, described here for the case of a simple mixture of Gaussians, but which can

be applied to any of the distributions learned.

We are trying to compute the sufficient statistic for the simple mixture of

Gaussians:

si =

Nd
∑

j=1

fie
ajipi

∑Nx

i=1 fieajipi
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where fi is the normalizing factor in the Gaussian, (2/pi)−d/2|Λ|−1/2, aji is −(xj −

µi)
′Λ−1

i (xj − µi), pi is the model state assignment parameter, Nd is the number of

data, and Nx is the number of states (models). Problems occur in this calculation

if the factors in the exponential, aji, are too large (greater than about 103), since

the exponential cannot be computed. However, since we are normalizing by a sum

over states, we can scale each factor by subtracting some large number which is

independent of i. The largest such factor is mj = maxi aji. Thus, we can multiply

both top and bottom by e−mj , giving

si =

Nd
∑

j=1

fie
aji−mjpi

∑Nx

i=1 fieaji−mjpi

Now, all terms in the exponentials are guaranteed to be less than 0, and one is

always exactly 1. When computing the log-likelihood, we must also be careful, since

the same exponentials appear

l =

Nd
∑

j=1

log

Nx
∑

i=1

fie
ajipi

In this case, we multiply the exponential by 1 = e−mjemj , giving

l =

Nd
∑

j=1

log

[

emj

Nx
∑

i=1

fie
aji−mjpi

]

=

Nd
∑

j=1

[

log

(

Nx
∑

i=1

fie
aji−mjpi

)

+mj

]

Note that this scaling trick also works well when the factors aji are really large and

negative numbers, for all values of i. Such cases cause problems when computing

the log likelihood, since we will be trying to take the logarithm of 0. The scaling

technique ensures that the overall smallness of the aji factors is taken out of the

sum over states, since we want to take the logarithm of it anyways.

97



Chapter 5

Facial Displays in Games

The previous chapter described methods for learning statistical models of temporal

patterns of motion in the human face. We have demonstrated how such models

can be learned from observations, and how the learned models establish classes of

facial motions at different levels of temporal abstraction. We have also shown how

to incorporate high-level observations of context into the models. Now we may ask:

what can such models be used for? One answer is action. As we have seen in

Chapter 2, humans use facial displays during interactions as relevant signals which

may affect actions of other agents. As such, they can be considered as simply other

actions in an agent’s repertoire.

Suppose that some rational agent can describe the probabilistic relationships

between classes of facial motions and the states of the world, his actions and his

value system. Since facial signals are relevant, this agent must use such relationships

in selecting actions which maximize its expected utility [vNM53]. In this chapter,

we present the concepts of expected utility maximization using the framework of

Markov decision processes, or MDPs [Put94]. MDPs are a simple, yet general,

model of the interactions between an agent’s actions, the state of the world, and the

agent’s value system. Since we are modeling observations of the state of the world

using a temporally and spatially abstract set of (unobservable) states, we will, in

fact, be using a partially observable Markov decision process, or POMDP [KLC98].

Further, since we are modeling the interactions between two agents, we are using

multi-agent POMDPs [Gmy02].

Decision making requires an agent to consider the long-term effects of his

actions upon his world model, a process which is typically much more difficult than

learning models from input data. It is necessary for an agent to build temporally

and spatially abstract descriptions of the world over which decision making can

be tractably attempted. These descriptions are the agent’s internal state. This

chapter will show that by equating actions and internal states with context, the
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models of spatial and temporal abstraction presented in Chapter 4 can be used

to learn relationships between facial motion and actions, utilities and states. The

learned dependencies are at a level of abstraction at which decision making can

be realistically attempted, yielding policies of action based, in part, upon observed

facial motions.

Attempting to model unconstrained human communication would be fool-

hardy, however, given the enormously complex social, emotional, and psychological

context in which any communication takes place. Instead, in order to study the

relationships between action recognition and action, we have developed an experi-

mental paradigm in which we artificially constrain the structure of an interaction

between two humans. We impose constraints as rules in a computer game the hu-

mans play. We then observe the humans playing the game, and learn models of the

relationships between their facial motions and the states and actions in the game.

The models are restricted cases of the general model, where the restrictions are the

constraints imposed by the game. Subsequent analysis of the learned models reveals

how the humans were using their faces for achieving value in the game. We can also

extract policies of action from the models. The constraints imposed by the game

restrict the human’s degrees of freedom in the interaction, and so focus attention in

the model on the aspects we are interested in. Further, the constraints simplify the

structure of the problems such that solutions become more feasible.

The chapter is structured as follows. Section 5.1 begins with the concepts

of a multi-agent interaction from a game-theoretic perspective, and argues that

POMDPs are a useful model of such situations. This is followed by an overview of the

decision-theoretic foundations, including fully and partially observable Markov deci-

sion processes, solution techniques, and how such models can be learned from data.

We discuss optimal solution methods for POMDPs with discrete output spaces,

and approximate methods for POMDPs with continuous output spaces. Section 5.2

presents a general model of communication with non-verbal signals in a dual-agent

situation as a partially observable Markov decision process. Section 5.4 discusses

the experimental paradigm we use to evaluate this model. The last three sections

describe particular applications of our experimental method to three games.

Section 5.5 presents a very simple imitation game in which a human plays

with an agent. The imitation game requires the players to use complex facial dis-

plays, and we use this game primarily to demonstrate the computer vision modeling

techniques discussed in Chapter 3 and 4. We show the learned models, example

sequences, and their classifications given the learned models. There are no real

decisions to be made in this game, but we present classification results in a leave-

one-out cross-validation experiment.
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Section 5.6 describes a game in which a human controls a robot using ges-

tures. This game is a simple decision problem, but involves a complex vision task

of recognising hand gestures. It is used primarily to demonstrate that our models

are not restricted to facial displays alone.

Section 5.7 shows a more complex, card matching game, in which two human

players face off. The second game, in contrast to the first two, only calls for very

simple facial displays, but has a more complex, high-level structure, involving nearly

105 states, six actions, and temporal look ahead. This model is used to demonstrate

the learning of the decision process, and the subsequent generation of policies of

action.

5.1 Decision-Theoretic Foundations

In situations involving other intelligent agents, a decision-making agent who wishes

to interpret other agent’s actions must be prepared to reason using game theory.

Since he is operating in a multi-agent environment, he must think about the fact that

the other agents are decision-makers as well, who are possibly considering strategies

of action based upon their beliefs about his possible strategies of action. Of course,

knowing this, he must account for the other agent’s knowing that he knows about

their strategic plans based on his beliefs, etc. This infinite regress is the subject of

game theory, usually approached by seeking equilibria in the strategy choices of all

the agents simultaneously. At such equilibria, no single rational agent would change

strategies if he believed no other agent would either. The strength of the concept

of equilibria in games lies in its ability to avoid explicit reasoning about infinitely

nested beliefs.

However, game-theoretic solution concepts such as equilibria are not sufficient

in a general conversational setting. The reason is that the payoffs to (value functions

of) other agents may not be known with certainty, and so it may be difficult for

an agent to figure out what other agents are planning to do. Further, there may

be multiple equilibria in such settings (non-uniqueness), and agents may not act

according to their equilibrium strategies (incompleteness) [Gmy02]. To surmount

these problems, we consider that each agent will choose strategies of action based

upon his beliefs about other agent’s internal states, value functions, and strategy

choices. This approach is called the decision-analytic approach to games [Mye91]. It

avoids the difficulties of uniqueness and incompleteness of the equilibrium approach

at the cost of explicitly representing the infinitely nested belief systems. That is,

suppose that some agent, a, is trying to come up with a strategy in an interaction

with agent b. Taking the decision-analytic approach, agent a will try to explicitly
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assess agent b’s strategy choices. To do so, he may put himself in agent b’s shoes,

and will realise that agent b is trying to assess agent a’s strategy choices. Agent

a will then be forced to explicitly assess what agent b’s beliefs are about agent a’s

beliefs, etc, in an infinite regress. Nevertheless, we assume that this regress can be

terminated at some (not too deeply nested) point, and the approximate solution

will be sufficient for our purposes. Note that, in the games we will describe in the

latter part of this chapter, these concepts do not play an important role, but will

need to be addressed further for more complex interactions.

The decision-analytic approach to multi-agent games can be formalised as a

partially observable Markov decision process, or POMDP [Gmy02]. A POMDP is a

probabilistic temporal model of an agent interacting with the environment [KLC98],

A POMDP is similar to a hidden Markov model in that it describes observations as

arising from hidden states, which are linked through a Markovian chain. However,

the POMDP adds actions and rewards, allowing for decision-theoretic planning. In

a multi-agent setting, the states of the POMDP include complete POMDP models

of other agents. That is, each decision-analytic agent will explicitly represent the

POMDP models for each other agent. These types of models have been called

interactive POMDPs or I-POMDPs [Gmy02]. Since we wish to focus on the use of

non-verbal displays in games, we will use a restricted form of I-POMDPs, in which

much of the state space is assumed to be observable. However, our models should

integrate seamlessly with I-POMDPs once the assumptions are relaxed.

5.1.1 Fully Observable MDPs

Markov decision processes (MDPs) have become the semantic model of choice for

decision-theoretic planning (DTP) in the AI planning community. Fully-observable

MDPs [Bel57, Put94] model the domain of interest with a finite set of (fully observ-

able) states S. Actions of an agent, drawn from a finite set A, induce stochastic state

transitions, with P (St|At, St−1) denoting the probability with which state St ∈ S is

reached when action At ∈ A is executed at state St−1 ∈ S. A real-valued reward

function R, associates with each state, s, and action, a, its immediate utility R(s, a).

Figure 5.1 shows the Bayesian network representation of an MDP.

A stationary policy π : S → A describes a particular course of action to be

adopted by an agent, with π(s) denoting the action to be taken in state s. If we

assume that the agent acts indefinitely (an infinite horizon). The stationarity of a

policy means that it will not change over the course of time. We compare different

policies by adopting an expected total discounted reward as our optimality criterion

wherein future rewards are discounted at a rate 0 ≤ β < 1, and the value of a policy

is given by the expected total discounted reward accrued. The expected value Vπ(s)
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Figure 5.1: Two time slices of a Markov decision process MDP as a Bayesian net-
work. The full network involves infinitely many time slices. Actions, A, induce
transitions between states, S. A reward function, R, gives the utility of taking an
action in a state.

of a policy π at a given state s satisfies [Put94]:

Vπ(s) = R(s, π(s)) + β
∑

st∈S

Pr(st|π(st−1), st−1) · Vπ(t) (5.1)

A policy π is optimal if Vπ ≥ Vπ′ for all s ∈ S and policies π′. The optimal value

function V ∗ is the value of any optimal policy.

Value iteration [Bel57] is a simple iterative approximation algorithm for con-

structing optimal policies. It proceeds by constructing a series of n-stage-to-go value

functions V n. Setting V 0 = R, we define

V n+1(s) = max
a∈A

{

R(s, a) + β
∑

t∈S

Pr(s, a, t) · V n(t)

}

(5.2)

The sequence of value functions V n produced by value iteration converges linearly

to the optimal value function V ∗. For some finite n, the actions that maximize

Equation 5.2 form an optimal policy, and V n approximates its value. A commonly

used stopping criterion specifies termination of the iteration procedure when

‖V n+1 − V n‖ <
ε(1− β)

2β
(5.3)

(where ‖X‖ = max{|x| : x ∈ X} denotes the supremum norm). This ensures that

the resulting value function V n+1 is within ε
2 of the optimal function V ∗ at any

state, and that the resulting policy is ε-optimal [Put94].

We will deal primarily with finite-horizon problems, in which the decision

maker knows about some time, T , in the future at which his decision-making will

stop. For these cases, there is no need for discounting, so β = 1 and value iteration

is only iterated up to the horizon:

V T (s) = max
a∈A

{

R(s, a) +
∑

t∈S

Pr(s, a, t) · V T−1(t)

}

(5.4)

where, again, V 0 = R.
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5.1.2 Factored Representations and Structured Representations

The classical technique for representing MDPs is a tabular, or flat format, in which

the transition function is written as a table giving the probability of going from any

state to any other under all the actions. Although the flat representation is often ef-

fective for small problems, typical AI planning problems fall prey to Bellman’s curse

of dimensionality: the size of the state space grows exponentially with the number

of domain features. The flat representation, which requires explicit enumeration of

the state space, is typically infeasible. Further, it is usually difficult to write down,

and hard to interpret.

A more interpretable representation is one in which the state space is implic-

itly represented as the cross product of a set of multinomial, discrete variables. The

transition function is then written as a set of conditional probability distributions

(CPTs). Each CPT is typically an easily interpretable function of a small set of

variables.

Factored MDPs also allow the conditional independencies in the Markov

network to be exploited by MDP solvers. In particular, CPTs can be represented

using decision trees [DB97] or networks [HSAHB99], allowing similar states to be

abstracted. These types of solvers usually gain much in efficiency, and have been

successfully applied to large problems [Plu03]. We will use our SPUDD solver, which

was the first MDP solver to use algebraic decision diagrams for representation and

computation [HSAHB99].

5.1.3 Partially Observable Markov Decision Processes

In many cases of interest, the state space, S, is not fully observable, and can only

be inferred from observations, resulting in a partially observable Markov decision

process, or POMDP. Figure 5.2 shows a POMDP as a Bayesian network. As in

the fully observable case, the environment is modeled using a finite set of states,

S, and a real valued reward function R(s) maps states to values. The agent has

available to it a finite set of actions, A, which induce state transitions according to

the probability function P (St|At, St−1). In the partially observable case, however,

the state is not observable directly: it is some hidden underlying cause for the

observations the agent makes, Ot, which are generated by states according to the

probability function P (Ot|St, At).

Since the state cannot be directly observed, it must be inferred from the

observations, resulting in a belief state, b(s), such that b(st) is the probability that

the system is in state st at time t. Updating the belief state in a dynamic Markovian

model with observable inputs (the actions) was the subject of Section 3.6.3 and 4.7.
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Figure 5.2: Two time slices of a partially observable Markov decision process
(POMDP) as a Bayesian network. Shaded nodes are directly observable, while
unshaded nodes are unobservable. Actions, A, induce transitions between states,
S, which are not observable directly, but only through their effects on a set of
observations, O. The reward function, R, gives the utility of being in states S.

It involves only computing the forwards pass of the standard forwards-backwards

algorithm.

Once the agent has the belief state, however, she is faced with a much more

difficult problem: how to choose an optimal action based upon it. The difficulty

arises because the belief state lives in a continuous (bounded) space, and so the

effects of each action must be evaluated against an infinite number of possible im-

mediate futures that it may lead to. This is in contrast with the fully observable

case, where the immediate (one-step look-ahead) future is finitely enumerable. The

standard way to approach this problem is to recast it as a fully observable MDP with

a continuous, |S|-dimensional state space consisting of all possible belief states. In

this case, the value of a belief state, b(st), can be recursively computed using Equa-

tion 5.2, where we must now integrate over all possible observations and next belief

states

V (b(st−1)) = max
a∈A

[

R(b(st−1)) + β

∫

ot

∫

b(st)
P (b(st)ot|ab(st−1))V (b(st))

]

which, since R(b(st−1)) =
∑

st−1
b(st−1)R(st−1) and

∫

b(st)
P (b(st)ot|b(st−1), a) =

∑

st,st−1

P (st, ot|st−1, a)b(st−1)

=
∑

st,st−1

P (st, st−1ot|b(st−1), a)

= P (o|b(st−1), a)
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is

V (b(st−1)) = max
a∈A





∑

st−1

b(st−1)R(st−1) + β

∫

ot

P (ot|b(st−1), a)V (b(st))



 (5.5)

Notice that we can write V (b(s)) =
∑

s∈S b(s)V (s). Since each V (s) is some real-

valued number, V (b(s)) is a piece-wise linear function of b(s). If the observations, o,

are drawn from a finite set, then it can be shown that the dynamic programming up-

date in Equation 5.5 preserves the piecewise linearity of the value function [KLM96].

This property means that it is possible to solve for the optimal policy, although such

a calculation may be difficult due to the explosion of the number linear pieces that

make up the value function. It is often the case, however, that many of these lin-

ear pieces are dominated everywhere by some others, and can be removed from the

representation of the value function, leading to significant efficiency improvements.

Incremental pruning [CLZ97] is an algorithm for doing this. It is one of the most

efficient algorithms, because it interleaves pruning into the dynamic programming

step in such a way that the number of linear pieces is kept to a minimum. Factored

state versions of the incremental pruning algorithm have also been developed [HF00],

which make use of the structure inherent in the factored representation to increase

the efficiency of the algorithm further.

If the observation space is continuous, as in our case, the problem becomes

much more difficult. In fact, there are no known algorithms for computing optimal

policies for such problems. The intractability of these problems arises because each

dynamic programming step involves an integration over the entire observation space,

destroying the piecewise-linearity of the value function. The simplest possible ap-

proximation technique is to simply consider the POMDP as a fully observable MDP,

and to use the value of the state, S, as the most likely value over the belief state,

S = arg maxs b(s). This is called the MDP approximation. A slightly better approx-

imation augments this most likely state with the entropy of the belief state, suitably

discretized [RPT00]. For example, the position of a robot could be described as at x

with low certainty, or the display of a human face could be described as a smile with

high certainty. More complex approximate algorithms using Monte-Carlo sampling

methods have also recently been studied [Thr00]. However, the complexity of these

approximations grows very rapidly with the dimensionality of the input space, which

is extremely large in our case.

5.1.4 Learning POMDPs

There are two elements to be learned from data in POMDPs. First, the parameters

of the underlying Bayesian network: the transition function and the observation
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function. Second, the reward function, which maps states and actions to values for

the agent.

Reinforcement learning deals with learning of both these quantities [KLM96].

Usually, this involves trading off between exploration of the world in order to learn

a model, and exploitation of the learned model in order to achieve optimal rewards.

There are many ways to do this. The most popular are model-free approaches, which

directly learn the value function without learning models of state transitions and

observations. Since we are dealing with very high dimensional observation spaces,

these approaches are impractical. Model-based approaches, on the other hand, learn

the transition and reward functions from data, and then generate a policy of action

from these, as described in the last two sections.

We take a very simple model-based approach, and acquire training data and

reinforcement signals during a training phase, during which the agent acts randomly.

The models are then learned offline, and the results are used in a testing phase in

which the agent acts according to the generated policy. This approach is known

as certainty equivalence [KLM96]. The learning procedures we have described for

POMDPs in Chapter 4 can be applied for learning the parameters of the POMDPs,

while the reward function can be learned by simple counting. Although there are

significant limitations to certainty equivalence, we are primarily interested in demon-

strating how our computer vision techniques for temporal and spatial abstraction

can be integrated with the generation of policy. Taking this system one step further

to a fully on-line version would involve implementing a more complex learning algo-

rithm, interleaving exploration and exploitation. One such model-based algorithm

is prioritized sweeping [KLM96].

5.2 POMDPs For Non-Verbal Displays in Games

As described at the beginning of this chapter, agents in an interaction can be mod-

eled as playing a multi-agent game, and this can be described as a POMDP using

the decision-analytic approach. In this section, we restrict our attention to two-

agent interactions, and label the two agents a and b. We will be looking at agent a’s

POMDP, which maintains a dynamically evolving model of the world that we will

describe at time t as a state, Sa
t , in some discrete state space Sa. The state space

does not have to be fully observable, but can be inferred from some observations,

Os. Each agent has some way of inferring distributions over unobservable states. In

general, Sa includes agent a’s model of the other agent in his environment, agent

b. We are interested primarily in the non-verbal displays of agent b, so we will ex-

plicitly factor agent a’s state space into agent a’s description of agent b’s non-verbal
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Figure 5.3: Time slice of the graphical model of interaction between two agents in
a game. If the nodes are clustered according to the dashed lines, this model is a
standard partially observable Markov decision process (POMDP) as in Figure 5.2

action, Ab:a and the remainder of the state space, denoted again as S a, as shown in

Figure 5.3. Again, the actions Ab:a do not have to be fully observable, but may need

to be inferred from observations, O. As usual, agent a can perform some action,

Aa, which comes from some set of actions Aa. Finally, agent a maintains a reward

function, Ra, which is a mapping from Sa
t ×A

a
t ×A

b:a
t →R

a.

Note that we have assumed that the agent has some way of separating the

observations in O from those in Os. This assumption requires that an agent is able

to distinguish those observations that are related to the non-verbal actions, Ab:a,

from those related to other states, Sa. If Ab:a are facial displays, for example, this

could be accomplished through a visual face tracker that explicitly separates visual

observations of the face, the hands, the context, and other observations. However,

in order to focus our attention on the non-verbal displays, we further assume that

only these displays are unobservable directly. The states of context and of other

agent actions, Sa, are considered fully observable, as shown in Figure 5.4.

Other than the utility nodes, this model has the same structure as the one

discussed in Section 3.6.3. Nodes in Figure 3.17 have been relabeled in Figure 5.4 as

D → Ab:a, A→ Sa
t , and C → {Aa, Sa

t−1}. Some further differences in the temporal

structure can be included or deleted without loss of generality. The observations,

O, are entire sequences of video frames and spatio-temporal derivatives. We assume

that the temporal segmentation is provided directly by the onset times of Sa and

Aa. That is, we assume that observable states and actions are delimiters for tem-
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Figure 5.4: Time slice of the graphical model of interaction between two agents a
game, in which the state, Sa, is fully observable.

poral events, and that the non-verbal displays will occur between these times. The

parameters of such a model can be learned from data, as described in Section 4.7.

The utility function can be learned using reinforcement learning, as discussed in

Section 5.1.4. An approximate policy can then be derived using the techniques in

Section 5.1.

5.3 Value-Directed Structure Learning

The value function, V (s), gives the expected value for the decision maker in each

state. However, there may be parts of the state space which are indistinguishable

(or nearly so) with respect to certain characteristics, such as value or optimal action

choice. These indistinguishable states can be grouped or merged together to form

an aggregate or abstract state. The set of abstract states partitions the state space

according to some characteristic. States of the original MDP which are part of the

same abstract state are not distinguishable insofar as decisions go. Eliminating the

distinctions between them by merging states can lead to efficiency gains without

compromising decision quality. An agent needs only distinguish those states which

are useful to it for achieving value.

In fact, such state aggregation is a form of structure learning based upon

the utility of states. This value-directed structure learning is in contrast to more

data dependent structure learning, in which the structure is determined solely based

upon the statistical distribution of the data, and the complexity of the model. For
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example, many structure learning algorithms use some simplicity prior (such as the

minimum description length [Ris78, Bra99a, WPG01]), and find a trade-off between

the model’s precision and complexity. Others use an incremental generate-and-test

mechanism in which states are added or deleted, and the model is tested to see if

any advantage is gained [SO94].

We now discuss a particular technique for value-directed state aggregation

applied to learning the number of facial displays or gestures that need to be distin-

guished in our learned POMDP. As we have mentioned, the state space is represented

in a factored POMDP as a product over a set of variables. In our model, the values

of one of these variables, Ab:a, are the (unlabeled) gestures or facial displays. This

variable splits the value function into Na pieces, Vi, one for each value, i, of the

variable Ab:a. Each such Vi gives the values of being in any state in which AB:a = i.

A similar split occurs for the policy, yielding sub-policies, πi, giving the actions to

take for each Ab:a = i. The Vi can be compared by computing the difference between

them, dij = ‖Vi − Vj‖, where ‖X‖ ≡ max{x : x ∈ X} is the supremum norm. Two

sub-policies, πi and πj are considered equivalent if the optimal actions agree for

every state: if πi ∧ πj. These comparisons are used in the following algorithm for

learning the number of display states, Na. The algorithm starts by assigning Na to

be as large as the training data will support, and prunes redundant states.

repeat

1.learn the POMDP model

2.compute Vi and πi ∀ i using value iteration

3.compute dij = ‖Vi − Vj‖ ∀ (i, j), i 6= j
4.if ∃(i, j)(πi ∧ πj)
5. {i, j} = arg min{kl}(dkl∀{k, l} | πk ∧ πl)

6. merge states i and j
7. Na ← Na − 1

end

until Na stops changing

Figure 5.5: Procedure for value-directed structure and parameter learning for
POMDPs

There are many potential ways to merge states at step 6, but we simply delete one

of the the redundant states. Note that the algorithm could also start with Na = 2

and add states until redundancies appear, but we have not experimented with this

version. Added states could be added initialized randomly, or as the most populated

current state with added noise.
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Learning the POMDP parameters (step 1 in Figure 5.5) involves iterations

of expectation-maximization, as implemented by the forwards-backwards algorithm

(message passing in the Bayesian network). The complexity of this procedure is

O(Nd(N
2
x +N2

w)T ), where Nx is the number of states in the dynamics process, Nw

is the number of states in the configuration process, Nd is the number of high-

level facial display states and T is the length of the entire sequence of data. The

complexity of value iteration (step 2 in Figure 5.5) has a complexity of O(N 2
sNaH),

where Ns is the number of states in the POMDP, Na is the number of actions,

and H is the horizon. The remainder of the algorithm is O(N 2
s ) (steps 4-7 in

Figure 5.5). Therefore, the complete learning procedure has a worst-case complexity

of O(N2
d (N2

x + N2
w)T + NdN

2
sNaH). In typical problems, Nd, Nx and Nw are all

quite small numbers, while Ns is very large (exponential in the number of variables

in the POMDP). Therefore, even using simple POMDP solution approximations,

the complexity will generally be dominated by the second term, O(NdN
2
sNaH).

Attempting to compute optimal POMDP solutions would increase this complexity.

5.4 Experimental Design

To investigate the relationships between facial displays and other, conditioning fac-

tors, we adopt an experimental paradigm in which we observe humans playing com-

puter games. The games embody constraints to be placed on the POMDPs, so

we can focus the learning on specific areas of interest. The following describes the

method.

1. Design game and encode it as a POMDP. In the general case, the encoding of

the POMDP would be learned directly from data. However, we are constrain-

ing many of the variables in the game in order to focus on facial display models,

and we so characterize the context in terms of a set of discrete, high-level vari-

ables. There is no single way to encode a particular domain as a POMDP. Part

of the process involves testing the encoding by manually assigning conditional

probability distributions based on prior knowledge of the domain, and then

computing a policy to ensure that it correctly predicts actions. This also gives

the encoder some idea about how the problem is structured as an MDP, to

allow for easier interpretation of results when the model is learned from data.

2. Gather training & test data sets. This involves a human playing the game

either against another human or against a computer agent. In the latter case,

the agent selects actions randomly in both training and test data sets.
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3. Apply the procedure in Figure 5.5 to learn the parameters and structure of the

POMDP model from the training data. This also computes an approximate

policy of action.

4. Use the model to predict actions in the test data set. In the case of two humans

playing against one another, the predictions are over the (observable) actions

of one of the players, and can be compared to the actual actions taken in the

test data for a performance measure. In the case of a human playing against

an agent, the predictions are action selections from the policy, but since the

agent was playing randomly, these cannot be compared to the agent’s actions.

Instead, we use the actions as if they were selected in the real game, and collect

rewards based upon them. The total collected rewards are a performance

indicator.

The following three sections describe this procedure applied to three simple

games. The first (imitation game) only involves facial displays as actions, and so does

not have a reward function. This game is used to explore the representational power

of our computer vision modeling techniques. The second (robot control) involves a

single human performing gestures for robot control. The robot control experiments

are intended as a simple demonstration of our system working with something other

than facial expression. The experimental setup for the robot control experiments

is very simple, and we do not claim a gesture recognition system that would deal

with orientation, time scaling, or robot movement and viewpoint. This second

game also demonstrates our value-directed structure learning techniques. The third

(card matching game) involves two humans playing a collaborative game. The facial

displays are fairly simple, but the decision theory problem is much more complex

than the other two games. This data is used to demonstrate how a policy can be

computed based, in part, on non-verbal displays.

5.5 Imitation Game

The imitation game is a single player game in which the player watches a computer

animated face on a screen, and is told to imitate the actions of the face. While

many face generation systems use complex 3D graphics, this face is a simple car-

toon. This allows for fast rendering, and avoids problems with the “uncanny valley”,

where human-like interfaces look disturbing if they are just less than perfectly re-

alistic [Mor82]. Further, research has shown that humans can interact with simple

generated faces as a real human face [RN96]. The animated displays start from a

neutral face, as shown in Figure 5.6(a), then warp to one of the 4 poses shown in
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Figures 5.6. The pose is held for roughly a second, and the face then warps back to

the neutral pose where it remains for an additional second. Although these displays

may be reminiscent of so-called prototypical facial expressions, the displays they

elicited were clearly not expressions of emotion, but only reactions to context. That

they may have been interpreted as emotional displays by the subjects is not relevant

here.

(a) a1 a2 a3 a4

Figure 5.6: (a) neutral face (Aa = a1...a4) Faces which subjects were told to imitate

In this game, the actions of the human player are the imitative displays, and

the state of the game is the animated display. The actions of the human are not

observable, but must be inferred from a video stream. The additional independencies

in this game result in a simplification of the model in Figure 5.3, as shown in

Figure 5.7. The agent’s actions, Aa, are choices of cartoon facial displays, a1 . . . a4.

The observations of the human’s actions, O, are sequences of video images and

the spatio-temporal derivatives between subsequent video frames, as described in

Chapter 3. The human player’s actions, as modeled by the agent, are described by

a discrete Na-valued variable, Ab:a ∈ {a1 . . . aNa}, where the agent has control over

Na.

Although it is possible to include a utility function in this game, it would

imply associating some reward with particular facial displays (e.g., smiles). The

agent could then use the reward function to figure out which of its cartoon displays

is most likely to elicit the rewarded displays. However, this game was designed to

test the vision sequence representation model, and so the facial displays are not tied

to any task, and a utility function is not very useful. Instead, we leave out the

utility function, and compute a measure of the ability of the model to represent the

different imitation displays. We therefore hide the cartoon display labels, Aa, in the

test data set, and compute the distribution over this variable:

P (Aa|O) ∝ P (O|Aa)P (Aa) =
∑

i

P (O|Ab:a
i )P (Ab:a

i |A
a)

The maximum of this distribution tells us which cartoon display was most likely

to have produced the observed human display. Agreement with the actual cartoon

displays gives us an indication of how well the model can represent the display

imitations.
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Figure 5.7: Time slice of graphical model of simple imitation game.

5.6 Hand Gestures for Robot Control

This “game” involves a human operator issuing navigation commands to a robot

using hand gestures. The robot has four possible navigation actions, go left, go

right, stop and go forwards, and the human operator uses four distinct hand gestures

corresponding to each command. The robot, however, must learn the mapping from

hand gestures to its actions. It learns this mapping during a training phase during

which it acts randomly in response to the operator’s hand gestures. Rewards of one

unit are explicitly assigned by the operator if the robot performs the correct actions.

The robot gets no reward if it performs the wrong action.

Again, each interaction in this game is temporally independent. The POMDP

for each time slice is shown in Figure 5.8 from the point of view of the robot. The

robot’s action is denoted Aa, while the operator’s action (to reward the robot or

not) is explicitly represented in the model as Ab, and is fully observable. Thus, the

reward function is a one-to-one mapping from this action. The robot’s observations

of the operator’s hand gesture, O, is conditioned on the high-level interpretation of

the gesture, Ab:a, which is a discrete-valued variable with Na values.

An optimal policy of action in this model needs only be computed over

a horizon of one time step (since the actions are temporally independent). The

policy, π, specifies an action for each possible recognized gesture, Ab:a, such that

Aa = π(Ab:a = i) is the action which will most likely result in the operator rewarding

the robot if Ab:a = i is observed. For example, if the command is a stop gesture,

then the robot’s stop action will most likely result in a reward. Notice that the MDP

approximation can easily lead to sub-optimal action choices. Suppose that the dis-

113



R
At

b

b:a
tA

Ot

At
a

Figure 5.8: Two time slices of a POMDP for robot control gestures. Aa is the
robot’s action (one of go left, go right, stop, forwards), Ab is the operator’s action
(reward or punish the robot), R is the reward function (a one-to-one mapping from
Ab), Ab:a is the robot’s interpretation of the control command (gesture), and O is
the video sequence observation of the gesture.

tribution over gesture interpretations, P (Ab:a|O), has a roughly equal value for two

values of Ab:a, so the robot is uncertain about which gesture was actually performed.

The MDP approximation will simply choose the most likely one, possibly leading to

an error. An optimal solution to the POMDP would include this uncertainty, and

might specify some other action (such as ask for clarification) in the case of such

uncertainty. This type of analysis is important for dialogue modeling [PH00].

5.7 Card Matching Game

Two teams of two players per team play the card matching game. At the start of a

round, each player is dealt three cards: a heart, a diamond and a club. Each player

can only see his own set of cards. The values of the cards (ranging from ace to ten),

and their placement on the table, are randomly distributed. Each player’s cards are

dealt from a different deck, which is re-shuffled after every round. The players all

play a single card simultaneously, and if the suits of the cards played by the two

members of a team match, then that team reserves the sum of the values on the

two cards, otherwise, that team reserves zero. The team with the highest reserve

wins their reserve, while the other team wins nothing (and loses their reserve).

On alternate rounds, a player has an opportunity to send a confidential bid to his
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partner, indicating a card suit. The bids are non-binding and do not directly affect

the payoffs in the game. During the other rounds (displaying rounds), the player can

only see her partner’s bids, and then play one of her cards. There is no time limit

for playing a card, but the decision to play a card is final once made. Finally, each

player can see (but not hear) his teammate through a real-time video link. This

game constrains the players to use their gestures by not having an audio link, so the

players cannot speak to one another. Players cannot see members of the opposing

team, nor can they see the confidential bids of the opposing team.

One of the two teams is simply implemented in software, and does not ac-

tually have a video link or a bidding process. Their presence is only to give the

human players incentive to cooperate, and to try to choose the highest matching

suit. We can, therefore, assume that the human players we will be modeling have

positive value assigned to choosing matching pairs of cards with the highest possible

value. This will allow us to disregard the opposing team in the analysis, and use a

simplified reward structure.

A picture of the game interface during a typical interaction is shown in

Figures 5.9 and 5.10. We will refer to the two players by names in what follows:

player 1 is “Ann”, while player 2 is “Bob”. On the left, Ann’s interface shows her

cards face up below the ’card table’, Bob’s face, Bob’s cards face down below his

face, the opposing team’s cards on the left and right of the card table, and both

teams current winnings along the bottom. On the right, Bob’s interface shows the

same thing, but he sees Ann’s face and sees only his own cards face up. Figure 5.9

shows stage 1, in which Ann (left) has made a bid of her highest card (a heart) to

Bob (right). In stage 2, both players have committed their hearts, and the round

terminates with the team winning 12 points. The interfaces at the beginning of the

next round are shown in Figure 5.10 in which the players are happy to have won,

can see their winnings added to their total, and it is now Bob’s turn to bid.

We now describe the encoding of the card matching game as a POMDP. The

only part of the state which is non-observable are the facial displays of the players. In

more complex games, this may not be true, and we would have to model other parts

of the state space as non-observable. Our modeling techniques do not preclude this.

However, solutions to the POMDPs will become increasingly difficult as the non-

observable part of the state space grows. For example, in the card matching game,

Bob could maintain beliefs about what the values of Ann’s cards were. These beliefs

could be useful in taking an optimal decision. If he notices that Ann vehemently

shook her head when he bid clubs, sort of grimaced when he bid hearts, and sort of

nodded when he bid diamonds, he might assess a distribution over her cards which

would help him bid the optimal choice for both. Our assumption, however, seems
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Ann’s view Bob’s view
stage 1

Ann’s view Bob’s view
stage 2

Figure 5.9: Game interfaces for two players during a typical round. See text for
description.
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Ann’s view Bob’s view
stage 3

Figure 5.10: The beginning of the round subsequent to the one shown in Figure 5.9.
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variable values description

B♥v {v1, v2, v3} value of Bob’s heart card
B♦v {v1, v2, v3} value of Bob’s diamond card
B♣v {v1, v2, v3} value of Bob’s club card

Acv {null, v1, v2, v3} value of card Ann committed
Bcv {null, v1, v2, v3} value of card Bob committed

match {null,♥,♦,♣} match of played cards is false (null)
or one of the suits

Aact {null, cmt♥, cmt♦, cmt♣} Ann’s action is
nothing (null), or commit (cmt) a suit.

bid {null,♥,♦,♣} current bid suit

Acom {d1 . . . dNd
} state Ann’s facial display

Bact {null, bid♥, bid♦, bid♣ Bob’s action is nothing (null),
cmt♥, cmt♦, cmt♣} or bid (bid) or commit (cmt) a suit.

Table 5.1: Variables and action for Bob in the card matching game POMDP during
a round when player 2 has the bid.

to be well supported in our experimental data, where the players often commit to

bids on the first step of a round, without engaging in complex deliberations about

the precise value of all the cards.

For a given player, each round of the game is either a bidding round (when

she makes the bid), or not (when she sees her partner’s bid). To simplify the analysis,

we will consider each of these types of rounds separately. We will show how the two

can be combined into a single POMDP in Section 5.7.3.

5.7.1 Bidding Round

There are nine variables which describe the state of the game when a player has

the bid. While these may not be the smallest set of variables, they give an intuitive

description of the game. Aggregation techniques [SAHB00] can always be used to

reduce the state space further. Table 5.1 shows the variables, their values, and

gives a brief description of each. The POMDP we will describe can be used for

either player. However, to keep things clear, we will develop the model from Bob’s

perspective. Variable names which are Bob’s private, observable, state will start

with a B, while those which Bob uses to describe Ann’s state and actions will start

with an A. Variables which are common knowledge do not start with either letter.

The state could be used to model Ann’s perspective, of course, by renaming Ann to

Bob and vice-versa.
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The three suits in the game, hearts, diamonds, and clubs, will be denoted by

symbols: (♥,♦,♣), respectively. Bob’s actions (those over which he has control) are

Bact, which can be null (no action), or sending a confidential bid of one of the suits

(bid♥, bid♦, bid♣) or committing a card of some suit (cmt♥, cmt♦, cmt♣). Ann’s

observed actions are part of the state, Aact, and can be null (no action), or commit-

ting a card of some suit (cmt♥, cmt♦, cmt♣). The values of Bob’s heart, diamond

and club cards are B♥v,B♦v,B♣v, respectively. There are ten possible values for

each card, which adds much complexity to the decision problem by expanding the

state space. To reduce this complexity, we approximate these ten values with three

values, v1, v2, v3, where cards valued 1-4 are labeled v1, 5-7 are v2 and 8-10 are

labeled v3. This approximation may hide some of the structure of the game. For

example, if a player’s cards are 1, 3 and 4, then this re-labeling will give them all

equal value (v1). However, we assume that when cards are close in value, the player

has little preference over which one is actually played. This assumption seems to be

borne out by experience, and the approximation seems sufficient to generate a near

optimal policy. Another possibility is variables describing which suit is the highest,

second and lowest cards.

The values of Ann’s committed cards are Acv and the values of Bob’s com-

mitted cards are Bcv. These can be null, or v1, v2, v3. The match variable gives

the suit of a match (if the committed cards do indeed match), otherwise it is false

(null). These variables (Acv,Bcv and match) only become non-null after commit

actions from both players, and immediately become null again on any subsequent

action. The bid variable describes the bid currently on the table (observable to both

players on a team). It is affected by Bob’s bidding actions, but is set to null after

each round. Finally, the Acom variable describes Ann’s communication through the

video link. It is one of Nd states, d1 . . . dNd
, which have unspecified meaning. They

will, however, obtain meaning through their interactions with the other variables in

the POMDP.

The POMDP model is shown in Figure 5.11 as a two time-slice Bayesian

network. This is the same model as was shown in Figure 5.3, with the additional

assumption that Ann’s action, Aact (Ab:a in Figure 5.3), is fully observable, and so

the action observations, W , do not play a role. Furthermore, we have factored the

state, Sa
t , into nine variables, and included the action of the partner (Ann) as part of

the state. The conditional dependencies between fully observable variables are easy

to learn by counting co-occurrences. In fact, they can be read off from the structure

of the game. For example, the heart’s value (B♥v) stays the same on a bid action,

but gets reset randomly on a commit action. The value of Bob’s committed card

(Bcv) is exactly the value (from B♥v,B♦v,B♣v) of the card Bob committed (as
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Figure 5.11: Two time slices of Bob’s graphical model for card matching game. The
variables and actions are described in Table 5.1.
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name St St−1, At description

ΘA Aact {bid,Acom,Bact} what Ann will do given Bob’s action,
the current bid, and Ann’s previous display

ΘD Acom {bid,Acom,Bact} what Ann will display given Bob’s action,
the current bid, and Ann’s previous display

N(O) Ot Acom probability of a set of observations given
high level description of Ann’s display

Table 5.2: Conditional probability distributions to be learned from data in POMDP
for card matching game from Bob’s perspective.

given by Bact if Aact ∈ {cmt♥, cmt♦, cmt♣}. The value of Ann’s committed card

(Acv) is an even distribution over the possible values if Ann’s action (Aact) is non-

null. Finally, the match is suit s if Aact and Bact are both cmt〈s〉. The distributions

which must be learned from video data are shown in Table 5.2. All three of the

distributions in Table 5.2 are part of the model we discussed in Section 3.6.3, and so

learning the POMDP reduces to learning the C4MG. The first, ΘA, describes what

Ann will do given Bob’s action, the previous bid, and Ann’s display. For example,

we may expect that Ann will commit her diamond if the previous bid is diamonds

and Ann’s display was a nod of the head. This distribution is actually independent

of Aact, since Bob’s action is only made public after both players have acted, so

that Ann will not be affected by Bob’s action in the same time step. The second

learned distribution, ΘD, describes what Ann will display given Bob’s action, the

previous bid and Ann’s previous display. For example, we may expect Ann to nod

her head if the previous bid was hearts, her previous display was shaking the head,

and Bob has just bid diamonds. Certainly, agreement will be more likely on the

second bid than on the first if the first was refused. It should now be clear how

these two distributions give “meaning” to Ann’s displays, Acom. Bob only needs

to know what displays to expect from Ann, and what actions Ann’s displays are

predictive of in any given situation. The POMDP based on these distributions will

yield the same policy of action regardless of what particular displays Ann actually

chooses. It only matters that his displays are consistent predictors of her future

actions in each context.

The number of display states to be learned (Nd) must still be specified manu-

ally. However, since we are using the results in a probabilistic model (the POMDP),

it is only critical to choose Nd large enough to have enough states to capture all the

important displays in the game. Our value-directed structure learning techniques

(Section 5.3) can then be used to find the smallest set of display states which still
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yield high expected value policies. Practical concerns limit the value of Nd we start

with, since it also depends on the amount of training data available. With a small

training set, choosing Nd too large will result in models which are heavily biased by

prior distributions. The resulting policies may be very sub-optimal.

The reward function is only based upon fully observable variables, and so

can be directly written down. Recall that, in the actual game, the players only get

the sum of the values on the cards they played if the card suits match, and only

if the sum is greater than the other team’s sum, if the other team’s cards match.

However, the other team only plays a motivational role in the game, and we can

disregard it here by assuming the players are rewarded by getting a match, and the

reward is the sum of the card values in the POMDP, regardless of the other team’s

play. We are assuming that the players are striving only to play matched suits which

have the greatest sum, since they have no control over the other team’s play. Thus,

the reward function is Acv+Bcv if match is not null, otherwise it is 0. Section 6.3

shows values for these distributions learned from training data, and shows a policy

of action generated from the resulting POMDP.

5.7.2 Displaying Round

On alternate rounds in the card matching game, a player cannot bid, but only watch

for bids from their partner. However, the actions available to the player now involve

generating displays indicative of agreement (or not) with the bid. This is not a

facial display modeling problem (since a player cannot see their own display), but a

generation problem: the player must make facial displays. Thus, a POMDP model

of the displaying rounds would involve actions for each facial display necessary in the

game, and these actions could be used to drive an animated character, for example.

However, prior knowledge of the facial displays and a model of how to generate them

would be necessary. Since this thesis is not concerned with the generation problem,

we do not discuss this round of the game in detail, but only give a rough overview

of what the associated decision problem looks like. We then show how the MDP for

the displaying round can be integrated with the POMDP for the bidding round to

form a single POMDP for each player for the game.

In the displaying round, the variables are the same as in the bidding round,

except that A and B are reversed, and there is no need to model the displays of

the partner, so that the MDP is fully observable. The actions available to the

decision maker are now performing facial displays and committing cards. As we

have seen, the displays used by players of the card matching game are simple head

nods and shakes, which we use as actions in the displaying round POMDP. The

model combines these displays with the actions to commit cards in the game (which
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Bob’s variables
action affected description

wait none do nothing
shake bid indicate disagreement with current bid

expect next bid to be different
nod.cmt♥ all indicate agreement with current bid

and commit ♥
nod.cmt♦ all indicate agreement with current bid

and commit ♦
nod.cmt♣ all indicate agreement with current bid

and commit ♣

Table 5.3: Actions during displaying round.

are final in the round), to give the five actions shown in Table 5.3.

5.7.3 Combining MDPs

Combining the partially observable MDP for the bidding round with the fully ob-

servable one for the displaying round involves simply adding a round variable, which

alternates between bid and display. When round is bid, the conditional probability

tables are those for the bidding round, and when round is display, the conditional

probability tables are those for the displaying round. The full action set is always

available, but bidding round actions have no effect in the displaying round, and vice-

versa. Figure 5.12 shows the combined POMDP from Bob’s perspective. We have la-

beled the subset of state variables as Sa = {B♥v,B♦v,B♣v,Acv,Bcv,match, bid},

but have kept Ann’s action, Aact, and Ann’s display, Acom, factored. The policy

generated by this combined POMDP is factored on the round variable into the pol-

icy for the bidding round, and that for the displaying round. Each of these smaller

POMDPs can be solved independently, and the resulting policy combined in this

way.
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Figure 5.12: Two time slices of combined POMDP for the card matching game.
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Chapter 6

Experiments

This chapter presents experimental results from training some of the models pre-

sented in Chapters 3 and 4. We present results from the three interactions described

in Chapter 5. Section 6.1 describes the imitation game, in which a single subject

imitates a cartoon display face (Section 5.5). Section 6.1.1 shows how we can find

clusters of similar flow fields using the simple Gaussian mixture model from Sec-

tion 3.2 (learning described in Section 4.2). This model considers all frames of the

video to be independent, and looks only to find flow field models which efficiently

span the set of flow fields in the data. The results are similar to those we have

presented in [HL03]. Section 6.1.2 shows the same type of procedure applied to

(temporally independent) images using the model in Section 3.3 (learning in Sec-

tion 4.3). The results in these two sections are meant to demonstrate how the spatial

abstraction of flow fields and images is performed. The analysis is qualitative, and

is meant to get the reader acquainted with our descriptions of the low-level learned

models. Section 6.1.3 then shows the results of training models with temporal de-

pendence. In particular, we train the context dependent mixture of coupled hidden

Markov models (C3MG), as described in Section 3.6.1. The analysis is this case

does not include any utility measures, as described in Section 5.5. Instead, we pre-

dict labels on the test sequences as an indication of the representative power of the

model.

The robot control experiments involve a single person gesturing to a robot,

and are described in Section 6.2. The results are from cross-validation experiments

in which the robot actions are chosen according to the learned model for the test

data set, and the accumulated reward is used as the measure of success.

Section 6.3 presents results on the data taken during the simple card match-

ing game described in Section 5.7. In this case, we train the full model including

actions, and attempt to find policies of action based upon the model. While the

facial displays are simpler during this game, the experiments we present show how
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actions can be incorporated and how policies can be discovered based upon the

learned visual models.

6.1 Imitation Game

Subjects were seated in front of a computer terminal on which an animated cartoon

shows facial displays according to the game described in Section 5.5. Three subjects

were told that their task is to imitate these displays, and were shown each of displays

initially and told to practice imitating them. Once they were satisfied with their

imitations, they pressed a key, and the system began recording a video sequence

through a Sony EVI-D30 color camera mounted above the computer screen. While

the subjects were being recorded, the cartoon face performed a series of 40 randomly

selected facial displays over a period of 2 minutes. Frames were captured at 160×120

with a BTTV frame grabber card on a desktop Pentium III PC running the Linux

operating system. The frame rates were almost always above 28fps.

After the experiment, most subjects reported either that they did not notice

a significant difference between cartoon displays a1 and a2, or that they could not

find a way to imitate the second one, a2, due to the extremely down-turned mouth.

6.1.1 Clustering Flow Fields

We first examine the results of learning the simple mixture of Gaussians model with

feature weighting described in Section 4.2 on data taken during the imitation game.

Given the video sequence, we want to discover the major categories of instantaneous

motions (flow fields) present. This is an important preliminary step to learning the

full temporal models, as it constitutes the lowest level and performs the spatial

abstraction.

We clustered a set of 904 frames from a 3600 frame sequence of a person

performing 4 different facial expressions during the imitation game. As described in

Section 5.5, the subject was imitating an on-screen cartoon face which was displaying

4 prototypical expressions: happy, sad, surprised and angry. The person’s face was

tracked using the flow-based tracker described in Section 3.7. The video frames in

this data set are not labeled, and so the analysis is qualitative: our methods discover

clusters of optical flow fields, and we interpret these clusters, which can be related

to established high-level concepts.

We automatically selected 904 frames which had significant motions in them

by thresholding the mean magnitude of the optical flow. Applying our methods to

all 3600 frames does not substantially change the result, since the flow fields from

the other frames all fall close to the origin, and so are represented by one of the
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Figure 6.1: Feature weights learned for facial expression data.

learned clusters. We used the first 16 Zernike coefficients for each horizontal and

vertical flow, resulting in a 32-dimensional basis vector, z. The noise parameters

were set to σ1 = 0.08, σ2 = 1.0, σp = 10.0, σ0 = 0.5 and σd = 0.1. The feature

weighting parameters were set to a = 1, b = 0.01 and α = 34. The parameters µz,x

and Λz,x were initialized by choosing K data points randomly as the initial seeds for

K-means clustering, and Gaussians were fit to the resulting classes. Feature weights

τ2
k were initialized to 1. Results were relatively insensitive to the initialization.

We trained a model with 8 classes. We choose 8 classes because it is large

enough to see some structure in the learned classes, but small enough to allow for

significant numbers of data points in each class. Figure 6.1 shows the final values

of the feature weights, τ 2
k . The first 16 dimensions are the Zernike coefficients

corresponding to horizontal flow (uAm
n ,

uBm
n for n < 5), while the last 16 are those

corresponding to vertical flow (vAm
n ,

vBm
n for n < 5), ordered by increasing n and m

values. The feature weights are clearly favoring the vertical flows, because a major

component of the facial expressions are raising and lowering of eyebrows. The four

most relevant features are {vB1
1 ,

vA3
3,

vA4
4,

vA0
0}. There are six other moderately

relevant features. The remaining 22 features are irrelevant.

Figure 6.2 shows the reconstructed Zernike vectors plotted along two of the

relevant features (vB1
1 ,

vA0
0). The clusters are denoted by the shape and color of

the data points. Reconstructed optical flow fields (using Equation 3.24) are shown
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for representative frames within each cluster. The classes are roughly (1) little or

no motion, (2) eyebrows raising slowly, (3) jaw expanding, (4) eyebrows raising

quickly, (5) jaw relaxing and (6) eyebrows lowering. The remaining two classes

corresponded to translational motions (7) up and (8) down. However, these clusters

only accounted for a small fraction of the data, and are not considered further.

Figure 6.3 shows an example of a raising eyebrows event. The original images

are shown with the tracked regions superimposed. The temporal derivatives are

shown below the images. We do not show the multi-scale temporal derivatives, only

those at the highest resolution. They are meant to be demonstrative of the change

in the image only. The flow fields computed using the Simoncelli method are shown

below the derivatives. Finally, the the expected reconstructed flow fields from the

model states are shown. The two central flow fields (105-106-107) are detected

as state 4 (eyebrows raising rapidly), surrounded by more slowly raising eyebrow

motions (state 2). Once the eyebrows reach their apex, the state returns to 1 (no

motion) by frame 108.

Figure 6.4 shows a smiling event detected as state 3 from frame 2174-2178,

surrounded by state 1 events (no motion). Figures 6.5 and 6.6 show the sequel to

Figure 6.3, in which the subject’s face returns to neutral. He begins by lowering his

eyebrows (Figure 6.5, frames 115-117), which is classified as state 6, followed by a

relaxation of his smile (Figure 6.6, frames 162-164), which is classified as state 5.
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Figure 6.2: Clustering result for facial expressions along two most relevant features.
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frame 104 105 106 107

state 2 4 4

frame 107 108 109

state 2 1

Figure 6.3: Eyebrow raising classified as states 2 and 4. The corresponding eyebrow
lowering is shown in Figures 6.5 and 6.6.
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frame 2173 2174 2175 2176

state 1 3 3

frame 2176 2177 2178 2179

state 3 3 1

Figure 6.4: Smiling event classified as state 3, surrounded by no motion (state 1)
events.
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frame 115 116 117

state 6 6

Figure 6.5: Eyebrow lowering event classified as state 6.

frame 162 163 164

state 5 5

Figure 6.6: Smile returning to neutral classified as state 5.
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6.1.2 Clustering Images

In this section, we show results from training the simple mixture of feature-weighted

Gaussians on the pose information (projections of the images to the Zernike basis).

Again we clustered the data from the imitation game. In this experiment, however,

we use all 3600 frames for the training data.

We used the first 64 Zernike coefficients. The feature weighting parameters

were set to a = 1, b = 0.01 and α = 34. The parameters µz,x and Λz,x were initialized

by choosing K data points randomly as the initial seeds for K-means clustering, and

Gaussian distributions were fit to the resulting classes. The feature weights τ 2
k were

all initialized to 1. The results were relatively insensitive to the initialization.

We trained a model with 8 classes. Figure 6.7 shows the final values of

the feature weights, τ 2
k . The two most relevant features are A4

4 and B7
7 , while

A4
2, B

4
2 , B

7
5 , A

1
1 and B7

1 are also significant.
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Figure 6.7: Feature weights learned for facial expression data.

Figure 6.8 shows the reconstructed Zernike vectors plotted along two of the

relevant features (A4
4, B

7
7). The clusters are denoted by the shape and color of the

data points. Also shown are the means and level curves of the covarainces of the

Gaussian output distributions. Reconstructed configurations from the mean Zernike

feature vectors are also shown as grayscale images. The classes are roughly: (1) (3)

and (8) surprised, (2) frown, (4) and (5) neutral, (6) smile eyebrow raised and (7)

smile. Figure 6.9 show the classification of the same frames shown in Figure 6.3,

taken during a smiling event. The frames with the subject in a smiling pose are

classified as state 6, which we have previously recognized as a smiling pose.
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Figure 6.8: Clustering result for facial expressions along two most relevant features.
The 8 means are numbered, and their associated covariances are shown as level
curves. Reconstructed images for the mean Zernike feature vectors are shown.
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frame 2173 2174 2175 2176

state 4 4 4 6

frame 2177 2178 2179 2180

state 6 6 6 6

Figure 6.9: Smiling pose classified as state 6. The original frames with tracked facial
region are shown, along with the expected reconstructions given the simple mixture
model. The most likely states of the mixture are given below the reconstructions.

frame 2230 2231 2232 2233 2234

state 6 6 6 6 4

Figure 6.10: Return from smiling pose classified as state 4.
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cluster
D1 D2 D3 D4

C1 0.01 0.01 0.61 .37
C2 0.02 0.48 0.17 0.33
C3 0.01 0.97 0.01 0.01
C4 0.91 0.07 0.01 0.01

Table 6.1: Probability distribution P (Ab:a|Aa) learned for subject A

6.1.3 Clustering Display Sequences

The videos from the imitation game described in the last section were temporally

segmented using the onset times of the cartoon displays and the resulting sequences

were input to the mixture of coupled HMM clustering and training algorithm de-

scribed in Section 4.6 using 4 clusters (the number of displays the subjects were

trying to imitate). The Viterbi algorithm was used to assign cluster membership,

D, to each sequence, which were then compared to the known classes of displays the

subjects were trying to imitate. The exact model recovered is partially dependent

on the randomness in the initialization procedure. However, we found the recov-

ered cluster membership to be fairly consistent, an indication that our initialization

procedure is robust to the random starting points. The results we present in the fol-

lowing section are usually the results we obtained on the first trial. Some, however,

were given multiple trials and the most often re-occurring results are presented.

The remainder of this section evaluates the results from one of the subjects

who performed the experiment. The results from this subject are demonstrative of

the results from the other subjects. We first show the learned high-level probability

distribution, P (Ab:a|Aa), which describes the likelihood of observing each high-level

motion state given each cartoon display. We then show two of the models learned for

this subject: one for “smiling” imitations, and one for “surprised” imitations. For

each model, we show the learned feature weights and output distributions for both

dynamics and configuration chains. We also show how it analyses two sequences.

Table 6.1 shows the learned model parameter, P (Ab:a|Aa), for subject A, in

which each row is one Aa state (cartoon display on screen) and each column is one

recovered cluster, Ab:a
1 ...Ab:a

4 . To simplify notation, we use C ≡ Aa and D ≡ Ab:a.

We see that most of the responses to the cartoon display C4 were classified as D1,

and most of the responses to C3 were classified as D2. Responses to C2 were split

between those that looked the same as responses to C3 (and so were classified as

D2, and those that looked similar to some of the responses to C1 (classified together

in state D4. The D3 model classified the majority of the responses to C1. In the
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following sections, we describe each model, and show some sequences which were

classified as belonging to that model.

Model D1

Feature weights for the model 1 dynamics and configuration chains are shown in

Figure 6.11. The dynamics chain has four significant features: two in the horizontal

flow components: uA1
1,

vB2
2 , and three in the vertical flow components, vA0

0,
vB1

1 ,

and vA0
2. The three most significant features in the configuration chain are B1

1 , B
3
3 ,

and A4
4.
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Figure 6.11: Feature weights τ 2
k for model 1 dynamics and configurations chains.

The output distributions of the four states (X) in the dynamics chain are

shown in Figure 6.12, plotted along two most significant feature dimensions, uA1
1

and vB1
1 . Two states (X = 2, 4) correspond to no motion (the face is stationary),

while the other two correspond to expansion upwards and outwards in the bottom of

the face region (X = 1), and contraction downwards and inwards in the bottom of

the face region (X = 3). We will see that these states correspond to the expansion

and relaxation phase of smiling.

The output distributions of the five configuration states are shown in Fig-

ure 6.13. There are two states (C = 2 and C = 4) which describe the face in a fairly

relaxed pose, while C = 1 and C = 3 describe “smiling” configurations.

We now show how the C3MG model analyses a particular sequence from the

imitation game for which the most likely high level state is D = 1. We show the

expected feature vector for each frame in the dynamics and configuration chains,

Zx and Zw, respectively, and the expected output flow fields and poses. Figure 6.14

shows the trajectory of the reconstructed dynamics Zernike vector (Zx) along the
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Figure 6.12: Dynamics chain model 1 output states plotted along two most signif-
icant dimensions according to feature weights, uA1

1,
vB1

1 . Reconstructed flow fields
for X state means are also shown.
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Figure 6.13: Configuration chain model 1 output distributions. Reconstructed
grayscale images are shown for C state means.
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two most important feature vector dimensions for a sequence classified as model

D = 1. We see the sequence starts in state 2 (no motion), enters state 1 (smile

expansion), then back to state 2 (holding the smile), finally contracting (state 3)

back to a relaxed pose (state 1 again).

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

u A1
1

v  B
1 1

1187

1188
1189

1190

1191

1248

12491250

1251

1252

Figure 6.14: Trajectory of dynamics feature vector (Zx) for sequence 13 (for which
model 1 has highest posterior) is shown given model 1. The level curves of the
Gaussian output covariances for model 1 are also shown.

Figure 6.15 shows the trajectory of the reconstructed configuration Zernike

vector (Zc) along the two most important feature vector dimensions for a sequence

classified as model D = 1. We see that the face is in the relaxed pose, W = 2, at

the beginning and the end of the sequence, and in the “smiling” pose, W = 1 and

W = 3, in the middle from frames 1189 to 1250.

Figures 6.16 and 6.17 show model’s explanation of the same sequence, for the

frames indicated in Figures 6.14 and 6.15. We see the high level distribution over

D is peaked at D = 1. Distributions over dynamics and configuration chains show

which state is most likely at each frame. The expected pose, H, and flow field, V ,

are shown conditioning the image, I, and the temporal derivative, ft, respectively.

Model D2

Feature weights for the model 2 dynamics and configuration chains are shown in

Figure 6.18. The dynamics chain has three significant features, all in the vertical
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Figure 6.15: Trajectory of configuration feature vector (Zc) for sequence 13 (for
which model 1 has highest posterior) is shown given model 1. The level curves of
the Gaussian output covariances for model 1 are also shown.

flow components: vA0
0,

vB1
1 , and vB1

3 . The three most significant features in the

configuration chain are B1
1 , A

0
4, and A4

4.

The output distributions of the seven states (X) in the dynamics chain are

shown in Figure 6.19, plotted along two most significant feature dimensions, vA0
0 and

vB1
1 . States X = 2, X = 3 and X = 6 all describe little or no motion flows. State

X = 1 describes flows upwards in the upper part of the image, roughly corresponding

to eyebrows raising. State X = 5 also includes upwards motion in the upper part

of the image, but also includes motion downwards and inwards in the lower part of

the image, corresponding to eyebrows raising and jaw dropping at the same time.

State X = 4 describes motion downwards in the upper part of the image, with slight

upwards motion in the lower part of the image, corresponding to the face relaxing

from an expanded state. State X = 7 describes small motions downwards in the

upper part of the image.

The output distributions of the five configuration states are shown in Fig-

ure 6.20. There are two states (C = 1 and C = 5) which describe the face in a fairly

relaxed pose, while C = 2 and C = 3 describe configurations in which the eyebrows

are raised and the jaw is dropped. State C = 4 appears to be a “smiling” pose.

We now show how the C3MG model analyses a particular sequence from the
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Figure 6.16: The face starts in its rest configuration (W = 2), and expands into a
smiling pose (W = 1) with the X = 1 flow field.
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Figure 6.17: The face starts in a smiling (W = 1) pose, and contracts with the
X = 2 flow field to a rest configuration (W = 2).
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Figure 6.18: Feature weights τ 2
k for model 2 dynamics and configuration chains.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

23

4

5

6

7

v A0
0

v  B
1 1

model1xstate1

model1xstate3

model1xstate0

model1xstate6

model1xstate4
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Figure 6.20: Configuration chain model 2 output distributions. Reconstructed
grayscale images are shown for C state means.

imitation game for which the most likely high level state is D = 2. We show the

expected feature vector for each frame in the dynamics and configuration chains,

Zx and Zw, respectively, and the expected output flow fields and poses. Figure 6.21

shows the trajectory of the reconstructed dynamics Zernike vector (Zx) along the

two most important feature vector dimensions for a sequence classified as model

D = 2. We see the sequence starts with no motion, enters state 1 (eyebrow raise),

then back to no motion (holding the eyebrows raised), finally contracting (state 4)

back to a relaxed pose.

Figure 6.22 shows the trajectory of the reconstructed configuration Zernike

vector (Zc) along the two most important feature vector dimensions for a sequence

classified as model D = 2. We see that the face is in the relaxed pose, W = 5, at the

beginning and the end of the sequence, and in the “eyebrow raised” pose, W = 2

and W = 3, in the middle from frames 1002 to 1059.

Figures 6.23 through 6.24 show the model’s explanation of the same sequence,

for the frames indicated in Figures 6.21 and 6.22. We see the high level distribution

over D is peaked at D = 2. Distributions over dynamics and configuration chains

show which state is most likely at each frame. The expected pose, H, and flow field,

V , are shown conditioning the image, I, and the temporal derivative, ft, respectively.
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Figure 6.21: Trajectory of dynamics feature vector (Zx) for sequence 11 (for which
model 2 has highest posterior) is shown given model 2. The level curves of the
Gaussian output covariances for model 2 are also shown.
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Figure 6.22: Trajectory of configuration feature vector (Zc) for sequence 11 (for
which model 2 has highest posterior) is shown given model 2. The level curves of
the Gaussian output covariances for model 2 are also shown.
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Subject A Subject B Subject C

ac
tu

al
1
2
3
4

model inference
1 2 3 4

23 0 0 1
5 2 9 2
0 4 32 0
1 0 4 37

model inference
1 2 3 4

20 8 3 2
0 12 0 6
0 0 40 5
0 4 3 17

model inference
1 2 3 4

0 6 6 6
9 31 8 0
1 1 16 6
0 0 3 27

success: 78% 74% 62%

Table 6.2: Confusion matrices and success rates from cross-validation experiments
inferring cartoon displays from sequences of three subjects.

6.1.4 Inferring Agent Actions

The preceding section gave a qualitative analysis of one subject’s displays in the

imitation game, and the models we could learn from a set of training data. We

can obtain quantitative results by attempting to infer the cartoon display given the

human imitation based on the learned model, as described in Section 5.5. We did this

analysis using a leave-one-out cross validation experiment for each of three subjects

who participated in the imitation game. There were 40 sequences (imitations) for

each subject, one of which was removed. The remaining 39 sequences were used to

train the C3MG as in the last section. The learned model was used to infer the

cartoon display, Aa, from the remaining (left-out) sequence. The most likely value

was chosen and compared to the actual display. This process was repeated three

times for each subject with different random initializations. The cross-validation is

only performed within each subject’s data pool, since the models are designed to

be person dependent. Table 6.2 shows the confusion matrices for the three subjects

(summed over the three experiments), and the total success rate. The majority of

the mis-classifications are from display a2, which subjects reported as being difficult

to distinguish from a1. The models make quite accurate predictions of a3 (83%) and

a4 (84%).

However, it is important to note that these results are obtained by always

looking at the most likely cartoon display, which ignores the model’s explicit rep-

resentation of uncertainty. That is, we estimate P (Aa|O), which is a distribution

over Aa, and the peak of the distribution is used in Table 6.2. However, there are

some cases where there is a second display which is nearly as likely as the best one.

To demonstrate this, Table 6.3 shows the confusion matrices obtained if we classify
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Figure 6.23: The face starts in its rest configuration (W = 4), expands with the X =
1 flow field towards a “eyebrows raised” (W = 2) configuration (see Figure 6.24).
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Figure 6.24: The face starts in an “eyebrows raised” pose (W = 2), and the mouth
opens with the X = 5 flow field, resulting in a “surprised” configuration (W = 3).
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Figure 6.25: The face starts in a “surprised” configuration (W = 3), and relaxes
with the X = 4 flow field to a rest pose (W = 5).
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Subject A Subject B Subject C

ac
tu

al

1
2
3
4

model inference
1 2 3 4

24 0 0 0
1 14 1 2
0 0 36 0
1 0 1 40

model inference
1 2 3 4

26 2 3 2
0 18 0 0
0 0 45 0
0 1 0 23

model inference
1 2 3 4

9 0 3 6
0 41 7 0
1 1 21 1
0 0 0 30

success: 95% 93% 84%

Table 6.3: Confusion matrices and success rates from cross-validation experiments
inferring cartoon displays from sequences of three subjects, using the top two most
likely cartoon displays if the most likely is uncertain.

Subject A Subject B Subject C

ac
tu

al

1
2
3
4

model inference
1 2 3 4

6 2 0 0
2 1 3 0
0 0 12 0
0 0 0 14

model inference
1 2 3 4

10 0 1 0
0 6 0 0
0 0 15 0
0 0 0 8

model inference
1 2 3 4

0 4 1 1
0 15 1 0
0 0 8 0
0 0 0 10

success: 82% 97% 82%

Table 6.4: Confusion matrices and success rates from supervised experiments infer-
ring cartoon displays from sequences of three subjects.

the sequence correctly if it falls in the top two most likely displays, but only if the

probability of the most likely display is less than 0.5. We see that many of the

mis-classified sequences were assigned maximum likelihood with much uncertainty.

These results can be compared to the results obtained in a supervised experiment,

where each sequence is explicitly labeled, so D is observed. These results are shown

in Table 6.4. When compared to the unsupervised maximimum likelihood experi-

ments (Table 6.2), we see that the supervised models perform substantially better

for two subjects (B and C), but only slightly better for subject A. This is as expected

(better performance in the supervised experiments), but the unsupervised models

perform well, in particular when the probability distribution is taken into account

(Table 6.3), in which case the unsupervised models outperform the supervised ones.
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6.2 Robot Control Gestures

We recorded a set of examples of four hand gestures, designed for simple robotic

direction control: forwards, stop, go left and go right. A dozen examples of each

gesture were performed by a single subject in front of a stationary camera during

a training session. Video was grabbed from a IEEE 1394 (Firewire) camera at

150 × 150 with a narrow field of view. The region of interest was taken to be the

entire image, and so no tracking was required. Clearly, this would only be possible

with a static camera. Sequences were taken of a fixed length of 90 frames. A

robotic agent (not embodied at this stage) chose actions in response to each gesture

according to a random policy, and was rewarded by the operators good or bad action,

Aact, for choosing the correct action.

The gestures were performed in sequence, and the subject practiced perform-

ing the gestures, so that they would be as similar as possible. It is important to

re-state that these experiments are not meant to demonstrate gesture recognition.

It is clear that, with this simple tracking and registration method (taking the whole

image), this system would not deal with the high variability in gesture orientation

or speed. These experiments are meant as a simple demonstrate the value-directed

structure learning techniques: they show how our system can correctly discover the

number of meaningful gestures in a simple interaction. They are also meant to

demonstrate that our system can be easily applied to more than just facial displays:

our representation can deal with the complexity of a gestural motion.

We trained the POMDP with Na = 6 states. The value function and policy

are shown in Figure 6.26 as decision diagrams. The policies for states d2 and d5 are

equivalent and their values are identical, and so the value-directed structure learning

algorithm merges them first by simply deleting state d5. The POMDP is re-trained,

resulting in a five-state value function (not shown), in which two more states are

found to agree and are merged. Again the POMDP is re-trained, this time giving a

value function and policy in which no displays are found to be redundant, shown in

Figure 6.27.

Figures 6.28 and 6.29 show the final 4-state model’s explanation of two parts

of a stop gesture sequence. We see the high level distribution overD is peaked atD =

3. Distributions over dynamics and configuration chains show which state is most

likely at each frame. The expected pose, H, and flow field, V , are shown conditioning

the image, I, and the temporal derivative, ft, respectively. Stop gestures consist of

an expansion phase (Figure 6.28) followed by a retraction phase (Figure 6.29).

Figures 6.30 and 6.31 show the model’s interpretation of a part of a forwards

sequence, classified as model d4, in the new 4-state POMDP. Forwards gestures

consist of one or more iterations of the motions shown: the hand moves forwards
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Figure 6.26: Original six-state value function (top) and policy (bottom), shown as
decision diagrams. States are the labels on each path from the root to a leaf, which
contains the value or optimal action for that state.
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value function

152



Zw

Zx Zx Zx
ZwZw Zw

Zx
Zw

tf

1195
1196 1197

0

1

1 2 3 4 5 0

1

1 2 3 4 5

1198

0

1

1 2 3 40

1

1 2 3 40

1

1 2 3 40

1

1 2 3 40

1

1 2 3 4

0

1

1 2 3 4 5 6
0

1

1 2 3 4 5 6

0

1

1 2 3 4 5
0

1

1 2 3 4 5 0

1

1 2 3 4 5

0

1

1 2 3 4 5 60

1

1 2 3 4 5 6

most likely D=3
’stop’

1195 1196 1197 1198 1199

I

H

V

W

X

Figure 6.28: Final 4-state gesture model’s explanation of a stop gesture as d3. Con-
tinued in Figure 6.29.

153



Zw

Zx Zx Zx
ZwZw Zw

Zx
Zw

tf

1219
1220 1221

0

1

1 2 3 4 5 0

1

1 2 3 4 5

1222

0

1

1 2 3 40

1

1 2 3 40

1

1 2 3 40

1

1 2 3 40

1

1 2 3 4

0

1

1 2 3 4 5 6
0

1

1 2 3 4 5 6

0

1

1 2 3 4 5
0

1

1 2 3 4 5 0

1

1 2 3 4 5

0

1

1 2 3 4 5 60

1

1 2 3 4 5 6

most likely D=3
’stop’

1219 1220 1221 1222 1223

I

H

V

W

X

Figure 6.29: Final 4-state gesture model’s explanation of a stop gesture as d3. Con-
tinuation of Figure 6.28.
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and to the right as it opens (Figure 6.30) and then backwards and to the left as it

closes (Figure 6.31).

To evaluate how well the model chooses actions, we performed a cross-

validation experiment in which the POMDP was trained on all but one sequence

of each gesture. The model was then used to choose actions based upon the four

sequences left out. If the action is correct, one reward is given. This process is

repeated for 12 different sets of four test sequences, and the total rewards gathered

give an indication of how well the model performs on unseen data. The model chose

the correct action 47 out of a total of 12 × 4 = 48 times, for a total success rate of

47/48 or 98%. The one failure was due to a mis-classification of a “left” gesture as

a “right” gesture due to a large rightwards motion of the hand at the beginning of

the stroke. The final POMDP models learned that there were Na = 4 states in all

12 cases.

6.3 Card Matching Game

The card matching game, as described in Section 5.7, was played by two players,

“Bob” and “Ann”, separated by a partition. The players were both students in our

laboratory. The players could not make visual or audio contact with each other,

except the visual contact available through the game interface. Each player viewed

their partner through a direct s-video link from their workstation to a Sony EVI

s-video camera mounted about their partner’s screen. The average frame rate at

320× 240 resolution was over 28fps. This data was also recorded along with a game

log describing the actions of each player in the game (card values and suits, bids and

committed cards). There were no restrictions placed on the type of communication

allowed between the players through the video link: the players were not given any

instructions about the types of displays they could or could not use. The rules of the

game were explained to the subjects, and they played four games of five rounds each.

In the following, we will focus on the model learned from Bob’s perspective during

his bidding rounds (so the displays will be those of Ann when Bob was bidding).

Bob bid first in each game, and so there were three bidding turns for him per game.

We will use data from the first three games to train the POMDP model described

in Section 5.7.1. The learned model’s performance will then be tested on the data

from the last game.

We do not analyse Bob’s displays here because he was, in fact, the author

of the thesis, and his results may be biased. In general, this experiment should be

performed with arbitrary subjects. However, we do not intend this experiment as

a general human-computer interaction study, but rather as a proof of concept: our
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Figure 6.30: Final 4-state gesture model’s explanation of a forwards gesture as d3.
Continued in Figure 6.31.
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POMDP model can be applied to this setting, and can learn a valuable policy of

action. The generalisability of the system to arbitrary subjects is a subject of future

work.

The training data set is certainly large enough to learn models of facial

displays, but is quite small when it comes to learning an optimal policy. To see

why, notice that, to learn an accurate POMDP, we need examples of every possible

valuable state-action pair. Even if many of the 10,000 states and 6 actions in the card

matching game will never be visited, the amount of training data required is still

quite large. Nevertheless, under certain symmetry assumptions, it may be possible

to make near-optimal decisions based only on a small training set. Equivalently, in

an on-line reinforcement learning method, it may be possible to start exploiting the

learned model with little exploration. For example, if we assume that the players

behaviour is symmetrical under permutation of the card suits, then we can average

the conditional probability distributions over all such permutations. This allows us

to fill in more of the model without having to explicitly explore those situations. For

example, suppose that a player notices that a certain facial display in response to a

bid of hearts is usually followed by her partner committing hearts. If she assumes

that her partner has no special preference between the heart and the diamond suits,

then she may extrapolate her experiences with hearts to diamonds, and assume

that the same facial display in response to a bid of diamonds will be followed by her

partner committing diamonds. However, these types of arguments are dependent on

the particular game being played, and generalisations require more complex models

than the POMDPs considered here. We will, however, show in Section 6.3.5 how

they can be used for the card game, and how it makes for much better policies when

training with little data.

As discussed in Section 5.7, we can construct MDPs for the two turns in-

dependently, and here we focus only on the Bob’s bid turns. Table 6.5 shows the

game log from Bob’s bidding rounds in the three games in the training set, as well

as the game used for testing (see Section 6.3.4). The first and third training games

involved an initial bid that was refused, followed by a second bid that was accepted.

All other bids were accepted on the first bid. Notice that, in some cases (the first,

third and last rounds in Table 6.5), Bob’s bid pointed to Ann’s second highest card,

but was nevertheless immediately accepted by Ann. In all three cases, however, this

strategy paid off because they got their reward faster, and it was equal or better to

the optimal reward. For example, in the first round, Bob bids his high club (7), and

Ann accepted and commited her second highest card (a 7 as well), giving a total

payoff of 12. Why did Ann not try to get Bob to agree to a play of diamonds? If she

had disagreed with his bid of clubs, Bob would surely have bid his second highest
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card, which may have been a diamond or a heart with equal probability. The addi-

tional payoff to the team is (3− ε) if Bob’s second bid was diamonds, and (−5− ε)

if Bob’s second bid was hearts, where ε is the expected difference between Bob’s

highest and second highest card. If Ann and Bob were not communicating over a

limited channel, then they could surely come to agreement (after some deliberation)

about the most optimal solution. However, the communication difficulties imposed

made the risk of failure high enough so that Ann simply accepted the first bid. This

approximate solution works well in many cases.

6.3.1 Learning a POMDP

We learned the parameters of the POMDP for the bidding rounds from Bob’s per-

spective, using the methods described in Section 4.7. The model was trained with

four display states, which is as large as we think it possible to learn reliable models

given the training set size. Two of the learned display states described sequences

with little motion (“null states). The other two corresponded roughly to “nodding”

and “shaking” of the head.

A slightly modified version of the structure learning algorithm described in

Section 5.3 was applied. In this case, we do not compare value functions and policies

for every state of the game, as they will often not agree in many places. Instead,

we look at where the majority of states agree on a merge. Two states were merged,

resulting in a three-state model. The two merged models, d1 and d2, both described

“null” sequences, with little facial motion. This redundancy shows up in the value

function, V (s), a small portion of which is shown in Figure 6.32. The highest value

Acom

3.74

d1

3.70

d2

4.61

d3

3.92

d4

Figure 6.32: Small portion of the two stage-to-go value function of the card matching
game with four display states.

is when the partner nods (d3), because we expect to get a reward of 3 within one

time step. The expected values for the null displays are almost equal. This indicates

that making the distinction between d1 and d2 is not useful for determining value.

This same redundancy shows up in the policy for the four state model, as shown in
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ro
u
n
d Bob’s Ann’s Ann’s bid Bob’s Ann’s

frames cards cards display action action
♥ ♦ ♣ ♥ ♦ ♣ Acom Bact Aact

tr
a
in

in
g

g
a
m

e
1 1 40-150 31 41 73 21 103 72 d2 - bid♣ -

1 151-295 d2 ♣ cmt♣ cmt♣
2 725-827 21 52 21 72 31 83 d1 - bid♦ -
2 828-976 d3 ♦ bid♣ -
2 977-1048 d2 ♣ cmt♣ cmt♣
3 1544-1626 62 93 41 11 41 83 d1 - bid♦ -
3 1627-1709 d2 ♦ cmt♦ cmt♦

tr
a
in

in
g

g
a
m

e
2 1 11-195 11 41 41 21 72 72 d3 - bid♦ -

1 196-351 d2 ♦ cmt♦ cmt♦
2 762-830 72 31 21 93 31 72 d1 - bid♥ -
2 831-942 d2 ♥ cmt♥ cmt♥
3 1407-1555 72 11 41 72 72 11 d1 - bid♥ -
3 1556-1651 d2 ♥ cmt♥ cmt♥

tr
a
in

in
g

g
a
m

e
3 1 11-129 11 31 93 72 93 103 d1 - bid♣ -

1 130-188 d2 ♣ cmt♣ cmt♣
2 736-834 73 62 41 11 72 52 d3 - bid♥ -
2 835-957 d3 ♥ bid♦ -
2 958-1052 d2 ♦ cmt♦ cmt♦
3 1502-1576 103 11 41 83 31 93 d1 - bid♥ -
3 1577-1653 d2 ♥ cmt♥ cmt♥

te
st

g
a
m

e

1 60-163 31 103 83 13 62 83 d2 - bid♦ -
1 164-339 d2 ♦ cmt♦ cmt♦
2 950-1047 72 41 83 21 11 52 d2 - bid♣ -
2 1048-1129 d2 ♣ cmt♣ cmt♣
3 1561-1633 93 103 31 11 21 62 d2 - bid♥ -
3 1634-1800 d3 ♥ bid♦ -
3 1801-2136 d3 ♦ cmt♦ cmt♦

Table 6.5: Log for the card matching games. The card values are shown for each
suit and each player as the actual value on the card subscripted with the value in the
model. Thus, ij means the players saw a card with value i, but it is characterized as
v〈j〉 in the POMDP. A blank means the card values were the same as the previous
sequence. Ann’s display, Acom, is the most likely as classified by the final model.
The first three games are used for training the model, the last for testing (see
Section 6.3.4)
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Figure 6.33: Small portion of the two stage-to-go policy for the card matching game
with four display states.

Figure 6.33. The model was re-trained with only three states after merging states d1

and d2. The result was, as expected, one “null” state (d1), one “nodding” state (d2)

and one “shaking” state (d3). The remainder of this section discusses this reduced

three-state model.

6.3.2 Structure of Learned Model

Recall from Section 5.2 that there are two conditional probability distributions to be

learned from the training data, both of which are model parameters in the C4MG

model we described in Section 3.6.3. Due to the lack of some instances of game

states in the training data, the learned conditional probabilities contained some

distributions which were only based on the Dirichlet smoothing prior. For example,

there is no instance in the data when the player bid hearts after bidding clubs (and

receiving a head shake of disagreement from her partner), so the action bid♥ was

never taken in a state where bid was ♣. for any value of Acom.

Figure 6.34 shows the learned conditional probability distribution Ann’s ac-

tion, Aact, given the current bid and Ann’s display, Acom, as a decision tree. The

leaves show the distribution over the possible values of Aact, from top to bottom:

null, cmt♥, cmt♦, cmt♣. We see that, if the bid is null, we expect Ann to do nothing

in response. If the bid is some suit, s, and Ann’s display (Acom) is the “nodding”

display d2, then there is a good chance that Ann will commit her card of suit s. On

the other hand, if Ann’s display is the “shaking” display, d3, or the “null” display,

d1, then we expect her to do nothing (and wait for another bid from Bob).

The conditional probability distribution of Ann’s display, Acom, at time t,

given the previous and current bids, bidt−1, and bidt, respectively, are different for

each of Bob’s actions. This is because Ann observes Bob’s bid the moment he makes

it. One example, for Bobs action bid♦, is shown in Figure 6.35. These distributions
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Figure 6.34: Learned conditional probability distribution over Ann’s action, Aact,
given the current bid and Ann’s display, Acom. The leaves of the decision
tree show the distribution over the possible values of Aact from top to bottom:
null, cmt♥, cmt♦, cmt♣.
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Figure 6.35: Learned conditional probability distribution over Ann’s display, Acom,
at time t, given the previous and current bids, bidt−1, and bidt, respectively, for
Bob’s action bid♦. The leaves of the decision tree show the distribution over the
possible values of Acom from top to bottom: d1, d2, d3.
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carry two important pieces of information for Bob:

1. At the beginning of a round, any bid is likely to elicit a non-null display d2 or

d3. As shown in Figure 6.35, the expected distribution over Acom = d1, d2, d3

after action Bact = bid♦ if the current bid is null (at the beginning of a round)

and the previous display was d1 (a null display) is 0.01, 0.49, 0.49. Thus, d1

(null) display is not very likely, while d2 and d3 (nod and shake) are equally

likely.

2. A “nodding” display is more likely after a “shaking” display if the bid is

changed. As shown in Figure 6.35, the expected distribution over Acom =

d1, d2, d3 after action bid♦ if the current bid is ♥ and the previous Acom was

d3 is 0.004, 0.993, 0.004: if Bob bids diamonds and sees a d3 display (a shake),

then a bid of clubs will most likely elicit a d2 display (a nod).

6.3.3 Policy of Action

bid

bid
club

null Acom

diamond

Acom

heart

Acom

club

d3

bid
diamond

d1

commit
diamond

d2

commit
heart

d2d1,d3

commit
club

d2

bid
diamond

d1,d3

Figure 6.36: Policy of action in the card matching game for the situation in which
B♥v = v3, B♦v = v3 and B♣v = v1.

The full policy for the game is quite large, and we instead show the sub-

policy for one particular set of values for the cards. In particular, Figure 6.36

shows the policy of action if the player’s cards have values B♥v = v3, B♦v = v3

and B♣v = v1. To consult the policy, simply follow the path from the root to a

leaf corresponding to the state and read the recommended action at the leaf. The

lightly colored leaves are actions which are “correct” in that they make sense given

our interpretation of the display states (d1 is null, d2 is a nod, and d3 is a shake).
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Figure 6.37: Learned conditional probability distribution over Ann’s display, Acom,
at time t, given the previous and current bids, bidt−1, and bidt, respectively, for
Bob’s action bid♣. The leaves of the decision tree show the distribution over the
possible values of Acom from top to bottom: d1, d2, d3.

The darkly shaded nodes are actions that are “incorrect”, usually due to a lack of

information about these states in the training data. The policy recommends the

following actions

• If there is no bid on the table, then bid the club. This is a sub-optimal

decision due to lack of training data, and resulting asymmetries between suits

in the conditional probability distributions. Figure 6.37 shows the probability

distribution over Ann’s display, Acom, for Bob’s action, bid♣. As the figure

shows, when the bid is null, the expected Acom is d2 with high probability,

and so the optimal bid is always clubs regardless of the values of the cards.

This probability distribution arises because in the training data, every bid of

♣ is followed by a display d2 (is accepted).

• If the bid is diamonds, and the partner nodded (d2), then commit the diamond.

Otherwise, if the partner did nothing (d1), then bid the diamond (again).

Finally, if the partner shook their head (d3), then bid the club. Again, this

last action is sub-optimal.

• If the bid is hearts and the partner shook nodded their head (d2), then commit

the heart, otherwise, bid the diamond (the other high card).

• If the bid is clubs and the partner shook nodded their head (d2), then commit
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the club, otherwise, bid the diamond.

6.3.4 Using the Policy

ga
m

e Bob’s Ann’s Bob’s policy policy
cards display bid action normal permute

♥ ♦ ♣ Acom Bact π(s) π′(s)

1 1 1 3 d2 - bid♣ bid♣ bid♦/♣
1 d2 ♣ cmt♣ cmt♣ cmt♣

2 1 2 1 d1 - bid♦ bid♣ bid♦

2 d3 ♦ bid♣ bid♦ bid♥
2 d2 ♣ cmt♣ cmt♣ cmt♥

3 2 3 1 d1 - bid♦ bid♣ bid♦

3 d2 ♦ cmt♦ cmt♦ cmt♦

4 1 1 1 d3 - bid♦ bid♣ cmt♥/♣

4 d2 ♦ cmt♦ cmt♦ cmt♦

5 2 1 1 d1 - bid♥ bid♣ bid♥

5 d2 ♦ cmt♥ cmt♥ cmt♥

6 2 1 1 d1 - bid♥ bid♣ bid♥

6 d2 ♥ cmt♥ cmt♥ cmt♥
7 1 1 3 d1 - bid♣ bid♣ bid♣
7 d2 ♣ cmt♣ cmt♣ cmt♣

8 3 2 1 d3 - bid♥ bid♣ bid♥

8 d3 ♥ bid♦ bid♦ bid♦
8 d2 ♦ cmt♦ cmt♦ cmt♦

9 3 1 1 d1 - bid♥ bid♣ bid♥

9 d2 ♦ cmt♥ cmt♥ cmt♥

Table 6.6: Log for the training games showing the predicted actions from the policy,
π(s), and from the symmetrized policy, π ′(s). Shaded entries are incorrect policy
predictions.

Tables 6.6 and 6.7 show Ann’s displays, the bids, Bob’s cards and Bob’s

actions during the training and test game, respectively (see Table 6.5 for other

variables). The second-to-last column shows the predictions of Bob’s actions of the

policy, π(s), discussed in the last section. This policy correctly predicted 14 out

of 20 actions in the training games, and 5 out of 7 actions in the test game The

incorrect actions are shaded in Tables 6.6 and 6.7. However, as we have pointed
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ga
m

e Bob’s Ann’s Bob’s policy policy
cards display bid action normal permute

♥ ♦ ♣ Acom Bact π(s) π′(s)

1 1 3 3 d2 - bid♦ bid♣ bid♦/♣
1 d2 ♦ cmt♦ cmt♦ cmt♦
2 2 1 3 d2 - bid♣ bid♣ bid♣
2 d2 ♣ cmt♣ cmt♣ cmt♣

3 3 3 1 d2 - bid♥ bid♣ bid♥

3 d3 ♥ bid♦ bid♦ bid♦

3 d3 ♦ cmt♦ bid♣ bid♥

Table 6.7: Log for the testing game showing the predicted actions from the policy,
π(s), and from the symmetrized policy, π ′(s). Shaded entries are incorrect policy
predictions.

out, many of the problems with this policy can be attenuated by applying symmetry

arguments to construct a symmetrised policy, π ′(s). This is discussed in the next

section.

6.3.5 Symmetry Considerations

As we have pointed out, symmetry arguments can be applied to the learned POMDP

in order to attenuate the effects of the lack of training data. In particular, we may

assume that player’s do not have any particular preference over card suits, such that

the conditional probability tables should be symmetric under permutation of suits.

Therefore, we can “symmetrise” the probability distributions by simply averaging

over the six card suit permutations. Figures 6.38 and 6.39 show the symmterised

conditional probability distributions over Aact and Acom. These can be compared

to the unsymmetrised versions in Figures 6.34 and 6.35, respectively.

Figure 6.40 shows a portion of the symmetrised policy computed for the

symmetrised POMDP. The predictions of this policy are shown in the last columns

of Tables 6.6 and 6.7 for training and test data, respectively. The symmetrised policy

correctly predicts all but one of Bob’s actions in the training game, for an error rate

of only 5%. The mis-classification was due to the subject looking at something

to one side of the screen yielding significant horizontal head motion, leading to a

classificaiton as d3.

The symmetrised policy correctly predicts all but one of Bob’s actions in the

test game. It does correctly predict the re-bid in the third round, where the first
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Figure 6.38: Learned conditional probability distribution over Ann’s action, Aact,
given the current bid and Ann’s display, Acom. The leaves of the decision
tree show the distribution over the possible values of Aact from top to bottom:
null, cmt♥, cmt♦, cmt♣.
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Figure 6.39: Learned conditional probability distribution over Ann’s display, Acom,
at time t, given the previous and current bids, bidt−1, and bidt, respectively, for
Bob’s action bid♦. The leaves of the decision tree show the distribution over the
possible values of Acom from top to bottom: d1, d2, d3.
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Figure 6.40: Policy of action in the card matching game for the situation in which
B♥v = v3, B♦v = v3 and B♣v = v1.

bid (of hearts) was refused by the partner’s display. Figure 6.40 shows the policy

of action in this situation. At the beginning, when there is no bid on the table (so

bid is null), the policy recommends that Bob bid his heart (as he did). The C4MG

then recognized Ann’s subsequent display as state d3 (shake), and the policy rec-

ommends changing the bid to diamonds. The C4MG classifies the following display

as d3, which is incorrect (Ann actually nodded her head), so the policy recommends

bidding the heart again. The last sequence is longer than usual (over 300 frames),

and includes some horizontal head motion in the beginning which appears as shak-

ing in the model. This mis-classification may expose a weakness of the temporal

segmentation method we use, which is based entirely on the observable actions and

game states. Although this sequence is long, it is only the (fairly vigorous) head

nod at the very end which is the important display. Perhaps a termporal segmen-

tation which focussed more on later motions would be more attuned to this kind of

sequence.

6.3.6 Output Models

Model 2 : “nodding”

Feature weights for the dynamics and configuration chains are shown in Figure 6.41.

There is one significant feature in the dynamics chain, vA0
0, which describes vertical

translational movement. The significant features in the configuration process are

A0
4, B

3
5 , B

1
7 and B3

7 .

The output distributions of the seven states (X) in the dynamics chain are
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Figure 6.41: Feature weights τ 2
k for model 2 dynamics and configuration chains

shown in Figure 6.42, plotted along two most significant feature dimensions, uA1
1 and

vB1
1 . Four states (X = 1, 2, 3, 7) correspond to no motion (the face is stationary),

while two correspond to translation upwards (X = 4, 5), and the last to translation

downwards (X = 6).

The output distributions of the five configuration states are shown in Fig-

ure 6.43. States 1− 6 and 8 describe orientations of the face (tilted upwards, facing

forwards, etc), while state 7 describes an unusual pose that was caused by the sub-

ject adjusting her hair, so her hand entered into the top left of the facial region.

We now show how the C4MG model analyses a particular sequence from the

card matching game for which the most likely high level state is D = 3. We show

the expected feature vector for each frame in the dynamics and configuration chains,

Zx and Zw, respectively, and the expected output flow fields and poses. Figure 6.44

shows the trajectory of the reconstructed dynamics Zernike vector (Zx) along the

two most important feature vector dimensions for a sequence classified as model

D = 3. The sequence alternates between motion upwards (states 4 and 5) and

motion downwards (state 6).

Figure 6.45 shows the trajectory of the reconstructed configuration Zernike

vector (Zc) along the two most important feature vector dimensions for a sequence

classified as model D = 3.

Figures 6.46 and 6.47 show the model’s explanation of the same sequence, for

the frames indicated in Figures 6.44 and 6.45. We see the high level distribution over

D is peaked at D = 3. Distributions over dynamics and configuration chains show

which state is most likely at each frame. The expected pose, H, and flow field, V ,

are shown conditioning the image, I, and the temporal derivative, ft, respectively.
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Figure 6.45: Trajectory of most likely configuration feature vector (Zc) for sequence
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covariances for model 2 are also shown.

Model 3: “shaking”

Feature weights for the dynamics and configuration chains are shown in Figure 6.48.

There is one significant feature in the dynamics chain, uA0
0, which describes hori-

zontal translational movement. The significant features in the configuration process

are A0
4, A

4
4, B

3
5 and B3

7 .

The output distributions of the six states (X) in the dynamics chain are

shown in Figure 6.42, plotted along two most significant feature dimensions, uA0
0

and vA0
0. Two states (X = 2, 3) correspond to no motion (the face is stationary),

while two (X = 1, 5) correspond to motion to the left and right, respectively. The

remaining two account for small motion up and down.

The output distributions of the five configuration states are shown in Fig-

ure 6.50. Different angles of the face are represented: state 1 is angled to the left,

states 3 and 4 are angled to the right, and states 2 and 8 are facing forward.

We now show how the C4MG model analyses a particular sequence from the

card matching game for which the most likely state is D = 4. We show the expected

feature vector for each frame in the dynamics and configuration chains, Zx and Zw,

respectively, and the expected output flow fields and poses. Figure 6.51 shows the

trajectory of the reconstructed dynamics Zernike vector (Zx) along the two most
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matching game. The subject’s face tilts downwards during a nodding motion.
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important feature vector dimensions for a sequence classified as model D = 4. The

sequence alternates between motion to the right (state 5) and to the left (state 1).
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Figure 6.51: Trajectory of most likely dynamics feature vector (Zx) for sequence 5
(for which model 3 has highest posterior). The level curves of the Gaussian output
covariances for model 3 are also shown.

Figure 6.52 shows the trajectory of the reconstructed configuration Zernike

vector (Zc) along the two most important feature vector dimensions for a sequence

classified as model D = 3.

Figures 6.53 and 6.54 show the model’s explanation of the same sequence, for

the frames indicated in Figures 6.51 and 6.52. We see the high level distribution over

D is peaked at D = 4. Distributions over dynamics and configuration chains show

which state is most likely at each frame. The expected pose, H, and flow field, V ,

are shown conditioning the image, I, and the temporal derivative, ft, respectively.
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Figure 6.52: Trajectory of most likely configuration feature vector (Zc) for sequence
5 (for which model 3 has highest posterior). The level curves of the Gaussian output
covariances for model 3 are also shown.
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game. The subject’s face swings to the right during a shaking motion.
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Figure 6.54: The C4MGs explanation of part of a sequence during the card matching
game. The subject’s face swings to the left during a shaking motion.
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Chapter 7

Conclusions

Computer vision has traditionally focussed on recognition for its own sake. Com-

puter vision modules are designed to perform specific, pre-defined tasks in isolation

from the system they are to be used in. This approach tends to drive computer

vision research into areas where it may not be entirely necessary to go. If computer

vision is being used to achieve some goal, then it is the goal itself that should define

what the computer vision task should be, not some pre-defined notion of what types

of inputs will be needed to accomplish the goal. Goals usually change over time,

due to learning, a changing environment, or changing resource bounds. Computer

vision systems must therefore be able to self-modify to reflect these changes. This

implies that decoupling the task from the goal is not the optimal approach, and

we have argued in this thesis for a model that unifies the low-level computer vision

tasks with the high-level goal oriented systems in a coherent whole using Bayesian

networks.

For example, a security system may have the goal of detecting subversive

actions. The traditional way of approaching this problem is to first have experts

in decision-making for security define subversive action, and a set of inputs that

would be sufficient for its detection. Computer vision researchers then build sys-

tems to detect these inputs. For example, the decision experts may deem that face

recognition, and person detection and tracking are important, and computer vision

systems for accomplishing this will be implemented. However, these types of sys-

tems are inflexible, in that they cannot easily be changed to reflect new techniques

for subversion, new visual inputs, or changing resource bounds.

In contrast, the models we describe in this thesis require a different design

approach. The decision experts first define the security task as a set of states

that the system can be in, and the conditional dependencies between the states.

The computer vison inputs do not need to be explicitly defined, only included in

the model as generic ’visual information’ variables. The model is then trained in
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the actual environment it is to be used in, and the learned model ’discovers’ the

categories of visual inputs which are important to the task. This type of analysis

unifies the decision process with the learning of computer vision models.

The model developed in this thesis combines computer vision, probabilistic

modeling and decision theory. The three are closely related, and together are a

powerful solution concept for vision-based computer tasks.

Computer Vision The computer vision task is to detect human motions from

video streams, and to compress the motions into spatially and temporally

abstract representations suitable for integration with higher level processing.

This thesis has investigated data-independent sets of basis functions for simul-

taneously modeling instantaneous configuration and dynamics of human facial

displays and hand gestures.

Probabilistic Models The uncertainties inherent in the sensing task call for prob-

abilistic modeling techniques. Dynamic Bayesian networks (DBNs) in partic-

ular are a structured representation of uncertain beliefs for sequential data. I

have shown how to use DBNs to model human behaviors in video sequences,

allowing for temporally abstract representations of sequences of motion to be

built automatically

Decision Theory Rational decisions require that non-verbal human behaviors must

not only be sensed and represented, but must also be used for choosing ac-

tions which optimize utility over outcomes. Expected utility maximization is

the standard approach for rational decision making, and forms the basis for

Markov decision processes (MDPs). MDPs, and their close relatives, POMDPs

(partially observable MDPs), have become the semantic model of choice for

representing large planning problems. Our work on structured representations

of MDPs has allowed them to be applied to larger problems than before. In

particular, the research presented in this thesis has focussed on representing

human non-verbal interactions with POMDPs.

This thesis has shown how partially observable Markov decision processes,

or POMDPs, can be used to combine computer vision, probabilistic modeling and

decision theory. The model allows an agent to incorporate actions and utilities into

the sensing and representation of visual observations, and provides top-down value-

based evidence for the learned probabilistic models: the agent can learn models

most conducive for achieving value in a particular task. One of the key features of

this technique is that it does not require labeled data sets. That is, the model makes

no prior assumptions about the form or number of non-verbal behaviors used in an

interaction, but rather discovers this from the data during training.
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This model is of interest to researchers in both computer vision and decision

theory. Computer vision scientists will find a new model for human action in video

streams, and a method for learning the model from data. Further, they will see how

the model can be attached to a high-level decision process that implicitly defines the

computer vision task. This definition is a general one: the systems must be designed

so that they can learn from a set of training data. Performance can be explicitly

evaluated on a task, giving the computer vision researchers solid feedback on their

algorithms. Decision theorists, on the other hand, will find an output model that

brings a large and important data source into contact with their models. While

they have been traditionally focussing on solution techniques for “toy” problems,

they are always interested in real data. The model we have presented in this thesis

connects them to vision data, and opens the door to research on much more difficult

problem solutions than have usually been attempted.

7.1 Contributions

The main contribution of this thesis is a novel and unified model of human non-

verbal behavior in video streams, integrated with decision making over high level

context states and actions. This includes a Bayesian a-posteriori learning procedure

for adapting the parameters of the model to training data. The learning does not

require labeled data, so the model automatically discovers the categories of behaviors

relevant to a particular task. The learned models can be used to predict human

behavior, or by an autonomous agent to choose actions during collaboration with a

human. We have demonstrated this model in three interactive settings.

1. During play of an imitation game, a human tries to mimic the facial displays of

an animated cartoon face. The resulting displays involve some complex facial

motions, and we used this game primarily to demonstrate the computer vision

modeling techniques. We showed how our model could represent the facial

motions during the four different imitative displays, and we demonstrated the

function of the different components of the model. Finally, we performed a

quantitative analysis on this data, showing prediction of the cartoon displays

on unseen data, with rates comparable to the equivalent supervised experi-

ments, in which the data is labeled.

2. Robot control using gestures is the second “game”. An operator signals nav-

igation commands to a robot using hand gestures, and rewards the robot for

performing the correct action after each gesture. The robot learns the ges-

ture categories, their number, and their relationships to its actions and utility

183



functions. It can then use the learned model to take actions after subsequent

gestural commands. We performed a leave-one-out cross-validation experi-

ment and measure how much reward the robot would gain by taking these

actions on unseen data. We find error rates of only 2% over 48 test sequences.

3. The card matching game is played by two humans through a computer inter-

face. The players can see, but not hear, one another. They are allowed to

communicate through this visual link, but no restrictions are placed on the

type of communication. Each player has a hand of three cards, but can only

see their own cards, not their partner’s. Each player gets to play a single card,

and they both win if the suits of their played cards match. The idea is that the

players must somehow agree, using only visual communication, about which

card to play. This game involves fairly simple facial displays, but has a more

complex decision structure, and we used it to demonstrate how computer vi-

sion is integrated with decision theory. We trained the model on a set of three

games and tested it on a fourth. The model learned categories of motion that

made intuitive sense in the card matching game, and the learned POMDP

conditional probability tables showed the kind of structure one would expect

in the game. Further, it predicted the actions of the human players correctly

in all but one case out of seven on test data.

This work has also introduced a novel probabilistic method for spatially

abstracting optical flow and images to a set of basis functions, including a Bayesian

feature weighting technique to avoid prior selection of features. We have shown how

this probabilistic modeling technique is a part of the general Bayesian solution to the

problem of recognising and interpreting video sequences. Further, we have shown

how a particular basis set, the Zernike polynomials, are useful descriptors of both

optical flow and images, and have argued the advantages of using a pre-determined

set of functions, as opposed to a data-dependent one.

7.2 Future Work

This thesis researches the unification of computer vision and decision theory for

modeling human non-verbal displays. We briefly examine the future challenges in

the computer vision and decision theoretic fields, and then describe some of the

open problems when the two are combined.
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7.2.1 Modeling human non-verbal behaviors in context

Learning decision-theoretic models of human behavior from unlabeled training data

presents a number of different challenges. These center in particular on segmentation

and tracking, as well as multimodal analysis.

Spatial Segmentation and Representation

There is a tradeoff in modeling human behavior between spatial segmentation and

spatial representation. A holistic approach, such as we have taken in this thesis,

spatially segments the entire region of interest (such as the face, or the hands) from

the background, and represents the motion and spatial structure in this region using

a relatively high dimensional feature vector. However, it is equally possible to break

the region in which the behavior is occurring into smaller areas, modeling motion

and intensity in each piece using a lower dimensional vector. For example, the fa-

cial display models we have presented involve representing the entire facial region

using the basis of Zernike polynomials. We have also experimented with segmenting

the face into a number of smaller regions over eyes and mouth. The correspond-

ing Zernike projections can each be lower dimensional, but need to be combined

into a single vector. It is not yet clear how this tradeoff can be optimally exploited.

Future work will involve investigating the advantages of each, and methods for auto-

matically segmenting the images spatially. The spatial segmentation/representation

problem is closely related to the tracking problem.

Tracking

Throughout this thesis, we have assumed that a spatial region of interest has been

tracked through each video sequence. We have described a method for tracking

based on optical flow and exemplar matching (Section 3.7), which effectively de-

couples tracking from recognition. In fact, this is a crude approximation: tracking,

spatial segmentation, recognition and decision-making are highly interrelated. To

see why, recall that it is advantageous to describe decision making processes in

terms of a small number of high-level, discrete states. The mapping between the

high-dimensional, continuous video signal and this small high-level state space has

been one of the central topics of this thesis. This abstraction of the visual space must

proceed such that the high-level state space is sufficient for decision-making. There

may be many events in the video sequence, and it is the job of the tracking and

spatial segmentation processes to separate these events from background. The sep-

aration, however, depends on the task being performed. We have briefly described

a method for integrating the tracking and recognition process in Section 3.7.2. This
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technique combines tracking with learning of the model. Value directed learning

would further imply that the track would be geared towards achieving value in the

high-level task. These issues would require substantial future work, and would be

related to the issues in solving POMDPs described below (Section 7.2.2).

Observation Function

The observation function we have presented in this thesis is one example of the

type of function that may be desirable for modeling human behavior. We have

described how it models instantaneous pose and dynamics simultaneously, and how

these two are useful for recognition and for tracking. However, there are other

types of information which may need to be included for other application areas.

Edges, corners, invariant features, color, and texture are all examples. Further, the

modeling of both pose and dynamics leads to questions about the role of each in the

recognition task. We have performed experiments attempting to delve further into

these issues, but the results were inconclusive, and would require further work.

Multimodal communication

As was pointed out in the introduction, speech, gesture and facial displays are highly

correlated. We have not investigated this correlation in this thesis, but combining

cues from these multiple communication modalities would be necessary in future

work. For example, one of the major components of facial motion during conver-

sation is simply due to the motion of the mouth for speech [VBPB03]. Gestures

are also commonly used for emphasis and commentary during speech [McN92]. The

models we have described in this thesis could be extended to integrate these dif-

ferent modalities. However, the question remains of the level at which to integrate

them. One possibility is to combine them at the level of the continuous feature

vectors, another is to combine them at the level of the decision-making, using each

as high-level, discrete conditioning factors. Some cues may be more amenable to

combination at a low level, others at a high level.

Temporal segmentation

As described in Section 3.6.4, the input video sequences are temporally segmented

using only the observable high-level context and actions. However, we saw examples

in Chapter 6 in which this caused some problems. In particular, the assignment of a

facial display to a particular video segment requires that there be some information

about that segment containing a ’meaningful’ facial display. However, there are

cases in which the subjects were moving their heads or faces for reasons other than
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communication. This could be detected using models which are common for dialogue

management, distinguishing different levels of communication [Cla96, PH00]. These

models essentially build a hierarchy of attentional levels, from the channel level

for the perception and generation of behaviors, to the conversation level, at which

propositional content is modeled. A conversation must include a connection between

partners at all levels. Detection and tracking of eyes could also be very useful in

this regard [Ver03].

7.2.2 Optimal or approximate high-dimensional POMDP solutions

The models we have described are POMDPs with extremely high-dimensional out-

put spaces. Optimal and approximate solutions to these models lie at the frontier

of POMDP research. One of the main research directions is in methods to com-

press belief spaces, allowing for more tractable approximate solutions while not

compromising decision quality [PB03]. Since belief spaces are abstractions of the

output spaces, the belief state compressions can give indications of how to con-

struct representations of the video sequences which are most conducive to achieving

value within the POMDP’s task. Thus, solutions to the POMDPs are intimately

connected with the learning of the models, including the representations of vision-

based observations: a rational learning agent must learn the POMDPs and solve

them concurrently. Future work will involve investigating belief state compression

techniques and their relationship to video outputs. The goal will be learning and

solution techniques which construct sparse representations of visual data that lead

to optimal decisions for obtaining value in the long term.

7.2.3 Unification of decision theory and computer vision for em-

bodied human-interactive agents

Artificial agents that provide an effortless interface between humans and machines

will be useful in two major areas. First, intelligent agents are already being used to

help humans in difficult situations, and their roles will increase in the future with the

advent of more visually driven systems. For example, agents can increase automobile

safety by monitoring and interacting with drivers, or can help people with mental

disabilities perform everyday tasks with dignity. Second, the study of interactive

agents provides a wealth of information about human psychology. Watching humans

interact with simple machines gives insight into the workings of the human brain.

Intelligent agents should be able to sense, interpret, act in conjunction with,

and learn from a complex and changing environment containing other intelligent

agents, particularly humans. The long term goals of this research are to under-
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stand how agents can learn and use relationships between visual observations of

other agents, their actions, other contextual information and utility. Learning these

relationships will allow agents to adapt to new environments, new tasks, and new

collaborators, without manual intervention. As this thesis has argued, computer

vision alone is not sufficient, but must be combined with decision theory. The use

of probabilistic modeling techniques consolidates the two, and allows the whole to

be described on sound theoretical ground. In turn, the decision theoretic modeling

is useful for the vision modeling, as it allows value-directed structures to be learned.

The experimental paradigm we have presented can be used in future work

to investigate more complex interactions involving non-verbal behaviors. Games

involving gestures, facial displays and speech will be important for these investiga-

tions.
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[KZ02] Volker Krüger and Shaohua Zhou. Exemplar-based face recognition

from video. In Proceedings of IEEE International Conference on Face

and Gesture, Washington, DC, May 2002.

[LB98] James J. Little and Jeffrey Boyd. Recognizing people by their gait: the

shape of motion. Videre, 1(2), Winter 1998.

[LB99] Cen Li and Gautam Biswas. Temporal pattern generation using hidden

Markov model based unsupervised classification. In D.J. Hand, J.N.

Kok, and M.R. Berthold, editors, Proc ICML, number 1642 in LNCS,

pages 245–256, Berlin, 1999. Springer-Verlag.

[LBA99] M.J. Lyons, J. Budynek, and S. Akamatsu. Automatic classification of

single facial images. PAMI, 21(12):1357–1362, December 1999.

[LF98] Michael E. Leventon and William T. Freeman. Bayesian estimation of

3-d human motion from and image sequence. Technical Report TR-98-

06, Mitsubishi Electric Research Laboratory, July 1998.

[LK81] Bruce Lucas and Takeo Kanade. An iterative image registration tech-

nique with an application to stereo vision. In Proc. International Joint

Conference on Artificial Intelligence, 1981.

[LKCL98] James Jenn-Jier Lien, Takeo Kanade, Jeffrey F. Cohn, and Ching-

Chung Li. Subtly different facial expression recognition and expression

intensity estimation. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pages 443–449, Santa Barbara, CA,

1998.

[LP98] Simon X. Liao and Miroslaw Pawlak. On the accuracy of Zernike mo-

ments for image analysis. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 20(12):1358–1364, December 1998.

[LS00] Christine L. Lisetti and Diane J. Schiano. Automatic facial expres-

sion interpretation: Where human-computer interaction, artificial in-

telligence and cognitive science interact. Pragmatics and Cognition,

8(1):185–235, 2000.

198



[LSR+00] Bastian Leibe, Thad Starner, William Ribarsky, Zachary Wartell,

David Krum, Justin Weeks, Brad Singletary, and Larry Hodges. To-

wards spontaneous interaction with the perceptive workbench, a semi-

immersive virtual environment. In IEEE Virtual Reality, pages 13–20,

New Brunswick, NJ, March 2000.

[LT97] Jeurgen Luettin and Neil A. Thacker. Speechreading using probabilistic

models. Computer Vision and Image Understanding, 65(2):163–178,

February 1997.

[LTC97] A. Lanitis, C.J. Taylor, and T.F. Cootes. Automatic interpretation

and coding of face images using flexible models. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 19(7):743–756,

July 1997.

[McN92] David McNeill. Hand and Mind: What Gestures Reveal about Thought.

University of Chicago Press, Chicago, IL, 1992.

[Min99] Thomas P. Minka. From hidden Markov models to linear dynamical

systems. Technical Report 531, M.I.T., 1999.

[MN95] Hiroshi Murase and Shree K. Nayar. Visual learning and recognition

of 3-d objects from appearance. International Journal of Computer

Vision, 14:5–24, 1995.

[Mor82] Masahiro Mori. The Buddha in the Robot. Charles E. Tuttle Co., 1982.

[MP91] Kenji Mase and Alex Pentland. Recognition of facial expression from

optical flow. IEICE Transactions E, 74(10):3474–3483, 1991.

[MP01] Kevin Murphy and Mark Paskin. Linear time inference in hierarchical

HMMs. In Advances in Neural Information Processing Systems (NIPS),

volume 14, Vancouver, BC, 2001.

[MPR+02] M. Montemerlo, J. Pineau, N. Roy, S. Thrun, and V. Verma. Expe-

riences with a mobile robotic guide for the elderly. In Proceedings of

the AAAI National Conference on Artificial Intelligence, Edmonton,

Canada, 2002. AAAI.

[Mur02] Kevin P. Murphy. Dynamic Bayesian Networks: Representation, In-

ference and Learning. PhD thesis, UC Berkeley, Computer Science

Division, July 2002.

199



[Muy87] Eadweard Muybridge. Animal Locomotion. University of Pennsylvania,

Philadephia, 1887.

[MYD96] Carlos Morimoto, Yaser Yacoob, and Larry Davis. Recognition of head

gestures using hidden Markov models. In Proceeding of ICPR, pages

461–465, Austria, 1996.

[Mye91] Roger B. Myerson. Game Theory: Analysis of Conflict. Harvard Uni-

versity Press, Cambridge, Massachussetts, 1991.

[NA94] S.A. Niyogi and E.H. Adelson. Analyzing and recognizing walking fig-

ures in xyt. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 469–474, 1994.

[NH93] Radford M. Neal and Geoffrey E. Hinton. A new view of the EM algo-

rithm that justifies incremental and other variants. Technical report,

Dept. of Computer Science, University of Toronto, 1993.

[NI00] A. Nefian and M. Hayes III. Maximum likelihood training of the em-

bedded HMM for face detection and recognition. In Proc. IEEE Inter-

national Conference on Image Processing (ICIP), pages 153–160, 2000.

[NY93] Shahriar Negahdaripour and Chih-Ho Yu. A generalized brightness

change model for computing optical flow. In Proceedings of Fourth In-

ternational Conference on Computer Vision, pages 2–11, Berlin, Ger-

many, May 1993.

[OHG02] Nuria Oliver, Eric Horvitz, and Ashutosh Garg. Layered representa-

tions for human activity recognition. In Proceedings of International

Conference on Multimodal Interfaces, Pittsburgh, PA, October 2002.

[OPB97] N. Oliver, A. Pentland, and F. Berard. LAFTER: Lips and face

real time tracker. In Proc. Computer Vision and Pattern Recognition

(CVPR), pages 977–984, 1997.

[PB03] Pascal Poupart and Craig Boutilier. Value-directed compression of

POMDPs. In Advances in Neural Information Processing Systems

(NIPS), volume 15, pages 1547–1554, Vancouver, 2003.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks

of Plausible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

200



[Pen00] Alex Pentland. Looking at people: sensing for ubiquitous and wear-

able computing. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(1):107–119, 2000.

[PFH99] Vladimir Pavlovic, Brendan J. Frey, and Thomas S. Huang. Variational

learning in mixed-state dynamic graphical models. In Proc. Uncertainty

in Artificial Intelligence (UAI), pages 522–530, Stockholm, Sweden,

July 1999. Morgan Kaufmann.

[PH00] Tim Paek and Eric Horvitz. Conversation as action under uncertainty.

In Proceedings of Uncertainty in Artificial Intelligence, Stanford, CA,

June 2000.

[Plu03] Mark Plutowski. Mdp solver for a class of location-based decisioning

tasks. In Uncertainty in Artificial Intelligence Bayesian Modeling Ap-

plications Workshop, Mexico, August 2003.

[PMS94] Alex Pentland, Baback Moghaddam, and Thad Starner. View-based

and modular eigenspaces for face recognition. In PRoc. IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 199–204,

Seattle, WA, June 1994.

[PP00] Isabella Poggi and Catherine Pelachaud. Performative facial expres-

sions in animated faces. In Justine Cassell, Joseph Sullivan, Scott

Prevost, and Elizabeth Churchill, editors, Embodied Conversational

Agents, chapter 6, pages 155–187. MIT Press, 2000.

[PR89] Aluizio Prata and W.V.T. Rusch. Algorithm for computation of Zernike

polynomials expansion coefficients. Applied Optics, 28(4):749–754,

February 1989.

[PR00] M. Pantic and L.J.M. Rothkrantz. Automatic analysis of facial expres-

sions: The state of the art. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 22(12), December 2000.

[PSH97] Vladimir Pavlovic, R. Sharma, and Thomas S. Huang. Visual in-

terpretation of hand gestures for human-computer interaction: a re-

view. IEEE Transactions on Pattern Analysis and Machine Intelligenc

(PAMI), 19(7):677–695, July 1997.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic

Dynamic Programming. Wiley, New York, NY., 1994.

201



[RA00] Yong Rui and P. Anandan. Segmenting visual actions based on spatio-

temporal motion patterns. In Proceedings of International Conference

on Computer Vision and Pattern Recognition, Hilton Head, SC, June

2000.

[Rab89] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected

applications in speech recognition. Proceedings of the IEEE, 77(2):257–

296, February 1989.

[RB99] J Rittscher and Andrew Blake. Classification of human body motion. In

Proceedings of International Conference on Computer Vision (ICCV),

pages 679–685, Corfu, Greece, 1999.

[RE01] Lionel Reveret and Irfan Essa. Visual coding and tracking of speech

related facial motion. In Proc of the IEEE CVPR International Work-

shop on Cues in Communication, pages 221–229, Dec 2001.

[RFD97a] James A. Russell and Jose Miguel Fernández-Dols, editors. The Psy-

chology of Facial Expression. Cambridge University Press, Cambridge,

UK, 1997.

[RFD97b] James A. Russell and Jose Miguel Fernández-Dols. What does facial

expression mean? In James A. Russell and Jose Miguel Fernández-

Dols, editors, The Psychology of Facial Expression, chapter 1, pages

3–30. Cambridge University Press, Cambridge, UK, 1997.

[RH93] L.R. Rabiner and B.H. Huang. Fundamentals of Speech Recognition.

Prentice Hall, Englewood Cliffs, NJ, 1993.

[Ris78] J. Rissanen. Modelling by shortest data description. Automatica,

14:465–471, 1978.

[RN96] Byron Reeves and Clifford Nass. The media equation. Cambridge Uni-

versity Press, 1996.

[RPT00] N. Roy, J. Pineau, and S. Thrun. Spoken dialogue management using

probabilistic reasoning. In Proceedings of the 38th Annual Meeting of

the Association for Computational Linguistics (ACL2000), Hong Kong,

2000.

[Rus97] James A. Russell. Reading emotions from and into faces: Resurrect-

ing a dimensional-contextual perspective. In James A. Russell and

202



Jose Miguel Fernández-Dols, editors, The Psychology of Facial Expres-

sion, chapter 13, pages 295–320. Cambridge University Press, Cam-

bridge, UK, 1997.

[SAH91] E.P. Simoncelli, E.H. Adelson, and D.J. Heeger. Probability distri-

butions of optical flow. In Proceedings of International Conference

on Computer Vision and Pattern Recognition, pages 310–315, Mauii,

Hawaii, USA, 1991.

[SAHB00] Robert St-Aubin, Jesse Hoey, and Craig Boutilier. APRICODD: Ap-

proximate policy construction using decision diagrams. In Neural In-

formation Processing Systems, volume 14, pages 1089–1095, 2000.

[Sch92] D. Schumacher. General filtered image rescaling. In D. Kirk, editor,

Graphics Gems II. Harcourt Brace Jovanovich, 1992.

[SHJ94] J. Schlenzig, E. Hunter, and R. Jain. Vision based hand gesture inter-

pretation using recursive estimation. In Proc. Asilomar Conference on

Signals, Systems and Computation, pages 394–399, October 1994.

[Smy97] Padhraic Smyth. Clustering sequences with hidden Markov models.

In Advances in Neural Information Processing Systems (NIPS), vol-

ume 10, 1997.

[SO94] Andreas Stolcke and Stephen M. Omohundro. Best-first model merg-

ing for hidden Markov model induction. Technical Report TR-94-003,

International Computer Science Institute, Berkeley, CA, January 1994.

[SP95] Thad Starner and Alex P. Pentland. Visual recognition of american

sign language using hidden Markov models. In International Workshop

on Automatic Face and Gesture Recognition, pages 189–194, Zurich,

Switzerland, 1995.

[TC88] Cho-Huak Teh and Roland T. Chin. On image analysis by the methods

of moments. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 10(4):496–513, July 1988.

[Tea80] Michael Reed Teague. Image analysis via the general theory of mo-

ments. Journal of Optical Society of America, 70(8):920–930, 1980.

[Thr00] S. Thrun. Monte Carlo POMDPs. In S.A. Solla, T.K. Leen, and K.-R.

Müller, editors, Advances in Neural Information Processing Systems

(NIPS), volume 12, pages 1064–1070. MIT Press, 2000.

203



[TK93] D. Terzopoulus and K.Waters. Analysis and synthesis of facial image

sequences using physical and anatomical models. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 15(6):569–579,

June 1993.

[TKC01] Yingli Tian, Takeo Kanade, and Jeffrey F. Cohn. Recognizing ac-

tion units for facial expression analysis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(2), February 2001.

[TP91] Matthew Turk and Alex P. Pentland. Eigenfaces for recognition. Jour-

nal of Cognitive Neuroscience, 3(1):71–86, 1991.

[UR02] George W. Uetz and J. Andrew Roberts. Multisensory cues and multi-

modal communication in spiders: Insights from video/audio playback

studies. Brain, Behavior and Evolution, 59:222–230, 2002.

[VBPB03] E. Vatikiotis-Bateson, P. Perrier, and G. Bailly, editors. Advances in

audio-visual speech processing. MIT Press, Cambridge, MA, 2003.

[Ver03] R. Vertegaal. Attentive user interfaces. Communications of ACM,

46(3), March 2003.

[VM98] Christian Vogler and Dimitris Metaxas. ASL recognition based on a

coupling between HMMs and 3D motion analysis. In IEEE Intl. Con-

ference on Computer Vision, pages 363–369, Mumbai, India, 1998.

[VM99] Christian Vogler and Dimitris Metaxas. Parallel hidden Markov models

for american sign language recognition. In Proceedings International

Conference on Computer Vision (ICCV), Corfu, Greece, September

1999.

[vNM53] John von Neumann and Oskar Morgenstern. Theory of Games and Eco-

nomic Behavior. Princeton University Press, Princeton, NJ, 3 edition,

1953.

[VT02] M. Alex O. Vasilescu and Demetri Terzopoulus. Multilinear analysis of

image ensembles: Tensorfaces. In A Heyden, editor, Proc. of European

Conference on Computer Vision (ECCV), volume 2350 of LNCS, pages

447–460. Springer-Verlag, 2002.

[vZ34] F. von Zernike. Beugungstheorie des schneidenvarfahrens und seiner

verbesserten form, der pahsekontrastmethode. Physica, I:689–704,

1934.

204



[WA03] Hongcheng Wang and Narendra Ahuja. Facial expression decomposi-

tion. In Proceedings of International Conference on Computer Vision,

pages 958–965, Nice, France, October 2003.

[WADP97] Christopher Richard Wren, Ali Azarbayejani, Trevor Darrell, and Alex

Pentland. Pfinder: Real-time tracking of the human body. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 19(7):780–785,

1997.

[WB99] Andrew D. Wilson and Aaron F. Bobick. Parametric hidden Markov

models for gesture recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 21(9):884–900, September 1999.

[WBC97] Andrew D. Wilson, Aaron F. Bobick, and Justine Cassell. Temporal

classification of natural gesture and application to video coding. In

Proc. CVPR, Puerto Rico, June 1997.

[WCP00] Christopher R. Wren, Brian P. Clarkson, and Alex P. Pentland. Under-

standing purposeful human motion. In Proc. Face and Gesture Recog-

nition, Grenoble, France, 2000.

[WHT03] Liang Wang, Weiming Hu, and Tieniu Tan. Recent developments in

human motion analysis. Pattern Recognition, 36:585–601, 2003.

[WPG01] Michael Walter, Alexandra Psarrou, and Shaogang Gong. Data driven

gesture model acquisition using minimum description length. In Proc.

British Machine Vision Conference, Manchester, UK, September 2001.

[YD94] Yaser Yacoob and Larry Davis. Computing spatio-temporal represen-

tations of human faces. In Proceedings IEEE Conference on Computer

Vision and Pattern Recognition, pages 65–69, 1994.

[ZCMG01] Bo Zhang, Qinsheng Cai, Jianfeng Mao, and Baining Guo. Planning

and acting under uncertainty: A new model for spoken dialogue system.

In Proceedings of Uncertainty in Artificial Intelligence, pages 572–579,

Seattle, WA, August 2001.

[ZL02] Dengsheng Zhang and Guojun Lu. An integrated approach to shape

based image retrieval. In Proceedings of 5th Asian Conference on Com-

puter Vision (ACCV), Melbourne, Australia, January 2002.

205



Appendix A

Proof of Equation (4.3)

H(θ
′′

|θ′)−H(θ′|θ′) =
∑

X

P (X|y, θ′)
[

log P (X|y, θ
′′

)− logP (X|y, θ′)
]

=
∑

X

P (X|y, θ′) log

[

P (X|y, θ
′′

)

P (X|y, θ′)

]

≤
∑

X

P (X|y, θ′)

[

P (X|y, θ
′′

)

P (X|y, θ′)
− 1

]

(using log x ≤ x− 1)

=
∑

X

[

P (X|y, θ
′′

)− P (X|y, θ′)
]

= 0

This shows that H(θ
′′

|θ′) ≤ H(θ′|θ′). Notice that if we had used some distribution

other than P (X|y, θ′) in Equation (4.1), this inequality would not hold. In such

cases, one must maximize the expression in Equation (4.2) with respect to both

this arbitrary distribution and the model parameters. This leads to a more general

exposition of the EM algorithm [NH93].
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Appendix B

Tracking updates

We are trying to estimate

ξ(αt,∇ft−1) =

∫

zx,t−1

P (αt|αt−1zx,t−1)P (∇ft−1|αt−1zx,t−1)P (zx,t−1|Xt−1)

=

∫

zx,t−1vt−1

P (αt|αt−1zx,t−1)P (∇ft−1|αt−1vt−1)P (vt−1|zx,t−1)P (zx,t−1|Xt−1)

(B.1)

All the terms in this equation are Gaussian distributions, and so we can write the

intergrand as a single exponential, e
1

2
γ If we write δα = αt − αt−1, and drop the

temporal subscript, the exponent is

γ = −(δα − z)
′Λ−1

α (δα − z)− (fτ + fsv)
′A−1(fτ + fsv)

− (v −Mz)′Λ−1
p (v −Mz)− (z − µzx)

′Λ−1
z,x(z − µzx)

Completing the squares over v gives

γ = −(v − µw)′Λ−1
w (v − µw) + µ′wΛ−1

w µw − (δα − z)
′Λ−1

α (δα − z)

− f ′τA
−1fτ − z

′M ′Λ−1
p Mz − z′Λ−1

z,xz

+ 2µ′z,xΛ
−1
z,xz − µ

′
z,xΛ

−1
z,xµz,x

where, w = f ′sA
−1fτ and

Λw = (f ′sA
−1fs + Λ−1

p )−1

µw = Λw(Λ−1
p Mz − w)

The integration over v in Equation (B.1) can be performed, leaving

γ = µ′wΛ−1
w µw−(δα − z)

′Λ−1
α (δα − z)− f

′
τA

−1fτ

− z′M ′Λ−1
p Mz − z′Λ−1

z,xz + 2µ′z,xΛ
−1
z,xz − µ

′
z,xΛ

−1
z,xµz,x
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We can now complete the square in z, which gives

γ = −(z − µ̃α
z )′Λ̃α−1

z (z − µ̃α
z ) + µ̃α′

z Λ̃α−1

z µ̃α
z

− f ′τA
−1fτ + w′Λ−1

w w − µ′z,xΛ
−1
z,xµz,x − δ

′
αΛ−1

α δα

where

Λ̃α
z = (Λ−1

x +MΛ−1
p M + Λ−1

α −M
′Λ−1

p ΛwΛ−1
p M)−1

= (Λ̃−1
z + Λ−1

α )−1

µ̃α
z = Λ̃α

z (Λ−1
z,xµz,x −MΛ−1

p Λww + Λ−1
α δα)

= Λ̃α
z (Λ̃−1

z,xµ̃z,x + Λ−1
α δα)

The integral over z in Equation (B.1) can be performed, leaving

γ = µ̃α′

z Λ̃α−1

z µ̃α
z − f

′
τA

−1fτ + w′Λ−1
w w − µ′z,xΛ

−1
z,xµz,x − δ

′
αΛ−1

α δα

Finally, we complete the square in δα, giving

γ = −(δα − µ̃α)′Λ̃−1
α (δα − µ̃α) + µ̃′αΛ̃−1

α µ̃α

− f ′τA
−1fτ + w′Λ−1

w w − µ′z,xΛ
−1
z,xµz,x

where

Λ̃α = (Λ−1
α − Λ−1

α Λ̃α
z Λ−1

α )−1

µ̃α = Λ̃αΛ−1
α Λ̃α

z Λ̃−1
z,xµ̃z,x

We can simplify these expressions using matrix inversion lemma [HS81a]:

(B−1 + CD−1C ′)−1 = B −BC(D + C ′BC)−1C ′B

and so

Λ̃α = (Λ−1
α − Λ−1

α (Λ̃−1
z,x + Λ−1

α )−1Λ−1
α )−1

= Λα + Λ̃z,x

and thus

µ̃α = (Λα + Λ̃z,x)Λ
−1
α Λ̃α

z,xΛ̃
−1
z,xµ̃z,x

= (Λα + Λ̃z,x)(Λα + Λ̃z,x)
−1µ̃z,x

= µ̃z,x
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Appendix C

Update Equations for Mixture

Model

X

zΛ

zµ

Λ Λ
1 2

V
α

Z

a

b µ*

*

Λp

Λ

T
xα

f τ
f s

xΘ

Figure C.1: Bayesian network for the mixture of Gaussians over optical flow fields
with feature weighting. Shaded nodes are observed or fixed (known), while un-
shaded nodes are unknown random variables. Boxes are fixed hyper-parameters.
The dashed line delineates the priors for feature weighting. X ∈ 1 . . . Nx are discrete
motion classes, Z is the Zernike feature vector (projection of optical flow field), V is
the optical flow field, fs are the spatial derivatives, and ft is the temporal derivative.
µz,Λz are the parameters of the mixture of Gaussians over the Z vector space, and
T are the feature weights. ΘX are the class probability parameter (a multinomial),
and αX is the parameter of the (conjugate) Dirichlet prior over ΘX .
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Figure C.1 shows the simple mixture model with feature weighted Gaus-

sian distributions that was discussed in Section 3.2.2. Here we derive the update

equations for the parameter learning using the expectation maximization (EM) al-

gorithm. Our goal is to show how Equations 4.6 – 4.9 are derived.

To update the output mean, we set the derivative with respect to the mean

for state X = xi, µz,i, to zero.

[

∑

X

∫

Z

P (XZ|∇f , θ′)
∂

∂µz,i
logP (∇fXZ|Θ)

]

+
∂

∂µz,i
log P (µz,i) = 0

where P (µz,i) ∼ N (µ∗, T ) is the prior distribution over the mean for state i, such

that
∂

∂µz,i
log P (µz,i) = −T−1(µ∗ + µz,i)

The log of the complete posterior is a sum of logarithmic terms, and only those

involving µz are non-zero, such that:

∂

∂µz,i
log P (∇fXZ|Θ) =

Nt
∑

k=1

∂

∂µz,i
log[P (Zk|Xk,Θ)]

The sum over k can be taken outside the expression, giving

Nt
∑

k=1

∑

X

∫

Z

P (XZ|∇f , θ′)
∂

∂µz,i
log[P (Zk|Xk,Θ)] = T−1(µ∗ + µz,i)

The derivative will pick out the ith value from the sum over Xk,

Nt
∑

k=1

∑

X1

. . .
∑

Xk−1

∑

Xk+1

. . .
∑

XNt

∫

Z

P (XZ|∇f , θ′)
∂

∂µz,i
log[P (Zk|Xk,i,Θ)] = T−1(µ∗−µz,i)

the sums over Xi and the integrations over Zi for i = 1 . . . k − 1, k + 1 . . . Nt can be
performed, giving unity, and leaving

Nt
∑

k=1

∫

zk

P (Xk,izk|∇f ,Θ
′)

∂

∂µz,i
log[P (zk|Xk,i,Θ)] = T−1(µ∗ − µz,i). (C.1)

Since P (zk|Xk,i,Θ) ∼ N (µz,i,Λz,i), the derivative gives Λ−1
z,i (zk − µz,i). Further,

since the measurements are independent in the mixture model, P (Xk,izk|∇fΘ
′) =

P (zk|Xk,i∇fkΘ
′)P (Xk,i|∇fkΘ

′), we have

[

Nt
∑

k=1

P (Xk,i|∇fkΘ′)Λ−1
z,i + T−1

]

µz,i = Λ−1
z,i

Nt
∑

k=1

∫

zk

zkP (zk|Xk,i∇fkΘ′)P (Xk,i|∇fkΘ′)+T−1µ∗.
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and we can solve for µz,i

µz,i = (ξ·,iΛ
−1
z,i + T−1)−1

[

Λ−1
z,i

(

Nt
∑

k=1

µ̃z,xξk,i

)

+ T−1µ∗
]

where ξk,i = P (Xk,i|∇fkΘ
′), ξ·,i =

∑Nt

k=1 ξk,i and µ̃z,x is given by Equation (3.25).

Thus, the most likely mean for each state x is the weighted sum of the most likely

values of z as given by Equation (3.25). Dimensions of the means, µz,i, with small

feature weights, τ 2
k , will be biased toward the data mean, µ∗, in that dimension.

This is reasonable, because such dimensions are not relevant for clustering, and so

should be the same for any cluster, X.

The updates to the feature weights, τ 2
k , are found by taking the derivative

with respect to τ 2. However, the complete data likelihood, P (∇fXZ|Θ), is indepen-

dent of the feature weights, so we are solving

∂

∂τ2
k

log[

Nz
∏

j=1

P (τ2
j )

Nx
∏

i=1

P (µz,i)] =
∂

∂τ2
k

[

Nz
∑

j=1

log P (τ 2
j ) +

Nx
∑

i=1

logP (µz,i)] = 0

where P (τ 2
j ) are the prior distributions over the feature weights along each dimension

of the output space, given by Equation (3.26), and P (µz,i) ∼ N (µ∗, T ), so that

∂

∂τ2
k

log P (τ 2
k ) =

∂

∂τ2
k

[

−(a+ 1) log(τ 2
k )−

b

τ2
k

]

= −
a+ 1

τ2
k

+
b

(τ2
k )2

and

∂

∂τ2
k

log P (µz,i) = −
1

2

[

∂

∂τ2
k

log(|T |) +
∂

∂τ2
k

Nz
∑

k=1

(µz,i,k − µ
∗
k)

2

τ2
k

]

= −
1

2

1

τ2
k

+
1

2

(µz,i,k − µ
∗
k)

2

(τ2
k )2

where µz,i,k, µ
∗
k are the kth dimensions of µz,i and µ∗, respectively. Thus, we have

−
a+ 1

τ2
k

+
b

(τ2
k )2
−

1

2

Nz
∑

k−1

1

τ2
k

+
1

2

Nz
∑

k−1

(µz,i,k − µ
∗
k)

2

(τ2
k )2

= 0

which is

b

(τ2
k )2

+
1

2

Nz
∑

k−1

(µz,i,k − µ
∗
k)

2

(τ2
k )2

=
a+ 1

τ2
k

+
Nz

2τ2
k

Solving for τ 2
k yeilds

τ2
k =

b

a+Nx/2 + 1
+

1

2a+Nx + 2

Nx
∑

i=1

(µz,i,k − µ
∗
k)2
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The updates to the feature weights show that those dimensions, k, with µz,i,k

very different from the data mean, µ∗
k, across all states, will receive large values

of τ2
k , while those with µz,i,k ∼ µ∗k will receive small values of τ 2

k . Intuitively, the

dimensions along which the data is well separated (large inter-class distance) will

be weighted more.

The updates to the covariance matrix, Λk,i, are found in a similar way to the

mean. We present the main points here. We set the derivative with respect to the

covariance for state X = xi, Λz,i, to zero.
[

∑

X

∫

Z

P (XZ|∇f , θ′)
∂

∂Λz,i
log P (∇fXZ|Θ)

]

+
∂

∂Λz,i
log P (Λz,i) = 0

where P (Λz,i) is the prior distribution over the covariance for state i, given by

Equation (3.27), so that

∂

∂Λz,i
logP (Λz,i) =

∂

∂Λz,i

[

−
α+Nz + 1

2
log |Λz,x| −

1

2
tr(αΛ∗Λ−1

z,x)

]

= −
α+Nz + 1

2
Λ−1

z,x +
1

2
Λ−1

z,xαΛ∗Λ−1
z,x (C.2)

Following the same derivation as that leading up to Equation (C.1), we obtain

Nt
∑

k=1

∫

zk

P (Xk,izk|∇fkΘ′)
∂

∂Λz,i
log[P (zk|Xk,i,Θ)] =

α+Nz + 1

2
Λ−1

z,x −
1

2
Λ−1

z,xαΛ∗Λ−1
z,x.

(C.3)

The derivative on the left gives

∂

∂Λz,i
log P (zk|Xk,i,Θ) = −

1

2
Λ−1

z,i +
1

2
Λ−1

z,i (zk − µz,i)(zk − µz,i)
′Λ−1

z,i

multiplying Equation (C.3) on the left and right by Λz,i gives

Nt
∑

k=1

∫

zk

P (Xk,izk|∇fkΘ
′)[(zk − µz,i)(zk − µz,i)

′ − Λz,i] = (α+Nz + 1)Λz,i − αΛ∗

which is

Nt
∑

k=1

∫

zk

P (Xk,izk|∇fkΘ′)(zk−µz,i)(zk−µz,i)
′+αΛ∗ =

Nt
∑

k=1

∫

zk

P (Xk,izk|∇fkΘ′)Λz,i+(α+Nz+1)Λz,i.

Since

P (Xk,izk|∇fkΘ
′) = P (zk|Xk,i∇fkΘ

′)P (Xk,i|∇fkΘ
′)

and ∫

zk

P (zk|Xk,i∇fkΘ
′) = 1

212



we have

Nt
∑

k=1

P (Xk,i|∇fkΘ
′)EP (zk |Xk,i∇fkΘ′)[(zk−µz,i)(zk−µz,i)

′]+αΛ∗ = [ξ·,i+(α+Nz+1)]Λz,i

so that we can solve for Λz,i as

Λz,i =
1

ξ·,i + α+Nz + 1

[

Nt
∑

k=1

P (Xk,i|∇fkΘ
′)EP (zk|Xk,i∇fkΘ′)[(zk − µz,i)(zk − µz,i)

′] + αΛ∗

]

We must now evaluate the expected covariance 〈(zk − µz,i)(zk − µz,i)
′〉, where the

expectation is taken with respect to the distribution over z given the state, i, and

the data, ∇f , P (zk|Xk,i∇fkΘ
′). Expanding,

〈(zk − µz,i)(zk − µz,i)
′〉 = 〈zkz

′
k − 2µz,iz

′
k + µz,iµ

′
z,i〉

= 〈zkz
′
k〉 − 2µz,i〈z

′
k〉+ µz,iµ

′
z,i

= 〈zkz
′
k〉 − µz,iµ̃

′
z,i − µ̃z,iµ

′
z,i + µz,iµ

′
z,i

where we have used Equation (3.22). Since the expected covariance over z is

Λ̃z,i = 〈(z − µ̃z,i)(z − µ̃z,i)
′〉

= 〈zz′ − 2µ̃z,iz
′ + µ̃z,iµ̃

′
z,i〉

= 〈zz′〉 − µ̃z,iµ̃
′
z,i

we can write

〈(zk − µz,i)(zk − µz,i)
′〉 = Λ̃z,i + µ̃z,iµ̃

′
z,i − µz,iµ̃

′
z,i − µ̃z,iµ

′
z,i + µz,iµ

′
z,i

So that the updates to the covariance can be written as

Λz,i =

∑Nt

k=1(Λ̃z,x + µ̃z,iµ̃
′
z,i − µz,iµ̃

′
z,i − µ̃z,iµ

′
z,i)ξk,i + µz,iµ

′
z,iξ·,i + αΛ∗

ξ·,i + α+Nm + 1
.

which is

Λz,i =

∑Nt

k=1[Λ̃z,x + (µ̃z,i − µz,i)(µ̃z,i − µz,i)
′]ξk,i + αΛ∗

ξ·,i + α+Nz + 1
.

The covariance is updated based on a combination of the most likely covariance,

Λ̃z,i and the covariance of the most likely mean, µ̃z,i, about the model mean µz,i,

for each data point, k = 1 . . . Nt, weighted by the probability of state i given the

data. The prior covariance is represented with αΛ∗, which stabilizes the updates,

avoiding matrix singularity problems in the inverses in Equation (3.21).

213



The updates to the class probability, Θx, are given by taking the derivative as
usual, except that we must now enforce the contraint that Θx is a proper probability
distribution,

∑Nx

i=1 Θx,i = 1. We do this using a Lagrange multiplier, so we want to
solve
[

∑

X

∫

Z

P (XZ|∇f , θ′)
∂

∂Θx,i
logP (∇fXZ|Θ)

]

− λ
∂

∂Θx,i
(

Nx
∑

i=1

Θx,i − 1) +
∂

∂Θx,i
logP (Θx) = 0

The prior over Θx is distributed according to a Dirichlet distribution, P (Θx) =
∏Nx

i=1 Θ
αx,i

x,i . Taking the derivatives, and performing the integration over zk, this is

Nt
∑

k=1

P (Xk,i|∇fk, θ
′)

1

Θx,i
+
αx,i

Θx,i
= λ (C.4)

Multiplying by Θx,i and summing over i gives

Nx
∑

i=1

[

Nt
∑

k=1

P (Xk,i|∇fk, θ
′) + αx,i

]

= λ

Nx
∑

i=1

Θx,i = λ

We substitute this value of λ back into Equation (C.4) and solve for Θx,i to obtain

Θx,i =
αx,i + ξ·,i

∑Nx

i=1(αx,i + ξ·,i)
.
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Appendix D

Estimating C4MG Model

Parameters

I t−1 t−1
f

∆
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Figure D.1: Two time slices of a dynamic Bayesian network (DBN) for simultaneous
modeling of pose and dynamics. Repeat of Figure 3.12.

This appendix derives the parameter learning equations for the context-
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dependent Markov chain of mixtures of hidden Markov models (C4MG) described in

Section 4.7. However, we first start by deriving the update equations for the coupled

hidden Markov model for temporal modeling of pose and dynamics, as discussed in

Section 4.4. The Bayesian network for this model is shown in Figure D.1.
We use the notation that a set of variables Xt . . . XT is written {X}

t,T
To sim-

plify things further, we denote Xt . . . XT ,Wt . . .WT as {XW}
t,T

. If no subscript is

given, it is assumed to be 1, T , the full variable set. Finally, we denote the obser-
vations O ≡ I∇f , and the hidden state, Y ≡ XW We assume that every term is
conditioned on the model parameters, θ ′. The update equation for X transition
probability, ΘXijk is derived in a similar way to the class probability in the simple
mixture model. Due to the Markovian dependence in the dynamics and configura-
tion chains, we must take derivatives of a more complex expression, subject to the
constraint that

∑

i ΘXijk = 1

[
∑

X,W

∫

Z

∑

H

P (XWZH|∇f , I, θ′)
∂

∂ΘXijk
logP (∇fXWZH|Θ)]

− λ
∂

∂µz,i
(
∑

i

ΘXijk − 1) +
∂

∂ΘXijk
logP (ΘXijk) = 0

(D.1)

The prior over ΘXijk is distributed according to a Dirichlet distribution, P (ΘXijk) =
∏

ijk Θ
αXijk

Xijk , and so

∂

∂ΘXijk
log P (ΘXijk) = αXijk/ΘXijk.

The complete data posterior can be computed as

P (∇fXWZH|Θ) =

Nt
∏

k=2

[P (∇fk|zk)P (zk|xk)P (Ik|xk)P (hk|ck)

P (xk|ckxk−1)P (ck|xk−1ck−1)P (x1|c1)P (c1)]

(D.2)

Therefore,

∂

∂ΘXijk
log P (∇fXWZH|Θ) =

Nt
∑

t=1

∂

∂ΘXijk
log P (xt|ctxt−1)

The derivative picks out the values of xt = i, ct = j and xt−1 = k, so that the
integrations over H and Z, as well as the sums over Xi and Wi for i = 1 . . . t−2, t+
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1 . . . Nt can all be performed in Equation (D.1), leaving

λ =

Nt
∑

t=1

P (Xt,iWt,jXt−1,k|Oθ
′)

∂

∂ΘXijk
log ΘXijk +

αXijk

ΘXijk

=

Nt
∑

t=1

P (Xt,iWt,jXt−1,k|Oθ
′)

1

ΘXijk
+
αXijk

ΘXijk

Multiplying by ΘXijk and summing over i, gives

Nx
∑

i=1

Nt
∑

t=1

P (Xt,iWt,jXt−1,k|Oθ
′) + αXijk = λ

Nx
∑

i=1

ΘXijk = λ

so we can solve for ΘXijk as

ΘXijk =
αXijk +

∑Nt

t=1 P (Xt,iWt,jXt−1,k|Oθ
′)

∑

i

[

αXijk +
∑Nt

t=1 P (Xt,iWt,jXt−1,k|Oθ′)
] (D.3)

The update equation for W transition probability, ΘWijk, and for the initial state

probabilities, ΠXij and ΠWi, are derived in a similar way, giving

ΘWijk =
αWijk +

∑Nt

t=1 P (Wt,iXt−1,jWt−1,k|Oθ
′)

∑

i

[

αWijk +
∑Nt

t=1 P (Wt,iXt−1,jWt−1,k|Oθ′)
] (D.4)

ΠXij =
αXij +

∑Nt

t=1 P (X1,iW1,j|Oθ
′)

∑

i

[

αXij +
∑Nt

t=1 P (X1,iW1,j|Oθ′)
] (D.5)

ΠWi =
αWi +

∑Nt

t=1 P (W1,i|Oθ
′)

∑

i

[

αWi +
∑Nt

t=1 P (W1,i|Oθ′)
] (D.6)

The update equations for the parameters output distributions in the dy-
namics chain, µz,i,Λz,i, are almost the same as those for the simple mixture model
derived in Appendix C.





∑

X,W

∫

Z

∑

H

P (XWZH|∇f , I, θ′)
∂

∂µz,i
logP (∇fXWZH|Θ)



+
∂

∂µz,i
logP (µz,i) = 0

The derivative picks out only the terms involving µz, and all the sums over W and
H can be performed, leaving the equivalent of Equation (C.1):

Nt
∑

k=1

∫

zk

P (Xk,izk|O)
∂

∂µz,i
log[P (zk|Xk,i,Θ)] = T−1(µ∗ − µz,i). (D.7)
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Now, however, the observations are not all independent, and we have that

P (Xk,izk|O) = P (zk|Xk,iO)P (Xk,i|O).

The probability of a given state of the dynamics process at time t, Xt,i, given all

the data, O, can be computed as follows

P (Xt,i|{O}
1,T

) =
∑

j

P (Xt,iWt,j{O}
1,T

)/P ({O}
1,T

)

=
∑

j

P ({O}
t+1,T

|Xt,iWt,j{O}
1,t

)P (Xt,iWt,j{O}
1,t

)/P ({O}
1,T

)

=
∑

j

P ({O}
t+1,T

|Xt,iWt,j)P (Xt,iWt,j{O}
1,t

)/P ({O}
1,T

)

=

∑

j β
x
t,ijκ

x
t,ij

∑

ij β
x
t,ijκ

x
t,ij

where κx
t,ij = P (Xt,iWt,j{O}

1,t
) and βx

t,ij = P ({O}
t+1,T

|Xt,iWt,j) are forwards and back-

wards variable for the dynamics process. We show recursive derivations for these

parameters later in this Appendix 1. Returning to Equation (D.7), we see that

the update equations derived for the simple mixture model (Equations (4.6), (4.7),

and (4.8)), can be used for the Markovian model if we use ξk,i = P (Xt,i|{O}
1,T

) as

derived above.

Update equations for emission probability over the exemplars, H, given the

configuration class, W , ΘHij , can be similarly derived leading to

ΘHij =
δHij +

∑Nt

k=1 P (Hk,iWk,j|O)
∑

i

[

δHij +
∑Nt

k=1 P (Hk,iWk,j|O)
]

where δHij is the prior distribution, which is Dirichlet Dir(ΘHij, δHij). We can

expand

P (Hk,iWk,j|O) = P (Hk,i|Wk,jO)P (Wk,j|O)

And since

P (Hk,i|Wk,jO) = P (Hk,i|Wk,jIk) =
P (Ik|Hk,i)ΘH,ij
∑

i P (Ik|Hk,i)ΘH,ij

1These quantities are the equivalents of the usual “forwards” and “backwards” variables,
α and β, in hidden Markov model parameter and likelihood estimation [Rab89]. We are
using κx here since α is our scale variable.

218



and the probability of a given state of the configuration process at time t, Wt,i, is

P (Wt,i|{O}
1,T

) =
∑

j

P (Wt,iXt−1,j{O}
1,T

)/P ({O}
1,T

)

=
∑

j

P (∇ft{O}
t+1,T

|Wt,iXt−1,jIt{O}
1,t−1

)P (Wt,iXt−1,jIt{O}
1,t−1

)/P ({O}
1,T

)

=
∑

j

P (∇ft{O}
t+1,T

|Wt,iXt−1,j)P (Wt,iXt−1,jIt{O}
1,t−1

)/P ({O}
1,T

)

=

∑

j β
w
t,ijκ

w
t,ij

∑

ij β
w
t,ijκ

w
t,ij

we obtain

P (Hk,iWk,j|O) =
P (Ik|Hk,i)ΘH,ij
∑

i P (Ik|Hk,i)ΘH,ij

∑

j β
w
t,ijκ

w
t,ij

∑

ij β
w
t,ijκ

w
t,ij

where κw
tjk = P (Xt,iWt,jXt−1,k{O}

1,t−1
It) and βw

ij = P (∇ft{O}
t+1,T

|Wt,iXt−1,j) are the

forwards and backwards variables for the configuration process.
The expected number of transitions in the dynamics chain is

∑

t

P (Xt,iWt,jXt−1,k|O)

=
∑

t

P (Xt,iWt,jXt−1,k{O}
1,T

)/P (O)

=
∑

t

P ({O}
t+1,T

∇ft|Xt,iWt,jXt−1,k{O}
1,t−1

It)P (Xt,iWt,jXt−1,k{O}
1,t−1

It)/P (O)

=
∑

t

P ({O}
t+1,T

|∇ftXt,iWt,j)P (∇ft|Xt,iWt,j)P (Xt,i|Wt,jXt−1,k)

P ({O}
t+1,T

|∇ftXt,iWt,j)P (Wt,jXt−1,k{O}
1,t−1

It)/P (O)

∝
∑

t

P ({O}
t+1,T

|Xt,iWt,j)P (∇ft|Xt,i)ΘX,ijkP (Wt,jXt−1,k{O}
1,t−1

It)/P (O)

=
∑

t

βx
tijP (∇ft|Xt,i)ΘX,ijkκ

w
jk/P (O)

where P (O) =
∑

ijk β
x
tijP (∇ft|Xt,i)ΘX,ijkκ

w
jk and the likelihood of the image derivates,

P (∇f |Xt,i), is calculated from Equation (3.19).
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The expected number of transitions in the configuration chain is

∑

t

P (Wt,iXt−1,jWt−1,k|O)

=
∑

t

P (Wt,iXt−1,jWt−1,k{O}
1,T

/P (O)

=
∑

t

P ({O}
t,T

|Wt,iXt−1,jWt−1,k{O}
1,t−1

)P (Wt,iXt−1,jWt−1,k {}
1,t−1

{O}
1,t−1

)/P (O)

=
∑

t

P (∇ftIt {O}
t+1,T

|Wt,iXt−1,j)P (Wt,i|Xt−1,jWt−1,k)P (Xt−1,jWt−1,k{O}
1,t−1

)/P (O)

=
∑

t

P (∇ft {O}
t+1,T

|Wt,iXt−1,j)P (It|Wt,i)

ΘWijkP (Xt−1,jWt−1,k{{O}}
1,t−1

)/P (O)

=
∑

t

βw
ijP (It|Wt,i)ΘWijkκ

x
t−1,jk/P (O)

The likelihood of the image, P (It|Wt,k) is calculated from the configuration mixture

model.

The expectation of the number of inital states in the dynamics chain is

P (X1,iW1,j|O) = P (X1,iW1,j |O)

=
P (X1,iW1,jO)

P (O)

=
κx

1,ijβ
x
1,ij

∑

ij κ
x
1,ijβ

x
1,ij

while the expectation of the number of initial states in the configuration chain is

∑

j

P (X1,jW1,i|O) =
∑

j

P (X1,jW1,i|O)

=
∑

j

κx
1,ijβ

x
1,ij

∑

ij κ
x
1,ijβ

x
1,ij

The forwards variable for the configuration process is recursively computed as fol-
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lows

κw
t,ij = P (Wt,iXt−1,j{O}

1,t−1
It)

= P (It|Wt,i)P (Wt,iXt−1,j{O}
1,t−1

)

= P (It|Wt,i)
∑

k

P (Wt,iXt−1,jWt−1,k{O}
1,t−1

)

= P (It|Wt,i)
∑

k

P (Wt,i|Xt−1,jWt−1,k)P (Xt−1,jWt−1,k{O}
1,t−1

)

= P (It|Wt,i)
∑

k

ΘW,ijkP (Xt−1,jWt−1,k)

= P (It|Wt,i)
∑

k

ΘW,ijkκ
x
t−1,jk

The backwards variable for the configuration process is recursively computed as
follows

βw
t,ij = P (∇ft {O}

t+1,T

|Wt,iXt−1,j)

=
∑

k

P (∇ft|Xt,kWt,iXt−1,j {O}
t+1,T

)P (Xt,k {O}
t+1,T

)|Wt,iXt−1,j)

=
∑

k

P (∇ft|Xt,k)P ({O}
t+1,T

)|Xt,kWt,iXt−1,j)P (Xt,k|Wt,iXt−1,j)

=
∑

k

P (∇ft|Xt,k)ΘX,kijβ
x
t,ki

The forwards variable for the dynamics process is recursively computed as follows

κx
t,ij = P (Xt,iWt,j{Oα}

1,t
)

=
∑

k

P (Xt,iWt,jXt−1,k{Oα}
1,t

)

=
∑

k

P (∇ft|Xt,iWt,jXt−1,k)P (Xt,iWt,jXt−1,k{Oα}
1,t−1

It)

= P (∇ft|Xt,i)
∑

k

P (Xt,i|Wt,jXt−1,k)P (Wt,jXt−1,k{Oα}
1,t−1

It)

= P (∇ft|Xt,i)
∑

k

ΘX,ijkκ
w
t,jk

The initial value of the forwards dynamics variable is

κx
1,ij = P (X1,iW1,j∇f1I1b1)

= P (∇f1|X1,i)P (I1|W1,j)P (b1|W1,j)P (X1,i|W1,j)P (W1,j)

= P (∇f1|X1,i)P (I1|W1,j)P (b1|W1,j)ΠX,ijΠW,j
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The backwards variable for the dynamics process is recursively computed as follows

βx
t−1,ij = P ({O}

t,T

|Xt−1,iWt−1,j)

=
∑

k

P (It| {O}
t+1,T

∇ftWt,kXt−1,iWt−1,j)P (∇ft {O}
t+1,T

Wt,k|Xt−1,iWt−1,j)

=
∑

k

P (It|Wt,k)P (∇ft {O}
t+1,T

|Wt,kXt−1,iWt−1,j)P (Wt,k|Xt−1,iWt−1,j)

=
∑

k

P (It|Wt,k)P (∇ft {O}
t+1,T

|Wt,kXt−1,i)P (Wt,k|Xt−1,iWt−1,j)

=
∑

k

P (It|Wt,k)βw
t,kiΘW,kij

The dynamics backwards process is initialized at time T to be even over the joint

space of X,W :

βx
T,ij = (Nx ∗Nw)−1

The procedure for updating computing the sufficient statistics of the transition pa-

rameters for each training sequence is

Initialize κx
1

forwards pass

for t = 2:T

compute κw
t from κx

t−1

compute κx
t from κw

t

end

backwards pass

Initialize βx
T

for t = T:T-1

compute βw
t from βx

t

compute βx
t−1 from βw

t

end

update sufficient statistics

compute EP (Y|Oθ′)(NXijk)

compute EP (Y|Oθ′)(NWijk)

The likelihood of a sequence of data, {O}
1,T

is easily computed from κx:

P ({O}
1,T

) =
∑

jk

κx
T,jk
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D.1 Estimating State

Given that we have a coupled hidden Markov model such as we have just described,

we may be interested in estimating the temporal state evolution of the dynamics and

configuration processes are for some set of observations. That is, we want to find

the single best state sequence, Y1 . . .YNt , given observations, O1 . . .ONt, which

can be formulated as maximizing P ({y}
1,Nt

|{O}
1,Nt

Θ), which is equivalent to maximizing

P ({y}
1,Nt

{O}
1,Nt

|Θ). The Viterbi algorithm performs this maximization. It needs to be

modified slightly to accomodate the two temporal chains. Define δt(i, j) to be the

highest probability along a single path which accounts for the first t observations

and ends in state xt = i, ct = j:

δt(i, j) = max
{Y}
1,t−1

P ({Y}
1,t−1

xt,ict,j{O}
1,t

)

We derive an inductive formula for this quantity as follows

δt(i, j) = max
{Y}
1,t−1

P ({Y}
1,t−1

xt,ict,j{O}
1,t

)

= max
{Y}
1,t−1

P ({Y}
1,t−1
|{O}

1,t
)P (Otxt,ict,j |P ({Y}

1,t−1
{O}
1,t

)

= max
Yt−1

max
{Y}
1,t−2

P ({Y}
1,t−1
|{O}

1,t
)P (Otxt,ict,j |Yt−1)

= max
k,l

max
{Y}
1,t−2

P ({Y}
1,t−2

xt−1,kct−1,l|{O}
1,t

)P (Otxt,ict,j |xt−1,kct−1,l)

= max
k,l

δt−1(k, l)P (Ot|xt,ict,jYt−1)P (xt,ict,j |xt−1,kct−1,l)

= max
k,l

[δt−1(k, l)ΘX,ijkΘW,jkl]P (∇ft|xt,i)P (IT |ct,j) (D.8)

The optimal state sequence is given by the argument which maximized Equa-

tion (D.8) for each t, i and j. We do this using the array ψt(i, j). The procedure is

as follows

1. Initialization

δ1(i, j) = ΠW,jΠX,ijP (∇ft|xt,i)P (IT |ct,j)

ψ1(i, j) = 0
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Figure D.2: Context dependent Markov chain of mixtures of hidden Markov models
(C4MG) as a dynamic Bayesian network, including context variables, C and A.
Repeat of Figure 3.17.

2. Recursion

δt(i, j) = max
k,l

[δt−1(k, l)ΘX,ijkΘW,jkl]P (∇ft|xt,i)P (IT |ct,j)

ψ1(i, j) = arg max
k,l

[δt−1(k, l)ΘX,ijkΘW,jkl]

3. Termination

Y∗
Nt

= arg max
k,l

[δt−1(k, l)ΘX,ijkΘW,jkl]

Y∗
t = ψt+1(X

∗
Nt
,W ∗

Nt
)

where Y∗
t = {X∗

t ,W
∗
t } is the state at time t along the optimal path.

D.2 C4MG Paramter Updates

Figure D.2 shows the Bayesian network for the context-dependent Markov chain of

mixtures of hidden Markov models (C4MG) discussed in Section 4.7. This model

can be seen as an input-output hidden Markov model [BF96], and we are trying to

maximize

Θ∗ = arg max
Θ

[

∑

D

P (D|O,C,A, θ′) log P (D,O,C,A|Θ) + log P (Θ)

]
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Recall that this Markov chain operates at a higher level than the one we have been

previously discussin in this appendix, and so there is no scale variable to marginalise

here, and the hidden state is D, which is not factored into two separate Markov

chains. The update equations are exactly those for an input-output hidden Markov

model, except for the fact that we keep the two output observations, A and O,

factored.

The update equation for theD transition parameter, ΘDijk = P (Dt,i|Dt−1,jCt,k),

is then

ΘDijk =
αDijk +

∑

t∈{1...Nt}|Ct=k P (Dt,iDt−1,j |O,A,Cθ
′)

∑

i

[

αDijk +
∑

t∈{1...Nt}|Ct=k P (Dt,iDt−1,j |O,A,Cθ′)
] (D.9)

where the sum over the temporal sequence is only over time steps in which Ct = k.

The summand can be factored as follows

P (Dt,iDt−1,j |O,A,Cθ
′)

= P (Dt,iDt−1,jOAC)/P (OAC)

= P ({OAC}
t+1,T

|Dt,iDt−1,j{OAC}
1,t

)P (Dt,iDt−1,j{OAC}
1,t

)/P (OAC)

= βt,iP (At|Dt,i, Ct,k)P (Ot|Dt,i)ΘDijkαt−1,j

where αt,j = P (Dt,j{OAC}
1,t

) and βt,i = P ({OAC}
t+1,T

|Dt,i) are the usual forwards and

backwards variables, for which we can derive recursive updates

αt,j =
∑

k

P (Dt,jDt−1,k{OAC}
1,t

)

=
∑

k

P (OtAt|Dt,jDt−1,kCt{OAC}
1,t−1

)P (Dt,jDt−1,kCt{OAC}
1,t−1

)

=
∑

k

P (Ot|Dt,j)P (At|Dt,jCt)P (Dt,j |Dt−1,k, Ct)P (Dt−1,k{OAC}
1,t−1

)

=
∑

k

P (Ot|Dt,j)ΘA∗j∗ΘDjk∗αt−1,k

where we write ΘA∗j∗ = P (At = ∗|Dt,jCt = ∗)

βt−1,i =
∑

k

P ({OAC}
t,T

Dt,k|Dt−1,i)

=
∑

k

P ({OAC}
t+1,T

|OtAtCtDt,kDt−1,i)P (OtAtCtDt,k|Dt−1,i)

=
∑

k

βt,kΘA∗k∗P (Ot|Dt,k)ΘDki∗
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The updates to the output distribution over A , ΘAijk = P (At,i|Dt,jCt,k) are

ΘAijk =
∑

t∈{1...Nt}|At=i∧Ct=k

P (Dt,j |OAC) (D.10)

where the summand is expanded as

P (Dt,j |OAC) = P (Dt,jOAC)/P (OAC)

= P ({OAC}
t+1,T

|Dt,j{OAC}
1,t

)P (Dt,j{OAC}
1,t

)

= βt,jαt,j
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