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Abstract

This paper presents a method for learning decision theo-
retic models of facial expressions and gestures from video
data. We consider that the meaning of a facial display or
gesture to an observer is contained in its relationship to
context, actions and outcomes. An agent wishing to cap-
italize on these relationships must distinguish facial dis-
plays and gestures according to how they help the agent
to maximize utility. This paper demonstrates how an agent
can learn relationships between unlabeled observations of
a person’s face and gestures, the context, and its own ac-
tions and utility function. The agent needs no prior knowl-
edge about the number or the structure of the gestures and
facial displays that are valuable to distinguish. The agent
discovers classes of human non-verbal behaviors, as well as
which are important for choosing actions that optimize over
the utility of possible outcomes. This value-directed model
learning allows an agent to focus resources on recognizing
only those behaviors which are useful to distinguish. We
show results in a simple gestural robotic control problem
and in a simple card game played by two human players.

1. Introduction

Human non-verbal behaviors, including facial displays and
hand gestures, occur due to many factors, including com-
munication, emotion, speech and physiology [17, 13].
These behaviors are seldom performed or interpreted by hu-
mans in isolation, but are usually embedded in a rich context
of objects, events, human actions, and human utilities. Fur-
ther, human non-verbal behaviors are often used purpose-
fully [7]. For example, facial displays and hand gestures are
used in conversation for dialogue control [3], such as turn-
taking. This paper describes a method for the automatic
learning and analysis of purposeful, context-dependent, hu-
man non-verbal behavior by a human-interactive agent. The
agent can use the method to learn classes of human dis-
plays and the relationship between the displays and the
context, the agent’s actions, and the agent’s utility function.
No prior knowledge about the structure of displays or the

1We use the term display to refer to both facial and gestural displays

number of displays is necessary as inputs. The agent learns
which displays (and how many) are conducive to achieving
value in the context. The model we propose can be used to
learn the meaning of any non-verbal displays: it can be used
equally well for the modeling of faces and gestures, or for
both at once.

Most systems for human motion analysis attempt to rec-
ognize either purported characteristic behaviors, or the pre-
defined atomic units which make up such behaviors. The re-
sult is a machine whose inputs are labeled video sequences
or static images, and whose outputs are characteristic be-
havior labels. For example, much research has been de-
voted to the recognition of emotional expressions in the hu-
man face [2]. Similarly, gesture recognition has focussed on
learning from labeled examples of significant gestures [18].
Systems have also been built for the automatic detection of
the basic units of muscular activity in the human face (ac-
tion units or AUs) [21].

However, these systems all rely on some method for ex-
pert labeling of a training data set. Not only is this process
time consuming, but it also unnecessarily constrains the re-
sulting models to the types of gestures believed to be impor-
tant by the experts. Further, such research simply attempts
to recognize characteristic expressions, as if this by itself
was the goal. The systems are not easily adaptable, and do
not generalize well.

The model we propose is a partially observable Markov
decision process, or POMDP [11], which combines the
recognition of displays with their interpretation and use
in a utility-maximization framework. Video observations
are integrated into the POMDP using a dynamic Bayesian
network, which creates spatial and temporal abstractions
amenable to decision making at the high level. The param-
eters of the model are learned from training data using an
a posteriori constrained optimization technique, such that
an agent can learn to act based on the displays of a hu-
man through observation. We do not train classifiers for
individual displays, and then combine them in the model.
Rather, the learning process discovers clusters of non-verbal
behaviors and their relationship to the context automati-
cally. This paper presents work that builds upon our pre-
vious explorations into the modeling of facial displays with



POMDPs [8]. The contributions of this paper are a demon-
stration of the same model applied to a simple gesture
recognition task, and the inclusion of value-directed struc-
ture learning for determining the number of important clus-
ters in a training corpus. The idea is that a perceptual agent
need only make those distinctions which are necessary for
predicting future reward. While this idea has been explored
in the machine learning literature [12], this paper shows
how it can be used in a realistic domain, involving large
continuous output spaces over video sequences.

Other researchers have looked at unsupervised learning
of non-verbal gesture categories [10, 22], but have yet to
complete the picture with the addition of utilities and ac-
tions. POMDPs have been used for control of robots [20],
and spoken dialogue management [16], among other appli-
cations. Darrell and Pentland used POMDPs for control
of an active camera [4]. Their POMDP model was trained
to foveate regions which contained information of interest,
such as the hands during gesturing. However, their work is
focussed on computing policies in a reinforcement learning
setting. They do not learn the number of behaviors, and they
separate visual recognition from decision making.

Section 2 describes our POMDP model for display un-
derstanding, including the observation function (Section 2),
the methods for learning the parameters of the POMDP and
for solving the POMDP (Section 2.2 and 2.3), and the value-
directed structure learning technique (Section 2.4). Sec-
tion 3 presents our results on data of two interactions.

2 Gesture and Facial Display Under-
standing using POM DPs

A POMDRP is a probabilistic temporal model of an agent in-
teracting with the environment [11], shown as a Bayesian
network in Figure 1(a). A POMDRP is similar to a hidden
Markov model in that it describes observations as arising
from hidden states, which are linked through a Markovian
chain. However, the POMDP adds actions and rewards, al-
lowing for decision theoretic planning.

A POMDP is a tuple (S, A,T,R,O, B), where S is a
finite set of (possible unobservable) states of the environ-
ment, A is a finite set of agent actions, T : S x A —» S
is a transition function which describes the effects of agent
actions upon the world states, R : S x A — R is a reward
function which gives the expected reward for taking action
Ainstate S, O is a set of observations,and B : Sx A — O
is an observation function which gives the probability of
observations in each state-action pair. A POMDP model al-
lows an agent to predict the effects of its actions upon his
environment, and to choose actions based on its predictions.

To use POMDPs for display understanding, we must
admit that the environment may include other intelligent
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Figure 1: (a) Two time slices of general POMDP. (b) Two
time slices of factored POMDP for display understanding.
The state, .S, has been factored, and conditional indepen-
dencies have been introduced.

agents, which puts us in the realm of multi-agent games.
However, we can take a decision analytic approach to
games, in which each agent decides upon a strategy based
on his subjective probability distribution over the strategies
employed by other players. Essentially, a decision analytic
agent simply includes the strategies and internal states of all
other agents as part of his internal state. In the following,
we will refer to the two agents we are modeling as “Bob”
and “Ann”, and we will discuss the model from Bob’s per-
spective. Figure 1(b) shows a factored POMDP model for
display understanding in simple interactions 2. The state of
Bob’s POMDP is factored into Bob’s private internal state,
Bs, Ann’s action, Aact, and Ann’s display, Acom, such
that S; = {Bs;, Aacty, Acom;}. While Bs and Aact are
observable, Acom is not, and must be inferred from video
sequence observations, O. In general, both Aact and Bs
may also be unobservable. However, we wish to focus on
learning models of displays, Acom, and so we will use
games in which Aact and Bs are fully observable.

The transition function is factored into four terms. The
first involves only fully observable variables, and is the con-
ditional probability of the state at time ¢ under the effect of
both player’s actions: ©g = P(Bs;|Aact;, Bact, Bs;_1).
The second is over Ann’s actions given Bob’s action,
the previous state, and her previous display: ©,4 =
P(Aacty|Bact, Acom;_1,Bs;—1). The third describes
Bob’s expectation about Ann’s displays given his action,
the previous state and her previous display: ©O©p =
P(Acom¢|Bact, Bsy—1, Acomy_1). The fourth describes
what Bob expects to see in the video of Ann’s face, O, given
his high-level descriptor, Acom: ©p = P(O|Acom;).
For example, for some state of Acom, this function may
assign high likelihood to sequences in which Ann smiles.

2Factored representations write the state space as the cross product of
aset of multinomial, discrete variables, and alow conditional independen-
ciesin the transition function, 7, to be exploited by solution techniques.
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Figure 2: POMDP observation model explaining sequence of “stop” gesture. See text for details.

This value of Acom is only assigned meaning through
its relationship with the context and Bob’s action and
utility function. We can, however, look at this obser-
vation function, and interpret it as an Acom = ’smile’
state. For clarity in the following, we rename the vari-
ables as Cy = {Bacty, Bs;_1}, Ay = Aacty, and Dy =
Acomy. The likelihood of a sequence of data, {OCA} =

1,T
{01...0T,Cl...CT,A1...AT},iS

P({OCA}|0) = Z ©0,k Z ©40pP(Dr-1,,{0OCA}|O)
1,7 - ; 1,7-1

where ©¢ , is the observation probability given D, the
kt" value of the mixture state, D, at time 7. The observa-
tions, O, are temporal sequences of finite extent. We as-
sume that the boundaries of these temporal sequences will
be given by the changes in the fully observable context state,
C and A. There are many approaches to this problem, rang-
ing from the complete Bayesian solution in which the tem-
poral segmentation is parametrised and integrated out [6],
to specification of a fixed segmentation time [14].

2.1 Observation model

We now must compute P(O|D), where O is a sequence of
video frames, and D is the display descriptor, Acom. We
have developed a generative model for constructing tem-
porally and spatially abstract descriptions of sequences of
displays from video [9, 8]. We give a brief outline of the
method here. Figure 2 shows the model as a Bayesian net-

work being used to assess a sequence of a person’s hand
performing a “stop” gesture. This model is a mixture of
coupled hidden Markov models.

Our observations consist of the video image regions, I,
and the temporal derivatives, f;, between pairs of images
over these regions. We assume here that the image regions
are given at each frame. The temporal derivatives (along
with spatial derivatives) induce a dense optical flow field, by
assuming that the image intensity structure is locally con-
stant across short periods of time (the brightness constancy
assumption). The optical flow field is a projection of the
3D scene velocity to the image plane, and gives the motion
in the image at each pixel. Thus, the measurements we start
from contain simultaneous descriptions of the instantaneous
configuration and dynamics of the body. The task is first to
spatially summarise both of these quantities, then to tem-
porally compress the entire sequence to a distribution over
high level descriptors, D.

The spatial abstraction of images and temporal deriva-
tives occurs in the two vertical chains in Figure 2, culmi-
nating in distributions over the multivariate random vari-
ables, W and X, for images and temporal derivatives, re-
spectively. W and X correspond to classes of instantaneous
configuration and dynamics of the region of interest in the
training data. For example, the configuration classes may
correspond to characteristic facial poses, such as the apex
of a smile. The dynamics classes are motion classes, and
may correspond to, for example, motion during expansion
of the face to a smile.



The same method is used for spatial abstraction of both
the configuration and dynamics of the face. Image re-
gions and optical flow fields are each projected to a pre-
determined set of basis functions, yielding finite dimen-
sional feature vectors, Z,, and Z,, respectively. The basis
set is complete and orthogonal, such that Z,, and Z, can
be used to reconstruct images and flow fields to an arbi-
trary degree of accuracy, given sufficient basis projections.
The basis functions are ordered by their spatial frequencies,
such that low orders represent gross structure in images and
flow fields, and higher orders represent more complex struc-
tures. Using a pre-determined basis set defers any commit-
ment to particular types of motion to higher levels of pro-
cessing, without affecting computational efficiency. We use
the basis of Zernike polynomials, which have useful prop-
erties for modeling flow fields [9] and images [19]. Zernike
polynomials are defined over a unit disk, and are complete
and orthogonal, such that the feature vectors can be used
for reconstruction of images or flow fields. The distribu-
tions of each of the feature vectors (for configuration, Z,,,
and dynamics, Z,) are modeled by a mixture of Gaussians
distribution, where the mixture components are labeled as
states of W and X. The mixture models at this stage also
include feature weights as priors on the cluster means [9].
These feature weights obviate the need to choose which ba-
sis functions are useful for classification. Figure 3 shows
the output distributions of the Gaussian mixture model in
the dynamics chain, X, plotted along the two most signifi-
cant features, for the same model as was shown in Figure 2
(D = 4). Reconstructed flow fields are shown for the means
of two of the states of X, as well as the trajectory for the se-
quence in Figure 2.

The dynamics and configuration variables, X and W,
each form Markovian chains, called the dynamics and con-
figuration processes, which are coupled. Temporal abstrac-
tion is achieved using a mixture model at the high level,
where the mixture components are coupled hidden Markov
models. Thus, each state of the high level display descrip-
tor, D, generates a coupled hidden Markov model. The
CHMM, in turn, generates images (through the configura-
tion chain) and temporal derivatives (through the dynamics
chain) for each time step in the sequence.

This mixture model can compute the likelihood of a
video sequence given the display descriptor, P(O|D):

P({O}Dr) =

ZQfQIGXijk ZGijlP(XT—l,k, Wr-1,{O}|Dr)
ij kl 1, 7-1
where ©x;;r, and Oy are the transition functions in
the coupled chains, and ©; = P(f;|Xr;) and O =
P(I;|Wr,;) are the likelihoods of temporal derivatives and
image regions given dynamics and configuration states, re-
spectively. Details can be found in [9].
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Figure 3: Gaussian output distributions of dynamics mix-
ture model D = 4. Level curves of the covariance for each
state of X = 1...6 are shown. Reconstructed flow fields
for two of the Gaussian means correspond to movement to-
wards (state 5) and away from (state 2) the camera. The tra-
jectory for a sequence classified as this model is also shown.

2.2 Learning POMDPs

We use the expectation-maximization (EM) algorithm [5] to
learn the parameters of the POMDP. It is important to stress
that the learning takes place over the entire model simulta-
neously: both the output distributions, including the mix-
tures of coupled HMMs, and the high-level POMDP transi-
tion functions are all learned from data during the process.
The learning classifies the input video sequences into a spa-
tially and temporally abstract finite set, Acom, and learns
the relationship between these high-level descriptors, the
observable context, and the action. Learning the POMDP
parameters is to find the set of parameters, ®*, which maxi-
mize the posterior density of all observations and the model,
P(OCA®), subject to constraints on the parameters. The
EM algorithm eases this maximization by writing it as

©" = argmax [Z P(D|OCA®')log P(DOCA|®)
D

+ log P(®)

The “E” step of the EM algorithm is to compute the ex-
pectation over the hidden state, P(D|OCA®’), given ®’,
a current guess of the parameter values. The “M” step is
then to perform the maximization which, in this case, can be
computed analytically by taking derivatives with respect to
each parameter, setting to zero and solving for the parame-
ter. The resulting update equations for the parameters of the
POMDP transition functions are the same as for an input-
output hidden Markov model [1]. The updates to the output
CHMM distributions are very similar to those for a normal



HMM, except that evidence is propagated backwards and
forwards through both X and W chains. Equations for the
updates to the output distributions of the CHMMs, includ-
ing to the feature weights, can be found in [9].

2.3 Solving POMDPs

If observations are drawn from a finite set, then an optimal
policy of action can be computed for a POMDP [11] using
dynamic programming over the space of the agent’s belief
about the state, b(s). However, if the observation space is
continuous, as in our case, the problem becomes much more
difficult. In fact, there are no known algorithms for comput-
ing optimal policies for such problems. Nevertheless, ap-
proximation techniques have been developed, the simplest
of which simply considers the POMDP as a fully observable
MDP (the MDP approximation): the state, S, is assigned its
most likely value in the belief state, S = argmax;, b(s).
This approximation will be sufficient for the examples we
present. Dynamic programming updates consist of comput-
ing value functions, V™, where V" (s) gives the expected
value of being in state s with a future of n stages to go,
assuming the optimal actions are taken at each step. The
actions that maximize V™ are the policy with n stages to
go. These value functions are computed by setting V° = R
(the reward function), and then iterating [11]

Vtl(s) = R(s) + max {Z Pr(t|a,s) - V”(t)} 1)

€A
N tes

The actions that maximize Equation 1 form the approxi-
mately optimal n stage-to-go policy, 7" (s),

24 Valuedirected structurelearning

The value function, V'(s), gives the expected value for the
decision maker in each state. However, there may be parts
of the state space which are indistinguishable (or nearly so)
with respect to certain characteristics, such as value or op-
timal action choice. These indistinguishable states can be
grouped or merged together to form an aggregate or ab-
stract state. The set of abstract states partitions the state
space according to some characteristic. States of the orig-
inal MDP which are part of the same abstract state are not
distinguishable insofar as decisions go. Eliminating the dis-
tinctions between them by merging states can lead to effi-
ciency gains without compromising decision quality.

In fact, such state aggregation is a form of structure
learning based upon the value of states. This value-directed
structure learning is in contrast to more data dependent
structure learning, in which the structure is determined
solely based upon the statistical distribution of the data, and
the complexity of the model. For example, many structure

learning algorithms use some simplicity prior (such as the
minimum description length [22]), and find a trade-off be-
tween the model’s precision and complexity.

We now discuss a particular technique for value-directed
state aggregation applied to learning the number of facial
displays or gestures that need to be distinguished in our
learned POMDP. As we have mentioned, the state space is
represented in a factored POMDP as a product over a set of
variables. In our model, the values of one of these variables,
Acom, are the (unlabeled) gestures or facial displays. This
variable splits the value function into V,, pieces, V;, one for
each value, i, of the variable Acom. Each such V; gives
the values of being in any state in which Acom = i. A
similar split occurs for the policy, yielding sub-policies, ;,
giving the actions to take for each Acom = i. The V; can
be compared by computing the difference between them,
di; = ||Vi — V;||, where || X|| = maz{z : ¢ € X} is the
supremum norm. Two sub-policies, m; and 7;, are consid-
ered equivalent if the optimal actions agree for every state,
denoted 7; A 7;. These comparisons are used in the follow-
ing algorithm for learning the number of display states, NV,.
The algorithm starts by assigning IV, to be as large as the
training data will support, and prunes redundant states.

r epeat
1.l earn the POVDP nodel
2.conpute V; and w; V i
3.compute di; = (Vi =Vjl| V (i,5),i #Jj
4.if El(z,g)(m /\7Tj)
5 {i,5} = argmingy (dV{k, 1} | T Am)
6 nerge states i and j
7 N,+ N, -1
end
until N, stops changi ng

There are many potential ways to merge states at step 6, but
we simply delete one of the the redundant states. Note that
the algorithm could also start with N, = 2 and add states
until redundancies appear, but we have not experimented
with this version [12]. The new states could be initialized
randomly, or as a current state with added noise.

3 Experiments

We investigated the use of our POMDP model for mod-
eling hand gestures and facial displays. The hand ges-
tures were designed for simple robotic direction control,
and were recorded in a training session with a single sta-
tionary camera. The rewards were explicitly assigned dur-
ing the learning process by the operator. We recorded facial
displays and player actions during a card game, played by
two humans. The reward function was the points the players
won in the game.



3.1 Hand Gesturesfor Robot Control

We recorded a set of examples of four hand gestures, de-
signed for simple robotic direction control: forwards, stop,
go left and go right. A dozen examples of each gesture were
performed by a single subject in front of a stationary cam-
era during a training session. Video was grabbed from a
firewire camera at 150 x 150 with a narrow field of view.
The region of interest was taken to be the entire image, and
so no tracking was required. Clearly, this would only be
possible with a static camera. Sequences were taken of a
fixed length of 90 frames. A robotic agent (not embodied at
this stage) chose actions in response to each gesture accord-
ing to a random policy, and was rewarded by the operator’s
good or bad action, Aact, for choosing the correct action.

It is important to re-state that these experiments are not
meant to demonstrate a general gesture recognition system.
It is clear that, with this simple tracking and registration
method (taking the whole image), this system would not
deal with the high variability in gesture orientation or speed.
These experiments are meant as a simple demonstration of
the value-directed structure learning techniques: they show
how our system can correctly discover the number of mean-
ingful gestures in a simple interaction.

We trained the POMDP with NV, = 6 states. The value
function and policy are shown in Figure 4 as decision dia-
grams. The policies for states d» and d5 are equivalent and
their values are identical, and so the algorithm merges them
first by simply deleting state ds. The POMDP is re-trained,
resulting in a five-state value function (not shown), in which
two more states are found to agree and are merged. Again
the POMDP is re-trained, this time giving a value function
and policy in which no displays are found to be redundant,
shown in Figure 5. Figure 2 showed part of a sequence
of a stop gesture classified as model ds. Figures 6 and 7
show parts of sequences of forwards and left gestures, clas-
sified as model d4 and dy, respectively, in the new 4-state
POMDP. The figures show the images and temporal deriva-
tives along the bottom row, the expected values of the im-
age projections and the flow fields given the merged model
in the middle row, and the expected values of the distribu-
tions over the dynamics and configuration states, X and W,
along the top row.

To evaluate how well the model chooses actions, we per-
formed a cross-validation experiment in which the POMDP
was trained on all but one sequence of each gesture. The
model was then used to choose actions based upon the four
sequences left out. If the action is correct, one reward is
given. This process is repeated for 12 different sets of four
test sequences, and the total rewards gathered give an indi-
cation of how well the model performs on unseen data. Out
of a total of 12 x 4 = 48 rewards available, the model col-
lected 47, for a total success rate of 47/48 or 98%. The one
failure was due to a mis-classification of a “left” gesture as a
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Figure 4: Original six-state value function (top) and policy
(bottom), shown as decision diagrams. States are the labels
on each path from the root to a leaf, which contains the
value or optimal action for that state.
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Figure 5: Final four-state merged value function (top) and
policy (bottom). The value function

“right” gesture due to a large rightwards motion of the hand
at the beginning of the stroke. The final POMDP models
learned that there were N, = 4 states in all 12 cases.

3.2 Facial Displaysin Games

We trained the POMDP model on videos of two humans
playing a cooperative card game. In each round of the
game, players attempt to play matching cards after an ini-
tial phase in which they can communicate with each other
through a real-time video link (with no audio). There are
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Figure 6: Part of a sequence of a “forwards” gesture, clas-

sified as model dy.
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Figure 7: Part of a sequence of a “left” gesture, classified as
model d; .

no game rules concerning the video link, so there are no
restrictions placed on communication strategies the players
can use. The players naturally came up with simple head
gestures to help them win the game: nodding and shaking.
The facial regions of the players were tracked in the video
using an optical flow based tracker, with corrections from
an exemplar database [9].

The data was split into training and test sets, and our
POMDP model with N, = 4 display states was learned
with the training set. The learning discovered appropriate
motion sequence models for each of the head gestures the
players were using. Two of the learned display states de-
scribed neutral displays with little motion, while one de-
scribed head nods, and the other head shakes [8].

An approximate two-stage policy of action was com-

puted using the MDP approximation, and the structure
learning algorithm described in Section 2.4 was applied.
Two states were merged, resulting in a three-state model.
The two merged models both described “null” sequences,
with little facial motion. After merging, the three states cor-
responded to head shakes (d), head nods (dz), and a null
display (d,).

Although the training data set was large enough to learn
models of the head gestures, it was small for learning a
POMDP, resulting in sub-optimal policies for many of the
states not visited in the training data. In order to attenu-
ate the effects of the lack of training data, we may assume
that player’s do not have any particular preference over card
suits, such that the conditional probability tables should be
symmetric under permutation of suits. Therefore, we can
“symmetrise” the probability distributions by simply av-
eraging over the six card suit permutations. The merged
and symmetrised three-state model was applied to the test
data, the POMDP inferred the facial displays that the play-
ers were using, and was able to predict the human player’s
actions in 6/7 test cases and 19/20 training cases.

Figure 8 shows example frames from a sequence in
which the subject shook her head. The entire sequence
was classified as facial display state ds by the final merged
model with three states. Figure 9 shows example frames
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Figure 8: Part of a sequence of subject shaking her head,
classified as model ds.

from a sequence in which the subject nodded her head, clas-
sified as facial display state d» by the final merged model.
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Figure 9: Part of a sequence of subject nodding, classified
as model d,.

4 Conclusions

We have presented a method for learning decision theo-
retic models of purposeful human non-verbal displays us-
ing partially observable Markov decision processes. It dis-
covers spatially and temporally abstract categories of mo-
tion sequences and their relationship with actions, utilities
and context automatically from video. No prior knowledge
about the types of displays expected in an interaction is
needed to train the model. The learned values of states are
used to discover the number of display classes which are
important for achieving value in the context of the interac-
tion. This type of value-directed structure learning allows
an agent to only focus resources on necessary distinctions.
Our work is primarily focused on learning the parameters
and structure of POMDPs. To demonstrate this learning,
we use solution techniques that approximate the POMDP
as a fully observable MDP. In future work, these approxi-
mations will be relaxed, but the concepts of value-directed
learning will remain [15].
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