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Abstract

This paper describes a method for tracking in the presenaistfctors,
changes in shape, and occlusions. An object is modeledleskaf features
describing its approximate shape. The flock’s dynamics kegmatially lo-
calised and moving in concert, but also well distributedoasrthe object
being tracked. A recursive Bayesian estimation of the dgmdithe object
is approximated with a set of samples. The method is deraieston two
simple examples, and is applied to an assistive systemrdthtstthe hands
and the towel during a handwashing task.

1 Introduction

Tracking an object in the presence of occlusions and distreis a pervasive problem
for computer vision applications. Objects to be trackedallgthave some consistent
features, are spatially compact, and move cohesively.c@ypiacking methods use some
model of the appearance of an object to be tracked, and dstiima fit of the model to
the object over time. However, in many applications, theeotg shape and appearance
may change over the course of a sequence. For example, hands need to be tracked
for many human-computer interaction tasks, but changeesaiag velocity fairly quickly,
differences which must be accounted for. The method we pteses a generic type of
model: aflock of features [9]. The features are characteristics of thallappearance of
the object to be tracked, and they are loosely grouped usingifig constraints.

A flock consists of a group of distinct members that are simitaappearance to
each other and that move congruously, but that can exhilatl sndividual differences.
A flock has the properties that no member is too close to anotleenber, and that no
member is too far from the center of the flock. The flocking @michelps to enforce
spatial coherence of features across an object, while ganiough flexibility to adapt
quickly to large shape changes and occlusions. The contaglozk comes from natural
observation of flocks of birds, schools of fish, or herds of mmeats, in which the members
must stay close to avoid predators, but must avoid collgiétocking concepts have been
applied in computer graphics for simulation [12, 13], andla@terministically tracking
an object with a moving camera using KLT features [9]. Thenary contribution of
this paper is the description of an approximate Bayesianes#al tracking method that
uses flocks of features to implement spatial, feature aratitglcohesiveness constraints.
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Figure 1: (a) Three flocks &f color features, ospeckstracking three objects: two hands
and a towel. (b)—(d) during occlusion and shape changes.

This method is robust to partial occlusions, distractons, shape changes, and is able to
consistently track objects over long sequences. The floek dot assume any particular
shape, instead adapting the distribution of its memberseatirrent object distribution,
which may even be non-contiguous (e.g. in the case of paxti@dlsions).

Figure 1(a) shows an example of three flock$ aolor features each tracking two
hands and a towel. At the start, the members of each flock atghdited across the
objects they are tracking. Figure 1(b)—(d) show the saneetfiocks tracking the same
three objects later in the sequence, during occlusions laaygeschanges. The flocks are
able to maintain a track on the objects, even though thepeshand sizes have changed.

We use an approximate Bayesian sequential estimation itpehmo track the full
posterior distribution over object locations and featui&s demonstrate the capabilities
of this tracker on a synthetic sequence, and on a real segueétitsignificant occlusion.
We then apply our tracker to an assistive technology scenarivhich a system assists a
person with dementia during hand-washing. The system eeséhne user with a camera
mounted above the sink, and tracks the hands and the towealldw for very long-
term tracking of multiple objects in this case, we use a coion of three mixed-state
particle filters [6], with data-driven proposals [11] andhpie interactions to enable re-
initialisation after a track is lost. A previous system farldwashing [2] used a simple
color based location method [10], with no tracking.

There has been much work in the last decade on gesture réoogmtypically from
the perspective of human-machine interfaces or humantiotaofaces. Most approaches
use color and/or motion features, and attempt to recogmnésiefined motions [4] or hand
poses [3]. However, they do not deal well with occlusions rhiteary shape changes.
Recent work deals with occlusions and appearance changegbgitly building models
of image layers and adapting them over time [7], but is toopatationally intensive for
human interactive systems. Much work on tracking for gestacognition is focused on
dealing with cluttered and changing backgrounds [3, 9]ciitiecomes important when
using a moving camera. Our work generalises [9] by trackiegdistribution over flocks,
but we use a static camera and a fixed background.



2 Flocksof Features

A flock is a loose collection of features, or members. The floekintains a consistent
motion, even though the members are moving independentlis decentralised organ-
isation can be implemented by constraining each membegjofat enough from each
other member, yet close enough to the center of the flock 312, 1

More formally, a flock g, is a tuple{ Ny, W,v,0¢,&, ., &, } whereN; is the number
of features in the flockW is a set ofN; featuresw; = {x;, wi}fifl, with image posi-
tionsx; = {z;,y;}, and (as yet unspecified) feature parametgrthat describe how the
image should appear given that a feature is presexf.afhe flock has a mean velocity
v = {vg, v, }, and all features in the flock move with the same mean veldmitywith in-
dependent (but equal) Gaussian noisgr~ A(0, 3,,). The flock also has some model of
the mean distribution of its membe#;. In the case of simple color features, this model
consists of a Gaussian distribution in color spae= {cs, 3 }. Finally, the flock has a
set ofcollision parameterg,., and a set ofinionparametersg,,. The collision parameters
are used to define a function of the distance between membtrs fiock that indicates
when a collision is likely to occur. An example is a threshfidction, in which casé€,
is a threshold on the distance. The union parameggrsare similar, except they define
when a member is straying from the flock center. We will seeenconcrete examples of
these parameters and functions in the next section.

The likelihood of observing an imagegiven a flockg, can be computed by assum-
ing that each feature generates parts of the image indepiydeuch thatZ(z|¢) =
Hfifl L(z|w;,0¢). In this paper, we will use a simple type of feature, a calpeck
which is simply a set ofV,, = 4 pixels in a2 x 2 square. Each speck hasoaal Gaus-
sian color model@, = {c,, X,}. While this type of simple feature is expressive enough
here, other applications may require additional textureator features. The specks
must conform to their flock's color modefl;, as well as attempt to each model their
local color distribution througl®,. Finally, a constant “background” density,, is also
used for better performance under occlusions. We use therlaf the data likelihood and
¢p, thereby allowing some members of the flock to be “lost” (elgan occluding object)
without drastically reducing the likelihood of the imagee the flock. We can therefore
compute the likelihood of an image, given a speckw, in a flock with color moded ¢,
as a product over the speck pixels of two Gaussians
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j=1

where~, and~,. are parameters that control the tradeoff between the spbelysng their
local color models versus adherence to the flock’s color thode

3 Seguential Estimation of Flock Density

This section describes how we can estimate the flock dengéytone using a sequen-
tial Markovian process. Lep, denote the flock at tim¢, andz’ = {z; ...z} be the
observations (images) up to timeTracking is the estimation of the filtering distribution



p(¢,|zt). This distribution is updated sequentially using the staddwo-step recur-
sion [5], in whichp(¢,|z!) is updated givem(¢,_,|z'~!) and a new measurement

predict : p(¢tlzt_1) = /D(d’t‘@—l)p(ﬁbt—l‘zt_l) 2)

update : p(¢t|zt) X L(zt\cl)t)p(@\zt_l) 3)

where L(z:|¢,) is given by Equation 1, an®) (¢, |¢p,_,) is the transition dynamics of a
flock. There are three terms in the dynamics,

D(¢t|¢t—1) = Dg(¢t|¢t—1)¢u(¢t>¢c(¢t)v (4)

each of which describe a flocking behavior. First, due to theachics,D’, each feature
moves according to the mean velocity of the floekbut with added Gaussian noise:

_ Ni A% S (Ax
D;(¢t|¢t_1) =e Yd 21:1(A )E“ (A ) (5)

whereN; is the number of specks in the flockx = (x;; — x¢—1,; — Vi—1), vi—1 iSthe
mean velocity of the flock anBL,, is the covariance of the noise in the dynamics, assumed
constant for all flock members. The second term in (4) is alpef@ being too close

to another flock member, and is implemented using pairwisentials between members
of the flock, expressed as a Gibbs distribution

N N oo
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whereg.(x:,, % ;,&,.) is a penalty function that varies inversely with the distehe-
tweenx;, ; andx; ;, with parameteg,.. A similar type of penalty function was also used
in [8] to model interaction penalties between differenttigdes in a multi-target tracking
example. Here, we apply the same ideas to model interadbetreeen members of the
same particle. An example is a simple threshold penaltytfomcg.(x;;, x¢ j,&.)
o(|x¢,: — x¢,5],€.), whereo is a sigmoid function, such as

1

o(d,&) = 11 e—ad—g)’

wherea < 0 is a fixed parameter that governs smoothness around th&dtdeslues,.
The third term in (4) is a penalty for being too far from the tegrof the flock, also
implemented using a potential over the feature locatiouistlhe flock mean:

_ Ny %
wu(¢t) —e Yu Zl:l gu(xt,mxtygu)’

wherex; is the mean position of the flock, ard(x,X, &, ) is a penalty function that is
proportional to the distance betwesrandx, and can be implemented using the same
sigmoid as in the collision penalty function, except with- 0.

3.1 Particle Approximation

The general recursions introduced in the previous secfiield glosed-form expressions
only in a limited number of cases, such as when dynamics &eliHood functions are lin-
ear Gaussian, resulting in a Kalman filter. In the generad,cae wish to deal with func-
tions that may be non-linear and/or non-Gaussian, and st adsequential Monte-Carlo



approximation method, also known as a patrticle filter [Simich the target distribution
is represented using a weighted set of samples.
Let P, = {N,, &, W, } be the particle representation of the target density at time

whereN,, is the number of particlesh; = {qbti } 2, are the partlcles (each is a flock),

and M, = {m )}Z , are the particle weights with unit suerz 1m§) = 1. The

particle filterP; approximates the filtering distribution as

P(¢|z") th ' (&)

Where5¢<i> (¢,) is a Dirac delta function over the space of flocks, with maag%)lt Given

t

a particle approximation gf(¢,_,|z'~!) at timet — 1, P,_;, and a new measurement
(image) at time, z¢, we wish to compute a new particle sg, that is a sample set from

p(¢,|z"). To do so, we draw samples from a proposal distribuaﬁéir)] ~ q(¢t|¢§i_)1, Zt),
and compute new (unnormalised) particle weights using [5]:

@) — ﬁ(m\fz >l) D(gi”|#) )
(e |¢t—17zt)

The weights are then normalised and possibly resampledyfahe too degenerate [1].

3.2 Data-Driven proposal

In cases such as the assistive technology scenario we piesgarction 4.3, the tracking
must be robust over long periods of time, and must be able-taitialise if the track is
lost, such as when hands leave the scene temporarily. Tongdieb this, we augment
our tracking method with a mixed state dynamics [6], and a-daitven proposal [11]. A
mixed-state tracker has dynamics noixg, in (5), that varies depending on te¥zength
of the particle filter, or how accurately the particle filtereistimated to be tracking. This
strength is estimated by comparing the sum of the unnoredhfiarticle weights to a fixed
minimum weight, and taking the ratio to a fixed maximum in&nT he resulting strength
estimate in0, 1] is then used to set the dynamics noise between fixed bounds.

A data-driven proposal uses samples generated from a catidinof the dynam-
ics process and a separate, data-driven process. This akeasgd successfully in [11],
where an Adaboost process generated particles for the gabpdstribution of a mix-
ture of particle filters. To implement these ideas, our psgpdalistribution includes
the expected mean flock dynamiﬁés(d)twi?l) (Equation 5), and a second process,

qd(¢t|¢§i_)17 z;), that generates new samplgsdirectly from a new image;. The com-
plete proposal combines these two distributions with a tteig{11]:

a(] 1, 20) = aga(dy|z]) + (1 — ) DL [p),) (7)

Data samples are drawn as described below, and weightegt usin

m(i) _ m*L(Zt|¢£i))Do(¢’§i)) (8)
t - i i )
qa( §)|¢£—)17Zt)
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Figure 2:Level 5 simulated sequence, showing (top) the entire image and flocks trackjict,ob
(bottom) close-ups of four key frames showing the flocks dealing witlstaagtor (frame 69-93)
and an occluder (frame 113-120).

wherem* = (aN,,)~! are the prior weights which assume all of the expectd parti-
cles will be drawn equally, anB ( §i>) = Dé((j)ii))z/)u(qbt)wc(qbt) includes the collision
and union penalty functions, and a prior distributidp, = N(;Nf is the probability of
drawing N features independently at random from a segfpossibilities, whereVy is
the number of valid pixels used in the data proposal.

Our data-driven proposady, is built by using the moded ; for the features of the
tracked object to build a probability map over the input imadhe probability map is
built by thresholding the image in feature space, and mditaring the result to remove
small components. We then choose the connected componsastto the particle being
updated in this binary image and build a normalised dBa;|0) = kPr(z;|0) wherek
is the normalising constant summed over the component heied. Finally, we draw a
flock sample from the joint distribution over thé; feature |0cation5Pr(x£V=fl|z, 0), by
sampling each feature independently fréiy

Once a new set of samples has been drawn, we set the valumafieight the data-
driven proposal in (7) by looking at the filter’s current sigéh, and whether a connected
component was found that corresponds to that filter. If nommment was found, then
a = 0, since there will be nothing to draw samples from anyway$e@tise, we set
closer to0 the higher the strength. ¥ > 0.8, then we setx = 0.

4 Results

In this section, we used the following parameter valuesesgiirically by hand, unless
otherwise specified. The sigmoid parametet is 0.01. The color density background
wasc, = —log(1072°). The weights for dynamics, collision and union terms were
~va = 1,7, = 20 and~,, = 60, respectively.

4.1 Synthetic Sequences

We compare our tracker against a simple color-based pafilier, where each particle is
aspeckof color (a flock tracker withV; = 1). We ran both trackers with0, 100 and500
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Figure 3: Synthetic results plot the percentage of trialsvirich the track holds at
each region 1-8 (see Figure 2a). A perfect tracker wouldest®@% at all regions.
(a) Level 5 (hardest) problem with flock sizé; = 10 for different numbers of parti-
cles (10,100,500). (b) Level 5 problem foi; = 1,5, 8,10 with 500 particles. (c),(d)
Ny = 1,10 trackers, resp., on level 1-5 problems with 500 particles

particles. We usedV; = 5,8, 10 with collision thresholds.. = 40, 30, 20, respectively.
The union threshold wag, = 20, and the dynamics noise was, = 5.0 pixels for all
trackers.

We evaluate the trackers by running them edahtimes with different initial random
seeds and random initializations. At each of the 400 timpssitetakes for the square to
cross the image from left to right, we count the trials for g¥hthe tracker mean is in
the square. We then take the mean of these counts over tlomsége 1...8 between
each distractor or occluder, as shown in Figure 2. Thus, tmebers for each of the
8 regions show how many (out of 100 trials) are still trackihg bbject at that point.
Figure 3(a) shows the behavior of tie; = 10 flock tracker for different numbers of
particlesV,, = 10, 100, 500 for the hardest (level 5) problem. We see that the performanc
for N, = 10 is poor, but forN,, = 500, the tracker tracks half the sequences to the
end. Figure 3(b) compares different flock sizéé; (= 1,5,8 and10), again for the
hardest problem instance. Here we seelfhe= 1,5 trackers rapidly get lost after the
first distractor. TheV; = 8 tracker does a little better, tracking fully ab@it% of the
sequences. Th&; = 10 tracker is better able to handle the occlusions becausesof th
reduced collision threshold), allowing it more flexibility.

Figure 3(c) and (d) show th&'; = 1, 10 trackers, respectively, for the different dif-
ficulty levels (1-5). We see that th¥; = 1 tracker is only able to deal with the easiest
problems, whereas th€; = 10 still maintains performance for the other difficulty levels

4.2 Real Sequence

Figure 4(top) shows 4 frames from a 15-frame sequence olérrehining behind a black
fence and a bush. We uséd; = 8, {. = 20 and N, = 100. The flocks are able to
track the child’s jacket, even after shape changes (e.cartheextends). The bottom row

1Additionally, we ran the simple speck tracker wiiB00 particles, since the flock-based tracker witho
flocks contain$000 specks in total, but found no significant improvement a@ particles.
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Figure 4:Sequence with occlusion

shows close-ups, with flocks distributed across the jaskehe members on the arm area.
In order to evaluate the strength of the threshgldwe computed the fraction of specks
that had likelihoods below, = —log(1072°) over the course of this sequence. This
fraction was about7% for the frames in which the child was partially occluded bg th

bush, indicating that, although the background densitgéful, it is not dominant.

4.3 Handwashing Tracking

The goal in the handwashing task is to monitor a person’srpesy and to issue verbal
or visual prompts when the person needs assistance [2]. dafoantal building block in
such a system is the ability to locate and track the persarsi$ in the sink area. We
wish to know, for example, if they are using the soap, the,tdifisey are under the water,
or if they are in contact with the towel. In our data, the onlbjexts that are not fixed in
space are the hands and the towel. Thus, we use three inaggpgratticle filters, one
for each of the right and left hands, and one for the towel. ¥&independent particle
filters in this paper for simplicity, but our methods couldpbpto a mixture of particle
filters [14], or another type of multiple-target tracking Me-Carlo method [8].

We used sequences taken from a clinical trial in which anmated prompting system
monitored prompted persons with moderate to severe Alatrsndisease. The video
was taken from an overhead SONY CCD DC393 color video camesa s, and a
570 x 290 pixel region around the sink was cropped. We uge@ particles and could
perform updates of all three filters at ovex frames per second. We evaluated the tracker
by looking at whether the mean flock position was inside thedkaor towel region in
each frame for 1300 frames from a single user’s sequenceglwhich the the user was
drying their hands. We compare our method to a simple heutfsit looks only at the
connected components from the thresholded images (#biing We find our method
makes no errors0f%) in locating the towel during the extreme occlusions coragdn
7.4% for the heuristic method. The error rates for hand locatiese 2.4% for our
method vs. 5.3% for the heuristic method. The errors for our method in |lowatihe
hands were due to one hand’s flock migrating close to the dthed when the hands
were close. These errors could be reduced by using a moréssoated multi-object



Figure 5:Key frames from full handwashing sequence of 6300 frames (abminutes).

tracking method. We also tested our methodéasequences from two different users,
and measured the number of tracker failures. We only look&draes in which both
hands were present and a least one was patrtially visibleinantlich the caregiver was
not present. A tracker failure was noted either if the handeevseparated but one was
not tracked, or if both hands were present and togetherggn being rubbed together)
but neither hand was tracked, or if the towel was not trackéelfound error rates of only
1.9% over a total ofl6986 frames in3 sequences for one user and% over a total of
7285 frames in3 sequences for the other. The majority of tracker failurggplkaed after
an abrubt change in hand motion, due to our constant velasgymption. The tracker
was consistently able to recover after all tracker failwéhin about 10 frames.

Figure 5 shows an example of the tracker during a sequenceooit 6300 frames.
The data-driven proposal was only used for 23 frames of #sisnce, primarily during
resets when the hands were close. At the top left (frame B&Yight hand and the towel
are being tracked, while the left hand particle filter cargeih strength. The left hand
filter usesc = 0, however, since there is no component available for it to uEke user
applies soap and then attempts to turn on the water. At frai2®, the caregiver steps
in, but the trackers remain undistracted until frame 4518envone of the user’'s hands
is completely occluded, and one tracker starts to track #negiver's left hanti Some
frames of interest ar2102 where the right hand filter has some flock members off the
hand completely, and fran&06, where some members of the towel flocks are on the
right hand, but the towel mean is still centered on the towkk speck likelihoods allow
for this flexibility. Close-up examples from this sequenae also be seen in Figure 1.

2The tracker would be paused during the caregiver's intemactOtherwise, additional filters would be
required. The tracker automatically resets itself afterualacsecond after the occluding hand leaves the scene.



5 Conclusion

We have introduced a particle filter tracking technique tase flocks of features and
have shown how it can be used to track objects under occkisind distractions, and
in an assisted living task. Future work includes using a nsogghisticated multi-object
tracking model, experimenting with more complex imagedezg, and looking in more
depth at the relationships between flock constraints actéthobject shapes.
Acknowledgements: This work was done while the author was at the University of Toronto, and
was supported by Intel Corporation and the American Alzheimer Associa
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