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Abstract

We present a method for unsupervised learning of classes
of motions in video. We project optical flow fields to a com-
plete, orthogonal, a-priori set of basis functions in a prob-
abilistic fashion, which improves the estimation of the pro-
jections by incorporating uncertainties in the flows. We then
cluster the projections using a mixture of feature-weighted
Gaussians over optical flow fields. The resulting model
extracts a concise probabilistic description of the major
classes of optical flow present. The method is demonstrated
on a video of a person’s facial expressions.

1. Introduction

Unsupervised learning of categories of motions from video
streams is an important open problem. It finds applications
in video databases and surveillance, where the goal is to dis-
cover patterns of motion without having to label an exten-
sive training set. It also finds applications in understanding
human motions, where the goal is to recognize patterns of
human action which are predictive of actions. For example,
an agent observing a computer user would like to correlate
the motions of a particular user’s face and body with the
ongoing context of interaction and the user’s actions. Since
parts of each user’s motions are unique, the agent can bene-
fit from discovering important categories of motion. While
many approaches use dynamical models [5, 4], we attempt
to cluster the instantaneous motions on a frame by frame ba-
sis. This paper describes a method for learning the salient
classes of frame-to-frame motions in a video.

The first step is to estimate the way things are moving be-
tween frames. Optical flow provides such an estimate [2],
but yields a very high dimensional signal. While clustering
optical flow fields directly is possible, we prefer to first ex-
tract some low dimensional representation of the flow fields,
making clustering easier. The problem is then one of find-
ing an appropriate subspace of the flow field vector space
in which the motions we are trying to categorize are suffi-
ciently well separated. Further, we would like such a sub-
space to be data independent. The advantage of data inde-
pendence is that the subspace can deal with arbitrary mo-

tions, and models can be learned for different types of mo-
tions. For example, while we learn classes of face motions
in this paper, our system could be easily applied to gestures
or gaits. Leaving any commitment to particular motions to
higher level processing is an advantage in many cases.

Data independence implies an a-priori set of basis func-
tions onto which the optical flow fields can be projected.
In this work, we use the complete and orthogonal basis of
Zernike polynomials. This basis set provides a rich and
data independent description of optical flow fields which
can be seen as an extension of the affine basis. However,
simply computing optical flow and subsequently project-
ing to this basis does not make use of the uncertainties in-
herent in the estimation process. We describe an efficient
Bayesian solution for directly computing probability distri-
butions over basis coefficients from image gradients using
brightness constancy. We show how the method’s incorpo-
ration of the flow uncertainties improves the estimation of
the parametrized flow by discounting image regions with
less certain flow vectors.

Clustering the optical flow fields can then be accom-
plished using a mixture of Gaussians over the basis vector
space. Our mixture model includes weights on the basis co-
efficients, which describe the effectiveness of each feature
at achieving good clusters. Our probabilistic projections
ensure that the uncertainties inherent in the calculation of
optical flow are propagated to the cluster membership vari-
ables, leading to a more robust clustering. We show how
to learn the parameters of the mixture model, including the
feature weights, with the expectation-maximization (EM)
algorithm. Learning the feature weights fuses well with the
probabilistic projections of optical flows, as it allows the
model to take the structured optical flow variances into ac-
count when building clusters.

This paper makes two main contributions. First, it de-
scribes an efficient method for representing flow fields in a
compact representation, while preserving information about
the variance inherent in the flow calculation, and composing
it in a Bayesian manner with a mixture model’s predictions
over the flow field parametrization. Second, it describes a
method for learning the parameters of a model for clustering
optical flow fields with feature weighting.



Much effort has recently been expended in classification
of human motions in video [7, 5, 4, 10, 8]. These meth-
ods, however, usually include a supervised training phase.
This requires extensive labelled training data, which may
be difficult and costly to obtain. We wish to avoid such a
step, and build an unsupervised system which discovers the
salient patterns of motion in a video database. Our work
also differs from other human motion analyses in that we
do not build a dynamical model, but only cluster instanta-
neous motions. We use the feature weighting techniques
of [6], with modifications to incorporate our probabilistic
projections. Our probabilistic projections of flow fields can
be seen as a method for constrained optical flow estimation,
which have been extensively studied in the literature [11].
Work has also been done on categorizing motion vectors
within a flow field [3], such as in the case of multiple mo-
tions. Our work instead approaches the problem of catego-
rizing entire flow fields directly [8].

This paper is organized as follows. Section 2 describes
the clustering model, including the Zernike basis and the
probabilistic projections of optical flow fields. It also gener-
alizes the method to a multi-scale version, and describes the
feature weighting priors. Section 2.5 then describes how to
learn the maximum a-posteriori parameters of the Gaussian
mixture model with feature weighting from training data,
using the expectation-maximization (EM) algorithm. Sec-
tion 3 shows some results demonstrating the benefits of the
probabilistic projections, and clustering results on images
of a person’s facial expressions.

2. Overview of modd

Given a set of images, I; ... In,, we wish to find N, clus-
ters of the optical flow fields, v;, between successive pairs
of images, {I:, I:+1}. That is, we wish to assign each of the
N, —1 flow fields one of IV, cluster labels X ... Xy, such
that the optical flows with the same label are as similar as
possible to each other, but as dissimilar as possible from the
flow fields with any other label. For example, if describing
motion over the human face, states of X may correspond to
instantaneous motion fields during smiling (mouth expan-
sion), frowning (contraction between the eyes), or talking
(lip motion). Figure 1 shows our model represented as a
Bayesian network. We consider the measurements to be the
image spatial (fs = {fz, fy}) and temporal (f) deriva-
tives, calculated using a centered difference method. * We
can express classification of an image motion as the maxi-
mization of the probability distribution over the classes, X,

1Thesevariablesarefi eldsover all N pixelsintheimage: f- isaN x 1
column matrix, fs = [fofy] isaN x 2N matrix (where f, isaN x N
matrix with the horizontal spatial derivative f, aong the diagonal, and
similarly for fy) and v = [vzvy]’ isa2N x 1 matrix with the components
of horizontal and vertical fow.

Figure 1: Bayesian network for the mixture of Gaussians
over optical flow fields with feature weighting. Double cir-
cle nodes are observed, single circle nodes are unknown
random variables, and boxes are fixed hyper-parameters.
The shaded area contains the priors for feature weighting.

given the spatial and temporal derivatives,
P(X|Vf,0) o< P(Vf|X,0)P(X]0), 1)

where © are the parameters of the model, and Vf =
{fs, [y, f~}. Since we wish to classify optical flow fields,
we expand the probability distribution over the classes, X,
as

P(X|Vf,0) = /P(Vf|v,@)P(v|X, 0)P(X|0)

where we have assumed the image derivatives to be inde-
pendent of the high level motion class given the optical flow.
To simplify notation in the following, we assume depen-
dence on the model parameters, ©, for every term, and drop
explicit reference to ©.

There are three terms in the integration. The prior
over classes, P(X), is part of our model, parametrized
with a multinomial ©,; = P(X = ). The distribution
over spatio-temporal derivatives conditioned on the flow,
P(Vflv), is estimated in a gradient-based formulation us-
ing the brightness constancy assumption, f, + fsv = 0.
The noise in the estimation is described with two zero-
mean Gaussian variances, A; and Ao, which result from
failures of the planarity assumption, and errors in the tem-
poral derivative measurements [13]:

P(Vflv) oc N(frs —fsv, fshafo + A2), )

where Ay = o1In, Ao = o2l N (In IS N x N identity).
We do not represent P(v|X) directly in our model, but
instead we parametrize this distribution using a probabilistic
projection of v to the basis of Zernike polynomials. As we
will show, this projection can be written as a distribution



over v, given the projection coefficients, z, P(v|z). We then
parametrize the distribution over z given X with a normal
P(z|X) = N(2; iz 2, Az ). We are expecting flow fields
to be normally distributed in the space of the basis function
projections.

A more naive approach avoids the integrations over z
by first computing the mean optical flow field, p.,, using a
zero-mean prior, projecting this field to the Zernike basis,
and taking the resulting feature vector, z, as the input data
to a classification scheme using P(z|z) [9]. That is, the
naive approach considers P(X|Vf) = P(Mu,|X)P(X),
where the columns of M are the basis functions. However,
this approach ignores the variance information in the flow
calculation, leading to less accurate results. For example,
Figure 2 shows two frames from a video sequence of a per-
son’s face. There is significant motion upwards near and
above the eyebrows and downwards along the sides of the
jaw. The mean flow field, u,, calculated using the method

naive probabilistic
Figure 2: Top: two subsequent frames from a video se-
guence. Middle: variance on the horizontal (A,) and verti-
cal (A,) optical flow fields. Bottom: naive and probabilistic
reconstructions from low dimensional basis

of Simoncelli [13], is shown in Figure 2, for the image re-
gion of the subject’s face as indicated. The certainty of the
flow vectors (the trace of the inverse flow variances), is also
shown in Figure 2 (brighter means the flow estimates are
more certain). Large variance flows are prevalent in regions
with little contrast since we are using a gradient based opti-
cal flow calculation. The jaw, forehead and the background

wall are examples. A projection of these flow fields to a
low dimensional basis will suffer because of these regions,
unless the flow variances are taken into account. The bot-
tom row in Figure 2 shows reconstructions of the flow fields
from projections to the Zernike basis. On the left, we see a
simple projection (dot product), while on the right is the
projection which takes the variances on the flow into ac-
count. We can see improvements around the jaw and fore-
head areas. We compare our probabilistic projection ap-
proach with the naive approach further in Section 3.1.

In the remainder of this section, we describe optical flow
and the Zernike basis, and we show how the integrations in
Equation (2) can be performed analytically, leading to an
efficient method for calculating P(X|Vf), taking all vari-
ance information in the flow fields into account. We then
show how to implement weights on the dimensions of the
projections, and how our methods can be implemented in a
multi-scale approach. Section 2.5 shows how the distribu-
tion P(X|Vf) is used to learn the parameters of the model
using the expectation-maximization algorithm.

Note that the model does not take violations of the
brightness constancy assumption, such as occlusions, re-
flections, or transparent motions, into account. While this is
an important problem, it typically leads to high spatial fre-
quency violations of our assumptions. Since we are mainly
interested in generating low dimensional representations of
optical flow fields suitable for clustering, we do not consider
this problem further here.

2.1. Zernike projections

Zernike polynomials are a complete and orthogonal set of
complex polynomials defined on the unit disk [12], and can
be used to represent the flow fields, v, over some image
region, ¢, to an arbitrary degree of accuracy. The lowest
two orders of Zernike polynomials correspond to the stan-
dard affine basis. The next order polynomials correspond to
extensions of the affine basis, roughly yaw, pitch and roll,
as explored in [4]. Higher orders represent motions with
higher spatial frequencies. The basis is orthogonal over the
unit disk, such that each order can be used as an indepen-
dent characterization of the flow, and each flow field has a
unique decomposition in the basis. Zernike polynomials are
expressed in polar coordinates as a radial function, R (p),
modulated by a complex exponential in the angle, ¢:

Uy (p,¢) = Ry (p)e™™? ©)

The indices n,m control the spatial frequency of the basis
functions. The orthogonality of the basis allows the decom-
position of an arbitrary function on the unit disk, F'(p, ¢), in



terms of a unique combination of Zernike polynomials [12]:

=y >

m=0n=m

mcos(me) + B sin(me)] R (p),
@)

The coefficients, A7" and B;, of the decomposition of the
horizontal and vertical flow estimates, u(x,y) and v(z,y),
are obtained using:

cos(m¢) (5)

uAnm _ Em Tl—l— 1 7n
wpm ZZ z,y) Ry sm(md))

Equation (4) allows us to represent the optical flow fields
to an arbitrary degree of accuracy as v = M z, where

Vg P 0 2z

S EA R I A
The columns of P are the NV, basis vectors and z are the
Zernike coefficients, A7 and B)". As N, — oo, the re-
construction error of v from z becomes arbitrarily small. In
practice, M will be some subset of the Zernike basis vectors,
the remaining variance in the flow fields being attributed to
zero-mean Gaussian noise. Thus, we write v = Mz + n,,
where n,, < N'(0,A,), and so P(v|z) = N'(v; Mz, Ap).

2.2. Estimating the likelihood

We can now write down the likelihood of the image deriva-
tives given the high-level motion class (Equation 2) as

P(VFIX) = / N s — ooy AN (05 M2, AN (25 s M)

@)
where A = fsA; f! + Ao. This distribution is implicitly
conditioned on the image region, ¢, since the derivatives are
computed over this image region. We consider the image
region to be specified in this paper. We can perform the
integrations over v and z by successively completing the
squares in v and z to obtain

|/~\z,m\ Lt A7V hs o—pl AT pse—e)
P(Vf7|3?t) I e2 Wz oz abz, o=ty o Az abz,0
VIAAz,z |
®
where
Ay = (f;Ailfs + A(;l)71
Ao = (Ap+M A+ (FLAT F)™H M) ™!
fow = Azm(A;}ﬂyzﬁm — M’A(leww) 9
e = AV Ay w=flATH,

If we normalize this distribution over x, we can remove all
terms which are independent of x, and obtain

P(frlefs) |Az’z|e%(ﬁ'z,m[\;iﬁz,m*u’z,w/\;i#z,m).
Zz P(fT“rfS) V |Az,m|

(10)

The mean, /i, 5, and covariance, [xm, are the parameters of
the distribution of basis vector coefficients, z:

P(z| XVf) x e_(Z—ﬁz‘m)/i\;lz(z—[Lzym))

Thus, the most likely Zernike vector, Z, given the model can
be computed as z = ZN“”1 fii-:04 i, and the most likely
flow field, o, for a given state can be computed using

Uy = Mjis » (11)

2.3. Multi-scale implementation

The brightness constancy assumption fails if the velocity
v is large enough to produce aliasing. Therefore, a multi-
scale pyramid decomposition of the optical flow field must
be used. This results in distribution over the flow vectors,
P(v|Vf) ~ N(v; gy, Ayy), where A, = (fLA7Lf)~1 and
py = —A, fL A7 £, [13]. Using these coarse-to-fine esti-
mates, Equations 9 become

(AZs + M (Mg +Ay) " M)~
(A;glz:.uz,w + M/(Ad + Av)i

Az,w =

,az,:c = Az,:c 1,LL’U) (12)

2.4. Feature weighting

In general, we will not know which basis coefficients are
the most useful for our classification task: which basis vec-
tors should be included in A/, and which should be left out
(as part of np). Further, selecting a relevant subset of the
basis vectors for clustering can lead to significant compu-
tational savings. We build on the feature weighting tech-
niques of [6], which characterize the relevance of basis vec-
tors by examining how the cluster means, . ., are dis-
tributed along each basis dimension, &k = 1...N,. Rele-
vant dimensions will have well separated means (large inter-
class distance along that dimension), while irrelevant di-
mensions will have means which are all similar to the mean
of the data, p*. To implement these notions, we place a
prior on the cluster means uz z ™ J\/(u ,T), where T is di-
agonal with elements T2.. TN , and 77 is the feature weight
for dimension k. 77 will be Iarge if k£ is a dimension rele-
vant to the clustering task, while 77 — 0 if the dimension is
irrelevant. Feature selection occurs if we allow 77 = 0 for
some k. We place an inverse Gamma distribution on each
77,

P(r?|a,b) o (r2) = te b/ 7E,

This prior allows some control over the magnitude of the
learned feature weights, 72. Finally, an inverse-Wishart
prior on the covariances stabilizes the cluster learning:

P(Az x|047A*) X |Az.m|_(a+Nz+1)/2€_%tr(aA*A;"1T)a
where A* is the covariance of all the data, and « is a pa-

rameter which dictates the expected size of the clusters (the
intra-class distance).



2.5. Clustering flow fields

We learn the parameters of the mixture of Gaussians from
data using the expectation-maximization (EM) algorithm,
which maximizes the expected log-posterior

> / P(XZ|Vf, ") log P(VfXZO) (13)
X Z

over the model parameters, ©, where ©' are the current
estimates. The complete set of parameters in the model
is therefore ©® = {u.,A;, 04, 7, A1, Ao, Ap, v, a, b},
While  {u.,A.,0,,7} are learned from data,
{A1,A2,Ap,,a,b}, are fixed.  The bold face vari-
ables indicate sets of variables, X = {X,...Xx, }, where
N, is the number of flow fields, and similarly for Z and Vf£.
The EM algorithm alternates between “E” and “M” steps
until the increase in the log-posterior becomes smaller
than some convergence threshold. The expectation, or
“E”, step of the EM algorithm is the calculation of the
posterior according to Equation (10), using the current
model parameters, ©’.

The “M” step is then to maximize Equation (13) over
0, for which we can find analytical expressions by taking
derivatives. The update equations differ from those for a
standard mixture of Gaussians with feature weighting [6]
because of the integrations over z. To derive the EM update
equations, we only perform the integrations at the end. To
update the output mean, we set the derivative with respect to
the mean for state X = 4, 41, ;, to zero. The derivative picks
out the X, = 4 (written X ;) terms from the sum over ¢,
leaving, ’

N¢

N0
Z/ P(Xk,iszka))au -log P(zk| Xr.i) = 0. (14)
1 k Z,1

The derivative gives 72A;§(zk — i) F T s — p*),
and so we can solve for i ;

Ny
AL <Z u&) + T
k=1

where &, ; = P(X;,;|VfO) and £ ; = S, &4 Thus,
the most likely mean for each state x is the weighted sum of
the most likely values of z as given by Equation (9). Dimen-
sions of the means, /... ;, with small feature weights, 72, will
be biased toward the data mean, p*, in that dimension. This
is reasonable, because such dimensions are not relevant for
clustering, and so should be the same for any cluster, X.
The updates to the feature weights, 7, are

e = (EiNT;+T 1)1

N

2 _ b 1 *\ 2
Tk_a+Nz/2+1+2a+Nz+2;(uz’z’k Uk)

where (1, ; 1, p, are the k" dimensions of te and p*,
respectively. The updates to the feature weights show that

those dimensions, &, with ., ; 5 very different from the data
mean, yj, across all states, will receive large values of 72,
while those with . ; , ~ pi will receive small values of
2. Intuitively, the dimensions along which the data is well
separated (large inter-class distance) will be weighted more.

The updates to the covariance matrix, Ay, ;, are found in
a similar way, giving

N, A ~ ~ *
_ Zkil(Azﬂi + N/Z-,I,U/,z,z)gkyi - N’ZT’ilu/lz,iE‘,i + oA

Azi
’ §,Z+a+N’VV‘L+1

The prior covariance is represented with aA*, which sta-
bilizes the updates, avoiding matrix singularity problems in
the inverses in EquatioanlO). The updates to the prior over
xare given by ©, = S0 P(X5i|VS)/ S0 €.

3. Experiments
3.1. Probabilistic Projections

We performed two experiments to examine the advantages
of using the probabilistic projection described by Equa-
tion (12) over the naive projection given by z = Mpu,.
In the first, flow fields were reconstructed from 500 20 di-
mensional Zernike vectors, with all coefficients randomly
generated in the interval [—1,1]. The resulting flows (< 5
pixels/frame) were used to warp a synthetic 120 x 120 im-
age using linear interpolation. The original image, shown
in Figure 3(a), is a sine grating with added Gaussian noise
o = 5 greyscale values. An additional amount of Gaus-
sian noise (o = 5 again) was added after the warp. Fig-
ure 3 (b) and (c) show and example flow field and the cor-
responding warped image, respectively. Optical flow was

(a) original
Figure 3: Synthetic images and flows.

(b) flow field (c) warped

projected to the Zernike basis using both naive and proba-
bilistic methods. The probabilistic projection used a single
« state with a zero mean prior, ., , = 0, and a diagonal co-
variance A, ; = o0, .1, with o, , = 0.01. The coefficients
were compared with the ground truth. The mean Euclidean
distances were 1.08 + 0.32 for the probabilistic projection,
and 1.55 £ 0.37 for the naive projection. The mean differ-
ence (naive-probabilistic) was 0.48 £0.13, showing that the
probabilistic projection significantly outperforms the naive
method, as expected.

Our second experiment used the synthetic Yosemite
flow-through sequence, constructed from an aerial image



and a depth map [1]. Ground truth over the ground re-
gion is used to evaluate the performance of the projection
methods. There are 14 316x252 frames in the sequence,
and the flow fields range up to 4 pixels/frame. The ground
sections of two frames are shown in the top row of Fig-
ure 4, while the middle row shows the ground truth and the
estimate of the flow field using the method of [13]. We
pre-smoothed each image using separable Gaussian filters
(o0 = 1.0), and used a 3-level Gaussian pyramid. The noise
parameters were set to oy = 0.08, 02 = 1.0, o, = 10.0,
0o = 0.5 and oy = 0.1. The angular error 2 on the flow es-
timate is 8.4 + 12.0. The first 10 Zernike coefficients were

[REREEN
[RRN

naive probabilistic
Figure 4: Top: two frames from the Yosemite sequence.
Middle: Ground truth flow and estimate using [13]. Bottom:
reconstructed flow fields.

estimated for all frames using both naive and probabilistic
projections, and were used to reconstruct flow fields over
an elliptical region covering the rigid portion of the scene
using Equation 4. We used a single zero-mean p, = 0.0
model with diagonal covariance A, = 0.001. The bottom
row in Figure 4 shows the reconstructed flow fields for the
two projections. The average angular errors over all frames
for the reconstructions were 6.27 + 6.36 for the naive and
5.66 + 6.22 for the probabilistic projections. Again, we see
the advantage of the probabilistic projection.

3.2. Clustering

We clustered a set of 904 frames from a 3600 frame se-
quence of a person performing 4 different facial expres-
sions. The subject was imitating an on-screen cartoon face

2Theangular error, E, between ground truth v, and estimate v is E =
arccos(ve - ve ), Wherev = L (u,v,1)T

Vu2+v241
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Figure 5: Feature weights learned for facial expression data.

which was displaying 4 prototypical expressions: happy,
sad, surprised and angry. The person’s face was tracked us-
ing a simple flow-based tracker. Our models are all applied
over the tracked region in each image. It is the same dataset
used in [8], to which we refer for further details. The video
frames in this data set are not labeled, and so the analysis
is qualitative: our methods discover clusters of optical flow
fields, and we interpret these clusters, which can be related
to established high-level concepts.

We automatically selected 904 frames which had sig-
nificant motions in them by thresholding the mean magni-
tude of the optical flow. Applying our methods to all 3600
frames does not substantially change the result, since the
flow fields from the other frames all fall close to the ori-
gin, and so are represented by one of the learned clusters.
We used the first 16 Zernike coefficients for each horizontal
and vertical flow, resulting in a 32-dimensional basis vector,
Z. The noise parameters were set to o; = 0.08, oo = 1.0,
op = 10.0, 0 = 0.5 and o4 = 0.1. The feature weighting
parameters were settoa = 1, b = 0.01 and o« = 34. The pa-
rameters .  and A, , were initialized by choosing K data
points randomly as the initial seeds for K-means clustering,
and Gaussian distributions were fit to the resulting classes.
The feature weights 77 were all initialized to 1. The results
were relatively insensitive to the initialization.

We trained a model with 8 classes. Figure 5 shows the
final values of the feature weights, 72. The first 16 di-
mensions are the Zernike coefficients corresponding to hor-
izontal flow (*A, “B™ for n < 5), while the last 16
are those corresponding to vertical flow (VAJ",”B™ for
n < b), ordered by increasing n and m values. The fea-
ture weights are clearly favoring the vertical flows, because
a major component of the facial expressions are raising and
lowering of eyebrows. The four most relevant features are
{"B{,vA3,v A%,V AS}. There are six other moderately rel-
evant features. The remaining 22 features are irrelevant.

Figure 6 shows the reconstructed Zernike vectors plotted
along two of the relevant features (Y Bf,”A§). The clus-
ters are denoted by the shape and color of the data points.
Reconstructed optical flow fields (using Equation 11) are
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Figure 6: Clustering result for facial expressions along two most relevant features.
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frame 104

state 2
Figure 7: Eyebrow raising classified as states 2 and 4. The corresponding eyebrow lowering is shown in Figures 9 and 10.
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frame 2173

Figure 8: Smiling event classified as state 3, surrounded by no motion (state 1) events.



shown for representative frames within each cluster. The
classes are roughly (1) little or no motion, (2) eyebrows rais-
ing slowly, (3) jaw expanding, (4) eyebrows raising quickly,
(5) jaw relaxing and (6) eyebrows lowering. The remain-
ing two classes corresponded to translational motions (7) up
and (8) down. However, these clusters only accounted for
a small fraction of the data. We do not consider them fur-
ther here. Figure 7 shows an example of a raising eyebrows
event. The flow fields and the reconstructions from the
model states are shown. The two central flow fields (105-
106-107) are detected as state 4 (eyebrows raising rapidly),
surrounded by more slowly raising eyebrow motions (state
2). Once the eyebrows reach their apex, the state returns to
1 (no motion) by frame 108.

Figure 8 shows a smiling event detected as state 3 from
frame 2174-2178, surrounded by state 1 events (no motion).
Figures 9 and 10 show the sequel to Figure 7, in which the
subject’s face returns to neutral. He begins by lowering his
eyebrows (Figure 9, frames 115-117), which is classified as
state 6, followed by a relaxation of his smile (Figure 10,
frames 162-164), which is classified as state 5.

state 6 6
Figure 9: Eyebrow lowering event classified as state 6.

4. Conclusions

We have demonstrated a method for learning the parameters
of a model for clustering flow fields with feature weighting.
Our results show that the method can be used to discover
the salient categories of instantaneous motions in video. We
have tested our methods on other data sets, and found inter-
pretable results. We are extending our methods to include a
temporal dynamical process over the cluster variable, X, re-
sulting in a feature weighted hidden Markov model (HMM),
and higher level variables, leading to mixtures of HMMs.
Acknowledgements: Supported by the Institute for Robotics
and Intelligent Systems (IRIS), a Canadian Network of Centres
of Excellence, and by a Precarn scholarship. The authors thank
Nando de Freitas, Don Murray and our anonymous reviewers.

state 5
Figure 10: Smile returning to neutral classified as state 5.
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