
Hierarchical Task Recognition and Planning in
Smart Homes with Partial Observability

Dan Wang and Jesse Hoey

David R. Cheriton School of Computer Science,
University of Waterloo, 200 University Avenue West Waterloo, ON, Canada N2L 3G1

d97wang@uwaterloo.ca, jhoey@cs.uwaterloo.ca

Abstract. This paper proposes a goal recognition and planning algo-
rithm, HTN-GRP-PO, to enable intelligent assistant agents to recognize
older adults’ goals and reason about desired further steps. It will be used
in a larger system aimed to help older adults with cognitive impairments
to accomplish activities of daily living independently. The algorithm ad-
dresses issues including partial observability due to unreliable or missing
sensors, concurrent goals, and incorrectly executed steps. The algorithm
has a Hierarchical Task Network basis, which enables it to deal with par-
tially ordered subtasks and alternative plans. We test on simulated cases
of different difficulties. The algorithm works very well on simple cases,
with accuracy close to 100%. Even for the hardest cases, the performance
is acceptable when sensor reliabilities are above 0.95.

Keywords: Hierarchical task network, goal recognition, partial observ-
ability, cognitive impairments

1 Introduction

Nowadays, more and more older adults suffer from cognitive impairments, which
cause difficulties in activities of daily living (ADLs) [3]. Developing intelligent
assistant agents (IAAs) in smart homes to guide them on ADLs becomes urgent.
IAAs are intelligent real-time reminders, prompting the older adult whenever
he/she is confused in ADLs. IAAs should at least gather sensor signals, be aware
of situations [2], recognize ongoing goals, and present effective assistances [9].

Due to limitations of sensors and privacy concerns, not all attributes of phys-
ical objects can be measured. Thus IAAs should cope with partial observability
due to missing or unreliable sensors. Older adults with cognitive impairments
commonly execute ADLs with irrational, repeated and disordered steps. IAAs
are required to identify these improper behaviors and present help. Geib et al.
[5] discussed several critical considerations of goal recognition for older adults,
including multiple concurrent goals, actions used for multiple effects, and failure
to observe. According to Hoey et al. [8], smart home assistance should be as
passive as possible, so as to maintain feelings of independence.

An IAA helping older adults with cognitive impairments on their ADLs
should address the following aspects: (1) Tolerate partial observability caused by

2

missing and unreliable sensors; (2) Recognize concurrent goals; (3) Detect im-
proper steps and rectify the older adult from mistakes; and (4) Present hints or
prompts of various detail levels, such as desired next steps or higher level tasks.
The proposed HTN-GRP-PO algorithm 1 addresses these issues. It adopts the
hierarchical paradigm as defined in Hierarchical Task Network (HTN) planning
[4]. With HTN, the goal recognition process to recognize ongoing goals and the
planning process to generate feasible next steps (or tasks) are combined together.
Partially ordered subtasks, alternative ways to achieve a goal, and preconditions
of tasks and steps are considered thanks to the expressive power of HTN. When
the algorithm is running, it tracks the ongoing goals, updates beliefs based on
new observations, reports wrong steps, and presents prompts with different de-
tails. Issues like unreliable or missing sensors, concurrent goals, and wrong steps
make the problem more difficult, and decrease the performance of the algorithm.

The paper is arranged as follows. Section 2 discusses related works. Section
3 defines the problem, Section 4 details the HTN-GRP-PO algorithm, Section 5
reports on simulations in silico, and Section 6 concludes the work.

2 Related Works

Kautz et al. defined goal recognition as finding possible top level tasks (goals) to
explain a set of observed steps [10]. The definition of goal recognition indicates
its hierarchical nature. In [1], goal recognition is classified as either single layer or
hierarchical. For single layer approaches, the reasoning process matches the raw
data observations directly to goals. The inference from data to goals, without
considering intermediate level tasks, makes status tracking not feasible. So a
non-hierarchical method is inappropriate for the IAA in this work.

Hierarchical approaches recognize the highest level goals and inner level sub-
goals. A milestone in goal recognition is the conceptual framework published
by Kautz and Allen[10]. They proposed the hierarchy format to represent top
level tasks and low level steps, and the concept of decomposition. Advantages of
hierarchical approaches are summarized in [1], including the suitability for rec-
ognizing high level tasks with complex structures, interactions with humans and
incorporating prior knowledge into the representation. HTN-based and ontology-
based hierarchical approaches are two main streams relating to this work.

HTN, a terminology in planning, is firstly proposed by Sacerdoti and Earl
in 1975 [15]. The seminal work by Goldman et al. [7] proposed HTN for goal
recognition. Their framework is called PHATT (Probabilistic Hostile Agent Task
Tracker), which can deal with partially ordered subtasks, overloaded steps, con-
textual influence on choices of steps and goals, and observation failures. An ad-
ditional module is added to PHATT to identify abandoned goals in [5]. Follow-
up work [6] summarized previous works and integrated PHATT with a con-
straint reasoning module for parametrized actions and temporal constraints.
The PHATT framework is very powerful, but assumes full observability of steps,
which is impossible in reality.

1 “Hierarchical Task Network based Goal Recognition and Planning with Partial Ob-
servability”

3

Ontology-based approaches highlight the modeling of activities and behav-
iors with rich semantics. They characterized activities into atomic, simple, and
composite ones [13]. Composite activities are formulated using both ontological
and temporal modeling formalisms. In [14], two types of composite activities
(concurrent and interleaved) and sequential activities are handled. They use
ontological reasoning for simple activity recognition and rule-based temporal in-
ference to recognize composite activities. To reason about temporal constraints
among subtasks of a composite task, Okeyo et al. [12] proposed a hybrid ontolog-
ical and temporal approach to model composite activities. Their work focused
on temporal constraints, not addressing partial observability.

Our algorithm is a HTN-based approach, where knowledge base is expressed
in methods and operators using similar formats described in SHOP2 [11]. It
adopts the plan execution concept in [7]. However, our algorithm explicitly con-
siders partial observation of steps and the feasibility of pending steps (or tasks).
The algorithm integrates goal recognition in planning by utilizing HTN. It can
not only recognize what the older adults is trying to do, but also what are the
proper next steps and tasks in order to achieve the recognized goals.

3 Problem Description

Helping older adults with cognitive impairments to implement ADLs needs to
recognize ongoing goals and to present prompts for next steps, which is a com-
bination of goal recognition and planning. The definition of the goal recognition
and planning problem in this work is given in Definition 1.

Definition 1 (Goal Recognition and Planning Problem). It is a tuple

P rp = (bs, obs,G, prior,D, PROB,PS),

where bs is belief state, obs is sensor readings, G is a set of goals, prior is
the prior probabilities of goals in G. PROB is a distribution showing the goal
recognition result, PS is the planning result with multiple levels, showing the
next tasks and steps in order to achieve PROB together with probabilities. Its
step level is PSstep. D = (O,M) is the knowledge base (methods and operators).

Table 1 (left) shows method prepare-hot-water. mName is the task name
that m can be applied to. A method having multiple branches with each has
precondition and subtasks indicates multiple ways to accomplish a task. parent
specifies methods whose subtasks contains mName. startStep are the beginning
steps of a goal. It is present only when m stands for a goal. Table 1 (right) is an

Table 1: Method (left) and Operator (right) example

nName prepare-hot-water
precondition {[(kettle-1, has-water, yes),

(kettle-1, switch, off),
(kettle-1, water-hot, not)]}

subtasks {[kettle-1-heat-water:
{pre: [], dec:[]}]}

parent [make-coffee, make-tea]
startStep NA (not a goal)

oName turn-on-faucet-1
precondition (faucet-1, state, off)

effect [(faucet-1, state, on)]
parent [wash-hand,

kettle-1-add-water]

4 Table 2: Problem Categories

Sensor Config.
Single Goal

Correct Step Wrong step
Multiple Goals

Correct Step Wrong step
Reliability p1 p2 p3 p4

Missing Sensor p5 p6 p7 p8

operator which can be applied to step turn-on-faucet-1. effect contains fluents
which become true after executing the step. It has similar format to that of
precondition. parent specifies all methods whose subtasks contains oName.

The problem in this work is classified into eight categories (Table 2) based
on three properties: the number of goals that the executed steps account for,
present wrong steps or not, with unreliable sensor or missing sensor. In the
“Sensor Config.” column, “Reliability” means that every sensor has a reliability.
“Missing Sensor” means that some sensors are missing and the agent knows
about which ones are missing. As one can imagine, p1 is the easiest problem
category, while p8 is the hardest one.

4 Algorithm

4.1 Terminologies

Changes of sensor measurements at a time point will trigger an algorithm itera-
tion. An iteration reasons about the new bs and the new PROB and PS result
by adding the observations from the just happened step. Simultaneous steps are
not considered in this work. An example iteration, shown in Table 3, changes
P rp
0 to P rp

1 . Note G, prior, and D are neglected because of no change. PS1 has
several levels to provide help in different details. Only the step level (level 0)
and a task level (level 1) are shown to save space. obs is not the outcome but the
trigger of an iteration. The iteration in Table 3 is triggered by obs1. Similarly,
obs2 will trigger the next iteration.

The proposed algorithm lies on explanations. Typically, a goal recognition
result should explain observations so far. Multiple explanations exist when con-
sidering partial observability. The recognition result would be a distribution
over possible explanations. To obtain next steps or tasks hint, ongoing statuses
of goals should be tracked. Based on those considerations, definition 2 shows the
structure used to explain observations so far in this work.

Table 3: The Outcome of an Algorithm Iteration

P rp
0 P rp

1

Variable Value Variable Value

bs0 (faucet-1, state,
{off : 0.999, on: 0.001})

bs1 (faucet-1, state,
{off : 0.0001, on : 0.9999})

obs1 [(faucet-1, {state, on})] obs2 [(hand-1, {soapy : yes, dry : no})]
PROB0 wash-hand : 0.333,

make-coffee: 0.333,
make-tea: 0.333

PROB1 wash-hand : 0.3574,
make-coffee: 0.3213,
make-tea: 0.3213

PS0 level-0:
turn-on-faucet-1 : 0.666,
switch-on-kettle-1 : 0.333

PS1 level-0:
use-soap: 0.357,
add-water-kettle-1 : 0.643
level-1:
clean-hand:0.357,
prepare-hot-water:0.643

5Table 4: Explanations after the Iteration shown in Table 3

Variable expla1 expla2 expla3

prob 0.3574 0.3213 0.3213
forest [goalN1], in Table 5 [goalN2] [goalN3]

pendingStep [use-soap] [add-water-kettle-1] [add-water-kettle-1]
startGoal wash-hand : True,

make-tea: False,
make-coffee: False

wash-hand : False,
make-tea: True,
make-coffee: False

wash-hand : False,
make-tea: False,
make-coffee: True

Definition 2 (Explanation). An explanation, expla ∈ ExplaSet, is a tuple

expla = (prob, forest [], pendingStep [], startGoal{}),

where prob tells to which degree we can rely on this explanation. forest is a
list, with each element recording the ongoing status of a goal. pendingStep
is the next steps suggested by the explanation to proceed towards ongoing goals.
startGoal records goals that are ongoing in this explanation.

Table 5: goalN1 for expla1 in Table 4

Variable Value
goalName wash-hand

tree tree1, in Fig. 1
expandProb 1.0

pendingGoalNet [decompGN1] in Fig. 1
completeness False

executeSequence {turn-on-faucet-1,
(faucet-1, state, on)}

Each iteration computes PROB
and PS based on explana-
tions (see Definition 2), which
are stored in ExplaSet. Mul-
tiple explanations might ex-
ist to explain a given observa-
tion series. The iteration in Ta-
ble 3 gets ExplaSet containing
expla1, expla2 and expla3, with
each a complete explanation for
obs = {obs1}. They are shown
in Table 4. expla1 believes that wash-hand is ongoing and the supposed next
step is use-soap. goalN1 records the ongoing status of wash-hand. Table 5 and
Fig. 1 explains the goal network. tree is a hierarchical task network reflecting
the ongoing status of the goal goalName. For example, tree1 in Fig. 1 shows that
turn-on-faucet-1 for wash-hand has been finished. expandProb tells the proba-
bility of this way being chosen. pendingGoalNet is the results of decomposing

Fig. 1: tree1 and decompGN1 in goalN1

6 Fig. 2: An Algorithm Iteration

tree, which is a list. Each element in pendingGoalNet is a feasible way to pro-
ceed towards goalName from the status in tree. Fig. 1 tells use-soap proceeds
from tree1 towards wash-hand. Only decompGN1 is derived means that there is
only one way to decompose clean-hand which explains decompProb = 1.0.

In summary, an iteration reasons with Explanations, which are stored in
Explanation Set. A goal network in an explanation’s forest explains the
ongoing status of a goal. More than one goal networks in forest indicate concur-
rent goals. A decomposed goal network in a goal network’s pendingGoalNet
stands for a specific way to proceed towards the corresponding goal.

4.2 The HTN-GRP-PO Algorithm

Fig. 2 is the algorithm flow chart, with the iteration in Table 3 as the example.
Inputs and outputs of each module are included. Compute PSstep Posterior is
the step recognition process adopting Bayesian inference as shown in Equation 1
and 2. Its output is (PSstep)posterior. Equation 1 is applied to every step in
(PS0)step. Note that 0.999 is used in Equation 2 because when the precondition
of stt is not satisfied, it is usually impossible to happen. p(stt) in Equation 1 takes
the corresponding probability in (PS0)step. Equation 3 explains wrong steps
detection. Comprehensive experiment results show that if otherHappenProb is
bigger than 0.75, a wrong step happens.

Update bs also adopts Bayesian inference. Because the “wrong step” branch
is dropped, (PSstep)posterior is normalized to get (PSstep)′prior which become the
new priors of steps. The algorithm applies Equation 4 and 2 to every attribute re-
lated to the current iteration. Given an attribute, the sum over st−1 in Equation
4 enumerates all possible values of the attribute.

p(stt|obst) =
p(stt, obst)

p(obst)
∝ p(stt, obst) =

∑
st

∑
st−1

p(stt, st, st−1, obst)

=
∑
st

∑
st−1

p(st|st−1, stt)× p(obst|st)× p(st−1)× p(stt)
(1)

7

p(st|st−1, stt) =

{
0.999, if stt(precondition) ⊂ st−1 and θ(stt, st−1) ⊂ st
0.001, otherwise

(2)

otherHappenProb = 1−
∑

st∈PSstep

(PSstep)posterior(st) (3)

p(st|obst) =
∑
st−1

∑
st′t∈(PSstep)′prior

p(st|st−1, st′t)× p(obst|s′t)× p(st−1)× p(st′t)

(4)

new expla(prob) = stprob × goalNet(expandProb)× expla(prob) (5)

Update ExplaSet . Given a step st ∈ (PSstep)′prior, each explanation expla ∈
ExplaSet0 will be updated to several new ones, which are stored in ExplaSet1.
It includes two procedures: recognition and decomposition. The recognition
procedure adopts a new goalNet to represent the new ongoing status of the cor-
responding goal and computes the new explanation probability using Equation
5. The creation of the new goalNets has two cases.

Case 1, st starts a new goal. Thus there is no goalNetbase for creating the
new one. A bottom up procedure is used to create a new goalNet from scratch.
For example, with st = turn-on-faucet-1, when creating goalN1 for expla1 in
Table 4, the bottom up procedure creates tree1 as shown in Table 1. Note that
case 1 enables the algorithm handle concurrent goals. Case 2, st continues an
ongoing goal. In this case, a proper decomposed goal network is chosen from the
given goalNet(pendingGoalNet) as the new goalNet. For example, given expla1
in Table 4 and st = use-soap, decompGN1 (Fig. 1, right) will replace goalN1,
becoming the new goalNet in the new explanation.

The decomposition procedure creates pendingGoalNet for a goalNet. In
Table 5, goalN1(pendingGoalNet) is obtained through the decomposition pro-
cedure. The decomposition result is shown in the right part of Fig. 1. When
applying methods for decomposition, the probability that a precondition is sat-
isfied is computed and accumulated to derive decompProb, which indicates to
which degree the corresponding decomposition path is feasible in bs. The de-
composition process that ends every leaf in tree is either a node standing for a
step or a node standing for a task satisfying node(data)(readiness) == False.

Wrong Step Handling. This module rectifies existing explanations so as
to restore from the wrong step. Fig. 3 is an visualization example. Assume that

Fig. 3: A Wrong Step Handling Example

8 Fig. 4: The Hierarchical Task Network for Experiment

expla contains ongoing status of wash-hand as shown in the left tree of Fig. 3.
So the desired next step is use-soap. However, a wrong step is reported during
the computation of (PSstep)posterior. The observation indicates that the effect
of step turn-on-faucet-1 has been destroyed by the wrong step. The wrong step
handling module rectifies the ongoing status of wash-hand to the point as shown
in the right tree of Fig. 3. Consequently, the algorithm will remind the the older
adult to do turn-on-faucet-1 again.

Compute PROB and PS . This module purely depends on the latest
ExplaSet. The probability of goal g in PROB is the sum of probabilities of
explanations whose startGoal contains g. The probability of a task t(or step st)
in PS is the sum of probabilities of explanations whose forest contains a node
standing for t (or st) with completeness being false while readiness being true.

5 Experimental Simulations

5.1 Knowledge Base, Sensors, and Simulator

Scenario. Helen is an older adult with mild Alzheimer’s disease. She has prob-
lems doing three daily tasks in the kitchen: washing hands, making a cup of tea,
and making a cup of coffee. Her caregiver reports her common mistakes. When
washing hands, she might forget to use soap or turn the faucet off, or repeatedly
rinse her hands. Similar issues happen when making a cup of tea or coffee. The
caregiver hopes an IAA can help her complete those tasks independently.

The Knowledge Base has three goals : wash-hand, make-tea and make-
coffee. Although M and O are individual pieces, they implicitly indicate a hi-
erarchical plan graph, as shown in Fig. 4. Root nodes stand for goals G. Leaf
nodes are the lowest level steps. Other internal nodes are inner level tasks. Each
goal or task node corresponds to a method in M . Each step node corresponds
to a step in O. To save space, details of M and O are not given.

According to the knowledge base, 18 virtual binary sensors (Table 6) are
set up for the sake of simulation. Sensor reliability has four values, [0.99, 0.95,
0.9, 0.8]. We use ID to refer an sensor. obj and att determines which attribute
the sensor is monitor. The simulator simulates real environment state changes

9
Table 6: Sensors Used in the Experiment

(Initial values are in boldface)

ID Obj Att V alue ID Obj Att V alue

1 hand-1 soapy no, yes 10 kettle-1 water-hot no, yes
2 hand-1 dirty yes, no 11 cup-1 location cabinet, table
3 hand-1 dry yes, no 12 cup-1 has-water no, yes
4 faucet-1 state on, off 13 cup-1 has-tea no, yes
5 faucet-1 location kitchen, washroom 14 cup-1 has-coffee no, yes
6 person-1 location kitchen, washroom 15 tea-box-1 location table, cabinet
7 person-1 ability 0.6, [0-1] 16 tea-box-1 open no, yes
8 kettle-1 has-water no, yes 17 coffee-box-1 location table, cabinet
9 kettle-1 switch off, on 18 coffee-box-1 open no, yes

Table 7: Test Cases for Problem Categories

Sensor Config.
Single Goal

Correct Step Wrong step
Multiple Goals

Correct Step Wrong step
Reliability Case 1-3 Case 6-9 Case 4-5 Case 10-11

Missing Sensor Case 1-3 Case 6-9 Case 4-5 Case 10-11

and step executions. No real human are involved in the experiment, however,
our study is applicable to cases in reality. Given an input step, the simulator
firstly updates real state according to the effects of the step, and then changes
sensor measurements based on the simulated real state and sensor reliability.

5.2 Test Cases and Evaluation Criteria

Each test case is a list of steps in the order of execution. It accounts for one single
goal or multiple goals. Noisy wrong steps can exist in the list. The algorithm
reasons about PROB and PS for each step. The ground truth of each step’s
PROB and PS in a test case can be obtained from the knowledge base shown
in Figure 4. Table 7 presents test cases for each problem category. All test cases
are based on the knowledge base in Section 5.1. Table 8 selects one case for each
category to show.

An iteration computes PROB and PS after each step. Given a step, PROB
is correct if the ongoing goal has the highest probability. PS can be partially
correct since it involves different levels. To simplify evaluation, we measure PS
in a strict way. PS is correct only when its lowest step level is correct, which
guarantees a complete correct PS. Note that recognizing the older adult’s intent
and providing proper hints are both important for an IAA. Thus PROB and
PS are considered with equal weights. Assume that the number of steps in a
test case is N , the number of iterations with correct PROB is PROBC , and
the number of iterations with correct PS is PSC . The performance is computed
using Equation 6. Thanks to the strict criterion on PS, the real performance
of the algorithm is better than the computed performance. Each test case is
run 20 times and the average performance is computed. The algorithm removes
explanations with probability smaller than 0.001 to avoid too much calculation.

Performance =
0.5× PROBC + 0.5× PSC

N
× 100% (6)

10 Table 8: Example Test Case for Each Category
(wrong steps have underlines; steps for wash-hand in case 5&10 are boldface)

Case 1
wash-hand

Case 5
wash-hand, make-coffee

Case 10
wash-hand, make-coffee

turn-on-faucet-1 turn-on-faucet-1 turn-on-faucet-1
use-soap add-water-kettle-1 use-soap

rinse-hand turn-off-faucet-1 rinse-hand
turn-off-faucet-1 switch-on-kettle-1 rinse-hand

dry-hand turn-on-faucet-1 turn-off-faucet-1

Case 8 use-soap turn-on-faucet-1
wash-hand rinse-hand dry-hand

turn-on-faucet-1 turn-off-faucet-1 add-water-kettle-1
use-soap dry-hand turn-off-faucet-1
use-soap switch-off-kettle-1 switch-on-kettle-1

turn-off-faucet-1 get-cup-1 switch-off-kettle-1
turn-on-faucet-1 open-coffee-box-1 get-cup-1

use-soap add-coffee-cup-1 open-coffee-box-1
rinse-hand close-coffee-box-1 add-water-cup-1
rinse-hand add-water-cup-1 close-coffee-box-1
dry-hand drink open-coffee-box-1

turn-off-faucet-1 add-coffee-cup-1
close-coffee-box-1

drink

5.3 Results and Discussion

The average accuracies of all the test cases with changing reliabilities is presented
in Table 9, for which we conclude: (1) The performances positively correlate with
sensor reliabilities. When sensor reliabilities reduce, the average accuracies de-
teriorate as well. (2)The easiest problem category p1, which targets problems
with single goal and correct steps, has the best performance. The average accu-
racies are very high even when sensor reliabilities are only 0.8. (3) The hardest
problem category p4, which targets problems with multiple goals and wrong
steps, has the worst performance. The accuracies are acceptable only when sen-
sor reliabilities are above 0.95. This result is reasonable since the algorithm has
to deal with noisy sensors, multiple goals and wrong steps. (4) The other two
categories, p2 and p3, have similar performances, which are acceptable when
sensor reliabilities are above 0.9. The results in Table 9 demonstrate the pro-
posed algorithm’s capacity to solve the goal recognition and planning problem
described in Definition 1. Our algorithm can efficiently handle issues including
partial observability, wrong steps, unordered steps, and simultaneous goals.

The influence of sensor reliabilities on PROB. Fig. 5 shows the PROB
of case 10. Wrong steps are marked with *. The convergence of PROB is cor-
related with sensor reliability. The probabilities of ongoing goals outweigh those
of non-happening goals after the second or third steps. The probabilities of goal
make-tea and make-coffee align with each other until step get-cup-1 because
they have the same step sequence before get-cup-1 (refer Fig. 4). A goal’s prob-
ability drops to 0.0 when it is finished. The horizontally straight lines in plots
with sensor reliability 0.9 and 0.8 means the algorithm gets lost and does not

11

Table 9: Average Performances on Test Cases (Sensor reliabilities, in bold)

Case Num. 0.99 0.95 0.90 0.80

Case 1 100% 97% 95% 93%

Case 2 100% 99% 99% 97%

Case 3 100% 100% 98% 98%

Case 4 99% 99% 90% 79%

Case 5 100% 99% 93% 86%

Case 6 100% 98% 93% 44%

Case 7 100% 99% 98% 96%

Case 8 100% 96% 94% 59%

Case 9 100% 92% 83% 62%

Case 10 100% 90% 70% 66%

Case 11 100% 94% 79% 69%

Fig. 5: The PROB Output for Case 10 (wash-hand, make-coffee)

update the explanations any more. The algorithm usually get lost when wrong
sensor measurements, improper priors, and wrong steps happen together.

A missing sensor is the same as a sensor having reliability 0.5. The algorithm
deals with known missing sensors by regarding their reliabilities as 0.5. Experi-
ments with missing sensors suggest how to set up sensors. (1) Sensors related to
start steps of goals should not be missing. (2) If a step related to multiple sen-
sors, one of the sensors is missing can be tolerated. (3) A sensor relates to many
steps should not be missing. (4) If the older adult repeatedly makes mistakes on
some steps, the related sensors should not be missing.

6 Conclusion

This proposed HTN-GRP-PO algorithm is a HTN framework based goal recog-
nition and planning process. The recognition and planning procedures are highly
coupled. The HTN framework reduces the search space for goal recognition. The

12

planning procedure generates the desired next steps to proceed towards ongo-
ing goals. It addresses issues including partial observability due to unreliable or
missing sensors, concurrent goals, and incorrectly executed steps. The algorithm
is tested on cases with different difficulties. An interesting future direction is
extending the algorithm to handle step duration and shared steps.
Acknowledgments: We thank the support of AGE-WELL NCE Inc., the Canadian
Consortium on Neurodegeneration and Aging, and of the Alzheimers Association (grant
number ETAC-14-321494).

References

1. Aggarwal, J. K., and Ryoo, M. S. Human activity analysis: A review. ACM
Computing Surveys (CSUR) 43, 3 (2011), 16.

2. Cook, D. J., Hagras, H., Callaghan, V., and Helal, A. Making our envi-
ronments intelligent. Pervasive and Mobile Computing 5, 5 (2009), 556–557.

3. Desrichard, O., and Köpetz, C. A threat in the elder: the impact of task-
instructions, self-efficacy and performance expectations on memory performance
in the elderly. European Journal of Social Psychology 35, 4 (2005), 537–552.

4. Erol, K., Hendler, J., and Nau, D. S. HTN planning: Complexity and expres-
sivity. In AAAI (1994), vol. 94, pp. 1123–1128.

5. Geib, C. W. Problems with intent recognition for elder care. In Proceedings of
the AAAI-02 Workshop Automation as Caregiver (2002), pp. 13–17.

6. Geib, C. W., and Goldman, R. P. A probabilistic plan recognition algorithm
based on plan tree grammars. Artificial Intelligence 173, 11 (2009), 1101–1132.

7. Goldman, R. P., Geib, C. W., and Miller, C. A. A new model of plan
recognition. In Proceedings of the Fifteenth conference on Uncertainty in artificial
intelligence (1999), Morgan Kaufmann Publishers Inc., pp. 245–254.

8. Hoey, J., Poupart, P., von Bertoldi, A., Craig, T., Boutilier, C., and
Mihailidis, A. Automated handwashing assistance for persons with dementia
using video and a partially observable Markov decision process. Computer Vision
and Image Understanding 114, 5 (2010), 503–519.

9. Hwang, A., and Hoey, J. DIY smart home: narrowing the gap between users
and technology. In Proceedings of the Interactive Machine Learning Workshop,
2013 International Conference on Intelligent User Interfaces (2013).

10. Kautz, H. A., and Allen, J. F. Generalized plan recognition. In AAAI (1986),
vol. 86, p. 5.

11. Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D.,
and Yaman, F. SHOP2: An HTN planning system. J. Artif. Intell. Res.(JAIR)
20 (2003), 379–404.

12. Okeyo, G., Chen, L., and Wang, H. Combining ontological and temporal for-
malisms for composite activity modelling and recognition in smart homes. Future
Generation Computer Systems 39 (2014), 29–43.

13. Okeyo, G., Chen, L., Wang, H., and Sterritt, R. A hybrid ontological and
temporal approach for composite activity modelling. In Trust, Security and Privacy
in Computing and Communications (TrustCom), 2012 IEEE 11th International
Conference on (2012), IEEE, pp. 1763–1770.

14. Okeyo, G., Chen, L., Wang, H., and Sterritt, R. A knowledge-driven ap-
proach to composite activity recognition in smart environments. In Ubiquitous
Computing and Ambient Intelligence. Springer, 2012, pp. 322–329.

15. Sacerdoti, E. D. A structure for plans and behavior. Tech. rep., DTIC Document,
1975.

