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ABSTRACT

Affect-Sensitive Human-Computer Interaction is enjoying growing
attention. Emotions are an essential part of interaction, whether it
is between humans or human and machine. This paper analyses the
interaction of a user with four different virtual avatars, each mani-
festing distinct emotional displays, based on the principles of Affect
Control Theory. Facial expressions are represented as a vector in a
3D continuous space and different sets of static visual features are
evaluated for facial expression recognition. A probabilistic frame-
work is used to simulate the interaction between the user and the
virtual avatar. The results demonstrate that the probabilistic frame-
work enables the system to perceive user’s and agent’s feelings.

Index Terms— Emotion, Facial Expression, Affect Control
Theory, Human Computer Interaction, Affective Computing

1. INTRODUCTION

Affect (emotion) is an integral part of human perception and
communication. Recently, integration of affect into Human-
Computer Interaction (HCI) has gained much attention [1} [2].
It has been argued that systems capable of sensing and re-
sponding appropriately to users’ affective feedback are likely
to be perceived as more natural, persuasive, and trustwor-
thy [3]. Facial expressions are the predominant non-verbal
cues observed to infer an emotional state. Automatic facial
expression recognition has been focused on categorising the
emotions in predefined sets of universal categories. However,
these categories do not cover the vast spread of emotions and
the subtle expressions that humans display and perceive. On
the other hand, representing emotions in a continuous multi-
dimensional space enables encoding subtly different expres-
sions and mixed emotions. Corneanu et al. [4] presents a sur-
vey on the latest trends in facial expression analysis.

In this paper, we first evaluate three different pseudo-
static features for continuous facial expression recognition.
Furthermore, we propose a technique that predicts a virtual
avatar’s preception of a user’s affective state during an in-
teraction based on the continuous facial expressions of the
user. The paper demonstrates preliminary results and shows
that this information can be leveraged to design emotionally
aware human-computer interaction systems.

2. MODEL AND DATA

The proposed system is developed based on the social-
psychological principles of Affect Control Theory (ACT) [5]].
ACT proposes that people have fundamental (out-of-context)
sentiments, which are representations of social objects, such
as interactants’ identities and behaviors or environmental
settings in a 3D affective space Evaluation-Potency-Activity
(EPA). These fundamental sentiments are culturally shared,
meaning that there is implicit agreement amongst people of a
similar culture about the affective connotations (meanings) of
things. Fundamental sentiments are measured in large-scale
human surveys and stored in dictionaries Transient impres-
sions, which are also three-dimensional vectors in EPA space,
result from the interaction in a social event which may cause
deviation in the identity or behavior from their corresponding
fundamental sentiments. The formation of transient impres-
sions is also a culturally shared phenomenon. ACT proposes
that people try to maintain consistency (alignment) in an
interaction, and keep transient impressions close to funda-
mental sentiments. Emotions in ACT have a clear definition
as the vector difference between fundamental sentiments and
transient impressions. Emotions are signals sent from one
interactant to another in order to help maintain the alignment.

In this work, we used BayesACT [6l [7, [8], a generaliza-
tion of ACT. It keeps multiple hypothesis about both identi-
ties and behaviors as a probability distribution and is a se-
quential Bayesian model that estimates and updates distribu-
tions over fundamental sentiments, transient impressions and
emotions over time from actions and observations. The dis-
tributional modeling of sentiment enables an artificial agent
to provide more enriched interaction experience to users by
learning their identities, taking into account their behaviours
and emotions. The BayesACT engine is able to choose an
action that minimizes deflection according to ACT principles.

The Semaine database [9]] provides extensive annotated
audio and visual recordings of a person interacting with
an emotionally limited avatar, or sensitive artificial listener
(SAL), to study natural social behavior in human interac-

'We use the Indiana 2002-2004 study in this work.



tion. Each video is a recording of a conversation between a
user and a human actor. The avatar was asked to act in one
of the four SAL avatars in each video: “Poppy” is happy
and tries to make the user happy; "Spike acts angry; ”Oba-
diah” is sad and depressed; and ”Prudence” is sensible and
even-tempered. The video recordings were transcribed and
annotated frame by frame by 6 to 8 raters into five affective
dimensions: Valence, Power, Activation, Anticipation, and
Intensity. The first three dimensions constitute our EPA space
in the studies. Since only a few videos of the avatar are an-
notated and the avatar is acting in different characters, we
only use user’s clips instead, which gives us 93 clips with 20
persons involved. The video is recorded at 49.979 frames per
second and the emotions are annotated from -1 to 1.

3. EMOTION PREDICTION

3.1. Implementation

We first experimented with three commonly used pseudo-
static visual feature descriptors extracted from raw face im-
ages and compared their accuracy in predicting a person’s
Evaluation, Potency, and Activity (EPA) scores. These de-
scriptors are Action Unit (AU) [10], Histogram of Oriented

Gradient (HOG) [[L1]], and Felzenszwalb’s HOG (FHOG) [12].

The three feature descriptors characterize human faces from
different aspects:

e AU encodes muscular activity that produces appear-
ance changes, commonly used to analyze facial expres-
sions. The AU activation information was used as a
high level feature descriptor.

e A typical low-level feature descriptor, HOG splits an
image into a number of non-overlapping cells. For each
cell, it computes a histogram of gradients, discretized
into 9 orientation bins and normalized with the total
energy of the four 2x2 blocks containing this cell. The
parameters mentioned here are chosen manually. This
descriptor is commonly used for localizing face posi-
tions and is paired with an SVM classifier.

e FHOG is a variant of HOG that reduces the HOG fea-
ture space using principal component analysis, which
makes it possible to use fewer parameters in its models
to speed up detections and learning processes.

For each feature descriptor, we employed the same work-
flow illustrated in Fig. [I] for training and testing models. At
first, we randomly split 93 video clips into a training set and
a test set. The training set has 75 clips and the test set has
18 clips for tuning and evaluating the model. For each image,
we localized and aligned the face in the image, then extracted
the feature using one of the three descriptors. We leveraged
OpenFace [[13], an open-source framework, to localize face
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Fig. 1. An overview of training and continuous prediction.

Table 1. Number of dimensions used for each feature descrip-
tor before and after dimension reduction.

Feature Descriptor | Before PCA ‘ After PCA

AU 17 7
HOG 5184 49
FHOG 4464 153

positions and extract features from aligned facial images. We
used LibSVM [[14]] for training and testing models.

We initially employed all the 93 annotated videos from
the Semaine database for model training and this translated to
well over one million images. However, we soon found this
large amount of data exceeding the memory capacity, during
the training of the models. We therefore sampled one frame
every 0.4 second from the videos, resulting in 50,601 images
for training and 12,315 for testing. To further optimize the
time required for training, we used principal component anal-
ysis (PCA) to reduce the feature space. The first k eigenvec-
tors that contain at least 80% variance in the training set were
selected. Table [Tl shows the dimension number after feature
extraction and after applying PCA.

For each feature descriptor, three models that correspond
to evaluation, potency, and activity were trained. We used
support vector regression (SVR) for training all models. The
radial basis function (RBF) kernel was used and 5-cross vali-
dation was performed towards the training set to tune param-
eters C, v, and e.

To evaluate a model’s prediction performance, we used
the root-mean-square error (RMSE) as our metric. We chose
the parameters with the least RMSE from cross validation to
train the models. The fitted models were evaluated with the
test set. Table[2]shows the RMSEs for each feature descriptor.
There are four conditions: AU without PCA, AU with PCA,
HOG with PCA, and FHOG with PCA. Because the original
AU descriptor has only 17 dimensions, applying PCA was
not necessary. However, we still applied PCA to AU for fair



Table 2. EPA prediction with different feature descriptors

. . - Training Set Test Set
Dimension Feature Descriptor RMSE ‘ COR ‘ RMSE ‘ COR
AU 0251 | 0127 | 0272 | 0.235
Evaluati AU+PCA 0252 | 0081 | 0273 | 0.205
vajuation HOG+PCA 0251 | 0082 | 0274 | 0213
FHOG+PCA 0251 | 0161 | 0277 | 0.121
AU 0225 | 0176 | 0.233 | 0.189
Poten AU+PCA 0227 | 0024 | 0234 | 0.081
ency HOG+PCA 0228 | 0040 | 0235 | 0.122
FHOG+PCA 0229 | 0087 | 0233 | 0.19
AU 0220 | 0303 | 0221 | 0352
Activit AU+PCA 0231 | 0181 | 0229 | 0.339
y HOG+PCA 0219 | 0336 | 0216 | 0414
FHOG+PCA 0217 | 0350 | 0214 | 0.444
AU 0232 | 0202 | 0242 | 0.259
@ ) AU+PCA 0237 | 0095 | 0245 | 0.208
verage HOG+PCA 0233 | 0153 | 0242 | 0250
FHOG+PCA 0232 | 0.199 | 0.241 | 0254

comparisons. We observed a worse performance after apply-
ing PCA to AU, understandably due to 20% loss of variance.
It is to be understood that AUs are high-level feature repre-
sentations, hence, already in a lower dimension. FHOG had
the best averaged accuracy among all four conditions. More-
over, activity received the best accuracy among the three EPA
dimensions, perhaps because it is easier to detect from facial
expression than evaluation and potency.

4. BAYESACT SIMULATIONS

With facial features transformed into the EPA space that char-
acterizes the users’ sentiments, we demonstrate the feasibility
of further building artificial systems that track users’ real-time
emotions through BayesACT simulations. The BayesACT
simulations allow the avatar to learn a model of the user’s
emotional state based on the ACT principles. In this work,
we study how and to what extent avatars with distinct emotion
characteristics affect the user’s emotional states. Our analysis
provides preliminary evidence for BayesACT as a model for
integrating emotional intelligence within artificial agents.

BayesACT simulates the interactions between a user and
an avatar from the avatar’s perspective. In the simulation, the
user and the avatar take turns, and provide an EPA action that
denotes the emotional content of their current behaviour (e.g.
"talking to’ someone is good and powerful, while "yelling at’
someone is bad and powerful). In each turn, in addition to
providing an action, the user also supplies the current emo-
tional state. The avatar perceives the user’s emotional sig-
nal, and uses it to update its estimate of transient impressions
and fundamental sentiments. In this experiment, we supplied
the emotional signals extracted from the conversations in the
video as the input to BayesACT and analyzed the learned
users’ sentiment change for four avatars with different emo-
tional characteristics.

We set the user’s identity to ‘student’ (EPA: 1.5,0.3,0.8),

since all participants in the experiment were undergraduate or
graduate students. In each turn, the user or the avatar per-
formed the action ‘talk to’ (EPA: 1.5,1.3,0.9) to the other
party. When it was the user’s turn, the current (sampled every
5 seconds) EPA values from the facial expression database
were supplied as the emotional signalﬂ The raw EPA val-
ues ranged [—1,1] were transformed using a tangent func-
tion 2.77 * tan(EPA) to range [—4.3,4.3], as required by
the BayesACT engine. After each turn, the avatar generates
two groups of EPA values: the user’s emotion and the tran-
sient impression of the user’s identity. In addition, the avatar
converts these sentiments into labels. A label is an adjective
chosen from the sentiment dictionary that has the maximum
cosine similarity from the user’s current emotion EPA. When
aggregating the conversation simulations, the mean values of
EPA were calculated as a measurement of tendency. Since the
lengths of the videos varied, we aligned our data to use only
the first 200 seconds of each conversation. Therefore, each
simulation has at most 40 rounds.

4.1. Emotion Change during Simulations
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Fig. 2. Avatar’s posterior estimate of the user’s emotions.

The experiment results are illustrated in Fig.[2]and Fig. 3}
showing the avatars posterior estimate of the user’s emo-
tions and transient impressions of the user’s identity, respec-
tively. The figures illustrate the averaged values at each time
stamp for Evaluation, Potency, and Activity across all 18 test
videos. The user’s emotion changed significantly with dif-
ferent avatars. The users were positive, confident (powerful)
and calm when talking to a happy avatar, since EPA of the
happy avatar’s behaviors was similar to how a student should

2We present the simluations using the ground truth as input to more
clearly show the emotional prediction mechanism at work.
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Fig. 3. Avatar’s posterior estimate of the user’s transient im-
pressions.

behave. Therefore, the deflection was small and the conver-
sation went smoothly. However, when the avatar was angry,
the avatar behaved unpleasantly (more powerful and active),
which made the users feel more negative. When the avatar
was sad, the users maintained were less positive and less
active. Moreover, when the avatar changed to be sensible,
the users felt less positive compared with talking to a happy
avatar. User’s were evaluated as having more positive iden-
tities when interacting with the happy avatar, more powerful
when interacting with a sensible avatar, and less powerful
when interacting with a sensible avatar.
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Fig. 4. Four word clouds created by the top 15 words that
describe the user’s feeling when talking to Poppy (Happy),
Spike (Angry), Obadiah (Sad), and Prudence (Sensible).

4.2. Sentiment Labels

To better visualize how different avatars affect the user’s emo-
tion, we aggregated the sentiment labels generated from the
BayesACT simulations, which approximates users’ emotional
states. The aggregated labels were used to create four word
clouds as shown in Fig. 4{°’| Each word cloud contains the top
15 words that describe the user’s emotions from the avatar’s
perspective, for different avatars. The size of each word is
dictated by its frequency of appearance.

In the word clouds, the word ‘reverent’ appeared the most
number of times in all conditions, understandably represent-
ing the mental state of a student interacting with a person who
leads the conversation with more or less greater extents of
power. Other than ‘reverent’, the user showed different emo-
tions towards different types of avatars. From the avatar’s
perspective, the users felt ‘infatuated’, ‘intelligent’, ‘wise’,
‘touched’, and ‘confident’ when talking to a happy person.
They felt ‘strict’, ‘dogmatic’, and ‘authoritarian’, interact-
ing with an angry avatar. When talking to a sad avatar, the
users felt ‘sorry’, ‘touched’, ‘remorseful’, ‘repentant’, and
‘middle-aged’. When talking to a sensible avatar, the users
felt ‘middle-aged’, ‘sly’, ‘intelligent’, and ‘touched’. The
word cloud provides us with an impression of how the avatar
processes users’ emotions given their facial expressions in the
BayesACT simulations.

5. CONCLUSION

The paper addressed an interesting and challenging require-
ment of HCI, i.e. integration of emotional intelligence to add
empathy to the system. Facial expressions were recognised
in a 3D continuous domain. Based on the principles of ACT,
BayesACT was used to simulate interactions between a user
and distinct behaviour-styled avatars. The result demonstrates
affective information of users and avatars can be perceived
and thus can be used to build affective HCI systems. In the
simulations, we assumed the identity of user to be student
and action as ‘talk to’ in all the cases. However, this might
not always hold true. Despite these assumptions we see some
distinctive words generated in the word cloud based on the
behaviour of different avatars. We presented BayesACT sim-
ulation results using the database labels as input, but clearly
it would be preferable to use the automated facial expression
recognition. Our analysis shows that improvements will be
needed in 3D continuous facial expression recognition in or-
der to make this feasible. Once these improvements are made,
we plan to test this technique in assistive systems for persons
with dementia, e.g. by modeling the identity of the user and
avatar as ‘patient’ and “assistant’ [15} [16]].
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