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Abstract. Despite advances in gait analysis tools, including optical mo-
tion capture and wireless electrophysiology, our understanding of human
mobility is largely limited to controlled conditions in a clinic and/or lab-
oratory. In order to examine human mobility under natural conditions,
or the ’wild’, this paper presents a novel markerless model to obtain gait
patterns by localizing feet in the egocentric video data. Based on a belt-
mounted camera feed, the proposed hybrid FootChaser model consists
of: 1) the FootRegionProposer, a ConvNet that proposes regions with
high probability of containing feet in RGB frames (global appearance
of feet), and 2) LocomoNet, which is sensitive to the periodic gait pat-
terns, and further examines the temporal content in the stacks of optical
flow corresponding to the proposed region. The LocomoNet significantly
boosted the overall model’s result by filtering out the false positives pro-
posed by the FootRegionProposer. This work advances our long-term
objective to develop novel markerless models to extract spatiotemporal
gait parameters, particularly step width, to complement existing inertial
measurement unit (IMU) based methods.

Keywords: Ambulatory gait analysis · wearable sensors · deep convo-
lutional neural networks · egocentric vision · optical flow

1 Introduction

The lack of clinical information on a day-to-day basis hinders our understanding
of disease trajectories on multiple time scales, including diseases affecting gait
and balance (e.g., neurological conditions). Free-living (habitual) ambulatory
gait analysis has demonstrated unique insight into disease progression, with im-
plications for diagnosis and evaluating treatment efficacy. For example, spatial
metrics (e.g., step length), temporal metrics (e.g., step time), and gait irregular-
ities (e.g., compensatory balance reactions or near-falls) of free-living mobility
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behaviour have demonstrated promising capabilities to predict the risk of falling
in older adult populations.

The recent explosion of ambient sensors (e.g., motion capture sensors, force
mats), smart phones, and wearable sensor systems (e.g., inertial measurement
units, IMUs) have facilitated the emergence of new techniques to monitor gait
and balance control in natural environments and during everyday activities [14,
13, 30]. Embedded into living environments, ambient third-person video (TPV)
and depth cameras (e.g., Microsoft Kinect) have been investigated as means to
extract gait parameters [36, 37], detect episodes of freezing of gait in Parkin-
son’s disease [34], detect falls, and longitudinal changes in the patient’s mobility
patterns [35, 33, 38]. While TPV systems have demonstrated potential to de-
tect small changes over long periods (i.e., months to years), these approaches
suffer from visual occlusions (e.g., furniture), difficulty handling multiple resi-
dents, and extraction of spatiotemporal parameters when the full-body view is
unavailable. Moreover, they are restricted to fixed areas. Considering mobility
is characterized by moving the body from one location (i.e., environment) to
another, significant daily-life mobility data may go uncaptured without multiple
camera coverage using ambient sensors.

An alternative approach is to use wearables sensors affixed to the user’s
body. There have been many successful research programs using IMUs to moni-
tor physical (and sedentary) activity, identify activity types, estimate full body
pose, and measure gait parameters [30, 13, 14, 10, 52]. In particular, body-worn
IMUs have demonstrated excellent capabilities to measure temporal gait param-
eters. However, a critical drawback associated with the use of IMUs is inaccurate
estimation of key spatial parameters. In particular, step width is linked to gait
stability and have a strong association to fall risk [49, 7]. This measurement limi-
tation is largely attributed to a relative lack of motion in the frontal plane during
gait, resulting in small IMU excitation and low signal-to-noise ratio.

Egocentric first-person video (FPV), acquired via body-worn cameras, may
outperform IMUs for the purpose of estimating spatial parameters of gait. Bear-
ing in mind a waist-worn camera pointed down and ahead of the user, FPV offers
a potentially stronger signal for spatial estimation, especially in the frontal plane.
There are also secondary reasons for investigating FPV as a sensing modality.
Vision captures rich information on the properties of the environment that influ-
ence mobility behaviour, including slope changes (e.g., stairs, curbs, ramps) and
surfaces (e.g., gravel, grass, concrete) [11, 12]. Furthermore, FPV offers the po-
tential to reconstruct events by capturing the immediate environmental context
more readily than IMU-based data alone. Without detailed information of the
mobility context, such as the presence of other pedestrians, terrain characteris-
tics, and obstacles, the ability to interpret ambulatory gait data is constrained.
For example, FPV recordings have been used for the purpose of validation of
other IMU-based algorithms [9, 10] by manually viewing video frames and iden-
tifying specific events.

To address the problem of ambulatory measurement of spatial gait param-
eters, this paper tackles the initial problem of localizing feet in FPV frames
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in 2D coordinates of video captured from a belt-mounted camera. We propose
a method to generate pixel-wise foot placement outputs towards the eventual
goal of estimating spatial parameters (e.g., step width). The transformation be-
tween pixel outputs to distances, likely using 2D metrology approaches, is beyond
the scope of the current study and will be examined in subsequent works. To
achieve the foot localization solution, we first propose a FPV-based deep hy-
brid architecture called the FootChaser model (see Fig. 3). Comprised of a) the
FootRegionProposer model, which uses a ConvNet to propose high confidence
feet regions (or bounding boxes), and b) the LocomoNet, which examines the
temporal dynamics of the proposed regions to refine the FootRegionProposer
output by filtering the false positives to locate feet. An evaluation of the pro-
posed method to accurately localize feet is reported and discussed. Finally, as
the problem is new, a FPV dataset (see Fig. 4) is going to be prepared in the
near future for benchmark testing of anticipated advancements.

1.1 Related work

While there have been TPV-based research efforts utilizing smart phone or ambi-
ent camera video to assess gait (e.g., [33, 36, 37]) and estimate pose (e.g., [40, 39,
16, 41, 19]), the challenges and signals associated with FPV are distinct. There
are several factors that challenge the proposed concept: 1) occlusion or extreme
illumination conditions, 2) similar objects/terrain patterns to the feet (e.g., other
people’s feet), and 3) motion blur from fast movements. In this section, we fo-
cus on reviewing previous efforts using FPV to address these challenges and to
inform our chosen methodologies, i.e. camera type and wear location.

There are relatively few previous works aiming to extract spatial gait param-
eters using FPV. An interesting and novel approach was using a walker-mounted
depth and/or color camera to estimate 3D pose of lower limbs, mainly in frontal
plane [27, 25, 26]. To achieve this, Ng et al. [26] used general appearance model
(texture and colour cues) within a Bayesian probabilistic framework. In [25], a
Kinect (depth) sensor along with two RGB cameras were placed on a moving
walker, and the 3D pose was formulated as a particle filtering problem with a
hidden Markov model. The key limitation of these works is the dependency on
a stable platform (i.e., walker) to afford consistent views of the lower limbs and
monitor pose over time, which is not generalizable to individuals that do not
require a walking aid for ambulations.

The possibility of using one or several body-mounted cameras is investi-
gated for 3D full body [31, 15, 28] and upper limb (arms and hands) [23, 24] pose
estimation. In [31, 15], outward-looking body-mounted cameras along with op-
timization approaches were used to estimate 3D body pose. In [31] more than
ten cameras were attached to all the person’s joints, and structure from mo-
tion approach was used to localize the cameras, estimate the joint angles and
reconstruct human motion. The main limitation of the proposed method is the
obtrusive multi-camera setup and intensive computational load required to infer
pose in a video sequence. To alleviate the main weaknesses of [31], Jiang et al.
[15] developed a model based on synchronized egocentric videos captured by a
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chest-mounted camera and a Kinect sensor. The 3D body pose model employs
camera egomotion and contextual cues to infer body pose, without direct views
of the key body parts (i.e., legs, feet) desired for gait assessment. Moreover, the
videos were restricted to relatively static activities (i.e., sitting, standing). Such
restrictions and the failure to examine more complex (i.e., dynamic) scenarios
limits the applicability is the important limitation of of their approach to the
gait assessment problem.

In contrast to the previous studies, [29] and [28] utilized body-related visual
cues (outside-in/top-down view) provided by fisheye cameras attached to a bike
helmet and baseball cap, respectively. In [28], a ConvNet for 3D body pose esti-
mation was developed to address limitations in its former version [29], including
dependency on 3D actor model initialization and inability to run in real-time.
Although the authors compensated for the distortion imposed by the fisheye
lens, estimation of the lower body 2D heatmaps (ankles, knees, hip, and toes)
was less accurate due to the strong perspective distortion (i.e., a large upper
body and small lower body).

The closest approach in spirit to the proposed approach is a hybrid method
which combines both global object appearance (spatial network) and motion
patterns (temporal network) in a two-stream ConvNets structure. This approach
was inspired by Simonyan and Zisserman [5], in which a ConvNet was trained
by stacks of optical flow for the task of TPV-based activity recognition. Simi-
lar architecture is also employed in FPV-based methods to recognize different
activities [1, 4]. To capture long-term sequential information from FPV data,
recurrent neural network/long-short term memory (LSTM) was used by Abebe
et al. [2, 3] where stacked spectrograms generated over temporal windows from
mean grid-optical-flow vectors were used to represent motion [4].

Modeling temporal information in a specific regions enclosed by bounding
boxes in consecutive frames is investigated in some TPV-based studies [18, 22]. In
[21] an object-centric motion compensation scheme was implemented by training
CNNs as regressors to estimate the shift of the person from the center of the
bounding box. These shifts were further applied to the image stack (a rectified
spatiotemporal volume) so that the subject remains centered. More related to
our LocomoNet approach is the work by Brattoli et al. [18], in which a fully
connected network was trained to analyze the grasping behavior of rats over time.
Based on optical flow data of both initial positives (paw regions) and random
negatives cropped from other regions, temporal representation was learned to
detect moving paws.

2 The FootChaser framework

In this section, we describe the framework for proposing high confidence regions
by incorporating both temporal and spatial data, for the task of gait assessment.
As an alternative to inferring gait parameters from 3D pose estimates, we hy-
pothesized that tracking the centers of the person’s feet in 2D plane of walking
over time could provide accurate spatial estimates. The scope of this paper is to
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(a) 0%: Right heel Strike (RHS)        (b)  30%: Left Heel Rise                            (c)                  (d) 50%: Left heel Strike (LHS)                   (e)
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Fig. 1. Egocentric camera-based gait assessment overview. Panels a,b,c,d,e represent
different phases of gait captured by a belt-mounted camera. The x and y location
of the right foot (red bounding boxes) and left foot (green boxes) over consecutive
frames (XCoM: extrapolated center of mass). Rows f and g depict lateral sidestep
and lateral crossover compensatory balance reactions, respectively. These reactions are
important behaviours related to fall risk. Note the transformation between pixel-wise
box coordinates to distances is not covered in the current study.

first detect the feet, and examine the transformation between camera coordinates
to spatial locations in subsequent efforts.

Let Ii be the ith frame in a video sequence with the length N , captured
by a belt-mounted camera with an outside-in top-down view (i = {1, 2 · · ·N}).
The manually annotated ground truth (GT ) data is in the form of bounding
boxes GTf,i = [xGT

f,i , y
GT
f,i , w

GT
f,i , h

GT
f,i ] indicating the camera wearer’s feet (f =

{left, right}) in 2D 1080 × 1920 coordinate system of each frame (see Fig. 1).
x and y denote the center (CGT

f,i ), and w and h represent the width and height
of the bounding box(es) respectively (see Fig. 2). The goal of the FootChaser
framework is to detect and localize the centers of each foot (if present in the
frame) in the form Pf,i = [xPf,i, y

P
f,i, w

P
f,i, h

P
f,i] during the gait. In an ideal case,

the error measure (E) will be minimized for the x (E(xGT
f,i , x

P
f,i)), y (E(yGT

f,i , y
P
f,i))

trajectories and the underlying area should be the same for the P s and GT s.
The intersection over union (IoU) measure will be maximized (IoU = 1). The
predicted x (≈ frontal axis) and y (≈ sagittal axis) trajectories can be used to
estimate pixel-wise step width and step length gait parameters, respectively.

To investigate the feasibility of pixel-wise step-by-step gait parameter ex-
traction, the xGT

left, x
GT
right data are plotted in Fig. 2. While yGT

left and yGT
right were

examined for measurement of step length, we focus on step width estimation
in the current study. We observed that 1) the trajectories roughly resemble
the center of pressure (CoP) data captured by forceplates, 2) the local maxima
and minimuma are correlated with right heel strike (RHSs) and left heel strike
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Fig. 2. Sample bounding box X-coordinate time series data from dataset 2. Ground
Truth (GT) data for left (green) and right (red) feet, and FootChaser predictions with
1 identified region (blue). Annotated x location of left heel strike (LHS) and right heel
strike (RHS) are marked. Periods with 2 identified feet (GT-Two) are indicated by
dotted boxes.

(LHSs), respectively, and 3) GT data can be divided into frames with one foot
(GT −One), and both feet (GT − Two).

In most of the GT−Two frames, a small portion of the trailing foot is observ-
able (see Fig. 1), and is irrelevant for extraction of gait parameters. Considering
shape distortions affect detection results, we hypothesized that the ConvNet is
more likely to detect the other foot rather than the less-visible one similar to
the findings of Huang et al. [45] and Rozamtsev et al. [20]. In other words, in
the frames with two GT, the network often locates the center of the foot that is
required for the extraction of gait parameters.

Considering these cues, we surmised that tracking each foot separately is
unnecessary and frames with only one predicted center (i.e., foot) can be used
to extract step width. Specifically, (CP−one

i ) obtained from the FootChaser (P −
One = [xP−one

i , yP−one
i , wP−one

i , hP−one
i ]), regardless of the foot type f . As the

key signals for the calculation of spatiotemporal gait parameters (e.g., LHS and
RHS points), these can be observed from the xP−one and yP−one trajectories.

To achieve feet localization, we propose a two-stage FootChaser framework
comprised of two ConvNets: 1) FootRegionProposer and 2) LocomoNet. The
FootRegionProposer proposes n ∈ N bounding boxes as ’proposed foot regions’,
or PFRj,i, j = {1,..., n} in the ith frame. As there may be several false positives
in the proposed regions, we hypothesized that the FootRegionProposer results
may be boosted by applying another ConvNet, called LocomoNet, trained to be
sensitive to the periodic/specific movement patterns embedded in the user’s feet
regions during gait. In other words, the LocomoNet is expected to filter out false
positives by selecting the most confident regions. After applying the LocomoNet
on PFRj,i, only the frames with a single PFR are used for step width estimation
(see Fig. 2).
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2.1 FootRegionProposer

The FootRegionProposer is a ConvNet fine-tuned to propose PFRs in a
frame. The jth proposed region is in the form of a bounding box PFRj,i =
[xj,i, yj,i, wj,i, hj,i], where xj,i, yj,i, wj,i, and hj,i denote the center coordinates,
and width and height of the box, respectively (see sample PFRs marked by red
rectangles in Fig. 3). The training procedure for the LocomoNet is discussed in
subsection 3.2. As noted above, there are several factors that may challenge the
performance of the FootRegionProposer: 1) occlusion or extreme illumination
conditions can increase the number of false negatives, 2) objects or terrain simi-
lar to the feet (i.e., noise, see Fig. 4-c), and 3) motion blur from fast movements.
In addition to incorporating a fast and precise object localization/detection Con-
vNet (e.g., faster R-CNN [43], or YOLO [8]), a second ConvNet was applied to
the FootRegionProposer output to filter false PFRs (subsection 2.2).
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Applying the
LocomoNet
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Fig. 3. The FootChaser framework. First, the FootRegionProposer proposes n ∈ N
PFRj,i bounding boxes (red boxes), j = {1,2,..., n}) in the ith frame. Multiple regions
proposed are examined by LocomoNet to filter out false positives. After obtaining the
stacks of optical flow volume OFVi (V and U are vertical and horizontal 2D flow
components) from the [i − L/2, i + L/2 − 1] frames (L denotes the depth/length of
stack), LocomoNet inputs are obtained by cropping fixed size regions centered at the
center of each PFRj,i, i.e., (xj,i, yj,i), which creates the optical flow volumes from PFRs
(OFV −PFRj.i). Final FootChaser outputs reflect frames with a single proposed region
((CP−one

i ).

2.2 LocomoNet: Learning from gait patterns

To reduce the number of proposed false positives (i.e., false PFRs) by FootRe-
gionProposer Network (towards the goal of ’one’ true PFR), the dynamic tempo-
ral structure of the PFRj,i will be further examined by the proposed LocomoNet
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ConvNet. Inspired by Simonyan and Zisserman’s work [5], we consider examin-
ing optical flow features to deliver bounding boxes with higher confidence of
representing feet.

The horizontal U = {U1, U2, ..., UN−1} and vertical optical flow V =
{V1, V2,..., VN−1} can be calculated separately for each two consecutive frames
in the video sequence (the height and width of the U and V compo-
nents are equal to the frame’s 2D dimension, i.e., 1080 × 1920). Consider-
ing a fixed length of L consecutive frames, the optical flow volume OFVi =
{Ui−L/2, Vi−L/2,..., Ui+L/2−1, Vi+L/2−1} is obtained for the ith frame. In order to
represent the temporal information of PFRj,i, a fixed (Wc×Hc) region centered
at (xj,i, yj,i) is cropped from OFVi, which ends up to a (2L×Wc ×Hc) volume
of interest (OFV −PFRj,i) corresponding to that proposal (see Fig. 3). Each of
these volumes are fed into the LocomoNet for filtering. The training procedure
for LocomoNet is discussed in subsection 3.3. After applying the LocomoNet, if
the output frame has only one remaining FPR, the center of that PFRj,i will be
saved in the center vector (CP−One

i ). Otherwise, the corresponding component
will be replaced by NaN and will not be considered in the evaluation.

                         (a)                                  (b)                                   (c)                                   (d)                                   (e)

Fig. 4. Sample frames reflecting high inter-class and intra-class variability in terms of:
1) intense illuminations conditions and shadows (row 1-a,b), 2) different phases of gait,
3) different walking surfaces, e.g., color, texture (each column corresponds to a specific
environment and walking surface), and 4) motion blur during crossover and side-step
compensatory reactions (row 3-a,b).

3 Experiments

3.1 Dataset

Sufficiently large datasets are challenging to collect, often the primary bottleneck
for deep learning. As there are no publicly available datasets specific to our needs,
we employed large open datasets to initially train the FootRegionProposer and
collected novel data for further training and evaluation.
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For the FootRegionProposer, there are no available datasets with outside-in
top-down view images of the feet from different people with a considerable di-
versity in appearance (e.g., shoes with different colors, shape, barefoot, socks)
and movement (i.e., gait). To facilitate training, we decided to fine-tune [6] the
ConvNet based on real images with normal optics from large scale datasets,
which also boosts the generalizability of the network. We fine-tuned the Con-
vNet on Footwear (footgear) subcategory images (≈ 1300 images (with bounding
boxes), and 446 images of shoes from top-down view (with and without bounding
boxes, and we added the bounding boxes manually)) from the ImageNet 2011
[46] dataset. Such images resemble more realistic appearance of one’s footwear
from different views (compared to alternatives such as UT-Zap50K [17]).

In our dataset, 3 healthy young participants (researchers affiliated with the
University of Waterloo) participated in our data collection procedure. The FPV
data was collected, using a GoPro Hero 5 Session camera centered on partici-
pants’ belt (30fps, 1080×1920), with no specific calibration and setup. A wear-
able IMU was attached as closely as possible to the camera to collect movement
signals (for future experiments). Overall, 5 datasets (including 2 separate data
from 2 participants in different environments) were captured in five different in-
door (tiles, carpet) and outdoor environments (bricks, grass/muddy) around the
University of Waterloo campus, resulting in 4505 (= 5× 901) total frames (Fig.
4 shows samples from the dataset). Frames were annotated by drawing bound-
ing boxes around the right and left shoes (in PASCAL VOC format), using the
LabelImg tool [48].

In addition to the normal walking sequences, two participants were asked to
simulate compensatory balance reactions (CBRs: lateral sidestep, crossover, and
trip-like stepping) during gait (see Fig. 4-row 3 columns a,b for sets 1 and 2, and
the GT plot for dataset 2 in Fig. 6). CBRs (near falls) are reactions to recover
stability following a loss of balance (see Fig. 1-panels f and g), characterized
by rapid step movements (or reaching) to widen the base of support. CBRs
also introduce more challenge to our dataset as the corresponding FPV data is
usually blurry (i.e., fast foot displacement) (see Fig. 4) and the field of view may
be occluded.

3.2 FootRegionProposer Training

There are several models that can be taken into account for FootRegionProposer
weight initialization, including SSD (Single Shot MultiBox Detector) [42], faster
R-CNN [43], R-FCN [44]. In [45], it is shown that SSD models typically have
(very) poor performance on small objects, such as relatively small feet regions.
Among related approaches, YOLO [8] shows state-of-the-art results in terms of
speed and accuracy.

To implement the FootRegionProposer, the original YOLO version 2 from
the Darknet deep learning framework was used [8]. The pre-trained weights on
the large-scale ImageNet dataset were used for network initialization, which was
then fine-tuned on ImageNet shoe sub-category. The ConvNet was further fine-
tuned on images of shoes that are captured in realistic scenes from a top-down
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view. This experiment aims to advance higher detection accuracy, as they more
resemble the foot regions in our FPV data. The FootRegionProposer used 1290
and 138 images for training and testing, respectively. All of the network inputs
were resized to K × 3× 832× 832, where K = 64 was the batch size (mini-batch
size: 32). Moreover, the stochastic gradient descent with momentum was used
as optimization method, with an initial learning rate of γ = 0.001, momentum:
0.9, and decay rate of 0.0005 (at steps 100 and 25000) selected using a Nvidia
Titan X GPU. To further address the problem of limited data, the data was
augmented (i.e., random crops and rotation) to improve the generalization of
the network.

3.3 LocomoNet training

Although YOLO is very fast, it often suffers from a high number of false positives.
The goal of the LocomoNet is to improve FootChaser performance by reducing
the number of false proposals. The LocomoNet output maps each OFV to one
of the two possible classes. Similar to [4, 1, 32], the TVL1 optical flow algorithm
[47] is chosen, with OpenCV GPU implementation. Moreover, similar to [5, 32,
1], the stack length of L = 10 (i.e., 20 input modality channels for LocomoNet)
is selected, and crop size is set to Wc = Hc = 224.

Based on our experiments, a 224×224 region and the stack length of L = 10
provided sufficient temporal information for foot regions during gait. Moreover,
we handled off-the-frame crops by shifting the 224 × 224 box in the opposite
direction in place of resizing to retain the aspect ratio. To train the LocomoNet,
300 positive (shoe/foot regions) volumes were extracted for left and right feet
in each dataset in the GT data, for a total of 3000=2 × 300 × 5 true positive
regions. An equal number of negatives (3000) were also randomly cropped from
the non-shoe regions from the frames, with a constraint of IoU ≈ 0 with the
shoe regions at the ith frame, the past and next frames in the volume were not
constrained to allow for a more realistic evaluation.

The approach proposed in [32], where the authors demonstrated the possi-
bility of pre-training temporal nets with ImageNet model, was applied in the
current study. After extracting optical flow fields and discretizing the fields into
[0, 255], the authors averaged the ImageNet model filters of first layer across the
channel to account for the difference in input channel number for temporal and
spatial nets (20 vs. 3), then copied the average results 20 times as the initial-
ization of temporal nets. Considering such an approach, a motion stream Con-
vNet (ResNet-101 [50] architecture) pre-trained on video information in UCF101
dataset was used, with stochastic gradient descent and cross entropy loss. Batch
size, initial learning rate, and momentum were set to K = 64, 0.01, and 0.9,
respectively.

3.4 Evaluation

1) Model generalizability. To evaluate the extent to which subject-related
movement patterns in different environments can be handled by LocomoNet, a
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(a)                                           (b)                                          (c)
Fig. 5. Example FootRegionProposer results (PFRs) for three frames marked by red
boxes. Correct foot regions were identified by the FootRegionProposer; however, false
positives were also proposed. After applying the LocomoNet, some false positives were
filtered out (marked with (×)). In (a) and (c) false positive(s) are successfully removed,
(b) shows a case of intense illumination and shadows challenging LocomoNet, resulting
two false positives that were not filtered out.

leave-one-dataset-out (LODO) cross-validation was performed. To achieve this,
a LocomoNetND

(ND = {1, 2,...5}) model was trained using the whole dataset
except ND dataset (i.e., 4800 volumes for training) and tested on the dataset
ND (i.e., 1200 volumes for testing), and repeated 5 times. The following LODO
accuracies were obtained for our 5 datasets: 92.41%, 91.16%, 98.33%, 83.83%,
96.25%. The high accuracies indicate the generalizability of LocomoNet to dis-
criminate foot-related OFV − PFR in unseen datasets. The following average
IoU scores were obtained for each set: 1: 0.7626, 2: 0.7304, 3: 0.3794, 4: 0.7155,
and 5: 0.5235. Considering an IoU threshold of 0.5 is typically used in object
detection evaluation to determine whether detection is positive (IoU of true
positive> 0.5) [51], we interpret that the generalizability of the model except for
ND = 3, is satisfactory. We attributed the lower performance of the network on
dataset 3 to the patterns of walking surface (tiles with different sizes, see Fig.
4-c).

2) The number of proposed regions with IoU < 0.2 (false positives)
dramatically reduced after applying the LocomoNet on FPRs. To assess
the false positive removal performance of the LocomoNetND

, we define a elim-
ination rate metric as ERND

= Number of filtered PFRs in a specific IoU interval
Total number of PFRs in a specific IoU interval × 100,

(IoU=Area(GT ∪ P )/Area(GT ∩ P )). As shown in Table 1, the PFRs in a low
IoU score range (∈ [0, 0.2)), representing false positives, were removed with a
high rate (e.g., in IoU[0,0.1) with 83.25% reduction). The relatively low true pos-
itive removal score (i.e., in IoU[0.9,1) with 8.09% reduction) reflects satisfactory
performance of LocomoNet in retaining the true positives (refer to Fig. 2 for
some failure and success cases).

3) FootChaser prediction trajectories closely match ground truth
trajectories. The performance of the FootRegionProposer in tracing the GT
data can be assessed by measuring 1) The individual IoU scores, and 2) the
pixel-wise distance (error, E) between the the predicted foot center and its cor-
responding point in GT data.

As discussed in section 2, the performance of the FootChaser framework
can be assessed by comparing the predicted P − One bounding boxes with the
GT −one (E(aP−One, aGT−One), a = {x, y}), where mean absolute error (MAE)



12 Nouredanesh et al.

Table 1. Number of proposed foot regions (NPFR,ND ) and elimination rate (ER) in
different intersection-over-union (IoU) intervals indicating LocomoNet ability to re-
move false positives by dataset. NPFR,ND dramatically reduced after applying the
LocomoNet. ERT is the weighted average of elimination rate, IoU > 0.5 and < 0.5,
representing the true and false positives, respectively [51].)

IoU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
NPFR,1 1219 36 7 4 11 22 114 218 312 110
NPFR,2 654 10 2 3 10 26 122 282 277 76
NPFR,3 781 0 4 12 13 35 89 156 116 15
NPFR,4 1225 2 2 1 6 31 119 293 294 36
NPFR,5 229 18 17 27 55 106 188 195 83 10
NPFR,T− 4108 66 32 47 95 220 632 1144 1082 247
ER1 73.83 55.55 42.85 0.00 0.00 4.54 4.38 8.25 7.05 1.81
ER2 92.20 100.00 0.00 0.00 10 11.53 13.11 17.37 13.35 10.52
ER3 97.18 100.00 0.00 8.33 7.69 5.71 0.00 1.28 3.44 6.66
ER4 83.91 50.00 100 100.00 16.66 35.48 31.93 27.30 26.87 19.44
ER5 83.40 77.77 0.00 0.00 0.00 0.00 3.72 4.61 8.43 20.00
ERT 83.25 68.18 15.62 2.14 3.15 7.72 9.82 13.81 13.77 8.09

is taken into account as the error metric E. (see Table 2). For GT −Two (e.g.,

Table 2. Mean absolute error (MAE) results for the GT−One region in absolute pixels
and as a fraction of image resolution. MAE = 1/N

∑
|GT − Onea,f,i − P − Onea,i|,

where a = {x, y}, f = {left, right}, N = length(GT −One). MAE/R as a fraction of
image resolution, where (R): Rx=1920, Ry = 1080.

MAE (pixel) MAE/R

Dataset xLeft xRight yLeft yRight xLeft xRight yLeft yRight

D1 41.68 87.50 55.66 54.81 0.021 0.045 0.051 0.050
D2 32.90 44.00 54.29 55.94 0.017 0.022 0.050 0.051
D3 125.74 194.85 75.19 154.46 0.065 0.101 0.069 0.143
D4 64.40 62.57 76.11 74.11 0.059 0.070 0.057 0.068
D5 99.31 37.68 101.52 92.04 0.051 0.019 0.094 0.085

the black dotted parts in Fig. 2), the performance was evaluated by comparing
the aP−One

i with the nearest GT point regardless of the foot type (Table 3
displays the results). At first glance, this may appear to be a weak metric.
As discussed in section 2 and depicted in Fig. 6 and 2, in GT − Two data,
the FootChaser is biased toward proposing regions corresponding to the nearly-
full-view feet (rather than partially-observable ones). In this application, the
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Table 3. Mean absolute error (MAE) for GT − Two regions in absolute pixels and as
a fraction of resolution (MAE/R), where (R:) Rx=1920, Ry = 1080..

MAE (pixel) MAE/R

Dataset x y x y
D1 58.11 84.00 0.030 0.077
D2 36.12 80.44 0.018 0.074
D3 121.47 117.78 0.063 0.109
D4 103.55 94.90 0.053 0.087
D5 25.28 101.52 0.013 0.094

observed bias to larger objects is a strength as it predicts the center of the
foot required for the extraction of spatiotemporal gait parameters. This can
be attributed to the fact that the FootRegionProposer is trained on ImageNet
dataset that mainly includes the full-view images of feet. Moreover, this is in line
with the findings of [20, 45], where a higher performance was reported for the
detection of bigger objects in videos. Considering these points, the error criteria
for GT − Two regions seem to be a satisfactory representation of performance.

In addition to the relatively low error rates (< 10% for the x trajectories),
as presented in Fig. 6, the framework also predicted many of the points at the
timings of CBRs (spikes). Therefore, these trajectories can be a promising avenue
for the detection of CBRs. High E values for D3 (Tables 2 and 3) also support
the low IoU rate achieved for that dataset (due to the patterns of the walking
surface).

4 Conclusion and future work

As the main contribution, this study addressed the potential of incorporating
a body-mounted camera to develop automated markerless algorithms to detect
feet in natural environments. This advances our long-term objective to develop
novel markerless models to extract spatiotemporal gait parameters, particularly
step width, to complement existing IMU-based methods.

As the next steps, we aim to: 1) collect synchronized criterion (gold) standard
human movement data using motion capture (e.g., Vicon) or gait analysis tools
(e.g., pressure-sensitive mat, GaitRite) synchronized to FPV data and develop
a model to convert the pixel-wise results of the FootChaser into the commonly-
used distance units (e.g., m or cm), and 2) develop a more robust version of
FootChaser framework by collecting a larger free-living dataset from older adults
with different frailty levels, annotate them, and make the data publicly available.

This paper contributes an advance in the field of ambulatory gait assess-
ment to localize feet in a waist-mounted FPV feed towards a fully automatic
system to detect abnormalities (e.g., compensatory balance reactions, or near-
falls), identify environmental hazards (e.g., slope changes, stairs, curbs, ramps)



14 Nouredanesh et al.

left
P-One

Compensatory balance 
reactions (CBRs)

right

Fig. 6. Time series plot of X coordinate center of the most confident proposed foot
regions (PFR, blue) predicted by the FootChaser framework for dataset 2. Ground
truth (GT) for the left and right feet are plotted in green and red, respectively. Spikes
represent compensatory balance reactions (CBRs) performed by the participant.

and surfaces (e.g., gravel, grass, concrete) that influence mobility and potential
risk to falls. As described earlier, FPV data also provides objective evidence on
cause and circumstances of perturbed balance during activities of daily living,
Our future studies will examine the potential for automatic detection of these
environmental fall risk hazards [12, 11].

Given massive amounts of unlabeled FPV data collected during longer-term
study, we aim to develop approaches that can robustly handle significant
diversity in movement patterns (e.g., rhythm, speed), different populations
(e.g., older fallers, Alzheimer’s disease), and varying clothing and footwear
appearance. To address these aspects, we aim to personalize both of the
FootRegionProposer and LocomoNet ConvNets to introduce an adaptive
pipeline ”AdaFootChaser” similar to [39] in our future work.
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