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Affect Control Theory (ACT) is a powerful and general sociological model of human af-
fective interaction [6]. It provides an empirically derived mathematical model of culturally
shared sentiments as heuristic guides for human decision making [10]. BayesACT, a gener-
alisation of ACT, combines affective reasoning with expected utility maximization (rational-
ity) [8]. BayesACT allows for the creation of agents that are both emotionally guided and
goal-directed. In this work, we simulate BayesACT agents in the Iterated Networked Pris-
oner’s Dilemma (INPD), and we show that four out of five known properties of human play
in the INPD [5] are replicated by these socio-affective agents. In contrast, previously used
imitation-based agents are only able to replicate one of the five properties.

Cultural consensus on affective sentiments about words describing identities (e.g. “doc-
tor”,”mother”) and behaviours (e.g. “counsel”, “comfort”) has been measured through large-
scale sociological surveys, and found to be reliably replicated across cultural groups and lan-
guages [10, 7]. Affective sentiments are measured across a large set of dimensions of meaning,
but three significant factors are found to explain most of the variance observed. These fac-
tors are Evaluation (roughly good vs. bad), Potency (roughly strong vs. weak), and Activity
(roughly fast/loud vs. slow/quiet) [6]. These out-of-context sentiments are also found to com-
bine in culturally consensual ways to form transient impressions when identities and behaviours
are observed in social settings. That is, if E,P,A values are known for two interacting agent’s
identities, and for the behaviour performed, then culturally shared dynamics predict impres-
sions that may differ from sentiments. The difference, called deflection, corresponds with the
unexpectedness of the interaction. It is from this quantity that ACT draws its predictive power
as a model of human behaviour, stating that people naturally act in a way that minimizes the
deflection they create [6]. That is, a human’s default action is that which aligns best with so-
ciety’s expectations. The dynamics equations in ACT, measured through cultural surveys, can
therefore be used to predict behaviour. In BayesACT, a Monte-Carlo Tree Search (MCTS)
method trades off this alignment bias with the maximization of expected utility. The MCTS is
an anytime algorithm that smoothly shifts from societal expectations (affective alignment) to
rational behaviour as a function of increased computational resources.

Grujić et al. [5] found five properties of human play in the Iterated Networked Prisoner’s
Dilemma. First, human play is invariant to network structure. Second, global cooperation
rates decline over time, but remain non-zero. Third, cooperation is anti-correlated with reward.
Fourth, most humans exhibit “moody conditional cooperative” behaviour, and fifth, human
play is stratified into four major groups. We compared BayesACT agents (as defined in [1])
to standard imitative strategies [11] across a range of different network structures and payoff
matrices.

1



For each test, 169 agents of one type (i.e. BayesACT or imitation) were arranged on a
static network to play the Iterated Prisoner’s Dilemma with their neighbours. These games
each lasted for 60 individual rounds (or iterations), a number comparable to those of the largest
human studies [5]. For each setting of our test parameters, 20 independent games were played,
resulting in 3060 total simulations. Each round, agents chose between cooperation and defec-
tion and relayed that choice to each of their partners (network neighbours).

Testing was performed for three different network types (Grid, and Erdös-Rényi for two
densities) and three different reward matrices. Additionally, each of the two agents tested had
their own unique parameters. In the case of BayesACT, we chose to vary the initial EPA distri-
bution between the original set as presented by [8] and one measured in a human study by [9].
We also applied several different timeouts (0, 1, and 10 seconds) to BayesACT’s Monte Carlo
search. We use the shorthand BACT[X][Y] to refer to a particular parameter setting, where
X is one of D or S (default or study EPA settings) and Y is one of 0, 1, or 10 (timeout). For
the imitation-based agents, we varied q, the probability of randomly selecting any neighbour
instead of the highest scorer, from 0% to 100% in 10% intervals. A larger value of q there-
fore reduces the tendency of the network to settle, but introduces more erratic behaviour. We
identify this via the shorthand IM[X], where X ∈ [0,100] is the value of q.

For all parameter settings of the BayesACT agents, we do not find evidence that network
structure impacts agent behaviour. This is demonstrated by the consistently high p-values ob-
tained when performing a G-test of cooperation rate per round across the 3 network types for a
particular reward matrix. In particular, across all parameter settings, BACTD and BACTS agent
cooperation rates were the same across network structures (p > 0.05) for 96.1% and 90.7% of
rounds, respectively. For IM agents, only 5.6% of rounds show statistically similar rates, most
gradually moving towards full defection (at different rates for different network settings).

In human studies, the global cooperation rate has been observed to drop from 55%-70%
to less than 20%-40% after around 20 rounds of play, after which it remains approximately
constant [5]. In general, we do not observe this behaviour in BayesACT agents, which produce
relatively stable cooperation rates over time. The imitation-based agents tended to display one
of two other non-human behaviours: either the cooperation rate decayed to zero, or it increased
to some constant. Figure 1 shows an example of the cooperation rate over time for human
players (taken from [3]) and for two simulations each of imitation-based and BayesACT agents.
The slow decline but stabilisation of human players can be seen, while the IM simulations were
selected to demonstrate the two behaviours described above. On the other hand, BayesACT
simulations produce more stable cooperation rates, some of which are relatively close to those
of humans (after stabilization).

We calculate the Pearson Correlation between the cooperation rates of individual agents
and their scores to find the correlation between earnings and cooperation. We find that 100% of
BACTD settings and 74.1% of BACTS settings display the desired anti-correlation (p < 0.05).
The imitator agents showed cooperation-score anti-correlation in only 30.3% of settings, with
the best setting, IM10, succeeding in 44.4% of matrix/network combinations.

Moody Conditional Cooperation has two requirements: hysteresis (i.e. an agent must be
more likely to cooperate if it cooperated on the last turn) and conditionality (i.e. an agent
must be more likely to cooperate if its neighbours were predominantly cooperators on the last
turn) [4]. BACTD agents display a strong hysteresis (in 100% of test settings), while BACTS
agents do not (only 4%). We believe that this is most likely a result of the larger difference
between the EPAs of the cooperate and defect actions in the default set resulting in higher
deflections and hence more severe reactions. BACTD0 displays conditionality in 44% of net-
work/matrix combinations, while BACTS1 does so in 67% of them. All imitator agents have
both strong hysteresis and conditionality.
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Figure 1: Cooperation rates for human players and for BayesACT (bottom: BACTS1/ER5, top:
BACTS0/Grid) and imitator (bottom: IM50/Grid, top: IM100/Grid) agents.

Human players can be broadly classified into 5 groups [4]: those who only cooperate, those
who mostly cooperate (at least two times in three), mixed cooperators, those who mostly defect
(at least two times in three), and those who only defect. Averaged across all reward matrices
and all network types, BACTD0 agents demonstrate this stratification in 100% of cases, while
the best IM agent, IM100, does so in only 33% of network/matrix combinations.

We have shown that, compared to imitation-based agents, agents based on the social-
psychological Affect Control Theory (BayesACT agents) display as emergent properties more
of the human qualities identified by [5] in the Iterated Networked Prisoner’s Dilemma (INPD).
In particular, we show how the observed human behaviours of network structure invariance,
anti-correlation of cooperation and reward, player type stratification, and (in 2/3 of the cases
we have considered) moody conditional cooperation (MCC), are all emergent properties of
these agents, while imitation-based agents display only MCC. Our work moves a step closer
to reproducing human behaviour in the INPD, and may find application both in domains that
require human-like behaviour, and those that probe human reasoning. Our future work involves
comparisons with additional agent models (e.g. [2]), and application to other networks.
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