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Tobias Schröder3, and Ingo Wolf3

1 University of Waterloo, Dept. of Computer Science, Waterloo, Ontario, Canada
{j35jung,jhoey}@cs.uwaterloo.ca,

2 Duke University, Dept. of Sociology, Durham, NC, USA
jonathan.h.morgan@duke.edu

3 University of Applied Sciences, Institute for Urban Futures, Potsdam, Germany
{schroeder,wolf}@fh-potsdam.de

Abstract. Symbolic interactionist principles of sociology are based on
the idea that human action is guided by culturally shared symbolic rep-
resentations of identities, behaviours, situations and emotions. Shared
linguistic, paralinguistic, or kinesic elements allow humans to coordinate
action by enacting identities in social situations. Structures of identity-
based interactions can lead to the enactment of social orders that solve
social dilemmas (e.g., by promoting cooperation). Our goal is to build
an artificial agent that mimics the identity-based interactions of humans.
This paper describes a study in which humans played a repeated pris-
oner’s dilemma game against other humans or one of three artificial
agents (bots). One of the bots has an explicit representation of iden-
tity and demonstrates more human-like behaviour than the other bots.

1 Introduction

The prisoner’s dilemma has long been studied, starting with the work of Ax-
elrod [3]. Recent work has looked at modelling both rational choice and social
imitation to simulate more human-like behaviour in networked PD games [16].
Others have looked at using emotional signals to influence play in PD games,
for example by changing expectations of future games [4]. Emotions have also
been linked with intrinsic reward and exploration bonuses [14]. It has become
increasingly clear that human handling of an infinite action space (not limited
to the realm of the prisoner’s dilemma) may be governed largely by affective
processes [1,10]. Shared affective structures allow agents to focus on the subset
of possibilities that provide interactions aligning with the shared structure. This
subset of possibilities forms the set of “cultural expectations” for behaviours
that are “rational relative to the social conventions and ethics” ([1], p200).

A recent product of these ideas is BayesAct [8], which models the emotional
control of social interaction by humans and can explain the emergence of stable
role relations and patterns of interaction [13]. Here, we empirically study the
class of interactions in the iterated prisoner’s dilemma, a fundamental paradigm
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in the social sciences aimed at understanding the dynamics of human cooperation
vs. competition. Our results are encouraging in terms of supporting the validity
of the BayesAct agent as a mechanistic model of human social interactions.

BayesAct [2,7,8,13] is a partially observable Markov decision process model
of affective interactions between a human and an artificial agent. BayesAct
arises from the sociological (symbolic interactionist) “Affect Control Theory”
(ACT) [6]. BayesAct generalises this theory by modeling affective states as
probability distributions, and allowing decision-theoretic reasoning about affect.
BayesAct proposes that humans learn and maintain a set of shared cultural af-
fective sentiments about people, objects, behaviours, and about the dynamics of
interpersonal events. Humans use a simple affective mapping to appraise indi-
viduals, situations, and events as sentiments in a three dimensional vector space
of evaluation (E: good vs. bad), potency (P: strong vs. weak) and activity (A: ac-
tive vs. inactive). These “EPA” mappings can be measured, and the culturally
shared consistency has repeatedly been demonstrated to be extremely robust
in large cross-cultural studies [12]. Many believe this consistency “gestalt” is a
keystone of human intelligence. Humans use it to make predictions about what
others will do, and to guide their own behaviour. Further, it defines an affective
heuristic (a prescription) for making decisions quickly in interactions. Humans
strive to achieve consistency by choosing actions that maximally increase align-
ment (decrease deflection in ACT terms) in shared affective cultural sentiments.
The shared sentiments and dynamics, the affective prescriptions, and the re-
sulting affective ecosystem of vector mappings, result in an equilibrium or social
order [5], which is optimal for the group as a whole, rather than for individ-
ual members. Humans living at the equilibrium “feel” good and want to stay
there, with positive evolutionary consequences. However, agents with sufficient
resources can plan beyond the prescription, allowing them to manipulate other
agents to achieve individual profit in collaborative games [2].

For example, in the repeated prisoner’s dilemma, cooperation has a different
emotional signature than defection: it is usually viewed as nicer (higher evalua-
tion). Rationality predicts an agent will try to optimize over his expected total
payout, perhaps modifying this payout by some additional intrinsic reward for
altruism. The BayesAct view is quite different: it says that an agent will take the
most aligned action given her estimates of her own and her partner’s affective
identity. Thus, friends will do nice things to friends and cooperate, but will be
more likely to defect against a scrooge or a traitor. Scrooges will defect, as this
is consistent with a more negative identity, but may cooperate to manipulate.

As elucidated by Squazzoni [15], models of social networks must take into
account the heterogeneity of individuals, behaviours, and dynamics in order
to better account for the available evidence. In this paper we argue that the
principles encoded in BayesAct can capture this heterogeneity. As evidence, here
we present results from an experiment in which participants played a repeated
prisoner’s dilemma (PD) game against each other and against a set of computer
programs, one of them BayesAct.
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2 Experiments and Results

The prisoner’s dilemma is a classic two-person game in which each person can
either defect by taking $1 from a (common) pile, or cooperate by giving $2 from
the same pile to the other person. There is one Nash equilibrium in which both
players defect, but when humans play the game they often are able to achieve
cooperation. A rational agent will optimise over his expected long-term payoffs,
possibly by averaging over his expectations of his opponent’s type (or strategy).

A BayesAct agent computes what affective action (an EPA vector) is pre-
scribed in the situation, given his estimates of his and the other’s (called the
client) identities, and of the affective dynamics, and then seeks the propositional
action (∈ {cooperate, defect}) that, according to a stored cultural definition, is
most consistent with the prescribed affective action. As the game is repeated,
the BayesAct agent updates his estimates of identity (for self and other/client),
and adjusts his play accordingly.

For example, if agent thought of himself as a friend (EPA:{2.75, 1.88, 1.38})
and knew the other agent to be a friend, the deflection minimizing action would
likely be something good (high E). Indeed, a simulation shows that one would
expect a behaviour with EPA={1.98, 1.09, 0.96}, with closest labels such as treat
or toast. Intuitively, cooperate seems like a more aligned propositional action
than defect. This intuition is confirmed by the distances from the predicted
(affectively aligned) behaviour to collaborate with (EPA:{1.44, 1.11, 0.61}) and
abandon (EPA:{ 2.28, 0.48, 0.84})4 of 0.4 and 23.9, respectively, clearly showing
the closer proximity of collaboration to this affectively aligned action.

The agent will predict the client’s behavior using the same principle: compute
the deflection minimising affective action, then deduce the propositional action
based on that. Thus, a friend would predict that a scrooge would defect, but
would still want to cooperate in order to reform or befriend the other agent. If
a BayesAct agent has sufficient resources, he could search for an affective action
near to his optimal one, but that would still allow him to defect. Importantly,
he is not trading off costs in the game with costs of disobeying the social pre-
scriptions: his resource bounds and action search strategy are preventing him
from finding the more optimal (individual) strategy, implicitly favouring those
actions that benefit the group and solve the social dilemma.

In order to compare the predictions of BayesAct to human play, we recruited
70 students (55 male and 15 female) from a senior undergraduate class on artifi-
cial intelligence at the University of Waterloo5. The participants played a total
of 360 games in a computer lab environment. The length of each game was ran-
domly chosen between 12− 18 rounds (plays of cooperation or defection). Each
game a participant played was against either (1) another randomly chosen par-
ticipant; (2) an automated tit-for-tat player; (3) a BayesAct agent as described
above; or (4) a fixed strategy of cooperate three times followed by always defect,

4These are representative of the affective meaning of the actions in the game [2]
5The study was reviewed and approved by the UW Office of Research Ethics. For

further discussion of experiment procedures, see [9].
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hereafter referred to as jerkbot. The BayesAct agent reward is only over the game
(e.g. 2, 1, or 0), and we use a two time-step game in which both agent and client
choose their actions at the first time step, and then communicate this to each
other on the second step.

Participants were assigned some order in which to play each opponent, but
that order was randomized for each participant. Further, participants were told
that all of their opponents were human. Upon sign-up, and after each game (of
between 12−18 rounds), participants were asked the following by providing them
with a slider for each E,P,A dimension, known as a semantic differential [6]:

– how they felt about the plays in the game (take 1 or give 2), out of context.
BayesAct agents then interpret the affective signature of actions in the game by
comparing the EPA vectors to these two vectors.

– how they felt about themselves (their self identity). This gives BayesAct its
self-identity, as we want it to replicate a participant. We use the raw data from
all student responses across all questions as this self-identity BayesAct.

– how they felt about their opponent in the game they just played. Before the
first game we asked they how they felt about a generalised opponent in this
game, giving the BayesAct client identity.

A total of 89 samples were used for identities (resampled to get N=2000 samples
used in the BayesAct particle filter) and an average of 89 samples used for the
SCB. From this sample, we measured for Give 2 an EPA of {1.4, 0.10, 0.18}, and
for Take 1, { 0.65, 0.85, 0.70}. Take 1 is seen as more negative and more powerful
and active. Additionally, the self is seen as more positive than the opponent or
“other” (with average E value 1/0.25 for self/other), but about the same power
(0.56/0.64) and activity (0.41/0.33).

Table 1. Summary statistics. coops: number of cooperations after 10th game.

num. avg. game agent (human) client (human or bot)
opponent games length payoff coops payoff coops

jerkbot 83 15.01 15.86± 3.00 0.09± 0.24 22.33± 6.00 0.00± 0.00
bayesact 73 14.85 27.05± 5.92 0.54± 0.40 22.19± 7.87 0.69± 0.32
human 35 15.43 24.11± 7.55 0.56± 0.45 26.00± 5.92 0.51± 0.47

titfortat 82 14.82 27.66± 5.39 0.81± 0.35 26.96± 6.00 0.83± 0.34

Table 1 (cols 2,3) shows the statistics of game numbers and lengths against
the different opponents. Figure 1 shows the mean, standard deviation, and me-
dian reward gathered at each step of the game, for each of the opponents. The
blue lines show the human play, while the red lines show the opponent (one of
human, BayesAct, tit-for-tat, or jerkbot). We see that humans mostly manage to
cooperate together until about 4-5 games before the end. The tit-for-tat strat-
egy ensures more even cooperation, but is significantly different from humans.
Jerkbot is obvious, as a few defections after three games convinces the human to
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Fig. 1. Blue=human; Red=agent (human, bayesact, titfortat and jerkbot);
dashed=std.dev.; solid (thin, with markers): mean; solid (thick): median.

defect thereafter. The BayesAct agent play is very similar to the human play, but
the human participants take advantage of the BayesAct agents late in the game.
This may be because the BayesAct agent is using a short (5 second) planning
timeout, and we would need to compare to a zero timeout (so only using the
ACT prescriptions) and to longer timeouts to see how this behaviour changes.

Table 2. Means of pre-game and post-game impressions for each opponent type.

give 2 take 1 self (human) other (human/bot)
opponent E P A E P A E P A E P A

(initial) 1.4 0.1 0.2 0.6 0.9 0.6 1.1 0.6 0.3 0.2 0.6 0.3
jerkbot 1.3 0.3 0.1 1.3 0.8 0.7 1.3 0.1 0.9 1.9 0.4 0.5

bayesact 1.3 0.1 0.0 0.9 1.1 1.0 0.7 1.4 1.2 0.4 0.1 0.3
human 1.7 0.7 0.3 1.2 0.4 0.3 1.5 1.2 1.0 0.5 0.0 0.1

titfortat 2.3 1.2 1.1 1.2 0.5 0.3 1.9 1.7 1.7 2.2 1.1 1.1

To further investigate the differences between the different opponents, we
measure the mean fraction of cooperative actions on the part of the human after
(and including) the 10th game (see Table 1). We find that, when playing against
another human, humans cooperate in 0.56±0.45 of these last games. This number
was almost the same when playing BayesAct agent at 0.54±0.40. Against tit-for-
tat, there was much more cooperation (0.81±0.35). Finally, against jerkbot, it was
very low 0.09±0.24. We also computed the mean EPA ratings of the self and other
after each game, as shown in Table 2. We found that jerkbot (EPA:{ 1.9, 0.4, 0.5})
is seen as much more negative, and tit-for-tat (EPA:{2.2, 1.1, 1.1}) much more
positive, than human (EPA:{0.5, 0.0, 0.1}) or BayesAct (EPA:{0.4, 0.1, 0.3}),
and that the human participants felt less powerful when playing jerkbot (EPA
of self:{1.3, 0.1, 0.9}) than when playing BayesAct (EPA of self:{0.7, 1.4, 1.2}),
or another human (EPA of self:{1.5, 1.2, 1.0}). Human participants felt more
powerful, positive and active when playing tit-for-tat (EPA of self:{1.9, 1.7, 1.7}).
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3 Conclusion

We have presented a model for affectively guided play in the prisoner’s dilemma.
Our aim is to design agents that are human-like in their behaviours using sym-
bolic interactionist principles, which prescribe socially expected actions given the
identities of the actor and her opponent. In this paper, we have shown how these
principles result in more human-like play in the iterated prisoner’s dilemma.
We are currently running simulations of BayesAct agents (learned from human
data) in a networked prisoner’s dilemma setting. Other research avenues include
assistive technologies [11], intelligent tutoring [8] and other games [2].
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