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Abstract

Tracking and understanding human gait is an important
step towards improving elderly mobility and safety. Our re-
search team is developing a vision-based tracking system
that estimates the 3D pose of a wheeled walker user’s lower
limbs with a depth sensor, Kinect, mounted on the moving
walker. Our tracker estimates 3D poses from depth images
of the lower limbs in the coronal plane in a dynamic, uncon-
trolled environment. We employ a probabilistic approach
based on particle filtering, with a measurement model that
works directly in the 3D space and another measurement
model that works in the projected image space. Empirical
results show that combining both measurements, assuming
independence between them, yields tracking results that are
better than with either one alone. Experiments are con-
ducted to evaluate the performance of the tracking system
with different users. We demonstrate that the tracker is ro-
bust against unfavorable conditions such as partial occlu-
sion, missing observations, and deformable tracking target.
Also, our tracker does not require user intervention or man-
ual initialization commonly required in most trackers.

1. Introduction

Falls and fall related injuries are the leading cause of injury-
related hospitalization among seniors. In addition to phys-
ical consequences (e.g. hip fracture, loss of mobility), falls
can cause a loss in confidence and activities, which may
lead to further decline in health and more serious falls in
the future. To improve mobility and safety of seniors, our
research team is developing a smart walker that aims to pro-
vide navigation and stabilizing assistance to users. An im-
portant goal of the project is to track and understand the
walker user’s leg pose, based on analyzing image sequences
extracted from a depth sensor mounted on the walker, as
shown in Figure 1.
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Figure 1. Setup of cameras on the walker. The Kinect is placed at
the center capturing the legs in the coronal plane. Two RGB cam-
era are placed at the side, and are used only as point of comparison
with the Kinect in the experiment section.

Tracking leg pose in an uncontrolled environment has
important applications in biomedical settings. Specifically
for the walker, the tracking system allows assessment and
monitoring of gait, such as recovery following orthope-
dic surgery (e.g., joint replacement). Zhou and Hu [20]
presented a list of human motion tracking systems used
for biomedical purposes. The best measurements currently
available for gait parameters in uncontrolled environment
are accelerometer-based temporal measures (e.g. step-time
mean and variability), which lack reliable spatial estimates
(e.g. step length and width). Temporal and spatial mea-
sures of gait are complementary indicators of balancing
behaviour during walking, reflecting different strategies of
maintaining stability. However, reliable spatial measures
are only available with non-visual tracking systems such as
inertial and magnetic sensors at the cost of restricting users
to walk in a limited area and are thus not suitable in real, un-
controlled settings. Similarly, marker-based visual tracking
systems such as VICON involve fixed sensors and require
special markers on the user, which is unnatural to the user.



As aresult, markerless visual based tracking is an important
area of research for biomedical gait analysis.

The ability to work with 3D data, as opposed to 2D inten-
sity/RGB information, is important in our application. First,
reliance on color and gradient information is not robust in
our setting, which involves a dynamic subject walking in a
dynamic scene with varying lighting conditions. The dy-
namic background (due to moving cameras) offers signifi-
cant distraction. Common techniques to eliminate distrac-
tions such as background subtraction are not applicable or
reliable with dynamic scenes in RGB images. In addition,
due to physical constraints of the walker, the camera can
only be mounted to capture the frontal view of the legs. In
this view, the greatest motion during walking is perpendic-
ular to the image plane, so it is difficult to observe move-
ment with regular RGB cameras, and depth measurement
becomes crucial.

In this paper, we present a vision-based, markerless,
tracking system that works with 3D points obtained from
a single structured-light camera, Kinect. We adopt a top-
down probabilistic approach based on particle filtering that
generates particles (i.e., possible poses) according to a sim-
ple constant velocity model and then weights the particles
based on two distance metrics that measure the distance be-
tween the generated leg model and the observed 3D points.
A series of experiments are performed to evaluate the ro-
bustness of the system.

2. Related Works

In general, the problem of pose tracking is approached
in one of two ways: top-down or bottom-up. Tracking with
3D points can be formulated as a bottom-up, model-fitting
problem by working directly with the sensor data points.
Knoop et al. [13] use the Iterative Closest Point (ICP) algo-
rithm to find the optimal translation and rotation matrix that
minimizes the sum of squared distances between data points
obtained from a time-of-flight camera and a stereo cam-
era, and model points from the degenerate cylinder model.
Muhlbauer et al. [15] exploit the structure of the human
body to search for the ideal pose by fitting a body pose to
the 3D data points obtained from a stereo camera. They
use a hierarchical scheme by looking for the head first, then
the torso, and limbs are then fitted iteratively starting with
the joint closest to the torso and search outwards. Fua et
al. [9] formulate a least-square optimization problem to ad-
just the model’s joint angles by minimizing the distance of
their model points to the 3D points obtained by a stereo
camera. In addition, they use a skeleton model combined
with soft, deformable surface to simulate the behavior of
bone and muscle. Kehl et al. [12] obtain 3D-data from a
volumetric reconstruction based on multiple camera views.
They formulate tracking as a minimization of a scalar ob-
jective function, using gradient descent with adaptive step
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sizes. They also use a hierarchical tracking approach by
first fixing the torso and then tracking the limbs. Cheung
et al. [6] present a real time system that fits a 3D ellipsoid
model to 3D voxel data obtained by 5 cameras. Instead of
comparing camera projections of the model with the silhou-
ettes, fitting is done directly in 3D space. A real-time full
body tracking software has been developed by PrimeSense
[2] specifically designed for its depth sensing devices in-
cluding the Kinect. However, the software is not suitable
for our application because it requires the torso to be visible
and the feet are not tracked at all.

Pose tracking can also be formulated as a top-down ap-
proach with a hidden Markov model that generates a dis-
tribution of predictions according to some motion model,
and then evaluates the probability of each prediction ac-
cording to the likelihood of the sensor data given the pre-
diction. Kalman filtering for Gaussian distributions and
particle filtering [10] for general distributions are two pre-
dominant top-down approaches in the tracking literature.
Multiple variants of these two approaches have been pub-
lished for pose tracking [19, 18, 7, 8]. While the literature
on top-down tracking approaches is quite vast for regular
RGB cameras, it is less common for 3D sensors. Ziegler et
al. [21] formulate the tracking problem as the registration of
two point sets in an Unscented Kalman filtering approach.
ICP is used to obtain a refined set of model points, and
the measurement model is based on the distance between
this refined set of model points and measured 3D points ob-
tained by a stereo camera. Mikic et al. [14] present a full-
body tracking algorithm with 3D voxel data obtained from
multiple cameras. Their approach involves an automatic ini-
tial fitting of the cylindrical model to the data points in the
first frame, subsequent frames are then tracked using the ex-
tended Kalman filter (EKF). Jojic et al. [11] also use EKF
for tracking the upper body with 3D data obtained from
stereo cameras. A statistical image formation model that
accounts for occlusion plays a central role in their tracking
system.

The trade-off between top-down and bottom-up ap-
proaches concerns speed and accuracy. While bottom-up
approaches are fast and many of them are implemented in
near real-time, top-down approaches are known to produce
better, more stable results, due to the ability to incorporate
temporal smoothness and maintain a distribution of predic-
tions instead of just one prediction. For our application, we
choose accuracy over speed as tracking is usually done of-
fline for assessment purposes. Moreover, the unique setup
of our camera makes bottom-up approaches difficult. First,
only the lower limbs are visible in our problem, which pre-
vents us from using many bottom-up techniques that first
locate salient parts such as the torso or head. Also, we ob-
serve that legs frequently occlude each other in the camera
view during walking, and that there is significant missing



data in the Kinect image due to close-object sensing and
dress folding. In particular, dress folding of the pants dur-
ing walking leads to complex surfaces that makes it diffi-
cult for the Kinect to retrieve depth information in every
pixel. The missing data problem leads to isolated regions of
data points which belong to the legs in the image, and this
is problematic for approaches based on hierarchical search.
Since bottom-up approaches in general are sensitive to noise
and missing data, we opt for a top-down approach. We use a
particle filter due to its ability to handle multi-modal distri-
butions. Such distributions can occur when the observation
is inherently ambiguous where multiple states can fit a sin-
gle observation.

3. Camera Setup

The Kinect provides an inexpensive and fairly accurate
3D camera solution based on structured light. The Kinect
uses a weak infrared laser to project a predefined pattern of
dots of varying intensity [1]. This pattern provides a rich
source of easily extracted features. The variation of these
features compared against the known pattern for a fixed dis-
tance provides a method for depth reconstruction. The accu-
racy of the Kinect’s depth output is exceptional at relatively
close range, with increasing error as distance increases be-
yond a few meters.

The use of infrared light presents some weaknesses. For
instance, bright sunlight may wash out the structured light
pattern, effectively blinding the Kinect. Also, the camera is
not always able to produce a depth value at every pixel and
frequently leaves blank patches in the image due to occlu-
sion and bumpy surfaces. Objects located too close to the
sensor may not be detected since the Kinect has a minimum
working distance of about 30 cm. In the experiment sec-
tion, we show that the tracker works comfortably even with
substantial missing data.

To calibrate the camera, we use the calibration soft-
ware from [3]. The checkerboard method is suitable for
the Kinect because the black and white pattern is clearly
visible in the infrared stream. The intrinsic parameters ob-
tained from the calibration procedure are used subsequently
to convert the depth value of each pixel into 3D points, and
to project the 3D cylinders of our model onto the image
plane.

4. Tracking Framework: Hidden Markov

Model

The pose tracking problem is formulated as a belief mon-
itoring or filtering problem with a Hidden Markov Model
(HMM). We use the particle filtering approach, using sam-
ples to represent the underlying distribution of target states.
The HMM is specified by four elements:
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Hidden State the leg pose of the walker user. The pose is

represented as a state vector X defined in Section 4.1

Observation the data returned by the Kinect. The raw data
is processed by first converting the raw value of each
pixel into 3D coordinates and then classifying each 3D
point as either foreground or background. Details are
described in Section 4.2

Transition Function governs how the hidden states evolve
over time. We use a simple constant velocity model as
described in Section 4.3.

Likelihood Function the likelihood of an observation
given a hidden state. In this work, we use two separate
distance measures to compute how close the prediction
is to an observation. These two functions are then com-
bined assuming independence. Details are described in
Section 4.4.

4.1. Hidden State: Physical Model

We adopt a model composed of tapered cylinders for the
thigh, calf, and foot of each leg, as shown in Figure 2. To
better model the feet, we use half-cylinders with a flat base.
We define the state vector X, from which the position and
orientation of each cylinder in the model can be determined.
There are 23 elements in the state vector Y: the spherical
coordinates of the left hip relative to the right hip, the posi-
tion of the right hip, the lengths and widths of the cylinders
(assuming symmetry between left and right legs), 3 DoF
joint angles for the hips, 1 DoF joint angles for the knees,
and 2 DoF joint angles for the ankles. Various constraints
are placed on the legs: maximum and minimum allowable
values are enforced on the lengths, widths, and joint angles
of each leg segment; there must always be at least one foot
on the ground; and cylinders cannot intersect each other in
3D space.

4.2. Observation: Depth Image Processing

Each image capture by the Kinect camera corresponds
to a 640x480-pixel frame in which each pixel (i, j) corre-
sponds to an integer value d from O to 2047 representing
the depth of the pixel relative to the camera center. Each
raw depth value d; ; is first converted into millimeters ac-
cording to the following equation:

Lo 1000
" —0.00307d; ; + 3.33

ey

where the constants of the equation come from [1] and are
manually verified.

Given the depth value in metric space and the intrinsic
parameters obtained from the calibration procedure, a 3D



-
[T

‘SN y
S /i /;' / i

~ Kinect Depth Sensor g
2B

L 20

800 — 250
400 50 L

BN
150
zZ 2501 20

X

Figure 2. Graphical representation of the cylindrical model and the
location of the sensor

point (z; j,yi ;, %, ;) in mm with respect to the camera cen-
ter can be associated with each pixel according to the fol-
lowing equation:

zij(i —x0) 2i;(J —Yo)

fo 7ty

where f, and f, are the focal lengths, and xy and yo are the
camera centers in the x and y axis respectively.

Finally, we classify each pixel/3D point as foreground
or background by applying two filters. First, a background
frame is generated before tracking to capture the floor (i.e.,
no objects or people in the field of view near the camera).
For subsequent frames during tracking, we subtract the raw
depth value of each pixel from the raw depth value of the
same pixel in background frame. If the absolute difference
is below a certain threshold, the pixels are classified as be-
longing to the floor and thus background. Assuming the
ground plane remains flat, the first filter aims to remove
pixels that correspond to the ground only. Note that this
background frame needs to be generated only once and is
used throughout all walks to remove floor pixels. For the
second filter, remaining points are classified as background
if they are outside the region-of-interest defined by a 3D
bounding box in front of the camera. This bounding box ex-
tends 1500mm to the front of the camera (Z-axis), 245mm
to the left and 175mm to the right of the camera (X-axis),
and no limit on the Y-axis (height). The limit on the X-axis
(width) aims to ignore points that are outside the walker
frame, since most gait motions are performed between the
legs of the walker (in the X axis). Also, the limit on the
Z-axis (depth) is sufficient for most users since it is difficult
for most users to hold the walker and yet be more than 1500
mm away from the camera mounted on the walker. After the
two filters, all remaining points are classified as foreground,

(@i, Yi s i) = ( Zig)  (2)
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which should correspond to the user’s legs only. Pixels with
missing data have a raw depth value of 2047 and are auto-
matically ignored to avoid further processing.

4.3. Transition Function

We adopt a constant velocity model on the joint angle
parameters:

?H»l = 2?t — thl + ¢

where € is a zero-mean Gaussian noise with manually ad-
justed variance. All other non-angle parameters follow a
Gaussian noise model with manually adjusted variance. The
constant velocity model is appropriate in our application be-
cause the motion of walker users is typically slow and it en-
sures smoothness in leg motions. However, this model is
a rough estimate of the actual gait motion, which follows
a cyclic pattern and involves sudden changes in velocity at
certain points in the gait cycle (e.g. ground contact of the
foot; foot lifting off from the ground). Since one leg may
occlude the other leg due to the coronal field of view, it
is desirable to use a motion model with a prior over likely
poses to continue tracking during complete occlusion. Nev-
ertheless, we show in the experiments that the simple con-
stant velocity model is sufficient to enable tracking when
one of the legs is partially occluded.

3)

4.4. Likelihood Function

We define two different likelihood functions, which are
combined to produce a single final weight for the particle,
assuming independence between them. We will also give a
brief description of the likelihood functions for the binoc-
ular RGB cameras installed on the walker. The results are
included as a point of comparison with the Kinect in the
experiment section.

4.4.1 Average distance in the 3D space

The first likelihood function is based on the 3D distance
between the predicted leg model and the foreground 3D
points. We adopt a skeleton representation of the model
by selecting the centroid of the top and bottom surfaces of
the tapered cylinder as end points. Afterwards, n points
are generated uniformly on the line segment defined by the
two end points, and together the n + 2 points represent the
skeleton in the center of the cylinder. To incorporate the
width of a tapered cylinder, note that the width changes in
a linear fashion along the skeletal points, as shown in Fig-
ure 3. Therefore, we can associate each skeleton point m
with a distance w,,, to ensure that each skeletal point is at
a w,, distance away from the closest observed foreground
points. To ensure that observed foreground points (F') and
model points (M) are close to each other, we need a two-
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Figure 3. The skeleton representation of the cylinders. The dis-
tance functions aim to favor state hypothesis with foreground
points close to the front cylinder surface of each leg segment.

way distance metric. The two directed average distances are
computed as follows:
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We combine the two directed distances into a single dis-
tance metric as follows:

_ dpm +dyr

s . (®)
The likelihood given the distance is
P(1[X) = eap~14) ™)

where A; is manually set to 1/5.

To improve performance, we use relatively few points
from the model (n=10) and the foreground points (randomly
choosing 10% of all the foreground points). While includ-
ing more points improves tracking results, we observed that
the loss of accuracy is negligible with the chosen parame-
ters.

The parameters A; and Ay of the exponential functions
in Equations 7 and 9 are manually adjusted. At one ex-
treme, if the parameter is too small, the values returned by
the exponential function will be closer to 1 and very similar,
making it difficult to distinguish between good and bad par-
ticles. At the other extreme, if the parameter is too big, then
it is possible to run into numerical problems where the num-
bers returned for most particles will be very close to 0, or
exactly O due to the representation accuracy of computers.
The parameters are basically manually adjusted to balance
between the two extremes.
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4.4.2 Pixel-wise distance in the 2D image plane

The second likelihood function is based on the pixel-wise
depth distance between the model-projection image and the
Kinect image. The projection of 3D cylinders follows the
standard pipeline in 3D graphics. First, cylinders are repre-
sented using planar rectangular polygons that circumscribe
the surface in the 3D model. Polygons that are not visible
to the camera are removed using the backface culling algo-
rithm. Afterwards, the 3D polygons are projected onto the
image plane space. They are then clipped at the boundary
of the image plane, triangulated, and rasterized using the
Z-buffer algorithm, which computes the depth value along
with each rasterized pixel. We use a simple distance metric
that sums the metric depth distance between the projected
model image P and the Kinect image K at each pixel (i,)),
with resolution of 640 by 480:

P K
4o — Z(i,j) |Zi,j - Z”|
2 (640 x 480)

Pixels that do not belong to any rasterized polygons (i.e.
background pixels) have a depth value of 0 in image P.
Likewise, pixels that correspond tothe background in im-
age K have a depth value of 0. As a result, mismatched
foreground/background pixels in the two images will cor-
respond to a high distance. This scheme effectively favors
particles with projections overlapping the foreground pixels
from the Kinect image.

The likelihood given the distance is

®)

P(IQl?) = exp(~H2d2) ©)

where A2 is manually set to 1/3.

4.4.3 Combining the likelihood

Assuming conditional independence, we combine the like-
lihood probabilities based on the two distance functions as
follows:

P(I|X) x P(I|X)P(L,|X) (10)

While the independence assumption allows easy addition
of image cues and camera observations, this assumption is
not true in general since the likelihood functions are cal-
culated from the same underlying observation. When the
independence assumption does not hold, a state hypothe-
sis that results in low distance for one image cue is likely
to result in a low distance for a second one. Simply mul-
tiplying the likelihood functions may lead to sharp peaks
in the likelihood distribution. For our tracker, the projec-
tion cue focuses more on the X-axis by giving much higher
preference for the particles that have perfectly aligned pro-
jections with the foreground even if the depths of those par-
ticles are not close to the Kinect values. On the other hand,



the 3D cue does not focus on the lateral error as much as
the projection cue does, so the lateral error can be compen-
sated by comparatively smaller errors in the Z-axis. Even
though both likelihoods are based on the 3D distance of
model points/pixels to Kinect points/pixels and are thus not
independent, they focus on different dimensions of the same
error and as a result the accuracy improves when they are
combined. The results on step width (X-axis) and length
(Z-axis) in section 5 support this reasoning.

4.4.4 Likelihood for the RGB cameras

In addition to the Kinect camera, we also installed 2 RGB
cameras to the sides of the Kinect, approximately 20 cm
apart. We perform tracking with these 2 cameras, separately
from Kinect, as a point of comparison in the experiment
section.

In the first frame before tracking, we manually label the
two images by specifying the image regions that correspond
to each leg segment. Based on the labelled region, we con-
struct a histogram of colors (HoC) in the HSV space and
histogram of oriented gradients (HoG) for each leg segment.
For subsequent frames during tracking, HoC and HoG will
be constructed from the pixels belonging to the predicted
model projection. The newly constructed HoC and HoG
will then be compared against the template HoC and HoG
constructed in the first frame by taking a L, distance of each
bin in the histograms. The likelihood given the distance fol-
lows an exponential distribution with manually adjusted pa-
rameters similar to the likelihood functions we use for the
Kinect.

Since two cameras are installed on the walker, the num-
ber of observations and the corresponding likelihood is dou-
bled. With this formulation, depth information is incorpo-
rated implicitly in a probabilistic fashion, since states with
depth errors will generally not fit both image observations.
The likelihood for each distance measure and camera obser-
vations are combined assuming independence, as described
in the previous section.

5. Experiments

In the following experiments, we measure step width and
step length errors of the mean prediction over 5000 particles
against ground truth obtained with a GaitRITE mat (array
of pressure sensors that measures the spatial location of the
feet when they are on the mat). Although we are interested
in validating the entire 3D model, in the experiments we
only report step length and step width measures for two
reasons. First, as important determinants of the stabiliz-
ing torques required to maintain whole-body balance, step
length and width are important biomechanical measures of
gait. From a clinical perspective, physical therapists rou-
tinely use step length and width to assess gait recovery.
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Table 1. Number of frames and steps for each subject in the exper-
iment.

Subject | # of Frames | # of Step Frames | # of Steps
1 309 59 12
2 500 39 10
3 437 89 19

Second, through visual inspection we see that most errors
happen at the feet instead of other leg segments. Thus, the
step measures can be seen as upper bounds on the error we
expect across the whole 3D model.

We collected data with 3 subjects who walked forward
and then backward on the GaitRITE mat in an indoor envi-
ronment. In order to synchronize the tracking data with the
GaitRITE data, we manually extract frames in which the
user made a step on the mat (i.e. when both feet are on the
mat) and compute step length/width measures only on those
frames. The total number of frames, number of frames cor-
responding to steps on the mat, and the number of steps are
shown in Table 1.

The mean and standard deviation of the errors in step
length and step width are summarized in Tables 2 and 3
for different likelihood functions. The results suggest that
the distance metric computed in 3D space (cue 1) has lower
error in step length, while the one computed in 2D image
space by projection (cue 2) has lower error in step width.
More importantly, the result of the combined function is
generally close to, and mostly better than, the best results
of the two separate cues within each subject.

In order for the tracker to be used for clinical studies, the
step length/width errors need to be smaller than the vari-
ability in step length/width in the tested population. Ow-
ings [16] reported step length variability of 1.4 cm to 1.6
cm and step width variability of 1.4 cm to 2.5 cm with sub-
jects walking on a treadmill under different conditions. Ac-
cording to Table 2 and 3, the error of our tracker with the
combined likelihood is slightly larger than the reported vari-
ability in their study.

Note that the RGB cues have significantly higher error
than the Kinect cues for both measures. We observe that
there are two reasons for this. First, due to the changing
background, from time to time there are new regions in the
image that have similar color as the leg segments. These
regions pull the leg predictions away from the true location
of the legs and create instability for the tracker. Second,
changing lighting conditions and walking motions in uncon-
trolled environments change the gradient and color infor-
mation of the tracking targets dramatically in comparison
to the reference template. These two factors significantly
contribute to the poor results for the RGB cameras.

Readers are invited to check the supplementary material
for video results of the combined cue. The tracker success-
fully tracks the legs over the entire sequence for each of the



Table 2. Mean and standard deviation of step length error of each
cue in cm

Subject | Measure | Cue 1 | Cue 2 | Combine | RGB
1 Mean 4.67 7.11 2.73 21.90
Std 1.66 3.11 2.31 9.95

2 Mean 3.88 | 15.46 3.87 10.66
Std 4.69 6.98 2.27 8.67

3 Mean 4.60 | 4.77 3.48 16.84

Std 228 | 4.23 2.02 10.36

Table 3. Mean and standard deviation of step width error of each
cue in cm

Subject | Measure | Cue 1 | Cue 2 | Combine | RGB
1 Mean 8.71 2.37 2.87 6.51
Std 1.07 1.91 2.50 4.55

2 Mean 7.00 3.45 3.04 6.28
Std 2.01 243 2.52 6.00

3 Mean 4.56 2.36 1.75 6.76

Std 2.48 1.22 1.17 4.44

3 subjects. As demonstrated in Figure 4, tracking is suc-
cessful even when there is significant missing data, shown
as black patches in the color-coded depth image. During the
few frames when more than half of the points are missing,
the prediction of the foot goes off-track slightly. However,
tracking recovers quickly when the points are observable
again in the last 3 frames.

Likewise, the back leg is periodically occluded by the
front leg during walking. Such occlusion is most severe
when the subject makes a step that has high step length and
low step width. As shown in Figure 5, the tracker is able to
infer the location of the partially occluded leg segments in
the first 5 frames. In the next 4 frames, tracking temporarily
fails for one of the legs, in which the foot is totally occluded
and the calf is heavily occluded as well. The tracker mis-
takenly predicts the foot is in the air as opposed to on the
ground. Nevertheless, tracking resumes successfully when
the leg is visible again as shown in the last 3 frames of the
figure.

Note that all the images in Figure 5 and 4 correspond to
the second subject who wears baggy pants that violate our
cylindrical model of the legs. Although this subject has the
highest error in both step length and step width for the com-
bined cue as shown in the tables, the difference is small, and
the visual results suggest that the limbs are tracked success-
fully over the entire sequence with few off-tracked frames.
In summary, this preliminary experiment shows that our
tracker is robust against moderate missing data, partial oc-
clusion, and deformable tracking targets.

The software is implemented in Matlab, where a portion
of the code involving distance calculation and 3D projec-
tion is written in C++ that interface with Matlab through
mex files. The current running time to process one frame

with 5000 particles, including the computation of both dis-
tances and segmentation, ranges from 14 to 19 seconds on
a modern 2.5 Ghz computer, with parallelized computation
of particles over 2 cores using Matlab’s parallelization fa-
cility. We believe that a significant speed-up is possible by:
parallel computation of particles in C++ instead of Matlab,
rasterization through the GPU OpenGL instead of CPU for
the 2D cue, and a better data structure for finding the nearest
neighbor for the 3D cue such as storing the points in a 3D-
tree instead of a list. One advantage of our tracker is that it
does not require any user intervention or manual initializa-
tion as commonly required in many trackers. As tracking is
usually done offline by Kinesiologists for assessment pur-
poses, real-time tracking is not necessary and speed is not
the primary concern at this point.

6. Conclusion and Future Work

In this paper we designed and evaluated a tracker to es-
timate the 3D pose of the lower limbs of walker users. The
tracker uses a real-time structured-light camera to capture
the scene, which is segmented based on depth. We employ
a particle filter that combines two likelihood functions de-
signed to complement each other. Our experiment shows
that the tracker successfully tracks the 3D poses of users
over the entire video sequence. We also demonstrate that
the tracker is robust against unfavorable conditions such as
occlusion, missing observations, and deformable tracking
targets. The system described and tested in the current pa-
per represents a significant advance in ambulatory lower
limb tracking. Not only does the system provide spatial
measures that accelerometer-based systems do not provide,
users are also free from donning sensors and/or markers on
the body. While the errors of the system are large com-
pared to clinically relevant values, the initial system tests
and avenues for improvement remain highly promising. In
future work, we plan to improve the motion model by using
physics-based models that better respect the laws of physics
and therefore produce gaits that better resemble human mo-
tion [5, 4]. Another direction is to learn the dynamics from
data on a lower dimensional space even if the pose space
is high dimensional [17]. Finally, we believe there is still
room for improvement in the likelihood model. In this pa-
per we use cylinders to represent the legs, which may not
be suitable if the user wears loose-pants or skirts. We plan
to use deformable or data-driven models in the future.
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