IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.7, JULY 2007 1

Value-Directed Human Behavior Analysis
from Video Using Partially Observable
Markov Decision Processes

Jesse Hoey and James J. Little, Member, IEEE

Abstract—This paper presents a method for learning decision theoretic models of human behaviors from video data. Our system learns
relationships between the movements of a person, the context in which they are acting, and a utility function. This learning makes explicit
that the meaning of a behavior to an observer is contained in its relationship to actions and outcomes. An agent wishing to capitalize on
these relationships must learn to distinguish the behaviors according to how they help the agent to maximize utility. The model we useis a
partially observable Markov decision process, or POMDP. The video observations are integrated into the POMDP using a dynamic
Bayesian network that creates spatial and temporal abstractions amenable to decision making at the high level. The parameters of the
model are learned from training data using an a posteriori constrained optimization technique based on the expectation-maximization
algorithm. The system automatically discovers classes of behaviors and determines which are important for choosing actions that
optimize over the utility of possible outcomes. This type of learning obviates the need for labeled data from expert knowledge about which
behaviors are significant and removes bias about what behaviors may be useful to recognize in a particular situation. We show results in
three interactions: a single player imitation game, a gestural robotic control problem, and a card game played by two people.

Index Terms—Face and gesture recognition, video analysis, motion, statistical models, clustering algorithms, machine learning,

parameter learning, control theory, dynamic programming.

1 INTRODUCTION

THIS paper describes a model of human behaviors that
unifies computer vision and decision theory through a
framework of probabilistic modeling. The motivation is that
computational agents will need capabilities for learning,
recognizing, and using the extensive range of human
nonverbal communication skills. The perceiver of a
nonverbal signal must not only recognize the signal, but must
understand what itis useful for. The signal’s usefulness will be
defined by its relationship to both signaler and receiver, their
actions, their possible futures together, and the individual
ways they assign value to these futures. This paper describes
a method for the automatic learning and analysis of
purposeful, context-dependent, human nonverbal behavior.
No prior knowledge about the structure of behaviors or the
number of behaviors is necessary. The method learns which
behaviors (and how many) are conducive to achieving value
in the context. An important aspect of our work is the explicit
modeling of uncertainty in both the observations and in the
temporal dynamics of the system. Taking this uncertainty
into account allows the system to better optimize over
possible outcomes based on noisy visual data. This paper
will focus on human nonverbal communicative behaviors,

e |. Hoey is with the School of Computing, University of Dundee, Queen
Mother Building, Dundee, Scotland, DD1 4HN.
E-mail: jessehoey@computing.dundee.ac.uk.

e |J. Little is with the Department of Computer Science, University of
British Columbia, ICCS 117, 2366 Main Mall, Vancouver, B.C., Canada,
V6T 1Z4. E-mail: little@cs.ubc.ca.

Manuscript received 15 July 2004; revised 22 June 2005; accepted 29 Sept.
2006; published online 18 Jan. 2007.

Recommended for acceptance by I.A. Essa.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0358-0704.
Digital Object Identifier no. 10.1109/TPAMI.2007.1020.

0162-8828/07/$25.00 © 2007 IEEE

including facial expressions and hand gestures. We will use
the term display to refer to face or hand behaviors.

There has been a growing body of work in the past
decade on the communicative function of the face [24], [46]
and of the hands [38]. This psychological research has
drawn three major conclusions. First, displays are often
purposeful communicative signals [24]. Second, the pur-
pose is not defined by the display alone, but also depends
on the context in which the display was emitted [46]. Third,
the signals are not universal, but vary between individuals
in their physical appearance, their contextual relationships,
and their purpose [46]. We believe that these three
considerations should be used as critical constraints in the
design of computational communicative agents able to
learn, recognize, and use human behavior. First, context
dependence implies that the agent must model the relation-
ships between the displays and the context. Second, the
agent must be able to compute the utility of taking actions
in situations involving purposeful displays. Third, the agent
needs to adapt to new partners and new situations.

These constraints can be integrated into a decision-
theoretic, vision-based model of human nonverbal signals.
The model can be used to predict human behavior or to
choose actions that maximize expected utility. The basis for
this model is a partially observable Markov decision
process, or POMDP [1]. A POMDP describes the effects of
an agent’s actions upon its environment, the utility of states
in the environment, and the relationship between the
observations, the actions, and the states. A POMDP model
allows an agent to predict the long term effects of its actions
upon its environment and to choose valuable actions based
on these predictions. The model can be acquired from data
and can be used for decision making based, in part, on the
nonverbal behavior of a human through observation.

Published by the IEEE Computer Society

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.7, JULY 2007

Our work s distinguished from other work on recognizing
human nonverbal behavior primarily because it automati-
cally learns what behaviors are distinguishable in the data
and useful in the task. We do not train classifiers for
predefined behaviors and then base decisions upon the
classifier outputs. Instead, the training process discovers
categories of behaviors in the data. This method is general
in thatitremoves the need to reengineer a model for each task.
This is especially important in the design of human-
interactive systems since the human behaviors that will be
observed are typically poorly known at the time of model
specification. Instead, our method does not require expert
knowledge about which displays are important nor extensive
human labeling of data. Expert data labeling is not only time
consuming, but also unnecessarily constrains the resulting
models to the types of behaviors believed to be important by
the experts.

In contrast, the Facial Action Coding System (FACS) has
become the standard for psychological inquiries into facial
expression. Computer vision researchers have made signifi-
cant progress toward automatic FACS coding [2], [21], [55].
However, although the recognition of facial action units
may give the ability to discriminate between very subtle
differences in facial motion, or “microactions,” it requires
extensive training and domain specific knowledge [2].
Further, the importance of such a detailed level of representa-
tion is not clear for computer vision systems that intend to
take actions based on observations of humans [42] and much
simpler representations will be sufficient in many tasks. Our
method takes a more task-oriented approach, automatically
finding and modeling behaviors that are sufficient for
performance.

There will be little discussion of speech recognition and
natural language understanding in this paper. Our work
focuses solely on recognizing and using nonverbal com-
municative acts. However, it is well known that gesture and
facial expression are intimately tied to speech [14], [38] and
one might object to our omission. Nevertheless, our models
are theoretically well grounded and models of the same
type have been used extensively in speech recognition [45]
and dialogue management [41], [57]. Therefore, we believe
that our models are ideally suited for integration with
dialogue modeling work at some time in the future.

This paper is organized as follows: We first review
previous work in modeling human behaviors from both
labeled and unlabeled data. Section 3 then describes a
general POMDP model of human behavior modeling within
a task and Section 4 goes into more detail of a specific
POMDP model. Finally, Section 5 discusses the results of
learning the model in three situations.

2 PREvious WORK

Learning and solving POMDPs is a well-studied problem in
the artificial intelligence literature. One of the main areas of
research is into learning, solving, and using a POMDP
simultaneously, online, using reinforcement learning [52].
Although these approaches carry optimality guarantees, they
do not scale well to real-world domains. On the other hand,
recent developments in efficient approximate solution
techniques for specific POMDPs (where the model is known)
have shown promise for solving large, realistic problems [9],
[29], [50]. However, these methods do not approach the
problem of learning the models and typically assume that
sensing yields simple observations that are easily quantified.

This is a problem in domains that require interactions with
humans as the inputs to the decision maker will be very
complex. For example, if human facial expressions need to be
distinguished for performance in some task, then the
observations will be entire sequences of video. Therefore,
the decision making process needs to be coupled with some
hierarchical modeling that takes care of spatio-temporally
abstracting these complex observations. This problem is well
studied in computer vision [7], [11], [12], [40], [51], where the
goal is to train a classifier to recognize some predefined set of
behaviors using supervised learning. Our work instead
addresses the coupling between the behavior models and
the decision making process: We automatically learn which
behaviors are important to recognize.

Representation of human behavior in video is usually
done by first estimating some quantity of interest at the
pixel level and then spatially abstracting this to a low-
dimensional feature vector. Optical flow [6], [20], [21], color
blobs [12], [17], deformable models [35], motion energy [7],
and filtered images [2] are the more well-used pixel-level
features. Spatial abstraction is usually approached using
either a model-based or a view-based representation of a
body part. Model-based approaches are often three-dimen-
sional wire-frame models [2], sometimes including muscu-
lature [21]. View-based approaches spatially abstract video
frames by projecting them to a low-dimensional subspace,
using, for example, principal components [6], [23], [56],
Fisher linear discriminants [3], or independent component
analysis [2]. Other representations of faces and bodies use
templates [7], feature points [35], or “blobs” [12], [51].

Our work uses Zernike basis functions [44] for holistic
representation of the face and facial motion. The Zernike
polynomial basis provides a rich and data independent
description of optical flow fields and gray-scale images.
When applied to optical flow, the Zernike basis can be seen as
an extension of the standard affine basis [27]. The Zernike
representation differs from approaches such as Eigen-
analysis [56], or facial action unit recognition [55] in that it
makes no commitment to a particular type of motion, leading
to a transportable classification system (e.g., usable for
clustering different types of behaviors), which is necessary
for a general modeling technique such as we are pursuing.
Zernike polynomials have been used for recognizing hand
poses [32], handwriting and silhouettes [53], and optical flow
fields [28]. It is important to note, however, that our learning
method does notrely on this particular choice of basis function
and others could be investigated within the same method.

Once features are computed for each frame, their
temporal progression must be modeled. Spatio-temporal
templates [21], dynamic time warping [18], and hidden
Markov models [51] are popular approaches. HMMs have
been applied to many recognition problems in computer
vision, such as hand gestures [47], American Sign Language
[51], and facial action units [2].

There are many DBN extensions of HMMs, including the
coupled hidden Markov model [11]. Hierarchical models
[22] are particularly interesting as they incorporate temporal
abstractions and have been used for modeling full body
motions [12]. However, learning a hierarchy is a notoriously
difficult problem. Seer [40] implements a real-time hier-
archical model using a layered HMM, where each layer
represents events at a different temporal granularity.
However, in Seer, each layer is trained independently from
labeled data. The DBN underlying a POMDP is known as
the input-output hidden Markov model [5]. POMDPs have

HOEY AND LITTLE: VALUE-DIRECTED HUMAN BEHAVIOR ANALYSIS FROM VIDEO USING PARTIALLY OBSERVABLE MARKOV DECISION... 3

been used in realistic domains, including robot control [54]
and spoken dialogue management [57]. Darrell and Pent-
land used POMDPs for control of an active camera [17].
Their POMDP model was trained to foveate regions
containing information of interest, such as hands during
gesturing. However, their work is focused on computing
policies in a reinforcement learning setting. They do not
learn the number of behaviors and they separate visual
recognition from decision making.

Most of the methods we have been describing are trained
with labeled data, which requires human intervention and
makes adaptivity more difficult. The alternative is to develop
systems that can discover categories of motions. In particular,
clustering sequences of data using mixtures of hidden
Markov models was proposed by Smyth [49] and has been
used in computer vision for unsupervised clustering of data
[16], [36]. Darrell et al. [18] examine the same kind of models,
but use dynamic time warping (DTW). Brand et al. have
shown how to discover patterns of motion in an office
environment using a hidden Markov model [10], but without
hierarchical structure. These works do not explicitly model
actions and utilities. Work in human-computer interaction
(HCI) has made steps in the direction of learning user
behaviors as they relate to system actions. Although most
HCI systems only make use of human interface actions, such
as mouse or keyboard actions, some have begun to integrate
visual and auditory information [42].

Jebara and Pentland [33] presented action-reaction learning,
in which a dynamic model was learned from observing video
of two people interacting. The model was then used in a
reactive way to simulate interactions. Our work generalizes
action-reaction learning by adding high-level context, actions,
and utilities. Action-reaction learning is designed for imita-
tion-type tasks, while our modelis applicable to interactions in
which plans need to be developed autonomously.

3 LEARNING AND SoLviING POMDPs

A partially observable Markov decision process (POMDP) is
a probabilistic temporal model of an agent interacting with
the environment. POMDPs can be learned from data, and,
once specified, can be used to compute policies of action that
maximize some notion of utility. In this section, we first give
an overview of POMDPs in Section 3.1, followed by a
discussion in Section 3.2 of how to learn the parameters of a
POMDP from data with the expectation-maximization
algorithm. We show in Section 3.3 how to approximately
solve the POMDP by solving the associated MDP model.
The solution to the POMDP gives indications about the
structure of the model and about how useful this structure is
for achieving value.

In this paper, we use standard notation for variables,
where capital letters denote random variables, while small
letters denote an instantiation of that variable. Subscripts on
small letters denote a particular value of a variable. Bold-
faced letters represent sets of variables, usually referring to
sets that extend over time (e.g., sequences of data). Thus,
X ={Xi,...,Xn} is a set of N random variables, x =
{z1,...,zy} is an assignment of values to those variables,
and z; is an assignment to X;. We will also write z; ; as the
particular assignment X; = j.

(a) (b)

Fig. 1. (a) Two time slices of general POMDP as a dynamic Bayesian
network (DBN). (b) The same POMDP with a factored state S = {D, C'},
for display understanding, where D is the unobserved behavior
descriptor and C' is the remainder of the state, assumed to be fully
observable in this paper.

3.1 Overview

A POMDRP is a tuple (S, A, 04, R,0,00), where S is a finite
set of (possibly unobservable) states of the environment, A is
a finite set of agent actions, ©g: S x A — S is a transition
function that describes the effects of agent actions upon the
world states, R : S x A — IR is a reward function that gives
the expected reward for taking action A in state S, O is a set
of observations, and Op: S x A — O is an observation
function that gives the probability of observations in each
state-action pair. Fig. 1a shows two time slices of a POMDP
as a dynamic Bayesian network (DBN). Shaded nodes
denote observables, unshaded nodes denote unobservable
variables. Parameter random variables are denoted by ©,
prior hyperparameters by «, and the diamond is the reward.

When POMDPs are used by a decision maker interacting
with another agent (possibly a human), then the state, S,
includes some descriptions of the behaviors of this other
agent. That is, we factor the state, S, into two parts,
S ={C, D}, as shown in Fig. 1b.! Now, D is a high-level
description of the observed behaviors of other agent(s), while
C contains the remainder of the state, including observable
action(s) of the other agent(s). In order to focus on learning
models of behaviors, we assume that only D in this model is
unobservable directly, while C' and A are always fully
observed. The transition function is also factorized in two
parts: ©¢ = P(C4|Cy1, D1, Ay) gives the state dynamics
given the observed behaviors and the action taken, while
Op = P(Dy|D,_y,C}, A;) gives the expected behaviors given
the state and action. We assume that C' and D are discrete
random variables, so the associated parameters ©¢ and ©p
are multinomial distributions. We denote the complete set of
parameters © = {O¢, Op, Op}. We also include fixed prior
hyperparameters in Fig. 1: ac,ap are Dirichlet prior
parameters, while o is a more complex prior explored in
detail in Section 4.

The observations at time step ¢, O;, are a sequence of
T observations (e.g., video frames), o; . . . o7;. In domains with
human behaviors as observations, the rate at which decisions
are made at the high level is slower than the rate of

1. Factored representations write the state space implicitly as the cross
product of a set of multinomial, discrete variables, and allow conditional
independencies in the transition function, 7', to be exploited by solution
techniques [9].

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.7, JULY 2007

observations (the video frame rate) and, therefore, T; > 1.
This difference in temporal scales between decision making
and observations means that the observation function must
be capable of spatio-temporally abstracting a video stream
into a set of high level descriptors of behaviors, D. That is, it
mustbe capable of computing P(O,|D;) and of computing the
gradient of this function. We describe one particular such
function in Section 4. We assume throughout this paper that
the boundaries of the observation sequences will be given by
the changes in the fully observable context state, C' and A.
There are other approaches to the temporal segmentation
problem, ranging from the complete Bayesian solution in
which the segmentation is parameterized [22] to specification
of a fixed segmentation time [40].

A complete set of POMDP parameters, 6, allows us to
compute the likelihood of a sequence of data, o = {o,c,a},
P(o,c,alf), by summing over the unobserved values of d
using the standard forward algorithm for input-output
hidden Markov models [5], [39]. Denoting 7" as the number
of POMDP transitions in the sequence, then a =qy,...,ar
and ¢ = ¢y, ..., cr are the inputs, o = 0y,...,0p (Where each
o, is a sequence of video frames) are the outputs.

3.2 Learning POMDP Parameters
This section describes how to learn the parameters of a
POMDP, which can be formulated as a constrained
optimization of the likelihood of the observations, given
the model, over the (constrained) model parameters. We
will show how the expectation-maximization, or EM, algo-
rithm can be used to find a locally optimal solution [19].
Learning takes place over the entire model simultaneously:
Both the output distributions, ©p, and the high-level
POMDP transition functions, ©, © p, are learned from data
during the process. Since the behaviors, D, are unobser-
vable, this means that the learning will perform both
clustering of the observation sequences into a set of
behavior descriptors, D, and learning of the relationship
between these behavior descriptors, the observable context,
C, and the action, A. In this section, we discuss the general
learning method. Section 4.4 shows how to learn the
parameters of a hierarchical observation function.
Learning the POMDP parameters is to find the set of
parameters, © = 0" that maximize the posterior density of
all observations and the model, P(o,c,a,©), subject to
constraints on the parameters. The EM algorithm starts
from an estimate of the parameter values, #, and computes

= 1 1 .
0 argrgﬁ;{L;jP(do,c,a,Q) og P(d,0,c,a|d) + log P(0)

The “E” step of the EM algorithm is to compute
expectation over the hidden state, P(d|o,c,a,¢), given
the observations o,c,a and a current guess of the
parameter values, §'. The “M” step is then to perform the
maximization which, in this case, can be computed
analytically by taking derivatives with respect to each
parameter, setting to zero, and solving for the parameter.
The resulting update equations for the parameters of the
POMDRP transition functions are the same as for an input-
output hidden Markov model [5].

The update equation for the D transition parameter,
eDijkl = P(dt,i|dt,17j, ct,k,at71), is then

Qpijil + Zte{L.‘Ni}\szk/\Ai:l P(dﬁ,ﬁ dfflﬁj|07 a,C, 6/)
> [amﬂd + 2 e mycimkna— Pldiidioi jlo, a, ¢, 9')}

where the sum over the temporal sequence is only over time
steps in which the observed values of ¢; and ¢, in the data
are k and [, respectively, and ap;ji; is the parameter of the
Dirichlet smoothing prior. The summand can be factored as

Opijri =

P(dt,iadt—l,j|oaaacael) = ﬁt,ip(ct\dt—lj,Ct—hat)
P(oy|d;) P(dyildi—1,5; -1, ar) o1 j,
where P(o;|d;;) is the likelihood of the data given the

behavior and «,(are the usual forward and backward
variables,

.7Ct)7

AT Cpgly e 7CT|th,z?7Ct)7

Oét‘]‘ = P(dt‘jol,. . .,04,01,...,04,C1y . -

Bri = P01, .-

for which we can derive recursive updates

<507, Ay .-

Qtj =

ZP(0t|dt,j)P(Ct|dt—l,k7thlvat)P(dt,j|dt—Lk»Q—l»at)at—l,ka
%
(1)

@71@ =
Zﬁt‘,kp(ct‘dt—lwct—lvat)P(ot‘dtk)P(dt,Hdt—LivCt—hat)~ (2)
k

The updates to Ociju = P(cri|ci-1,5, di—1, ary) are

Ociju = E ks
te{1..N: }Cr=inC, 1 =jAA=1

where '5/6 = P(dl,k|07a7 C) = ﬁ[‘k‘at,k‘

The updates to the jth component of the mixture of the
output distributions, P(O|D;), will depend on the particu-
lar form of that function, but will be weighted by §;. Here,
we assume only that the gradient of the observation
function can be computed with respect to its parameters.
We show more details of these updates in Section 4 for the
hierarchical function we have used.

3.3 Solving POMDPs

This section discusses how to solve the learned model to yield
a policy of action. If observations are drawn from a finite set,
then an optimal policy of action can be computed for a
POMDP using dynamic programming over the space of the
agent’s belief about the state, b(s). Dynamic programming
“backs up” the reward function through the POMDP
dynamics, thereby computing a value function over the
belief space. This value function gives the expected value of
the agent being in each belief state and can be used to map
belief states into the actions that will achieve this value. Since
the belief space is infinite, computing the optimal value
function is possible only for very small problems. If the
observation space is continuous or very large, as in our case,
the difficulty is increased even further [29].

Although the ultimate goal of computing the value
function is to yield a policy of action, we are concerned in
this paper with learning the POMDP model. As we will
describe in the next section, the value function has an
important role to play in the learning because it gives
information about which distinctions in the state space are

HOEY AND LITTLE: VALUE-DIRECTED HUMAN BEHAVIOR ANALYSIS FROM VIDEO USING PARTIALLY OBSERVABLE MARKOV DECISION... 5

useful to make. The ability of the value function to provide
this information is intimately connected with its final ability
to choose correct actions. However, we can use the simplest
possible approximation for a particular domain that still
yields sufficient information to guide our learning process. In
the domains we have investigated, we can consider the
POMDP as a fully observable MDP (the MDP approximation):
The state, S, is assigned its most likely value in the belief state,
s* = argmax, b(s). Solving the resulting fully observable
MDP using dynamic programming consists of computing
value functions, V"', where V" () gives the expected value of
being in state s with a horizon of n stages to go, assuming
optimal actions at each step. The actions that maximize V" are
the policy with n stages to go. The value functions are
computed by setting V’ = R (the reward function), and
iterating [4]

V(s) = R(s) + IEIE%Z({Z Pr(s'|a, s) - V"(s/)}, (3)
S=s¢'

where Pr(s'|a,s) is the transition function from s to s’ on
action a. The actions that maximize (3) form the optimal (with
regard to the MDP) n stage-to-go policy, 7" (s). We will only
consider finite horizon policies in this paper. We use the
SPUDD MDP solver, which exploits the structure inherent in
a factored representation for efficient solutions [31].

We again stress the fact that, although we are solving the
model using a strong approximation, the full POMDP model
is still being learned and the solution is only being used in this
work to guide our structure learning. For the domains we
consider in this paper, this approximation still preserves the
information about the state space distinctions necessary to
learn the smallest model. It is also important to note that the
solution technique we describe here could be replaced with
other approximate model-based POMDP solution algo-
rithms. The resulting changes to the value-directed structure
learning technique would not alter the basic premise: that
state space distinctions which are not useful will be apparent
in any reasonable approximate solution.

3.4 Value-Directed Structure Learning

The value function, V(s), gives the expected value for the
decision maker in each state. However, there may be parts of
the state space that are indistinguishable (or nearly so) insofar
as decisions go. Eliminating the distinctions between them by
merging states can lead to efficiency gains without compro-
mising decision quality. Such state merging is a form of
structure learning (for model order) based upon the utility of
states. While this idea has been explored in the machine
learning literature [15], we apply it here to the task of learning
the minimum number of behaviors that need to be distin-
guished in our learned POMDP. This value-directed structure
learning can be contrasted with data-dependent structure
learning, in which the complexity of the model is traded off
against the quality of fit to the data. For example, Bayesian
inference gives rise to a manifestation of Occam’s razor by
assigning higher probability to simpler models in many cases.
However, this only considers utility based on data prediction.
In our case, we explicitly look for models that are the simplest
for achieving value within a task and these may not be the
same as those given by Bayesian model selection.

There are two problems that must be solved: first,
finding the parts of the state space that can be merged and,
second, actually performing the merging, which involves
combining the (learned) observation functions for different

initialise Ny as large as possible
repeat

1.learn the POMDP model
2.compute V; and m; V i
3.compute d;; and pi; V (4,),i#J
4 .{i,j} = argmingy (duV{k, 1} | pr > wp)
5.if dij <wa N Ng>1
6 merge states ¢ and j
7 Ng— Ng—1
end

until Ny stops changing

Fig. 2. Value-directed structure learning algorithm.

behaviors. We address each of these in turn. To merge
states, we use the fact that parts of the state space with
similar values in the value function can be aggregated to
form abstract states when computing a policy without
sacrificing much in terms of value. We can also look at the
policy for a given model and find states that map to the
same action. This process is repeated until no more merges
are possible or until the number of behaviors becomes 1 (in
which case, recognition of the behaviors is deemed useless).

To see how this is implemented, recall that the state space
is represented in a factored POMDP as a product over a set of
variables. Therefore, the value function can be split into
Ny pieces, V;, one for each value (behavior class) of the
variable D = d;. Each such V; gives the values of being in any
state in which D = d;. A similar split occurs for the policy,
yielding subpolicies, 7;, giving the actions to take for each
D = d;. The V; can be compared by computing the difference
between them, d;; = ||V; — Vj||, where || X| = maz{|z|:z €
X} is the supremum norm. This value difference is an
indication of how much value will potentially be lost if we
merge the states ¢ and j. Two subpolicies, 7; and ;, are
compared by dividing the number of states for which they
agree, n;; = |m; A 7;|, by the size of the state space spanned
by all variables except D, written |S_p|. This fraction,
pij = nij/|S_pl|, is the amount of the state space over which
the policies agree. The algorithm shown in Fig. 2 uses these
measures, beginning with N, as large as the training data will
support. The thresholds w, and w,; govern how aggressively
this method merges states. These parameters are not learned
and must be tuned manually. We discuss particular values for
these thresholds in Section 5.

Once two states have been found, we must initialize a
new POMDP model with one state representing the
observation space that both original states did (Step 6).
We have used two methods for doing this. In the first, we
simply delete one of the two states. We use this method in
Sections 5.2 and 5.3.2. This may be dangerous, however, as a
large part of the observation space may not be modeled and
the next iteration of learning (Step 1) may account for it in
unpredictable ways. A more principled method is to
reinitialize an observation function P(O|d;), where d; is
the new merged state based on all the data that was
classified into states with D = d; V d; (the old states to be
merged). We use this method in Section 5.3.1.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.7, JULY 2007

Fig. 3. (@) Two time slices of the hierarchical observation function used in this paper shown as a DBN that parameterizes P(O|D) =
P(fi... fr,,Vfi...Vfr|D). Time indices are primed at the low level to distinguish them from the higher level. The low-level time index, ¢', goes from
1...T between times ¢ — 1 and ¢ at the high level. (b) Bayesian network for the mixture of Gaussians over spatio-temporal image derivatives with
feature weighting, parameterizing the distribution P(Vf|X) in (a). The distribution P(f|W) is parameterized with a similar network.

4 OBSERVATION FUNCTION

We now return to the observation function P(O|D). Recall
that this function is a mapping between spatio-temporally
extended observations (sequences of video frames), O, and
high-level behavior descriptors, D, and, therefore, must have
a hierarchical structure. Further, since we will eventually
wish to sample from this distribution to find POMDP
solutions [29], we require a generative model. Finally, we
require that this function be fairly generic such that it can be
applied to different types of behaviors without modification.
In what follows, we describe a model for P(O|D) that satisfies
all of these constraints, shown as a dynamic Bayesian
network in Fig. 3a. It is a mixture of coupled hidden Markov
models (CHMMs) [11], a hierarchical dynamic Bayesian
network that performs temporal abstraction using hidden
Markov chains over X and W. These variables (X, W)
describe instantaneous dynamics and configuration of the
region being tracked. For example, the configuration classes
may correspond to characteristic facial poses, such as the
apex of a smile. The dynamics classes are motion classes and
may correspond to, for example, motion during expansion of
the face to a smile. Section 5.1 shows how configuration and
dynamics together outperform either one separately in a
recognition task.

We assume that a region of interest in each frame is
selected by some independent tracking process (details in
[26]). The observations are video image regions, f, and the
spatio-temporal derivatives, Vf, between pairs of images
over these regions. The observations are spatially abstracted
using projections, Z, to an a priori basis of feature-weighted
2D polynomials, as shown in Fig. 3b. The basis functions are
fixed in order to ensure the model is generalizable to different
behaviors, but we show in Section 4.3 how feature weights
can be learned such that only those basis functions that are
necessary are used.

As a generative model, it can be described as follows: A
high-level behavior at time ¢, d;, generates a sequence
of images fy—i...fr—r and spatio-temporal derivatives,
Vfyi1...Vfy_r by first generating a sequence of values,
Wy—q ... wp—p and zy_; ... xy_7, for the discrete configuration
and dynamics variables, W and X, respectively. The

dynamics in the hidden chains are given by the transition
functions G)X = P(Xtr|th,1, I/Vtr, Dt) and @w’ = P(I/Vy“/vtr,],
Xy-1,D;) and the initialization functions IIx = P(Xy_|
Wy—1,D;) and Iy = P(Wy—|D;). The dynamics and con-
figuration variables at time ¢/, X,, W, generate an image, fy
and a spatio-temporal derivative, Vfy, through the condi-
tional distributions, ©; = P(fy|Wy) and ©; = P(Vfy|Xy).
We discuss these last two functions in more detail in
Sections 4.1 and 4.2, respectively.

This mixture model can be used to compute the like-
lihood of a video sequence given the display descriptor,
P(oy...or|d:), where o, ={f;,Vf;}, using the recursive
equations:

P(oy...oldy) = ZP(Vft\mt,i)P(fdwt,j)P(xm\mtfl,j, W, dr)
7

Z P(wy j|wi—1 s ©1-1,0, d7) P(T7-1)y Wr-1,01 - . . O7—1|dy)
kl

ploild;) = ZP(vft|$1,Z)P(ft|w14j)P(fUl.i|w1,jydt)P(wl,]"dt)
ij

(4)

Table 1 shows the parameters in the model. On the left are
parameters that have fixed values. These numbers are set
manually based on prior expectations. The right table shows
the parameters that are learned using EM, the initialization

heuristics, or the value-directed learning methods.
The following sections give more details on the observa-

tion function. Sections 4.1 and 4.2 give overviews of the
likelihood computations for dynamics, P(Vfy|Xy), and
configuration, P(fy|Wy), respectively. Feature weighting is
described in Section 4.3. Section 4.4 then discusses learning
the observation function.

4.1 Dynamics

Fig. 3b shows an expanded version of the dynamics vertical
chain from Fig. 3a. We wish to derive the likelihood of a
derivative, Vf, given the high-level dynamics class, X. Since
we wish to classify optical flow fields, we expand the
likelihood as

HOEY AND LITTLE: VALUE-DIRECTED HUMAN BEHAVIOR ANALYSIS FROM VIDEO USING PARTIALLY OBSERVABLE MARKOV DECISION... 7

TABLE 1
List of Fixed and Learned Parameters in the Model
FIXED LEARNED

Parameter | Used for Value

01,02 optical flow 0.08,1.0 Parameter Used for Reference
Op,z,Op,w | Projection error 0.01 Op,0¢c Transition (D,C) Sec. III-B
N; 2, N, | number of features for X, W | 16,32 IIp, e Initialisation (D,C") Sec. 1II-B
Kz,0z,by | feature weights (X) N.+2,1,0.01 Ny no. states in (D) Sec. III-D
Kw, Gw, by | feature weights (W) N.+2,1,0.01 Wzzy Nz, 7o | Mix. of Gaussians (X) | Sec. IV-D

Qg y Qg transition priors (X, W) 1.25 Wzws Nzow, Tw | Mix. of Gaussians (W) | Sec. IV-D

al, an, initialisation priors (X, W) 1.0 Ox,O0w Transition (X, W) Sec. IV-D

ap,ac transition priors (D,C) 0.1 IIx, Iy Initialisation (X, W) Sec. IV-D

ap,as initialisation priors (D,C) 0.1 Ng, Ny no. states (X, W) Sec. IV-D

Ng, Nc number of actions, states

wd, Wp value-directed thresholds 0,0.9

P(Vf|X,0) = / P(Vf]v,0)P(u]X,0), (5)

v
where we have assumed the derivatives independent of the
motion class given the flow, v.

There are two terms in the integration. The distribution
over spatio-temporal derivatives conditioned on the flow,
P(Vf|v,0), is estimated in a gradient-based formulation
using the brightness constancy assumption and is given by:>
P(Vflv) x N(f;; —fsv, A),where A = fA1 fi + Ay,and Ay, Ay
are noise covariances in the optical flow estimation [48].
P(v|X) is parameterized using a projection of v to the basis of
Zernike polynomials, P(v|X) = [, P(v|2x)P(2x|X), where
Zx is the feature vector in the polynomial basis space. We
parameterize the distribution over Zx given X with anormal,
P(Zx|X) = N(Zx; oo, Az,). We are expecting flow fields to
be normally distributed in the space of the basis function
projections.

The distribution over v given zx is given by projections to
the basis of Zernike polynomials, which have useful proper-
ties for modeling flow fields [27] and images [53]. Our method
isnot restricted to this basis set, but gains independence from
the data by using an a priori set of basis functions, leading to a
more generally applicable observation function. Zernike
polynomials are an orthogonal set of complex polynomials
defined on a 2D elliptical region as follows [44]:

Al (z,y)

[BZ?(M/)] -

o (1 (n—1 cos(me)]
— UE(n+ |m]) = (! (n — [m]) — J1pn—2 Lin(rruﬁ) }7

where ¢ = arctan (y/x), p=+/22+1y2 <1, and =,y are

measured from the region center. The lowest two orders of
Zernike polynomials correspond to the standard affine basis,

2. The spatio-temporal derivative is Vf = { f;, f;}, where f, = {f,, f,} is
the spatial derivative and f; is the temporal derivative. The expression f,v
means f,v, + f,v,, where v,,v, are the horizontal and vertical optical flow
field, respectively.

and higher orders (higher values of n and m) represent
higher spatial frequencies. The basis is orthogonal such that
each order can be used as an independent characterization of
a 2D function and each such function has a unique
decomposition in the basis. Define an N x N, matrix B
whose columns are the N, Zernike basis functions (with
pixels arranged rowwise), alternating between A;" and B’
such that columns 0,1,2,3... are Zernike polynomials
A}, A1, B}, A%.... Then, a 2D function, f, with N pixels is
projected to the basis using z = ¢B' f and can be reconstructed
from the N, x 1 column vector of coefficients, z, using
f = Bz. The normalization constant ¢ = ¢,,(n + 1) /7, where
€n = 1if m = 0and ¢,, = 2 otherwise. Each of the vertical and
horizontal components of a flow field can be written as a
linear combination of the basis functions and, so, we can
write v = Mzy, where

Vg B 0 Zx
U:L’J M:{O B} ZX:L!/]’ @
in which z,, z, are the Zernike coefficients for horizontal and
vertical flow, respectively. In practice, M will be some subset
of the Zernike basis vectors, the remaining variance in the
flow fields being attributed to zero-mean Gaussian noise.
Thus, we write v = Mzx + n,, where n, < N'(0,A,) and, so,
P(v|z) = N(v; Mzx, A,). The noise, n,, is a combination of
three noise sources: the reconstruction error (energy in the
higher order moments not in), the geometric error (due to
discretization of a circular region), and the numerical error
(from discrete integration) [37]. The choice of a subset of basis
elements to use will depend on what the projections are being
used for (see Section 4.3).
Since all of the terms in the integration (5) are Gaussian
distributions, we can integrate over v and z analytically by
successively completing the squares in v and zx to obtain

Al
‘ Z,L| %(l"/z..rrAz}'MZ.«L*M;,;A;}:H:J'if)

P(f-|Xfs) Zme ,

(8)

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.7, JULY 2007

where

fiog = A, (A;ll, o — MIAS! Au,w>,

= (ratnea)

e= A +u Ay w= fLATYf,

The brightness constancy assumption fails if the velocity v
is large enough to produce aliasing. Therefore, a multiscale
pyramid decomposition of the optical flow field must be
used. This results in distribution over the flow vectors,
P(v|Vf) ~ N (v; i, A,), where A, = (fL A7 f)™" and p, =
—A,flA7' f, [48]. Using these coarse-to-fine estimates, (9)
become

-1
1 M) 7

,az,.r = Az,x (Az_ql«ﬂzr + A[,(Ap + A1))71///1)) .

A, = (A;; +M(A,+ A
(10)

The mean of this distribution, fi.,, is a weighted combina-
tion of the mean Zernike projection from the data (')
and the model mean, p. ;.

4.2 Configuration

The classification of image configurations proceeds analo-
gously to the classification of temporal derivatives. We use
the same set of basis functions, but the measurements are
now the images, I, the subspace projections over image
regions are H and the basis feature vectors are Zy. The
distribution over Zy given W is parameterized with anormal
P(Zw|W) = N (Zw; pow, Asw)- The distribution over the
image regions given the Zernike projection is normal,
P(H|Zw,©) = N(H; BZy, A,). The distribution over images
given the subspace image region, h, P(f|H,©), can be
approximated using a normal distribution at each pixel,
P(.ﬂHa@) NN(f;HaAh)'

The integrations give results similar to that for the
dynamics (8):
QHAT pto =1 AT i w

P(fIW,0) o (11)

where

-1
o = Aq‘1 [A;l + Aq‘l} A+ AL,

AOZ(BA'B-BA A+, } A'B— Am)l.

In this case, however, there are no data-dependent variances
and we approximate P(f|[W®) = P(zy|W®), where zjy =
B'f is the projection of the image region to the basis.

4.3 Feature Weighting

In general, we will not know which basis coefficients are the
most useful for our classification task: which basis vectors
should be included in M and which should be left out (as
part of n,). We use the feature weighting techniques of [13]
that characterize the relevance of basis vectors by examin-
ing how the cluster means,’ i, are distributed along each
basis dimension, £k =1...N,. Relevant dimensions will

3. We drop the subscript or w here since these equations apply equally
to the X or W output distributions.

have well-separated means (large interclass distance along
that dimension), while irrelevant dimensions will have
means that are all similar to the mean of the data, p*.

To implement these notions, we place a conjugate normal
prior on the cluster means oy ~ /\/ (,u T), where T is
diagonal with elements 7{...73 and 7} is the feature weight
for dimension k. The prior biases the model means to be close
to the data mean along dimensions with small feature weights
(small variance of the means), but allows them to be far from
the data mean along dimensions with large feature weights
(large variance of the means). Thus, 77 will be large if k is a
dimension relevant to clustering, while 77 — 0 if the dimen-
sion is irrelevant. Feature selection occurs if we allow 77 =0
for some k. We do not select features in this work.

Conjugate priors are placed on the feature weights, 77, and
on the model covariances, A,. Each feature weight is
univariate and, so, an inverse gamma distribution is the prior
on each 7
I (71,2) —a—1 e—b/Tf_)

P(7¢|a,b) (12)

This prior allows some control over the magnitude of the
learned feature weights, Tk The model covariances are
multivariate, for which the conjugate prior is an inverse-
Wishart prior:

—(k 7. P A -1
|A.| (5 N-A1)/2 —ftr(ad” A)’

P(A|or, A7) o (13)

where A* is the covariance of all the data and « is a parameter
that dictates the expected size of the clusters (the intraclass
distance). This prior stabilizes the cluster learning.

4.4 Learning the Observation Function

Recall from Section 3.2 that the updates (M step) to the
Jjth component of the output distribution, P(O|D;), will be
weighted by P(d;;|o,a,c) = a; ;03 ;, where o and 3 are the
forward and backward variables ((1) and (2)), respectively,
that require the computation of P(o|d; ;) as given by (4). This
means that we can use the standard equations for updating
the transition functions in the X and W chains as would be
used for a normal CHMM, except the evidence from the data
is weighted by P(d; |0, a, c).

The updates to the output distributions in the config-
uration process, P(f|W), and in the dynamics process,
P(Vf|X), are as they would be in a mixture model, except
that the feature weights bias the updates toward the prior
distributions, and the prior weights are given by the state
likelihoods in the POMDP (high-level) chain. The update
equation for the mean of the ith Gaussian output distribu-
tion in the jth model (a component of P(o|z;;,d;;)), ft-.ij, is

T,
peij = (€, UA“, + 1 Ht 221/ (Z ﬂz.zijgt’,ij) +Tflll
=1
where ¢ ;; = EtT,"Zl &vijy Pewij is given by (10) using the

parameters of the ith Gaussian output in the jth model,
oz iy Mo zij, and

&vij = Py dyjlo,a,c)
= P(viloy—1 ... or—r,dy;,6) P(dylo,a,c,6).

The first term is given by the the usual forward-backward
equations in a CHMM [11], while the second is given by the
forward-backward equations in the high-level POMDP ((1)
and (2)). Thus, the most likely mean for each state z is the
weighted sum of the most likely values of z as given by (10).

HOEY AND LITTLE: VALUE-DIRECTED HUMAN BEHAVIOR ANALYSIS FROM VIDEO USING PARTIALLY OBSERVABLE MARKOV DECISION... 9

Dimensions of the means, j,;, with small feature weights, TZ,

will be biased toward the data mean, p*, in that dimension.

This is reasonable because such dimensions are not relevant

for clustering and, so, should be the same for any cluster, X.
The updates to the feature weights are

) b 1 N

T YN, 2 41

*\2

+ 2 + Nz n Qi:zl(ﬂz.l.k :U'k)

and show that those dimensions, k, with p. ;. very different
from the data mean, pj, across all states, will receive large
values of le, while those with ., ~ p; will receive small
values of 77. Intuitively, the dimensions along which the
data is well separated (large interclass distance) will be
weighted more. The complete derivation, along with the
updates to the output distributions of the CHMMs,
including to the feature weights, can be found in [26].

Modelinitialization proceeds in a bottom-up fashion. First,
the dynamics mixture model with N, classes is initialized
from a set of single (time-independent) spatio-temporal
derivative fields, V£, by first computing the expected most
likely values of z, for each frame using a single zero-mean
model with constant diagonal covariance 0.001 and then
fitting a Gaussian mixture to the result of K-means clustering
with K = N, [28]. While the K-means algorithm uses the
Euclidean distance in the space of Z, the Gaussian fits use the
Mahalanobis distance. All of the feature weights, T,f,, are
initialized to 1 and state assignment probability Oy is
initialized evenly. The mixture model over the configurations
is initialized in a similar way, using the projections of image
regions to the Zernike basis.

The entire model is initialized using the estimates of
dynamics and configuration mixtures by first classifying all
of the data using the two mixture models and finding the
largest N, sets of sequences whose sets of visited X states
match exactly. Second, find the set of X (W) states visited
by all the sequences in set i: Ni (Nj). Third, initialize a
CHMM for each set, i, by assigning the output distributions
to be those in the simple mixture models visited by the
sequences in the cluster. The transition and initial state
probabilities are initialized randomly. Finally, training each
CHMM, keeping the output distributions fixed and initi-
alizing the mixture probabilities for the mixture of CHMMs
evenly for each context state.

4.5 Complexity

The complexity of parameter learning is dominated by
the computation of (10) in the “E” step, which is
O(Ny4[N,N. + N3|T"), where N, is the number of high-
level display states, 7" is the length of the entire
sequence of data, N, is the maximum number of pixels
in the region being tracked, and N, is the maximum
dimensionality of the feature vectors Z,, Z,. The compu-
tation is repeated until EM converges, usually some small
number of iterations n < 10.

The worst-case complexity of solving the POMDP using
value iteration over the associated MDP is O(N2N, H), where
N, is the number of states in the POMDP, N, is the number of
actions, and H is the horizon. In typical problems, N, is very
large (exponential in the number of variables in the POMDP)
and the complexity of the entire system, learning plus
solution, will be dominated by the solution term. In the
experiment described in Section 5.3, the number of features is
N. = 36 (the major factor in the learning complexity), but the
number of statesis N, > 6 x 10°. Note, however, thatwe usea

structured approach to solving this MDP [31], which can
substantially reduce the solution average case complexity.

Once a policy has been found, the complexity of using
the model online is composed of updating the belief state
(O(N,N?)) and consulting the policy (O(N,N,)). The belief
state inference will dominate for any reasonably sized
model, but techniques that leverage structure can substan-
tially reduce the running time so as to make this possible in
near real-time. The other major computation is optical flow,
which can be done in near-real-time as well.

5 EXPERIMENTS

We present three sets of experiments in this section, each
designed to address a particular issue in the learning method
we have presented. In the first (imitation game), we explore
the representational power of our computer vision modeling
techniques by examining how they can be used to learn fairly
complex facial expressions. The second experiment demon-
strates the value-directed learning technique using a simple
set of hand gesture sequences. The third experiment then
shows how the model can be used to learn a more complex
interaction during a card matching game. We demonstrate on
both synthetic and real data in this third experiment.

5.1 Imitation Game

In this experiment, human subjects imitated the facial
expressions of an animated character. We learn a mixture of
CHMMs model of their facial expressions and use this
model to predict the animation that caused it. To play the
imitation game, a player watches a computer animated face
on a screen and is told to imitate the actions of the face. The
animations start from a neutral face (n) and warp to one of
four poses {a1,as,a3,a4}, as shown in Fig. 4. The pose is
held for one second and the face then warps back to neutral,
where it remains for an another second.

The simplified model is shown in Fig. 4b. The cartoon
facial expressions are A = {a;...as}, the observations of
the human’s actions, O, are sequences of video images
and the spatio-temporal derivatives between subsequent
video frames and the descriptor of the human’s facial
expression is D € {d;...dy,}. The key here is the ability
to learn both the output distribution P(O|D) and the
relationship between the player’s behavior, D, and the
cartoon display, A, P(D|A). Thus, we train the model on
a set of training data in which the cartoon display labels
are observed, then we attempt to predict the cartoon
facial expression on a set of test data in which the labels
are hidden. That is, on the test data, we compute o* =
arg max, P(A = alo) = argmax, y_, P(o|d;)P(d;|A = a).

Three subjects performed the task 40 times each. Video
frames were recorded at 160 x 120 with a Sony EVI-D30
color camera (framerate 28 fps) mounted above the screen.
The subjects’ faces were located in each frame using an
optical flow and exemplar-based tracker [26]. The videos
were temporally segmented using the onset times of the
cartoon facial expressions and the resulting sequences were
input to the mixture of coupled HMM clustering and
training algorithm using four clusters (N; = 4, the number
of expressions the subjects were trying to imitate).

We did a leave-one-out cross validation experiment for
each of the subjects to verify the prediction accuracy. There
were 40 sequences for each subject, one of which was

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.7, JULY 2007

(@)

as ©

(b)

Fig. 4. (a) Cartoon faces: neutral (n) and facial expressions A = {qa; ...a4}). (b) Graphical model of the imitation game.

8 10
feature

dynamics

15 20 25 30 35
feature

configuration

Fig. 5. Feature weights 72 for model 1 dynamics and configurations chains.

removed. The remaining 39 sequences were used to train the
POMDP. The learned model was used to infer A from the
remaining sequence (in which itis hidden) and the mostlikely
value was compared to the actual display. This process was
repeated for all 40 left-out sequences, giving the best unbiased
estimated of performance on the whole set of data. This
process was repeated three times for each subject with
different random initializations, with average success rates of
78, 74, and 62 percent. However, these results ignore the
model’s explicit representation of uncertainty, only reporting
success if the actual display is the peak of P(A|O). In some
cases, there is a second display that is nearly as likely as the
best one. The success rates rise to 95, 93, and 84 percent if we
count those classifications as correct where the probability of
the most likely display is less than 0.5 and the second most
likely display is the correct one.

We also used this game to evaluate the modeling of both
the dynamics and the configuration in the observation
CHMMs. We performed the same leave-one-out experiment
on the first subject’s data with 10 random intitializations, and
for each seed, we trained one model with only dynamics (X)
states, one with only configuration (W) states, and one with
both. Results showed that modeling both outperformed
either separately: 76 percent for both compared to 68 percent
for dynamics alone and 68 percent for configuration alone.

We now show some details of thee learned D =1
(“smiling”) model for one subject. Feature weights are shown
inFig. 5. The dynamics chain has four significant features: two
in the horizontal flow, “A},* B3, and three in the vertical flow,
vAb, "Bj, and YAY. The three most significant features in the
configuration chain are B}, B, and A]. The output distribu-
tions of the four dynamics states (X) are shown in Fig. 6a,
plotted along the two most significant feature dimensions,
“Al and "B}. Two states (X = 2,4) correspond to no motion,
while the other two correspond to expansion upward and

outward in the bottom of the face region (X =1) and
contraction downward and inward in the bottom of the face
region (X = 3). These states correspond to the expansion and
relaxation phase of smiling. The output distributions of the
four configuration states are shown in Fig. 6b. There are two
states (W = 2 and W = 4) which describe the face in a fairly
relaxed pose, while W =1 and W =3 describe “smiling”
configurations, as evidenced by the darker patches near the
sides at the bottom.

Fig. 7 shows the model’s explanation of a sequence in
which D = 1. We see the high level distribution over D is
peaked at D = 1. Distributions over dynamics and config-
uration chains show which state is most likely at each
frame. The expected pose, H, and flow field, V, are shown
conditioning the image, f, and the temporal derivative, f;,
respectively.

5.2 Robot Control Gestures

This “game” involves a human operator issuing navigation
commands to a robot using hand gestures. The robot has
four possible actions, A: go left, go right, stop, and go forward
and the operator uses four hand gestures corresponding to
each command. The state, C, is the operator’s action: A
Boolean indicator of whether the robot took the right action
or not. The reward function is 1 if the robot took the correct
action (C' = 1); otherwise, it is 0. It is important to state that
these experiments do not demonstrate gesture recognition,
but only the value-directed learning. Realistic robotic
control requires more complex tracking to deal with
moving platforms and the high variability in gestures.

We recorded 12 examples of each of four gestures
performed by a single subject in front of a stationary camera.
Video was grabbed from a IEEE 1394 (Firewire) camera at
150 x 150. The region of interest was the entire image, so no
tracking was required. Sequences were taken of a fixed length
of 90 frames. From the original 12 data sequences, we selected

HOEY AND LITTLE: VALUE-DIRECTED HUMAN BEHAVIOR ANALYSIS FROM VIDEO USING PARTIALLY OBSERVABLE MARKOV DECISION... 11

(@)

(b)

Fig. 6. (a) Dynamics chain model 1 output states plotted along two most significant dimensions according to feature weights, “A},” B}. Reconstructed
flow fields for X state means are also shown. (b) Configuration chain model 1 output distributions. The differences between the W state means and
the overall data mean are shown, as well as the overall data mean in the center.

Dynamics

1251

Fig. 7. A person smiling is analyzed by the mixture of CHMMs. Probability distributions over X and W are shown for each time step. All other nodes

in the network show their expected value given all evidence.

11 from each gesture and constructed a training set in which
each A was tried for each possible gesture sequence (and the
resulting C response was simulated), giving a total of
44 training sequences. We used an initial N; =6 states,
which is as many as we can expect to learn given the amount
of training data. The value-directed structure learning
algorithm used w, = 0.9 and wy = oc.

Once the model is trained on the 44 training sequences,
we evaluate how well it chooses an action on the four
remaining sequences (one for each gesture). This leave-one-
out cross-validation is repeated for 12 different sets of four
test sequences and the total rewards gathered give an
unbiased indication of how well the model performs on
unseen data. The model chose the correct action 47 out of a
total of 12 x 4 = 48 times, for a total success rate of 47/48 or
98 percent. The one failure was due to a misclassification of
a “left” gesture as a “right” gesture due to a large rightward

motion of the hand at the beginning of the stroke. More
importantly, the final POMDP models learned that there
were N, = 4 states in all 12 cases.

5.3 Card Matching Game

The card matching game is a simple cooperative two-player
game in which the players must send signals to each other
through a video link in order to win. At the start of a round,
each player is dealt three cards: a heart, a diamond, and a
spade. Each player can only see his own set of cards. The
players must each play a single card simultaneously and, if
the suits match, the players win a function of the amount on
the cards; otherwise, they incur a fixed penalty. Thus, the
goal of the game is to agree on which suit to play to
maximize the return. In order to facilitate this, one player
(the bidder) can send a bid to their partner (the ally),
indicating a card suit, and can see (but not hear) the ally

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.7, JULY 2007

R =100 R.=10
300 f 300 f
D200 - o200t |
[© ©
™© = = =
n_o [L
T 100 o © 100
=Z g & &g
o o o
e 3:0.0% e 3:0.02% ¢ 3:1.6%
© O r © O r © O r
N :4.0 N :5.0 N :5.1
d d d
-100 -100 -100
2 5 10 50 100 150 200 2 5 10 50 100 150 200 2 5 10 50 100 150 200
N, t t
400 400 400
e 300 S i
© [
'y & 200 3 200 3 200
Co ® ©
j=2]
Z 2 100 &100 & 100
(53 3 (3
> -
s Sr: 0.0% s Sr: 0.04% =& 8,:3.6%
N,: 6.1 N,: 6.0 N, 5.9
-100 -100 -100
2 5 10 50 100 150 200 2 5 10 50 100 150 200 2 5 10 50 100 150 200

N,

t t

Fig. 8. Average reward gathered over 20 trials in simulation, for simulated models with (top row) N; = 3 and (bottom row) N, =5 (three and five
behaviors to be recognized, respectively), shown as a function of the number of training sequences. The three plots in each row show the results for
Ry =100, 20, and 10, from left to right. The dashed line in each plot shows the mean reward achieved when the model is given as the simulated
model and, so, is optimal for the given simulation. The values of V; shown in the plot are the averages learned by the algorithm for N, = 200.

through a real-time video link. Thus, the expectation is that
the ally will develop a gesturing strategy to indicate
agreement with the bid. For example, a simple strategy
involving two head gestures is for the ally to nod or shake
her head in agreement or disagreement with the bid. A
more complex strategy is to develop a set of three head or
hand gestures for each card suit. This game is similar to
games used in psychology to study the emergence of
language [25], [34]. We use it because the number and form
of the gestures are not specified as rules of the game, but
instead are decided upon by the players at game time.

There are nine variables that describe the state of the
game. The suit of each of the three cards can be one of
Q©, <, &. The bidder’s actions, A, can be null (no action) or
sending a confidential bid (bidQ, bid<$, bidé) or committing
a card (emtQ, emt, cmté). The ally’s action, C, can be null
or committing a card (emtQ, emt{y, cmtd). The behavior
variable, D = d; ...dy,, describes the ally’s communication
through the video link. The other six observable variables in
the game are more functional for the POMDP, including the
values of the cards (v1,v2 for bidder and ally, respectively)
and whether a match occurred or not. The reward is a
function of fully observable variables only and is (vl +
v2)[1 4+ (vl > 1 Av2 > 1)] if the suits match and —10 other-
wise. The number of display states, Ny, is learned using the
value-directed structure learning technique in Fig. 2. The
number of states in the MDP is 20, 736 N;.

5.3.1 Simulated Results

Since our model is generative, we can use it to simulate the
game and to generate data. We first specified two prior
models for the card matching game: The first, M;, has
Ny = 3, while the second, M, has N; =5. We randomly
specify a complete set of output distribution parameters,
P(O|D), as follows: Transition matrices were drawn
randomly in [0 1], but with added weight of 30.0 on the
diagonal (followed by a renormalization). Feature weights
for all output distributions were drawn randomly in (0 Ry].
The means were drawn from the model priors given these

feature weights. Covariance matrices were set to be
diagonal with a variance in each dimension of (10.0 + o),
where c is normally distributed with variance 1.0. We used
N., = N.,, = 4. The parameter R; varies the “overlap”
between output distributions. The larger R, is, the more
distinguishable the behavior models will be. We can
estimate the degree of “overlap” of the output distributions
by using them to simulate data and then measuring the
maximume-likelihood error rates, 6,, on this data given the
models. We used three values of Ry = {10,20,100}, which
gave error rates on 50,000 simulated sequences of 1.6, 0.02,
and 0.0 percent, respectively, for model M;, and 3.6, 0.04,
and 0.0 percent, respectively, for model M,.

Once the model was specified, we simulated a set of
N, training sequences from it, each of length 7" = 100, with
output sequences of a fixed length of 7" = 20, using a random
selection of actions, A. We only simulate the values of Zy, Zx,
not the full observation set, f, Vf, since this is sufficient to
demonstrate the method. We then applied the training
process in Fig. 2 on these NV, training sequences, using w, =
0.6 and wq = 20.0, and starting with N; = 8. The learned
model and policy was tested for 20 trials of length 100 and we
record the average reward gathered over the 20 trials. The
whole process is repeated (including random specification of
new output distributions) 20 times and the means and
standard deviations of the averages are recorded. We also
estimate the optimal values that can be achieved by
performing the same simulation experiment, but using the
original simulated model instead of a learned model.

Fig. 8 shows the results. Each plot shows the average
reward and standard deviation for each value of V;, as well
as the optimal value (dashed line), the average number of
behavior models (for N, =200), Ny, and the degree of
overlap, ¢,. The average number of states of D learned for
N; =200, Ry = 100 was 4.0 and 6.1 for Ny =3 and N; =5,
respectively, showing that, although the state merging was
not overly aggressive, it managed to reduce the model order
close to that of the true models in both cases. The results
show that, if the actual output models are distinguishable

HOEY AND LITTLE: VALUE-DIRECTED HUMAN BEHAVIOR ANALYSIS FROM VIDEO USING PARTIALLY OBSERVABLE MARKOV DECISION... 13

(Ry = 100), then the resulting learned model is nearly
optimal for N; 250, even using the approximate solution
technique for the POMDP policy. This is what we expect to
happen if the learning technique is able to recover a set of
behaviors that distinguish at least those behaviors that are
important to the task, since then the state is (nearly) fully
observable and the MDP policy is (nearly) optimal for the
POMDP. On the other hand, when the output models
become less easily distinguishable (for Ry = 20 and 10), the
learning is more difficult and, so, the gap between the
optimal solution and the learned one widens. Nevertheless,
the performance remains close to optimal in all but the most
difficult case (with Ny =5 and Ry = 10).

5.3.2 Real Data

The card matching game was played by two users through a
computer interface in our laboratory. Each player viewed
their partner through a link from their workstation to a Sony
EVIS-video camera mounted atop their partner’s screen. The
average frame rate at 320 x 240 resolution was over 28 fps.
The rules were explained to the subjects and they played four
games of five rounds each. The players had no chance to
discuss strategies before the game, but were given time to
practice. The player’s faces were tracked using the same
tracker as in Section 5.1, described in [26]. In this experiment,
the partner used the obvious communication strategy of
“nodding” and “shaking” their head in response to good and
bad bids, respectively.

The model was trained with four display states, which is
as large as we think is possible to learn reliable models given
the training set size. The structure learning algorithm was
applied with w, = 0.9 and wq = oo, which finds values of D
for which the subpolicies match over 90 percent of the state
space. Two values of D had policies that were in py; = 0.96
agreement (96 percent of the state space) and were merged.
The result was, as expected, one “null” state (d;), one
“nodding” state (d2), and one “shaking” state (d3). No further
merges were found. The associated policy correctly pre-
dicted 14/20 actions in the training games and 5/7 actions in
the test game.

In order to attenuate the effects of the lack of training data,
we use symmetry arguments to fill in the model without
having to explicitly explore those situations. In particular,
we may assume that players do not have any particular
preference over card suits such that the conditional prob-
ability tables should be symmetric under permutation of
suits. Therefore, we can “symmeterize” the probability
distributions by simply averaging over the six card suit
permutations. The policy for the symmetrized POMDP
correctly predicts all but one (19/20) action in the training
game, for an error rate of 5 percent. The misclassification was
due to the subject looking to one side of the screen, yielding
significant horizontal head motion and a classification as ds.

The symmetrized policy correctly predictsall butone (6/7)
action in the test game. The misclassified sequence is longer
than usual (over 300 frames) and includes some horizontal
head motion in the beginning that appears as shaking in the
model. This misclassification may expose a weakness of the
temporal segmentation method we use, which is based
entirely on the observable actions and game states. Although
this sequence is long, it is only the (fairly vigorous) head nod
at the very end that is the important display. This situation
could be dealt with by incorporating an explicit model of
human attention, for example [41].

We performed a second experiment in which the role of
bidder was exchanged between the same two players and
found similar results. The symmetrized policy in this case
predicted all 13 actions in the training game, but only 3/5 in
the test game. The mispredictions in this case were not due to
misclassifications of the behaviors in the sense that the
classifications were consistent with others in the training set.
They arose instead due to the lack of training data for the
POMDP and would be expected to disappear once more data
was incorporated.

5.4 Discussion

The experiments we have presented have demonstrated three
things. First, the imitation game showed how we can learn
models of complex facial expressions with little prior knowl-
edge and no labeled data. This was done by observing causes
of the facial expressions in training data only and then
predicting the likely causes with over 80 percent accuracy in
the test data. The second experiment then showed how, when
behaviors are distinct and the task is simple, we can learn the
number of behaviors that occur in the data and that are useful
to the task being modeled. In 12 experiments, the correct
number of gestures was correctly learned in every case. Third,
the card matching game demonstrated that we can apply the
same learning and solution techniques to a task of realistic size
and learn whatbehaviors (and how many) arebeing exhibited
and what their relationship is to the task. Using synthetic data
from simulations, we demonstrated that we can learn a
complex transition function and a complex observation
function simultaneously and that the resulting model per-
forms close to optimally in simulation and has a structure
(number of displays) close to that of the correct model. We
then demonstrated how the learning technique on real data
from humans playing the card matching game showed how
the learned model can predict the actions of humans, and can
learn the correct number of displays being used.

In all three of the experiments we have presented, there
was never a need to specify what behaviors were to be
recognized. The system learned the behaviors that were used
within each task and how these behaviors were related to the
utility. Thus, by specifying only some of the fully observable
aspects of the domain being modeled (such as the rules of the
card game), the system can learn the interactions automati-
cally and a new set of behavior models does not need to be
reengineered for each new task. For example, suppose the
rules of the card game were changed such that the players had
to communicate with their hands alone. While a traditional
computer vision approach would have to start afresh by
building a recognition system for all possible gestures
thought (by some experts) to be those that could be used by
the participants, our approach could be applied directly and
would learn what gestures were being used and why they
were being used. This is the primary benefit of this type of
learning: No prior knowledge about human behaviors needs
to be included, but, rather, can be learned directly from data.

While the results we have presented show the validity of
our method from a technical standpoint, a thorough evalua-
tion of the domains that are impacted by this work remains. A
significant limitation is that only simulations were used to
select actions and gather rewards online. In theory, correct
action selection is the only accurate method for validating that
the model was learned and solved correctly. Simply predict-
ing actions taken by ahuman is not sufficient since the learned
model could implement a different, yet still optimal, policy

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.7, JULY 2007

than that used by the human. A second limitation of our
current experiments is the use of a fully observed state space
(apart from the displays). Additional unobserved variables
increase learning complexity and makes temporal segmenta-
tion more difficult. A third limitation of our current
experiments is that we only use a small number of displays
and only allow for merging states during learning. We would
like the system to learn a larger number of displays by starting
from a small number and splitting states based on, e.g., their
predictive power.

6 CONCLUSION

This paper has shown how partially observable Markov
decision processes, or POMDDPs, can be used to allow an agent
to incorporate actions and utilities into the sensing and
representation of visual observations. We have shown how
this model provides top-down value-based evidence for the
learned probabilistic models and allows us to learn models
most conducive for achieving value in a task. One of the key
features of this techniqueis thatitdoesnotrequirelabeled data
sets. That is, the model makes no prior assumptions about the
form ornumber of nonverbal behaviors used in aninteraction,
but, rather, discovers this from the data during training.

There are three major open questions that remain to be
addressed for POMDP modeling of human interactions. First,
most interaction tasks will involve state spaces that are
significantly larger than we have experimented with in this
paper and may be partially or fully unobservable. For
example, an assistive system for handwashing used an
MDP with over 20 million states [8] and the scalability of
the learning method remains to be validated for such larger
models. This involves ensuring that we can learn the model
parameters for a larger state space and that we can compute
good approximate POMDP policies efficiently [29], [50].
However, it is precisely the combination of value-directed
learning methods with POMDP solution techniques that will
enable the solution of very large POMDPs [43]. The second
open question concerns the interplay between a solution for
the POMDP and the value-directed structure learning as
described in Section 3.3. The strong approximation we used
was appropriate for the examples we have examined, but
should be relaxed (using, e.g., [29]). More complex structure
learning techniques would be required for this learning. The
third open question involves the representational power of
the observation function. This should be sufficient to
distinguish what is necessary to recognize within a particular
task. That is, the features used for modeling video sequences
of human displays must be able to distinguish what is needed
for performance in the task. It remains to be verified if our
CHMM-based observation function is sufficient for a wide
range of tasks.

Another interesting avenue for future research is the use
of the POMDP models in active vision systems [17]. The
trade-off between behavior recognition and resource use
can be explicitly addressed by a POMDP model and,
coupled with the behavior learning techniques we have
presented in this paper, would form a possible solution to
the active vision problem.

We are currently applying POMDP models to assisted
living tasks in which a POMDP-based system helps a
cognitively disabled person complete activities of daily
living [30]. POMDP models are well suited to this
environment since they model the stochastic nature of user

behavior, the need to trade off various objective criteria
(e.g., task completion, caregiver burden, user frustration,
and independence) and the need to tailor guidance to
specific individuals and circumstances [8].

ACKNOWLEDGMENTS

The authors would like to thank Don Murray, Pantelis
Elinas, Pascal Poupart, David Lowe, and David Poole for
invaluable help and suggestions. This work was supported
by grants from the Natural Sciences and Engineering and
Research Council of Canada and from the Institute for
Robotics and Intelligent Systems, a Canadian Network of
Centres of Excellence.

REFERENCES

[1] KJ. Astrém, “Optimal Control of Markov Decision Processes with
Incomplete State Estimation,”]. Math. Analysis and Applications,
vol. 10, pp. 174-205, 1965.

[2] M.S. Bartlett, G. Littlewort, B. Braathen, T.J. Sejnowski, and J.R.
Movellan, “A Prototype for Automatic Recognition of Sponta-
neous Facial Actions,” Advances in Neural Information Processing
Systems, vol. 15, pp. 382-386, 2003.

[3] P.N. Belhumeur,].P. Hespanha, and D.]. Kriegman, “Eigenfaces
versus Fisherfaces: Recognition Using Class Specific Linear
Projections,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 19, no. 7, pp. 711-720, July 1997.

[4] RE. Bellman, Dynamic Programming. Princeton Univ. Press, 1957.

[5S] Y. Bengio and P. Frasconi, “Input-Output HMMs for Sequence
Processing,” IEEE Trans. Neural Networks, vol. 7, no. 5, pp. 1231-
1249, Sept. 1996.

[6] M. Black and Y. Yacoob, “Tracking and Recognizing Rigid and
Nonrigid Facial Motions Using Local Parametric Models of Image
Motions,” Int’l |. Computer Vision, vol. 25, no. 1, pp. 23-48, 1997.

[71 A.F. Bobick and J.W. Davis, “The Recognition of Human Move-
ment Using Temporal Templates,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 23, no. 3, pp. 257-267, Mar. 2001.

[8] J. Boger, J. Hoey, P. Poupart, C. Boutilier, G. Fernie, and A.
Mihailidis, “A Planning System Based on Markov Decision
Processes to Guide People with Dementia through Activities of
Daily Living,” IEEE Trans. Information Technology in Biomedicine,
vol. 10, no. 2, pp. 323-333, Apr. 2006.

[9] C. Boutilier, T. Dean, and S. Hanks, “Decision Theoretic Planning:
Structural Assumptions and Computational Leverage,” |. Artificial
Intelligence Research, vol. 11, pp. 1-94, 1999.

[10] M. Brand, “Learning Concise Models of Human Activity from
Ambient Video via a Structure-Inducing M-Step Estimator,”
Technical Report TR-97-25, Mitsubishi Electric Research Labora-
tory, Nov. 1997.

[11] M. Brand, N. Oliver, and A. Pentland, “Coupled Hidden Markov
Models for Complex Action Recognition,” Proc. Int’l Conf.
Computer Vision and Pattern Recognition, pp. 994-999, 1997.

[12] C. Bregler, “Learning and Recognising Human Dynamics in Video
Sequences,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, pp. 568-574, 1997.

[13] P. Carbonetto, N. de Freitas, P. Gustafson, and N. Thompson,
“Bayesian Feature Weighting for Unsupervised Learning with
Application to Object Recognition,” Proc. Ninth Int'l Workshop
Artificial Intelligence and Statistics, pp. 122-128, Jan. 2003.

[14] Embodied Conversational Agents, J. Cassell et al., eds. MIT Press, 2000.

[15] L. Chrisman, “Reinforcement Learning with Perceptual Aliasing:
The Perceptual Distinctions Approach,” Proc. 10th Nat'l Conf.
Artificial Intelligence, pp. 183-188, 1992.

[16] B. Clarkson and A. Pentland, “Unsupervised Clustering of
Ambulatory Audio and Video,” Proc. Int’l Conf. Acoustics, Speech,
and Signal Processing, 1999.

[17] T. Darrell and A.P. Pentland, “Active Gesture Recognition Using
Partially Observable Markov Decision Processes,” Proc. 13th IEEE
Int’l Conf. Pattern Recognition, 1996.

[18] T.J. Darrell, I.A. Essa, and A.P. Pentland, “Task-Specific Gesture
Analysis in Real-Time Using Interpolated Views,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 18, no. 12, pp. 1236-
1242, Dec. 1996.

HOEY AND LITTLE: VALUE-DIRECTED HUMAN BEHAVIOR ANALYSIS FROM VIDEO USING PARTIALLY OBSERVABLE MARKOV DECISION... 15

[19]

[20]

(21]

[22]

(23]

[24]

(25]

[20]

(27]

(28]

[29]

(30]

B1]

[32]

[33]

(34]

(33]

[30]

(371

(38]

(39]

[40]

[41]

[42]

(43]

(44]

(45]

A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Like-
lihood from Incomplete Data Using the EM Algorithm,” J. Royal
Statistical Soc. B, vol. 39, pp. 1-38, 1977.

G. Donato, M.S. Bartlett,].C. Hager, P. Ekman, and T.J. Sejnowski,
“Classifying Facial Actions,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 21, no. 10, pp. 974-989, Oct. 1999.

I.A. Essa and A.P. Pentland, “Coding Analysis, Interpretation, and
Recognition of Facial Expressions,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 19, no. 7, pp. 757-763, July 1997.

S. Fine, Y. Singer, and N. Tishby, “The Hierarchical Hidden
Markov Model: Analysis and Applications,” Machine Learning,
vol. 32, no. 1, pp. 41-62, 1998.

D.J. Fleet, MJ. Black, Y. Yacoob, and A.D. Jepson, “Design and
Use of Linear Models for Image Motion Analysis,” Int’l].
Computer Vision, vol. 36, no. 3, pp. 171-193, 2000.

A]. Fridlund, Human Facial Expression: An Evolutionary View.
Academic Press, 1994.

B. Galantucci, “An Experimental Study of the Emergence of
Human Communication Systems,” Cognitive Science, vol. 29,
pp. 737-767, 2005.

J. Hoey, “Decision Theoretic Learning of Human Facial Displays
and Gestures,” PhD thesis, Univ. of British Columbia, 2004.

J. Hoey and]]J. Little, “Representation and Recognition of
Complex Human Motion,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pp. 752-759, June 2000.

J. Hoey and]]. Little, “Bayesian Clustering of Optical Flow
Fields,” Proc. Int’l Conf. Computer Vision, pp. 1086-1093, Oct. 2003.
J. Hoey and P. Poupart, “Solving POMDPs with Continuous or
Large Discrete Observation Spaces,” Proc. Int’l Joint Conf. Artificial
Intelligence, pp. 1332-1338, July 2005.

J. Hoey, P. Poupart, C. Boutilier, and A. Mihailidis, “POMDP
Models for Assistive Technology,” Proc. AAAI Fall Symp. Caring
Machines: Al in Eldercare, 2005.

J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier, “SPUDD: Stochastic
Planning Using Decision Diagrams,” Proc. Uncertainty in Artificial
Intelligence, pp. 279-288, 1999.

E. Hunter,]J. Schlenzig, and R. Jain, “Posture Estimation in
Reduced-Model Gesture Input Systems,” Proc. Int’l Workshop
Automatic Face- and Gesture-Recognition, pp. 290-295, 1995.

T. Jebara and A.P. Pentland, “Action Reaction Learning: Auto-
matic Visual Analysis and Synthesis of Interactive Behaviour,”
Proc. Int’l Conf. Vision Systems, pp. 273-292, 1999.

R.M. Krauss and S. Glucksberg, “Social and Nonsocial Speech,”
Scientific Am., vol. 236, pp. 100-105, 1977.

A. Lanitis, C.J. Taylor, and T.F. Cootes, “Automatic Interpretation
and Coding of Face Images Using Flexible Models,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 743-756,
July 1997.

C. Li and G. Biswas, “Temporal Pattern Generation Using Hidden
Markov Model Based Unsupervised Classification,” Advances in
Intelligent Data Analysis, 1999.

S.X. Liao and M. Pawlak, “On the Accuracy of Zernike Moments
for Image Analysis,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 20, no. 12, pp. 1358-1364, Dec. 1998.

D. McNeill, Hand and Mind: What Gestures Reveal about Thought.
Univ. of Chicago Press, 1992.

K.P. Murphy, “Dynamic Bayesian Networks: Representation,
Inference and Learning,” PhD thesis, Computer Science Division,
Univ. of California Berkeley, July 2002.

N. Oliver, A. Garg, and E. Horvitz, “Layered Representations for
Learning and Inferring Office Activity from Multiple Sensory
Channels,” Int’l]. Computer Vision and Image Understanding,
vol. 96, pp. 163-180, 2004.

T. Paek and E. Horvitz, “Conversation as Action under Uncer-
tainty,” Proc. Conf. Uncertainty in Artificial Intelligence, June 2000.
A. Pentland, “Looking at People: Sensing for Ubiquitous and
Wearable Computing,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 1, pp. 107-119, Jan. 2000.

P. Poupart and C. Boutilier, “Value-Directed Compression of
POMDPs,” Advances in Neural Information Processing Systems,
vol. 15, pp. 1547-1554, 2003.

A. Prata and W.V.T. Rusch, “Algorithm for Computation of
Zernike Polynomials Expansion Coefficients,” Applied Optics,
vol. 28, no. 4, pp. 749-754, Feb. 1989.

L.R. Rabiner and B.H. Huang, Fundamentals of Speech Recognition.
Prentice Hall, 1993.

[40]

(47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

(53]

[50]

(571

J.A. Russell and J.M. Fernandez-Dols, “What Does Facial Expres-
sion Mean?” The Psychology of Facial Expression, pp. 3-30, 1997.

J. Schlenzig, E. Hunter, and R. Jain, “Vision Based Hand Gesture
Interpretation Using Recursive Estimation,” Proc. Asilomar Conf.
Signals, Systems, and Computation, pp. 394-399, Oct. 1994.

E.P. Simoncelli, E.H. Adelson, and D.J. Heeger, “Probability
Distributions of Optical Flow,” Proc. Int’l Conf. Computer Vision and
Pattern Recognition, pp. 310-315, 1991.

P. Smyth, “Clustering Sequences with Hidden Markov Models,”
Advances in Neural Information Processing Systems, vol. 10, 1997.
M.T. J. Spaan and N. Vlassis, “Perseus: Randomized Point-Based
Value Iteration for Pomdps,” |. Artificial Intelligence Research,
vol. 24, pp. 195-220, 2005.

T. Starner and A.P. Pentland, “Visual Recognition of American
Sign Language Using Hidden Markov Models,” Proc. Int'l Work-
shop Automatic Face and Gesture Recognition, pp. 189-194, 1995.

R. Sutton and A.G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

C.-H. Teh and R.T. Chin, “On Image Analysis by the Methods of
Moments,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 10, no. 4, pp. 496-513, July 1988.

S. Thrun, “Probabilistic Algorithms in Robotics,” Al Magazine,
vol. 21, no. 4, pp. 93-109, 2000.

Y. Tian, T. Kanade, and]J.F. Cohn, “Recognizing Action Units for
Facial Expression Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 23, no. 2, Feb. 2001.

M. Turk and A.P. Pentland, “Eigenfaces for Recognition,”
J. Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

J. Williams, P. Poupart, and S. Young, “Factored Partially
Observable Markov Decision Processes for Dialogue Manage-
ment,” Proc. IJCAI Workshop Knowledge and Reasoning in Practical
Dialogue Systems, pp. 76-82, Aug. 2005.

Jesse Hoey received the BSc degree in physics
from McGill University in Montreal, Canada, and
the MSc degree in physics and the PhD degree
in computer science from the University of
British Columbia, Vancouver, Canada. He is a
lecturer in the School of Computing at the
University of Dundee, Scotland, and an adjunct
scientist at the Toronto Rehabilitation Institute in
Toronto, Canada. His research focuses on
planning and acting in large-scale, real-world

uncertain domains using video observations. In particular, he works on
applying decision theoretic planning, computer vision, and machine
learning techniques to adaptive assistive technologies in health care.

James J. Little received the AB degree from
Harvard College in 1972 and the MSc and PhD
degrees in computer science from the University
of British Columbia in 1980 and 1985. From
1985 to 1988, he was a research scientist at the
MIT Artificial Intelligence Laboratory. Currently,
he is a professor of computer science at the
University of British Columbia. His research
interests include computational vision, robotics,
and spatio-temporal information systems. Parti-

cular interests are stereo, motion, tracking, mapping, and motion
interpretation. He is a member of the IEEE and the IEEE Computer
Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

