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The ratio of healthcare professionals to care recipients is dropping at an alarming rate, particularly for
the older population. It is estimated that the number of persons with Alzheimer’s disease, for example,
will top 100 million worldwide by the year 2050 [Alzheimer’s Disease International 2009]. It will become
harder and harder to provide needed health services to this population of older adults. Further, patients
are becoming more aware and involved in their own healthcare decisions. This is creating a void in which
technology has an increasingly important role to play as a tool to connect providers with recipients. Examples
of interactive technologies range from telecare for remote regions to computer games promoting fitness in the
home. Currently, such technologies are developed for specific applications and are difficult to modify to suit
individual user needs. The future potential economic and social impact of technology in the healthcare field
therefore lies in our ability to make intelligent devices that are customizable by healthcare professionals
and their clients, that are adaptive to users over time, and that generalize across tasks and environments.

A wide application area for technology in healthcare is for assistance and monitoring in the home. As the
population ages, it becomes increasingly dependent on chronic healthcare, such as assistance for tasks of
everyday life (washing, cooking, dressing), medication taking, nutrition, and fitness. This article will present
a summary of work over the past decade on the development of intelligent systems that provide assistance
to persons with cognitive disabilities. These systems are unique in that they are all built using a common
framework, a decision-theoretic model for general-purpose assistance in the home. In this article, we will
show how this type of general model can be applied to a range of assistance tasks, including prompting for
activities of daily living, assistance for art therapists, and stroke rehabilitation. This model is a Partially
Observable Markov Decision Process (POMDP) that can be customized by end-users, that can integrate
complex sensor information, and that can adapt over time. These three characteristics of the POMDP model
will allow for increasing uptake and long-term efficiency and robustness of technology for assistance.
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1. INTRODUCTION
This article describes a series of significant contributions to the field of intelligent
interactive systems, specifically within cognitive Assistive Technology (AT). The con-
tributions arise through summative work that has been completed over the past decade
with respect to the application of machine learning to cognitive AT and a framework
for using these techniques. In the 1990s, the area of cognitive AT was emerging with
several different devices being developed. However, the majority of these devices were
not adaptable, flexible, and did not take into account the dynamic needs and contexts
of people with disabilities. As such, many of these devices were not successful. As this
field continued to mature after the millennium, more developers started to realize that
many of the limitations of past systems could be addressed through the use of more
advanced techniques such as advanced sensing and machine learning. Researchers
from both rehabilitation and computer science started to collaborate more and more on
new cognitive AT that applied these and other algorithms in an effort to develop new
devices that can automatically determine the needs of a user and adapt accordingly.
While there was a significant new body of work in the application of sensing and ma-
chine learning to cognitive AT, there was still very limited research being conducted on
the specific features and parameters that are required in these new advanced models,
and how these models could be easily developed by users who do not have a technical
background. This research described in this article provides the results of more than
a decade of work to address these issues. Our work goes beyond any single interactive
intelligent system to a methodology that addresses the larger context of Intelligent
Interactive Systems (IIS) in the domain of assistive technology.

The ratio of healthcare professionals to care recipients is dropping at an alarming
rate, particularly for the older population. It is estimated that the number of persons
with Alzheimer’s disease worldwide, for example, will top 100 million by the year 2050.
These cases will prove an insurmountable economic barrier in the provision of care,
unless steps are taken to reduce the need for personalized care now. Perhaps even more
interesting is the expected increase in the hours of informal care provided for people
with dementia. In Canada, for example, this number is expected to triple (from 231
million hours to 756 million hours) by the year 2038 [Alzheimer’s Society of Canada
2010]. This implies that the burden of care is shifting from the professional arena
(e.g., hospitals and clinics) into the home and community. As more people start taking
control of their own healthcare decisions, they will require additional help.

Intelligent Interactive Systems (IIS) can play a key role in healthcare assistance in
the home, primarily by connecting providers and recipients and by increasing the range
or scope of care provision. A physical therapist can monitor a large number of clients
working on their rehabilitation programs at home, without having to be present all the
time. A nurse can monitor her patients aging at home, and can provide assistance more
readily to those in need at appropriate times. Unfortunately, most current technology
for home care is developed for specific applications, and is difficult to modify to suit
individual user needs. The economic and social impact of IIS for healthcare lies in three
key factors.
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—People/Customizability. In order for people to have control over intelligent systems,
the systems need to be customizable. The concept of inclusive design only works for
fairly large and uniform segments of the population, but fails for users with diverse
and changing needs. Persons with Alzheimer’s disease, for example, have needs
that change as the disease progresses. Giving such persons (or their carers, family
members) control over technology to help them can greatly increase the benefits.

—Sensors/Generalizability. In many healthcare situations, sensors must be used to
provide valuable information for carers and health professionals. Examples include
monitoring patients in hospital or at home, smart-homes to assist persons in inde-
pendent living, and emergency response systems that detect and respond to falls. In
order to ensure uptake of IIS by informal carers and users, sensors must be installed
for specific purposes. However, it becomes an economic burden if the installation of
sensors needs to be done for each individual and each situation. Instead, we pro-
pose that general-purpose sensors can be used, if coupled with appropriate Machine
Learning Algorithms (MLAs). These MLAs can learn from observing a person, and
can provide virtual sensing capabilities for technological solutions. Learning these
virtual sensors enables the IIS to generalize across tasks, users, and environments.

—Decisions/Adaptivity. People require assistance with their healthcare needs, but
their requirements can change over time. While customization is one element of
allowing people to make IIS fit their needs, the system itself also must be able
to adapt to people over time as they change. This is particularly true for persons
who have limited cognitive abilities (e.g., persons with Alzheimer’s disease), who
may not be able to take advantage of customization properties directly. Therefore,
technological solutions must be able to take decisions about assistance for people,
and these decisions must be adaptive to people as they change.

This article will present our work over the last decade in developing interactive
intelligent systems for healthcare applications. Central to our work is the devel-
opment of a unifying model that combines the three important elements described
before. The model is based on the Partially Observable Markov Decision Process,
or POMDP [Åström 1965; Kaelbling et al. 1998]. The POMDP is a probabilistic,
decision-theoretic model of a system interacting with its environment, and is intro-
duced in Section 3. In Section 4, we show how a general-purpose POMDP model of
assistance can be formulated, and how this model captures the three key factors given
earlier. We then present our work in applying this model to five intelligent interactive
systems in Section 5. The first is a system to help persons with dementia during
handwashing [Hoey et al. 2010b; Mihailidis et al. 2008]. The second is a device for
stroke rehabilitation in the home [Kan et al. 2008, 2011]. The third is a tool for art
therapists to use during sessions with persons with Alzheimer’s disease [Blunsden
et al. 2009; Mihailidis et al. 2010]. The fourth is a system for automatically generating
cognitive assistants based on psychological analysis of tasks [Hoey et al. 2011], and
the last shows how hierarchical controllers for prompting systems can be formulated
using the same method [Hoey and Grzes 2011].

Throughout the article, we refer to end-users as our target population that we wish
to build systems for (persons with dementia, their caregivers, family members, health
professionals, etc.). However, at our current stage of research, we also add engineers
and computer scientists to this list, as our methods still require their input. While our
eventual goal is to remove dependence on these people, we are not there yet. Some of
our systems have involved customizations by real end-users (see, e.g., the art therapy
device in Section 5.3), and all have been tested with real end-users (e.g., persons with
dementia). Further, we describe methods for learning parts of the model from end-
users, including elicitation of preferences in Section 3.2.
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2. PREVIOUS WORK
Over the past several years, there has been an increase in the number of new Assistive
Technologies (AT) for healthcare that have used machine learning and artificial intelli-
gence techniques [LoPresti et al. 2004; Pollack 2005]. These AT have primarily focused
on users with cognitive impairments, helping these users to compensate for their own
lack of planning and decision making abilities. These new AT have been labeled Cogni-
tive Assistive Technology (CAT), and aid people with a variety of disabilities, including
traumatic brain injury, cerebrovascular accident, learning disabilities, multiple sclero-
sis, and dementia [LoPresti et al. 2004]. The following is a brief overview of some of
the key projects related to the application of probabilistic and decision-theoretic mod-
els in cognitive assistive technologies. For a more detailed and expansive overview of
the different types of AT that have used artificial intelligence, the reader is referred
to LoPresti et al. [2004], Pollack [2005], and Mihailidis et al. [2011].

The COACH (Cognitive Orthosis for Assistive aCtivities in the Home) is one of the
longest-running projects in the area of cognitive assistive technologies for older adults
with dementia. The primary goal of this project is to develop a system that can monitor
and prompt an older adult through a variety of activities of daily living. To date, several
iterations of this technology have been developed and tested with this population for
the specific activity of handwashing. COACH employs computer vision to track a user
and objects of interest as s/he performs an activity of daily living and provides audio
and/or visual assistance if, and only if, the user requires it (e.g., s/he performs a step
in the handwashing activity out of sequence, gets sidetracked, or is not sure what
to do next). A Partially Observable Markov Decision Process (POMDP) is employed
to learn characteristics about each individual over time, such as what his/her level of
independence is, what type of prompts are most effective with him/her, and the average
amount of time it takes him/her to complete each step in handwashing. Not only does
this approach enable COACH to customize guidance to each individual’s needs, but
also allows the system to adapt over time to changes in individuals’ responsiveness
and capabilities. More details on COACH can be found in Section 5.1.

Autominder is a system to help users remember the tasks that need to be completed.
This system differs from COACH, in that it provides reminders of activities at a high
level as opposed to providing prompts about how to complete the activity itself. Auto-
minder serves as a cognitive orthotic, providing its users with reminders about their
daily activities. Most existing cognitive orthotics mainly issue alarms for prescribed
activities at fixed times that are specified in advance. In contrast, Autominder is capa-
ble of much more flexible, adaptive behavior. It models its client’s daily plans, tracks
their execution by reasoning about the client’s observable behavior, and makes deci-
sions about whether and when it is most appropriate to issue reminders [Pollack 2006].
Autominder’s architecture has three main components, one dedicated to each of these
tasks. The Plan Manager stores the client’s plan of daily activities in the Client Plan,
and is responsible for updating it and identifying and resolving any potential conflicts
in it. The Client Modeler uses information about the client’s observable activities to
track the execution of the plan, storing beliefs about the execution status in the Client
Model. A reminder generation component called the Personal Cognitive Orthotic rea-
sons about any disparities between what the client is supposed to do and what she is
doing, and makes decisions about whether and when to issue reminders [Pollack 2006].
Autominder has been deployed on three separate platforms: the robotic assistant Pearl,
a robotic walker, and on a handheld PDA.

PEAT (the Planning and Execution Assistant and Trainer) is a cognitive orthosis
that runs on a cell phone and helps compensate for executive function impairment.
Similar to Autominder, PEAT provides assistance by maintaining a schedule of a
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user’s activities and automatically cueing the user when activities need to be started,
resumed, or completed [Modayil et al. 2008b]. PEAT uses both planning and activity
recognition algorithms to determine what a user is completing, and then to schedule
(or reschedule) activities as necessary. Activity recognition on the PEAT is based on
an HMM [Modayil et al. 2008b]. Finally, the PEAT system also has the ability to deal
with potentially interleaved tasks (i.e., more than one task that may overlap in their
executions) using the Interleaved HMM (IHMM) [Modayil et al. 2008a] as a better
variant of an HMM for the classification of interleaved activities.

A key aspect of all of the technologies presented in this section (and others) is
the ability for these systems to recognize the activities that are being completed.
The PROACT system is an example of a technology that uses machine learning for
the specific purpose of inferring tasks being completed based on sensor inputs. This
system has three components: body-worn RFID sensors, a probabilistic engine that
infers activities given observations from these sensors, and a model creator that
easily creates probabilistic models of activities [Philipose et al. 2004]. PROACT uses
a Dynamic Bayesian Network (DBN) to infer activities that represent daily activities
such as making tea, washing, and brushing teeth. Each activity type that PROACT is
intended to recognize is modeled as a linear series of steps, where specific objects that
are involved in the completion of a step and the probability of seeing each such object
are assigned. Recent work in the same direction has investigated how activities can be
modeled with a combination of discriminative and generative approaches [Lester et al.
2005], and how common-sense models of everyday activities can be built automatically
using data mining techniques [Pentney et al. 2007, 2008], and how human activities
can be analyzed through the recognition of object use, rather than the recognition of
human behavior [Wu et al. 2007]. This last work uses DBNs as well to model various
activities around the home, and a variety of Radio Frequency identification (RFID)
tags to bootstrap the learning process.

The Assisted Cognition project [Kautz et al. 2002] was initiated to explore the use
of artificial intelligence as a tool to increase the independence and quality of life of
Alzheimers patients. One of the first devices developed as part of the project was the
Activity Compass [Patterson et al. 2002], a tool designed to help disoriented people
find their destination. An extension of the Activity Compass project is Opportunity
Knocks [Liao et al. 2007], a system designed to provide directional guidance to a user
navigating through a city, and was developed in the Assisted Cognition project.

The system infers a user’s activities using GPS sensor readings and a hierarchical
Markov model. Movement patterns, based on the GPS localization signals, are trans-
lated into a probabilistic model using unsupervised learning. From the model and the
user’s current location, future destinations and the associated mode of transportation
can be predicted. Based on the prediction, the system has the ability to prompt the
user if an error in route is detected.

Smart-home systems [Zhang et al. 2008; Singla et al. 2008; Brdiczka et al. 2009;
Abowd et al. 2002; Chen et al. 2005, 2011; Bharucha et al. 2006; Mozer 2005; Intille
2006; Bharucha et al. 2009] attempt to provide assistance to residents across a wide
range of tasks using an array of sensors in the environment, algorithms for the analysis
of human behavior, and controllers for the provision of the assistance. However, these
systems do not take a unifying view of the entire process, from specification through
implementation to control of assistance.

There has been much work on modeling human behavior in the computer vision
literature [Moeslund et al. 2006], which includes supervised techniques to build models
of meeting dynamics [Rybski and Veloso 2004], office activity [Nguyen et al. 2003], and
other in-home activities [Hamid et al. 2003].
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Partially Observable Markov Decision Processes (POMDPs) provide a rich frame-
work for planning under uncertainty [Åström 1965]. In particular, POMDPs can be
used to robustly optimize the course of action of complex systems despite incomplete
state information due to poor or noisy sensors, for instance, in mobile robotics [Pollack
2006; Pineau et al. 2003; Montemerlo et al. 2002], in computer vision [Darrell and
Pentland 1996], in spoken-dialog systems [Williams and Young 2006; Roy et al.
2003], and in assistive technology [Mihailidis et al. 2008]. As well as the applications
described in Section 5, we have applied the model described here to mixed-initiative
wheelchair control [Mihailidis et al. 2007], to calendar scheduling, to assistance of
cognitively disabled persons in a factory assembly task, to toothbrushing assistance,
and to location assistance (works in progress).

3. POMDPS
In this section, we give a brief overview of Partially Observable Markov Decision
Processes (POMDPs) since they will be used in subsequent sections to model various
task assistance problems. POMDPs provide a principled and flexible framework to
model sequential decision-making problems where there is uncertainty in the action
effects and noise in the sensor measurements. A discrete-time POMDP consists of the
following.

—A finite set S of states. In general, states are sufficient statistics that capture all the
necessary information to determine how the system will evolve in the future;

—A finite set Aof actions. In general, actions consist of the controls that the system can
choose from to influence future states. They represent the set of possible decisions of
the system (not the user);

—A stochastic transition model Pr : S × A → !(S). This model defines a distribution
Pr(s′|s, a) that indicates the probability that the system will transition to state s′

after executing action a in state s. This distribution satisfies the Markov property,
which says that states at a current time step depend only on states at the previous
time step, but not earlier time steps;

—A finite observation set O. Observations consist of the bits of information received
by the environment at each time step. More precisely, the observations may consist
of the measurements produced by some sensors. In general, O and S are different
since states are not assumed to be fully observable.

—A stochastic observation model Pr : A× S → !(O). This model defines a distribution
Pr(o′|a, s′) that indicates the probability of making observation o′ after executing
action a and arriving in state s′. This distribution quantifies the noise in the sensor
measurements and therefore how observations correlate with states;

—A reward function R(s, a, s′). This function assigns a reward r (or utility) to transitions
from s to s′ induced by action a. The reward function provides a general mechanism
for quantifying goals in terms of local transitions.

All together, the aforesaid components define a decision process which can be used to
model a wide range of problems from inventory management to spoken dialog systems,
including assistive tasks as we will see in more detail in the next section. Figure 1(a)
shows two consecutive time slices (t − 1 and t) of a generic POMDP as an influence
diagram. Here circles denote random variables (states and observations), rectangles
denote decision variables (actions), and diamonds denote utility variables (rewards).1

Given a POMDP, the goal is to select actions that maximize the rewards. If the
states were fully observable, the problem could be simplified by searching for a policy

1We abuse notation a bit by using the same symbols to denote variables and their domains.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 4, Article 20, Pub. date: December 2012.



People, Sensors, Decisions 20:7

(a)

t−1 t

R

R

Y

(b)

B

T

V

Y’

B’

T’

V’

K’K

S’S

ability

behavior

task
O O’

A

A

tt−1 Θ

Fig. 1. Two time slices of: (a) a general POMDP and (b) a factored POMDP for modeling interactions with
cognitive assistive technology. The state, S, is modified by action A, and produces observation O. We leave
off links from actions, A, to observations, O, and the parameters, ", in (b) for clarity.

that consists of a mapping from states to actions. However, many problems, including
task assistance, have state features that are not directly observable, so it is generally
better to consider policies that are mappings from beliefs (i.e., state distributions) to
actions. At every time step, the system receives an observation that is correlated with
the underlying state and therefore it is possible to infer a belief based on the history of
past actions and observations. Let b(s) be the belief of the system at the current time
step. Then at the next time step, an updated belief ba,o′ can be computed after executing
action a and making observation o′ according to Bayes’ theorem.

ba,o′ (s′) ∝
∑

s

b(s) Pr(s′|s, a) Pr(o′|a, s′)

Let π : !(S) → A be a policy that maps beliefs in !(S) to actions in A. A common
objective to determine the value V π (b) of a policy π starting from belief b is the sum of
discounted expected rewards for an infinite horizon.

V π (b) =
∞∑

t=0

γ t Eπ [R(st, at, st+1)]

Here γ denotes the discount factor (between 0 and 1), which can be thought as the
weight by which future rewards are scaled down at each time step for a corresponding
inflation rate. Since rewards depend on transitions, which are stochastic, the expecta-
tion (denoted by E) of each reward is often used in the overall criterion. The best policy
π∗ is the one that yields the highest value V ∗ for all beliefs (i.e., V ∗(b) ≥ V π (b) ∀b,π ).
It can be shown that the optimal value function V ∗ satisfies Bellman’s equation, which
can be viewed as a recursive decomposition of V ∗ in terms of the immediate reward R
plus the discounted future rewards (captured by V ∗ again).

V ∗(b) = max
a

∑

s,s′

b(s) Pr(s′|s, a)

[

R(s, a, s′) + γ
∑

o′

Pr(o′|a, s′)V ∗(ba,o′ )

]
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3.1. POMDP Solutions
Bellman’s equation naturally leads to a dynamic programming technique known as
value iteration that repeatedly updates an estimated value function by performing the
operations in the right-hand side of the equation until convergence to V ∗. Alternatively,
it is possible to directly optimize a policy by policy iteration, or more generally, policy
search. Instead of precomputing a policy, it is also possible to perform a forward search
at runtime between each action execution to find the next action to execute. The reader
is invited to consult Poupart [2012] for more details on POMDPs and an overview
of solution algorithms. Current research has enabled the approximate solution of very
large POMDPs [Poupart and Boutilier 2004; Hoey and Poupart 2005; Silver and Veness
2010].

To optimize a policy, we used SymbolicPerseus [Poupart 2005]2. It implements a
factored, point-based value iteration technique based on the Perseus algorithm [Spaan
and Vlassis 2005]. There are many other methods for solving POMDPs, including recent
successful Monte-Carlo methods [Silver and Veness 2010], but we avoid digressing from
the main goal of our work, which is to provide customizable, adaptive, and general-
purpose solutions for assistance.

3.2. Learning POMDPs
So far we have described how sequential decision making problems can be formulated
as POMDPs for which optimization algorithms can be used to automatically find a good
policy. However, how do we obtain a POMDP model in the first place? More precisely,
how do we obtain the transition and observation distributions as well as the reward
function?

In general, the transition and observation distributions can be specified by hand,
learned from data, or a mixture of both. In Section 5.4, we describe a tool (SNAP) that
eases the specification of those distributions by hand for task assistance problems.
In general, since the transition and observation dynamics of a POMDP are nothing
more than an input-output Hidden Markov Model (HMM) [Bengio and Frasconi 1996],
it is possible to use learning techniques for HMMs. More specifically, the problem
is to infer Pr(S′|S, A) and Pr(O′|A, S′) based on a sequence of actions, observations,
and possibly labeled states. Since the states are not directly observable we may not
have their sequence, but in some applications it may be possible to get an expert to
label them by hand. In that case, we have a supervised learning problem since all
variables are known. The transition and observation distributions that maximize the
likelihood of the data can be computed in closed form and correspond to the relative
frequency counts of the data. When the sequence of states is not available, unsupervised
or semisupervised learning algorithms such as Expectation Maximization [Dempster
et al. 1972] can be used to obtain good estimates of the transition and observation
distributions. It is also possible to estimate the number of hidden states [Beal et al.
2002] and for factored models, to estimate the number of hidden variables, their domain
size, and their dependencies [Doshi-Velez et al. 2011].

Given a specific set of state and observation variables, transition and observation
models are, in principle, objectively learnable. By contrast, the reward function reflects
the preferences of the end-user for specific states or particular behaviors. Learning
reward functions for MDPs from observation is a problem that has been considered in
the literature (e.g., Ng and Russell [2000]), but generally requires that one has access
to trajectories generated by an expert, that is, an actor who is implementing an optimal
policy for the MDP in question. In our setting, this is unrealistic, in part because the

2www.cs.uwaterloo.ca/∼jhoey/research/spudd.
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actions available to an intelligent system may be different than those available to end-
users (e.g., caregivers), and in part, because expert policies are unlikely to be optimal
in the POMDP sense or even cover the range of possibilities required.

As a consequence, the explicit elicitation of reward functions is most appropriate
in most cognitive assistance domains. Elicitation of utility functions has a long his-
tory in decision analysis [Keeney and Raiffa 1976; Salo and Hämäläinen 2001; Abbas
2004] and has attracted considerable attention in AI as well [Chajewska et al. 2000;
Boutilier 2002, 2006; Braziunas and Boutilier 2010], with one of the primary aims
being the development of interactive systems that elicit utility information effectively
by identifying “irrelevant” aspects of a utility function that can be left unspecified.
The elicitation of reward functions for MDPs (and POMDPs) has received somewhat
less attention, though recent work has considered means for interactive and partial
elicitation of both unstructured reward functions [Regan and Boutilier 2009, 2011b]
and additive reward functions [Regan and Boutilier 2011a] for fully observable MDPs.
The range of queries and feedback one can obtain from a user to construct a reward
function is quite rich. It includes: state or attribute queries, which directly query a
user for values of (or bounds on) the reward associated with a specific state or state
variable (action costs can be queried in similar fashion); state/attribute comparisons,
which ask users to state which of two states (or attribute values) is preferred, or to
rank a set of states; trajectory comparison queries, which ask a user to compare two
state-action trajectories or policy demonstrations; and policy critique, where a user is
shown a policy demonstration, and asked to suggest points at which a different action
might have been preferred.

The SNAP method discussed in Section 5.4 also includes tools for the straightfor-
ward specification of POMDP reward functions for specific task domains, exploiting
the fact that rewards are generally decomposable with respect to specific task goals
and subgoals. However, the current form of these tools can only accommodate simple
specification that may not be “natural” for end-users. The work referenced before gives
us techniques to elicit reward functions in a more “user-friendly” way.

4. MODELING ASSISTANCE
A typical task requiring assistance consists of seven principal elements. We discuss
these elements here in the context of the handwashing task for people with dementia
(e.g., Alzheimer’s disease), who typically require assistance from a human caregiver
to wash their hands. The same elements appear in a wide range of assistance tasks.
A person with AD loses short-term memory, and therefore has difficulty in recalling
what they are doing, in recognizing necessary objects like the soap, and in perceiving
affordances (environmental cues for action). An example of this is shown in Figure 2,
which shows key frames from about 60 seconds of a video of a user washing their hands,
assisted by a human caregiver.

4.1. Seven Elements of Assistance
An assistance task is described by a seven-tuple {T , B, Y, A, O,", R}, as follows.

Task, T . This is a characterization of the domain in which the task is taking place in
terms of a set of high-level variables. For example, handwashing can be described by
task states that describe whether the hands are wet or dry, dirty, soapy, or clean, and
whether the water is on or off. In Figure 2, the user’s hands are soapy and wet at frame
1745, but become clean and dry by frame 2515. These variables need to be specified
for each task, but they characterize the world at a sufficiently high level to make this
accessible to end-users.

Behavior, B. The task states are changed by the user’s behavior, B. Common behaviors
during handwashing may be things like rinsing hands or using towel, as in Figure 2.
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Fig. 2. Example sequence in which a user is prompted to use the towel to dry her hands.

The user’s behavior evolves depending on the ability and the task as well as the system’s
action, A. The behaviors are the most difficult to manually specify, but can be learned
from data.

Ability, Y . Variables describe the cognitive or physical state of the user. This may
include the level of dementia and the current responsiveness, or perhaps the level of
frustration the user is experiencing with the system, her overall level of health, or
the physical ability with respect to the task. The ability variables essentially describe
internal properties of the user that generalize across tasks, and would be specified by
experts for the general system, and then carried over and possibly adapted for each
task through learning. The user’s expeditious reaction to the prompt in Figure 2, for
example, might give us an indication that she is responsive, and is attending to the
prompting system. Over a longer time period, the user’s overall level of health may
change. For example, her medical condition might take a turn for the worse, requiring
attention from a professional. Such a change may be noticeable in her responses and
behaviors.

Action, A. These are the actions of the system modify the behavior, ability, and
the task. These actions could be verbal prompts, calls to human caregivers or other
response systems, or physical changes to the environment. During handwashing, these
actions are typically verbal prompts or reminders such as the “Dry your hands now” in
Figure 2. However, as we will show, actions can include more general dialog iterations,
calls to other response systems, or physical control of related systems.

Observations, O. Task and behavior variables generate observations, K and V , re-
spectively. We use O = {K, V } to denote the complete set of observation variables. We
are positing two state space factors {T , B} that independently give rise to different
observation sets. Thus, the observations K are independent of B given T (e.g., a water
switch sensor only depends on whether the water is running or not, independently of
what the user is doing), and the observations V are independent of T given B (e.g. a
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gesture recognition system only depends on what the user’s hands are doing, not on the
result of her actions). These observations are generated from either noninvasive sen-
sors, such as cameras (in which case the observations are video streams), microphones
(audio streams), and environmental switches such as thermostats, or from invasive
sensors, such as buttons, manual switches, locks, EEGs, etc.

Parameters, ". They describe the dynamics and the observation function, and govern
how the first five elements interact. In a probabilistic model, these parameters are the
conditional probability distributions over some subsets of elements given the rest, and
the reward function. For example, we may know that a person who is responsive to
audio prompts is likely to do what she is asked to do, if appropriate to the situation.
This likelihood can be characterized by a parameter, the setting of which impacts the
performance of the model.

Reward, R. Each {state,action,previous-state} combination has some value, given by
a reward (or cost) function. The reward function’s job is to specify the relative values
of each possible outcome. The system will take actions that optimize over the reward
function in the long term. A typical such trade-off is between achieving a small reward
immediately, versus a large reward further in the future. The handwashing assistant,
for example, can incur a small cost in prompting, but this small cost may pay off
eventually when the person gets her hands clean.

Our goal is to design a model of the interactions between these elements, to build
a method for customization of the model, and to optimize an automated strategy for
assistance by maximizing (over the actions) some notion of utility over the possible out-
comes. The model must be able to deal with uncertainty in the effects of actions and in
sensor measurements, it must be able to tailor to specific individuals and circumstances
(adaptivity and customizability), it must be able to trade off various objective criteria
(e.g., task completion, caregiver burden, user frustration, and independence), and it
must be easy to specify. A Partially Observable Markov Decision Process (POMDP), a
decision-theoretic model which has recently received much attention in the AI commu-
nity, fulfills these constraints (see Section 3).

4.2. POMDP Model of Assistance
To build a POMDP model of assistance, we need to map the elements defined in the
last section onto the POMDP model from Section 3. In general, we model the task as
a consequence of the behavior of the user, which is a reaction to the actions of the
caregiver, conditioned by the ability of the user. The behaviors and the task are not
directly observable, but can be inferred from some observations from sensors. All these
dependencies are conditioned on the parameters of the model.

We claim that the task will be simple to specify, and can be defined by a nonspecialized
person, while the ability will require expert knowledge, but will tend to generalize
across tasks. On the other hand, the behaviors will be much more difficult to specify,
but can be learned from data directly [Peters et al. 2009; Hoey et al. 2005], including
a model of how they are related to the observations. The rewards must be specified
by end-users, and finding a suitable reward function is a very challenging problem,
typically addressed by preference elicitation methods [Keeney and Raiffa 1976; Regan
and Boutilier 2011a]. The actions, observations, rewards, and parameters of the model
can be specified by end-users, so long as we provide appropriate abstractions for them
to encode these elements.

Figure 1(b) shows the same model as in Figure 1(a), except that the state, S, has been
factored into three sets of variables: task (T ), ability (Y ), and behavior (B). Here we
describe each of these sets, as well as the actions of the system, A, and the observations
from which the state of the model is inferred.
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Jointly, S = {T , B, Y } is known as the state. The transition function can be factored
as

Pr(S′|S, A) = Pr(T ′, B′, Y ′|T , B, Y, A)
= Pr(T ′|B′, Y ′, T , B, Y, A)Pr(B′|Y ′, T , B, Y, A)Pr(Y ′|T , B, Y, A)
= Pr(T ′|B′, T , A)Pr(B′|Y ′B, T , A)Pr(Y ′|Y, A)

which is a product of three terms, as follows. Pr(B′|Y ′, B, A) gives the expected behavior of
the user given the previous state and the system action. Pr(Y ′|Y, A) gives the expected
user state given the current behavior, the previous ability and task states, and the
system action. Pr(T ′|B′, T , A) gives the expected task state given the current behavior
and the previous task state. Notice that the task state is independent of the ability,
Y , given the behavior, B. The idea is that changes in the task states are caused by
the behaviors of the user (and possibly the system actions), independently of the user’s
ability given the behaviors. The observations O = {K, V } are generated by the task and
behavior variables, T and B, respectively, through some observation functions Pr(K|T )
and Pr(V |B).

In general, the time scales at which observations occur will be of much shorter
duration than those at which task or ability change. Observations of behaviors will
typically be frames from some video camera (at 30 Hz), or some segments of an audio
stream (at 10 kHz), whereas the task states will only change every few seconds. For
example, during handwashing, a typical behavior may be “drying hands”, which may
take 30 seconds to perform, and result in nearly 1000 video frame observations (e.g.,
Figure 2), but only cause a single change of the task state: the hands become “dry”.
Thus, the observation functions may introduce some hierarchical structure into the
model. On the other hand, observations can be grouped together using some offline,
heuristic method that produces a virtual sensor. An example is a computer vision
algorithm that detects faces [Viola and Jones 2004], variants of which can be found on
most modern consumer digital cameras. This algorithm can be seen as a black box that
maps video frames to a single bit (face/nonface) that can be treated as an observation
by disregarding any noise or confidence information3 (see Section 5.3).

POMDPs can be used to monitor a person’s progress in a task by using Bayes’ rule
to update a belief state, b(s), that gives a probability that the model is in state s. The
progression of this belief state through time is what the POMDP attempts to optimize
by taking actions that lead to belief states with high reward values.

4.3. System Elements
We have seen how the POMDP can provide adaptive assistance by modeling appro-
priate elements of the state space and by dynamically monitoring beliefs. This section
will present a general-purpose framework for integrating a POMDP into an assistance
task, including the customization of the POMDP and system by end-users and the
real-time running of the final working product. In this exposition, we point to our work
in Section 5 as demonstrations of these techniques.

To allow for customization, we explicitly model the triadic relationship between
a client (person needing assistance), a carer (actor), and a piece of technology with
artificial intelligence capabilities (agent). This triad is modeled as a two-level system,
where the actor controls the agent to assist the client while simultaneously reducing the
actor’s load, maintaining the client’s safety, and promoting the client’s independence.
The challenge of modeling such a triad is the differing levels of expertise. We wish to
give the actor the ability to customize the agent, but without the need for extensive

3Confidence information can be included by adding yet more observations corresponding to the confidences.
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Fig. 3. System framework for assistance showing three layers: environment, customization, and artificial
intelligence (agent) layers.

training. The customization should be simple and effective, and the end result should
be helpful for the actor and adaptive to the client.

The framework in Figure 3 is divided into three layers. The environment layer on the
left includes the client in need of assistance, an actor (e.g., a human assistant), and a
set of sensors that measure various elements of the environment. The actor and client
can be one and the same, or two different people or groups. The customization layer in
the middle includes three elements that can be specified by end-users: a customization
interface uses a suitable level of abstraction to give access to the POMDP parameters
and temporal models, a set of input mappings from environment sensor inputs to
abstract observations, and a set of output mappings from abstract actions to signals
in the environment. We will show examples of these customizations in Sections 5.3
and 5.4. The third layer is the AI layer on the right, and includes the POMDP
model parameters and policy, and a belief monitor which maps observations to belief
states.

The AI layer also includes a method for abstracting over time. This is an important
component, as the sensor measurements may be occurring at a very fast rate (e.g.,
30 frames per second in video), whereas the POMDP operates on event-driven time.
Updates in the POMDP need to happen at realistic and natural time frames for the
behaviors. For example, during handwashing, it takes only a few seconds to turn on the
water, but 10–30 seconds to rinse the soap. These timings are dependent on each task
and on each user, and so must be specified as part of the customization. Note that some
temporal abstraction can be present in the input mappings, but some may depend on
the belief state itself, and so these elements are placed in the AI layer in Figure 3.
The simplest possible method for temporal abstraction is a function, timeout(s), which
gives a timeout (a number of seconds) for each state. This function is consulted by
the belief monitor after each new observation is received from the input mappings,
by computing a final timeout value, τ , based on the current belief state, b(s). This
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Table I. Properties of Each Application, Broken Down into State Variables, Actions, Input/Output Mappings, and
Customizability

COACH iSTRETCH ePAD SNAP
task plansteps (a-k) game state screen state cup position,

cup contents,
box condition

behavior use soap, rinse,
taps on/off, dry

time to target, control,
compensation

interactive, active,
intermittent, inactive

cup to ws,
open box, tb to cup,
close box

ability awareness,
responsiveness,
dementia level

fatigue, range,
learning rate

engagement recognition, recall,
affordance

sensors video camera time, posture,
device rotation

touch screen,
video camera

RFID in cup,
box-lid switch,
RFID in teabag

system
actions

use soap, rinse,
taps on/off, dry

set range, set resistance,
stop

high interactivity,
medium interactivity,
low interactivity

prompt recogni-
tion, prompt recall,
prompt affordance

input
mapping

computer vision
tracking of
hands and towel,
fixed regions

time limits, control,
compensation

interactivity level virtual sensors

output
mapping

audio-visual
prompts,
specificity levels,
caregiver calls

resistance mapping,
distance mapping,
game state

interactivity level of
prompts

audio-visual
prompts, direct
indications

customis-
ability

none input/output mappings,
parameters

input/output
mappings, parameters

input/output
mappings,
parameters,
POMDP structure

Null actions and behaviors are not shown.

timeout can be computed as a weighted average, τ =
∑

s b(s) ·timeout(s), or as the most
likely state’s timeout, τ = timeout(arg maxs b(s)). The belief monitor then updates the
POMDP whenever: (1) the belief state would change significantly after the update,
(2) some observation changes, or (3) the timeout is reached.

5. APPLICATIONS
This section presents five applications of the model we have presented earlier. The first
two are focused on the POMDP model and integrated system for two specific assis-
tance scenarios: handwashing for dementia and stroke rehabilitation. These systems,
however, include little or no customizability by users, but instead focus on adaptivity
and demonstrating the POMDP method for two different tasks. The next two applica-
tion areas are a device for art therapy and a method for building POMDP prompting
systems directly from prior knowledge. These applications include user customization
as a central issue. The last application demonstrates how the same model can be used
for hierarchical control in assistive systems. Table I details the various elements of
the four applications: their state variables (task, behavior and ability), system actions,
input/output mappings, and their customization abilities.

5.1. Prompting for ADL: COACH
COACH is a real-time intelligent system for assisting persons with dementia during
handwashing. The COACH system has been designed and built over the past ten years
through a series of four prototypes, each relaxing restrictive assumptions present in
its predecessor [Mihailidis et al. 2001; Boger et al. 2005; Hoey et al. 2010b]. There is a
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Fig. 4. (a) COACH handwashing assistant; (b) iSTRETCH haptic robotic device for stroke rehabilitation.

single sensor in the most recent prototype: a video camera. The video is fed to an input
mapping that is predefined as a computer vision algorithm that tracks the two hands
and the towel, and then outputs the locations of these objects discretized into a small
set of regions. The POMDP includes a set of eight plan steps as task variables, a set
of six simple behaviors, and models the user’s responsiveness, awareness, and overall
dementia level. The POMDP actions are to do nothing, to call for human assistance, or
to give prompts for each plan step at one of three levels of specificity. Specific prompts
are more costly than generic prompts, as they decrease feelings of independence in
users [Mihailidis et al. 2001]. The output mapping converts the human assistance call
to a real call for a caregiver to assist the user, and converts the actions to audio-visual
prompts depending on the specificity level. Figure 4(a) shows the system working,
with audio-visual prompting. The camera is out of sight on the ceiling above the
sink.

The input mappings are given by a computer vision algorithm that tracks hands and
towel. We use a mixed-state data-driven Bayesian sequential estimation method using
flocks of color features [Hoey 2006], which allow objects to be robustly tracked over
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long periods of time, through large changes in shape and through partial occlusions.
The tracker locations are discretized into a fixed set of regions around each element of
interest in the sink area (e.g., soap, taps). The timeout function is based on the most
likely belief, and is also dependent on the client’s estimated level of dementia.

The handwashing task is modeled as a POMDP with 9 state variables, 3 observation
variables, and 25 actions. There are 207360 states and 198 observations. The task vari-
able is a set of plan steps that break the handwashing task down into eight steps (i.e.,
the different steps of handwashing that need to be completed, such as turning on the
water, using the soap, etc,). The user behaviors cause transitions in the plan steps. The
user behaviors can be one of six activities: using soap, at water, at tap, at sink, drying,
or away. User ability is modeled using three factors: dementia level = [low,med,high],
giving the user’s overall functional ability at handwashing (low dementia level means
more demented, lower ability); awareness = [never,no,yes], telling whether the user
is aware of what she is doing in the task; and responsiveness = [none,max,med,min],
giving what type of prompts the user is responsive to.

The POMDP model estimates a particular user’s ability over time. In particular,
the model can estimate a user’s level of dementia by watching her long- term hand-
washing behavior over multiple sequences. When a new user starts using the system,
the dementia-level variable has some prior distribution set based on the population
of users. Over the course of each handwashing sequence, this distribution will shift
slightly. This information is then propagated over future episodes of handwashing
(this is the only variable whose information is propagated), then the system gets a
long-term estimate of the user’s dementia level. This information can be invaluable as
a monitoring tool for caregivers, who can reassess users when their dementia level is
estimated by the system to have changed.

The COACH can provide three levels of prompts to assist the user through the
required activity steps. The system has 20 actions, 18 of which comprise prompts for six
different plan tasks (water on/off, use soap, wet hands, rinse hands, dry hands) at three
levels of specificity (general, moderate, specific). General prompts gently cue the user,
while specific prompts are designed to get the user’s attention and provide a detailed
description of the task. The wording of the prompts was chosen based on work with
real caregivers [Wilson et al. 2007], and was fixed for the duration of the experiments
we describe here. The other two actions are the “null” action and “call caregiver”. The
latter action would normally terminate the process, but in our experiments, a caregiver
is called to assist with the current step only (in order to preserve data from the study).
The COACH does not provide any ability to customize, as it has been developed for a
particular task and user group.

The reward function gives a large positive reward for the user completing the task
(getting hands washed) and smaller positive rewards for intermediate steps. Prompt-
ing actions are costly, with more specific prompts being more costly, due to increased
invasiveness leading to decreased independence feelings in the client. Calling for a
human caregiver to assist is the most costly action.

The COACH system was tested in an eight–week trial with our target users: six
persons with moderate to severe dementia in a long-term care facility in Toronto,
Canada. The subjects washed their hands once a day, with assistance given by our
automated system, or by a human caregiver, in alternating two-week periods. We
measured the number of caregiver interventions that were necessary in each trial,
and compared the four weeks with the system to the four weeks with only the
human caregiver. Figure 5 shows plots of the number of interactions with a caregiver
that were required over the eight week trial. We can see that, for subject 04, the
system reduced the number of caregiver interventions to zero, indicating a perfect
performance. For subject 05, on the other hand, the effect is less clear. Thus, we
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Fig. 5. Number of interactions required with a caregiver for two subjects over eight weeks (41 trials). The
trials are grouped into 2-week segments, alternating baseline (without the system) and intervention (with
the system). (a) subject 04; (b) subject 05.
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Fig. 6. Performance of the COACH system for handwashing on a per-step basis. Hits are the number of
correct prompts given at the correct times for the given step, misses are the number of missed prompts,
correct rejects are the number of times the system correctly left the subject to do the step on her own, and
false alarms are the number of prompts issued when there should have been no prompt.

find the results are user dependent, and this can be due to a number of factors. For
example, the method of delivery of the prompts (audio using a male voice) may be more
evocative for some subjects than others. On average across all users, the reduction was
about 25%.

We also looked in more detail at the ways in which the system failed, and Figure 6
shows the performance of the system for each type of prompt that was issued. We can
see that the device has the most trouble with detecting and prompting for soap usage.
This can be explained by the large differences in subject’s behaviors for this step (e.g.,
some may use the soap very quickly, others more slowly, some with one hand, some with
two, etc.). These differences make it challenging to build a single “use soap” detector,
and this leads to the system more often misinterpreting this behavior.

We also found correlations between the system’s estimate of the subject’s dementia
levels and her MiniMental State Exam (MMSE) scores, a well-known clinical measure
of cognitive impairment [Hoey et al. 2010b]. A more complete set of our clinical findings
(i.e., the effect of the system on users) is reported in Mihailidis et al. [2008], whilst our
technical findings are reported in Hoey et al. [2010b].

Learning of behaviors has been investigated in the context of the COACH hand-
washing system. Given a set of data, we wish to learn automatically what behaviors
are present and how these behaviors are related to the task. Behaviors are modeled as
patterns of motion and image appearance over short time intervals, using a Dynamic
Bayesian Network (DBN) similar to a Hidden Markov Model (HMM). An unsupervised
method is used to cluster these behaviors into groups that are simultaneously
recognizable (present in the data) and valuable for detecting states in the task and
predicting rewards [Hoey and Little 2007]. The method has been applied to a large
training set of handwashing data, and we have shown how relevant behaviors can be
automatically extracted [Hoey et al. 2005]. We have also investigated reinforcement
learning [Poupart et al. 2006; Grzes and Hoey 2011], and supervised learning of
behaviors [Peters et al. 2009].
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5.2. Stroke Rehabilitation: iSTRETCH
Every year stroke affects 16.3 million people worldwide. It is the second leading cause
of death and the leading cause of permanent disability in adults [Truelsen and Bonita
2009]. The worldwide burden of stroke is increasing and expected to rise to 23 million
first-ever strokes by 2030 [Strong et al. 2007]. Among those who have experienced a
stroke, there are an estimated 64.5 million stroke survivors who live with varying lev-
els of disability and need assistance for Activities of Daily Living (ADL) [Truelsen and
Bonita 2009]. The burden of care for stroke survivors is high for the healthcare system
and family members or caregivers [Truelsen and Bonita 2009; Stroke 2007]. Research
has shown that stroke rehabilitation can reduce the impairments and disabilities that
are caused by stroke, and improve motor function, allowing stroke patients to regain
their independence and quality of life. It is generally agreed that intensive, repetitive,
and goal-directed rehabilitation improves motor function and cortical reorganization
in stroke patients with both acute and long-term (chronic) impairment [Fasoli et al.
2004]. However, this recovery process is slow and labor intensive, usually involving
extensive interaction between one or more therapists and one patient. One of the main
motivations for developing rehabilitation robotic devices is to automate interventions
that are normally repetitive and physically demanding. These robots can provide stroke
patients with intensive and reproducible movement training in time-unlimited dura-
tions, which can alleviate strain on therapists. In addition, these devices can provide
therapists with accurate measures on patient performance and function (e.g., range of
motion, speed, smoothness) over the course of a therapeutic intervention, and also pro-
vide quantitative diagnosis and assessments of motor impairments such as spasticity,
tone, and strength [Hidler et al. 2005]. This technology makes it possible for a single
therapist to supervise multiple patients simultaneously, which can contribute to the
reduction of healthcare costs.

The system we describe in this section models the stroke rehabilitation task as
an assistance task to autonomously facilitate upper-limb reaching rehabilitation for
moderate-level stroke patients, to tailor the exercise parameters for each individual,
and to estimate user fatigue. The system consists of a haptic robotic device coupled to a
POMDP model that tracks a user’s progress over time, and adjusts the level of difficulty
based on the user’s current abilities. More details on this system can be found in Kan
et al. [2008, 2011], Lam et al. [2008], Huq et al. [2011], and Goetschalckx et al. [2011].

The robotic device, as detailed in Lam et al. [2008] and shown in Figure 4(b), was
built by Quanser Inc., a Toronto-based robotics company. It features a nonrestraining
platform for better usability and freedom of movement, and has two active and two
passive degrees of freedom, which allow the reaching exercise to be performed in 3D
space. The robotic device also incorporates haptic technology, which provides feedback
through sense of touch. Encoders in the end-effector of the robotic device provide data
to indicate hand position and shoulder abduction/internal rotation (i.e., compensation)
during the exercise. Unobtrusive trunk sensors provide data to indicate trunk rotation
compensation. The trunk sensors are comprised of three photoresistors taped to the
back of a chair, each in one of three locations: the lower back, lower-left scapula, and
lower-right scapula. The detection of light during the exercise indicates trunk rotation,
as it means a gap is present between the chair and user. Finally, the virtual environment
provides the user with visual feedback on hand position and target location during the
exercise. The reaching exercise is represented in the form of a 2D bull’s-eye game. The
goal of the game is for the user to move the robot’s end-effector, which corresponds to
the cross-tracker in the virtual environment, to the bull’s-eye target. The rectangular
box is the virtual (haptic) boundary, which keeps the cross-tracker within those walls
during the exercise.
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The input mappings convert the time it takes the user to reach the target into three
ranges: did not reach, slow, or normal; and whether the user demonstrates sufficient
control and does not compensate. These settings are done by the physical therapist to
allow for the abilities of a particular user. The task state is only related to the virtual
game, and encodes things such as whether the user has completed a level. At the
present time, we do not include any of these elements, but these could be added in the
future. The behaviors model the time it takes the user to reach the target, the amount
of control she exhibits while reaching (the amount of “wiggle” in the device as measured
by the end-effector encoders), and whether they compensate or not (measured by the
trunk photo-resistor sensors). The user’s abilities are modeled as a product of three
factors: her range at each resistance level, her level of fatigue, and her learning rate
(some users rehabilitate faster than others). There are 10 possible actions the system
can take. These are comprised of nine actions of which each is a different combination
of setting a target distance d ∈ {d1, d2, d3}, and resistance level r ∈ {none, min, max},
and one action to stop the exercise when the user is fatigued.

The dynamics of all variables were specified manually using simple parametric func-
tions of the user’s fatigue and the difference between the system’s setting of resistance
and distance and the user’s range (the amount by which the user is stretched). For
example, if the user is not fatigued and the system sets a target at the user’s range,
then the user might have a 90% chance of reaching the target. However, if the target
is set further, or if the user is fatigued, then this chance might decrease to 50%. The
functions have simple parameters that can be specified by therapists, giving them cus-
tomization of the POMDP model. The customization interface in this case gives the
therapists access to only these simple parameters, and they set the amounts of stretch
at which they expect a user to be able to reach the target, and how quickly a user will
get fatigued. More details can be found in Kan et al. [2008, 2011].

The output can also be customized as mappings from levels of resistance and distance
to actual resistance and distances on the haptic device. The idea is that, during weekly
visits to a therapist, these mappings are reset based on the monitoring data from the
previous week. The POMDP then starts from its initial state, and again guides the user
through to the maximum resistance and distance levels, but the starting and ending
points are physically different based on the output mappings.

The reward function was constructed to motivate the system to guide the user to
exercise at maximum target distance and resistance level, while performing the task
with maximum control and without compensation. Thus, the system was given a large
reward for getting the user to reach the furthest target distance (d=d3) at maximum
resistance (r=max). Smaller rewards were given when targets were set at or above the
user’s current range (i.e., when stretch >= 0), and when the user was performing well.
However, no reward was given when the user was fatigued, failed to reach the target,
had no control, or showed signs of compensation during the exercise.

The system has been tested in a pilot study with a single patient and one thera-
pist. The patient was right-side hemiparetic, had a stroke onset of 227 days (7 months
and 14 days) before enrollment, scored 4 on the arm section of the Chedoke-McMaster
Stroke Assessment (CMSA) Scale [Gowland et al. 1993], was able to move to some de-
gree but still had impaired movements as determined by her therapist, and could under-
stand and respond to simple instructions. In each session, the therapist reviewed each
POMDP decision and either agreed or disagreed with it (in which case the therapist
made the decision). Each session lasted for approximately one hour and was completed
three times a week for two weeks. The therapist agreed with both the target distance
and resistance-level decisions made by the POMDP 94% and 90% of the time, respec-
tively, but only 43% of the time for the stop decision. The POMDP wanted to stop the
exercise to let the user take a break more often than the therapist wanted, but this could
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be changed by, for example, setting the cost for the stop action to be higher. The therapist
was also asked to evaluate the POMDP decisions by rating the following statements
on a Likert scale (1–4) with 4 being the most agreement: (a) the decisions made during
the exercise were appropriate and (b) the patient was given an appropriate amount of
time to complete each exercise before the next decision was made. The responses were
2.8±0.4 for question (a) and 3.2±0.4 for question (b). More details can be found in Kan
et al. [2011]. We have also experimented with more complex, continuous models of how
a person’s abilities change with the task difficulty [Goetschalckx et al. 2011].

5.3. Art Therapy: ePAD
This section considers assisting persons with dementia and their therapists during
art therapy sessions. There is increasing evidence that leisurely activities decrease
dementia risk [Karp et al. 2006], and that cognitive activities can slow down the
progression of Alzheimer’s disease [Geda et al. 2009]. Engagement with visual artworks
is also known to have benefits for the promotion of quality of life in older adults [Rusted
et al. 2006]. However, many older adults have difficulty motivating themselves to
engage in a creative activity for a reasonable period of time. These difficulties are
compounded when the older adult has a progressive illness, such as Alzheimer’s disease.

There has been some research published on the use of technology in art therapy
contexts. For example, investigations on the use of video [Hartwich and Brandecker
1997] and digital photography [Wolf 2007] as new tools in psychotherapy have yielded
very positive results. With respect to computer-based art therapy (i.e., using technol-
ogy as part of the art therapy process), only a limited number of technologies have
been developed. Examples include a multitouch surface that is used to simulate a
sand-tray with objects in 3D above a 2D sand surface for interactive play therapy
sessions [Hancock et al. 2010]. However, these applications are not practical for older
adults with dementia because of required high levels of cognition and fine motor skills.
Collie and Cubranic [1999] developed a computer-based art therapy program for use
in tele-health [Collie and Cubranic 1999], but their system required an arts therapist
to be physically present, and was not developed or tested with older adults with de-
mentia. The majority of past computer-based applications have focused on art therapy
assessment, such as for judging the main color in a drawing [Kim 2008], and estimating
level of dementia based on the elements in a structured Mandala drawing [Kim et al.
2009]. Touchscreen devices for visual artworks have recently been developed [Raffle
et al. 2007; Muise and Yim 2008], however, not for persons with dementia, and not as a
tool for arts therapists specifically. To date there has been no work on computer-based
systems that can prompt and monitor a user’s participation in creative arts akin to the
one we have developed. In addition, it should be noted that software tools that have
been developed as “general” art technologies have not been included in this summary
as they were not developed specifically as therapy tools.

Art therapy is a triadic relationship in which client, therapist, and artwork engage
with each other. The primary goal of art therapy with older adults is to increase qual-
ity of life through promotion of autonomy [Harlan 1990], independence, and creative
activities. Engaging in the art making process also provides an outlet for a person’s
emotional state. Through artwork, a person can communicate, for example, feelings of
isolation and loneliness [Burns 2009].

The tool we have created is a creative arts touchscreen interface that presents a
user with activities like painting, drawing, or collage (shown in Figure 7). The tool
was developed with a user-centered design methodology in collaboration with a group
of creative arts therapists. The tool is customizable by therapists, allowing them to
design and build personalized therapeutic/goal-oriented creative activities for each
client. The customized application attempts to maintain a client’s engagement.
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Fig. 7. ePAD art therapy tool.

Fig. 8. Art therapist interface and client application.

The therapist uses the designer tool, which is a screen split into three sections: wid-
gets, design, and properties (see Figure 8). The therapist can drag any widget onto the
design area, configure it to her needs with a mouse (e.g., resize with a click-and-drag),
and set properties and actions for the system. Once done, the therapist exports the
newly created application for use by the client (Figure 8 on the right). When using
the newly created application, a user does some visual art-work on a touchscreen. A
therapist is present, and has a (possibly mobile) interface, but can leave the client
for short periods of time (e.g., to interact with another client in a group session).
The outputs of the device are a video stream from a Web-camera watching the user’s
face, and the interface actions (finger movements on the screen). These are passed to
a therapist-defined set of input mappings, that map each behavior of a user on the
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screen to a category of activity ∈ {interactive,active,intermittent,inactive}, defined as
the amount of engagement a behavior requires. A second input mapping uses a com-
puter vision algorithm to detect if a client is looking at the screen, a strong indicator of
engagement. Images are taken from a standard Web-camera, and a Haar-like feature
recognition method is used to detect a single face in the scene [Viola and Jones 2004].

There are two types of behaviors we expect to see in clients of this application.

(1) The interface behavior∈{interactive,active,intermittent,inactive} is whether the
user is actively doing something on the interface, and is inferred from obser-
vations of her finger interactions (activity observation). The observation model
P(activity|interface behavior) defines the measurement noise.

(2) The gesture variable is a set of gestures that indicate that a user is engaged with
the device, and are inferred from the video stream. For example, the gestures could
be gaze directions ({looking,not looking}), indicating if a person is looking at the
screen. The gestures and the observation model P(video|gesture) are activity
dependent, although for many applications the gaze direction will be sufficient.

The user ability model is given by two factors.

(1) The user’s engagement∈{yes,confused,no} is the key element of this model, as main-
taining engagement is the primary purpose of the device. A user can be engaged
(yes), or disengaged partially (confused) or completely (no). The dynamics of en-
gagement, and the effects of the engagement on a user’s behaviors, gestures, and
task are user and activity dependent.

(2) The user’s responsiveness to the system’s actions respond is factored into a set
of variables: {respond a1, . . . , respond aM}, giving responsiveness to each of the
system’s action interactivity levels a1, . . . , aM, respectively.

The actions the system can take are to do nothing (a0), or to perform some interven-
tion (a1, . . . , aM), where intervention ai is a level of interactivity, defined as the amount
of involvement it requires from a user. The generic action is then returned to the ap-
plication as an action for the system to take at that level of interactivity, using a set of
therapist-defined output mappings. The actions range from adding shapes or images
to the canvas, to animating buttons, or playing audio files. Action customizations are,
for example, the sizes and locations of shapes that will be added by the system. The
therapist can change the interactivity level ∈ {low, high, stimulate} for each action. An
example of a configuration would be to set the interactivity level of add circles to low,
and play audio prompt to stimulate. The trade-off is that a very interactive prompt may
get a disengaged user involved, but may be a disruptive action for an already engaged
user, causing her to disengage.

The dynamics of the POMDP hinges on the user’s engagement, which changes dy-
namically over time as a function of the system’s actions, and her previous behaviors.
For example, if the user is disengaged, but is looking at the screen, and the system
does something of interest, then the user may become engaged with some probability.
On the other hand, if a user is already engaged, and the system gives a prompt or
changes the interface, the user may become confused. The user’s responsiveness comes
into play when the system takes an action. If she is responsive to the interactivity level
of the action, the effect of the action is to increase her engagement.

The reward function is based solely on the user’s engagement, with +10,−1,−2 if
the user is engaged, confused, or not engaged, respectively. System actions are costly
(−0.5), but only if the user is engaged. This models the effect of an action reducing
feelings of independence in a user if she is already engaged. The POMDP controller
(policy) thus computed takes actions that lead to behaviors defined as more involved
by the therapist. Actually, the POMDP is optimizing over the user’s engagement, but
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this is reflected in the amount of involvement of the behaviors. However, the POMDP
must trade-off involvement and engagement against interactivity.

The system has recently been through a six-week trial with six art therapist-client
dyads. The therapists built applications specifically for their clients, and then engaged
with them in a series of six one-hour sessions. The feedback from therapists and clients
alike was very positive, and we found many avenues for future work. Here we give a
brief overview of the trial results with some salient points.

The goal of these trials is to find out if (A - Engagement) the device can be used
by therapists to engage their clients in art; and (B - Automation) if the device could
be used to automatically maintain user engagement for short periods of time during
a session, thereby freeing up therapist time for other things. Throughout, the Likert
scale is 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree.

A - Engagement. A primary question is whether the device can be used to engage
clients in visual artwork. Therapists generally (5/6) felt that the device was an effec-
tive tool which they could use to engage their clients in a creative process, but some
commented on the need for direction as to using the device. ATs were generally (5/6 for
at least one session) fairly satisfied with the way the device could be used to support
them in engaging clients and these ATs could envision using the device in an actual
session. However, ATs (median of 4/5 on Likert for client engagement and 3/5 on Likert
for their own satisfaction) remained uncertain as to whether they/ their clients were
satisfied with the device, and felt that it might distract their other clients if they were
to use this in a group art therapy session.

B - Automation and Prompting. Overall, the prompts were not very well explored
by the therapists, probably because there were too many new things for each thera-
pist/client dyad to deal with. This indicates that our study methodology could have used
an additional step of usage of the device without system prompts. However, choosing
and configuring system actions and additional settings was reported by ATs as being
straightforward, but the rating system (level of interactivity) and the function of each
prompt was described as being confusing and/or counter-intuitive by (2/6) ATs. The
ATs also called for more flexibility in defining prompts.

Overall, we received a great deal of positive feedback from therapists, who were
excited about the prospect of using the device. Clients were also very positive about
the device. Most of them were able to use the device without difficulty, seemed to enjoy
themselves, and, for the most part, seemed to be engaged in the task. The study also
highlighted some of the key shortcomings of the current prototype. Our goal of creating
a tool that would autonomously engage clients in art work (for short periods) has not
yet been achieved. In hindsight, we believe the therapists were overwhelmed with the
novelty of the device, and that more design work needs to go into the system action
usage. While the customizability of ePAD was present functionally, our trials were not
long enough to fully explore this aspect. The trials also gave us a “to-do” list of elements
that can be added/removed from the current prototype. More details on this system can
be found in Blunsden et al. [2009] and Mihailidis et al. [2010], and simulated examples
of this system in use can be found in Hoey et al. [2010a]. Details on the six-week trial
described before can be found in a forthcoming paper [Leuty et al. 2011].

5.4. Syndetic Assistance Processes: SNAP
Our final application area is focused on the customization of the POMDP prompting
system. Our long-term goal is to design mechanisms for end-users (clients, caregivers,
family members) to specify situated prompting systems for a specific need and task, and
to be able to use the powerful decision making (AI) and computer vision and sensing
tools that we are developing. Eventually, an end-user will, when confronted with a
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Fig. 9. Ambient kitchen, showing example sensors.

new problem needing a solution, be able to design and customize a situated prompting
system with a POMDP back-end such as described previously.

The key to such a development is the formalization of a model of assistance (as
before), and of a method for translating a real-world task and need into such a model.
We begin by combining human factors research for task analysis [Wherton and Monk
2009], ubiquitous sensing of an environment [Olivier et al. 2009] (a kitchen), and the
POMDP assistance model described earlier. In this section, we will give an overview of
the task analysis and ubiquitous sensing, and then show how this can be translated into
the POMDP assistance framework described before. We will use an example in this case
of a person needing assistance in making a cup of tea. We are carrying out experiments
in the ambient kitchen, a fully sensored and operational kitchen at the University of
Newcastle, shown in Figure 9. More details can be found in Olivier et al. [2009].

The task analysis technique, as described in Wherton and Monk [2009], breaks a
particular task down into a set of goals, states, abilities, and behaviors. The technique
involves an experimenter video-taping a person being assisted during the task, and
then transcribing and analyzing the video using a syndetic modeling technique. The
end result is an Interaction Unit (IU) analysis that uncovers the states and goals of
the task, the user’s cognitive abilities, and the user’s actions. A simplified example for
the first step in tea making (getting out the cup and putting in a teabag) is shown in
Table II. The rows in the table show a sequence of steps, with the user’s current goals,
the current state of the environment, the abilities that are necessary to complete the
necessary step, and the behavior that is called for. The abilities are broken down into
ability to recall what they are doing, to recognize necessary objects like the kettle, and
to perceive affordances of the environment. This model of cognitive abilities is defined
a priori by experts in the psychology of dementia, but generalizes across tasks, as
mentioned in Section 4.1. While this model is specific to dementia, a range of similar
models could also be built in a the same way (with different ability sets) for any task
in which the user is cognitively overloaded.

The IU analysis shown in Table II can be converted to a POMDP model as follows.
First, the task variables correspond to the entries in the state column in Table II. For
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Table II. IU Analysis of the First Step in Tea Making

IU Goals Task States Abilities Behaviors
1 Final cup empty on tray,

box closed
Rn cup on tray, Rl step No Action

2 Final, cup TB cup empty on tray,
box closed

Af cup on tray WS Move cup
tray→WS

3 Final, cup TB cup empty on WS,
box closed

Rn box,
Rl box contains TB,
Af box closed

Alter box to open

4 Final, cup TB cup empty on WS,
box open

Af TB in box cup Move TB box→cup

5 Final cup tb on WS, box open Af box open Alter box to closed
Final cup tb on WS, box closed

Rn=recognition, Rl=Recall, Af=Affordance, tb=teabag, ws=work surface.

example, in the first step of tea making, these include the box condition (open, closed)
and the cup contents (empty or with teabag). The user behaviors are described by
one variable with values for each behavior in Table II. For the first IU group in tea
making, these include opening/closing the box, moving the teabag to the cup, and doing
nothing or something unrelated (these last two behaviors are always present). The
user abilities are related to known Cognitive Abilities (CAs). These are the ability of
the user to recall (Rl), recognize (Rn), and remember affordances (Af). For the first IU
group, these include the ability to recognize the tea box (“Rn box” on line 3 of Table II)
and the ability to perceive the affordance of moving the teabag to the cup (“Af TB in
box cup” on line 4 of in Table II). In the associated POMDP, the abilities are related
to the behaviors in the same way as in the framework given earlier; each behavior is
dependent on a list of relevant abilities. That is, in order for the client to open the
box, he/she must be able to recognize the box (“Rn Box”), recall that the box contains
teabags (“Rl box contains TB”, and see the affordance of opening the box (“Af box closed”
as afforded by the box being closed).

The IU analysis shown in Table II is for a single goal the user can hold (in this case
getting the teabag in the cup on the worksurface). For each goal, there is one overall
ability to recall the step (“Rl Step” on line 1 of in Table II), and this ability serves only
to push the goal for that user onto her list of known goals. We will pursue this further
in Section 5.5 when we discuss hierarchical control mechanisms that can deal with
multiple goals.

The system actions are the things the system can do to help the user. We define
one system action for each necessary ability in the task. The actions correspond to a
prompt or signal that will help the user with this particular ability, if missing. The
system actions are specified by a ubiquitous sensing expert, based on known properties
of the actuators in the environment. For example, to help with recognition of the cup,
a light could be shone on it, or an audio prompt could be delivered. A range of prompt
specificities can also be added for the same ability. A more specific prompt is usually
considered more expensive (so will be used less often), but more effective [Mihailidis
and Fernie 2002; Hoey et al. 2010b].

The observations are specified by a ubiquitous sensing expert, and are related to
each state (task) variables or user behavior. For example, in the ambient kitchen,
there are sensors in the countertops to detect if a cup is placed on them, and sensors
in the teabags to detect if they are placed in the cup. The sensor noise is measured
independently (as a miss/false positive rate for each state/sensor combination). The
POMDP is able to fuse information from different sensors in a natural way by folding
these sensor noise measures into the observation function. The POMDP can also handle
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missing sensor data, and sensors can be added or deleted easily from the model. In fact,
the POMDP can also be easily modified so it must explicitly query sensors (rather than
being forced to query all sensors at each time step). The POMDP can implement a
decision-theoretic trade-off in this case, choosing the most in expensive sensor to use
that will give it sufficient information to accomplish its goals [Koltunova et al. 2011].

The dynamics and initial state are produced directly from the IU analysis (Table II),
by looking across each row and associating state transitions between rows. We take
this to be deterministic, as any uncertainty will be introduced by the user’s abilities (so
we assume a perfectly able user is able to always successfully complete each step). The
most important aspect of the dynamics is the effect of a system action on each ability.
Each action has an effect on its associated cognitive ability, given by the probability
that the cognitive ability associated with the action will change to “yes” if it is “no” if
the system takes this action. For example, the “prompt recognition cup” action (e.g., a
light shone on the cup) makes it more likely that the user can recognize the cup if she
can’t already. These probabilities would be specified either by an expert in dementia,
or by a caregiver or therapist, or can be learned from data (see Section 3.2). Ideally, a
therapist or caregiver would specify some distribution or range of probabilities, which
could then be refined by the learning system.

The reward function specifies the final goal state (the final task states the last row
in Table II), along with any intermediate goal states. In the tea making example, the
system gets a big reward if the teabag is in the cup at the end and the box is closed,
and smaller rewards if the teabag is in the cup but the box is open, and if the cup is
empty by the box is open. These rewards are specified as a relative weighting for each
subgoal. The actions are costly because we want to let a user do it herself if she can.
These costs may be in physical values (dollars and cents) or in costs in terms of impact
on a user. For example, an audio prompt for a step may have a low monetary cost, but
a high cost in terms of making the user feel less independent. On the other hand, a
laser beam indicating an object may have a high monetary cost, but a low user-impact
cost. The precise specification of the reward function is very challenging, but a rough
approximation can be elicited from prior knowledge or discussions with carers and
psychologists (see Section 3.2).

We have developed software for the specification of situated prompting systems using
the SNAP method, and have tested the method in the ambient kitchen using tea making
and an actor [Hoey et al. 2011]. We have also generated POMDPs using SNAP for
wayfinding, toothbrushing, handwashing, scheduling reminders (all for persons with
dementia), and for a factory assembly task (for person’s with Down’s syndrome). The
analyses for these last four tasks were performed by different biomedical engineers and
research assistants, all with limited experience with POMDPs or planning in AI. As
an example of the power of our method, the factory task was coded in about six hours
by one biomedical engineer. The factory task contained 6 different IU analyses and
associated POMDPs, each with about 5000 states, 24 observations, and 6 actions. This
can be compared to a manual coding of the system for handwashing (a smaller task),
that took over 6 months of work resulting in the system described in Boger et al. [2006].

In recent work, we have developed a relational database to encode the SNAP analysis
for automated translation into a POMDP [Grzes et al. 2011]. The structure of this
database forms a relational schemata of a Probabilistic Relational Model (PRM) [Getoor
and Taskar 2007], and any particular instance is a relational skeleton that can be
“grounded” using specific probabilities and rewards into a POMDP model for a specific
task. This method allows for reuse of the schemata and skeleton in different tasks.
Our future plans include testing on other tasks, advancing the specification towards
end-users, learning parameters and reward functions, and doing lifted planning and
inference.
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5.5. Hierarchical Control
In order to act independently in more complex environments with multiple tasks, a
person must at maintain a goal stack that provides her with motivation and direction
for the task [Duke et al. 1998]. For example, in the kitchen, a goal stack might be

make breakfast→make tea→get teabag→open teabox.

Therefore, the person must have the ability to recall each of these goals in order,
and may need to have some further abilities for recognizing objects, or for perceiving
affordances of the environment [Ryu and Monk 2009]. The cognitive modeling approach
of Wherton and Monk [2009], as explored in Section 5.4, uses a stack to model a person’s
goals. A person pushes a sequence of goals onto the stack, and then pops them off when
they are achieved. Persons with dementia have difficulty pushing subgoals onto this
stack, and often lose track of which subgoal they are completing (leading to a subgoal
being popped from the stack prematurely). The pushing of a subgoal onto this stack
is a user behavior, but a fundamentally different one from other physical acts (e.g.,
scooping some sugar), or psychological acts (such as recognizing the teacup), both of
which only serve to immediately further the following behavior on the part of the user.

If we attempt to model an entire smart-home system as a single POMDP using
the SNAP method described in the last section, we will soon run into computational
problems. A simple solution to this problem is to distribute the model and approach each
task independently. As in hierarchical approaches for robotics [Theocharous et al. 2004]
and reinforcement learning [Sutton et al. 1999; Dietterich 2000], each subtask can be
solved independently, and the solutions controlled sequentially. This approach does not
work for a situated prompting system, however, for three reasons. (1) The client may
not be acting rationally, and so may switch tasks suddenly, even to a dependent task
that is not possible before the original task is complete, and may leave the original task
in a critical state (e.g., the stove left on) [Geib 2002]; (2) the control in the assistance
domain are suggestions to a client, and may not always be effective; (3) the system must
be as passive as possible, letting the client accomplish tasks on her own if she can do so
in order to maintain feelings of independence and control. These three considerations
combine to make the subtasks nonindependent, and render approaches to assistance
in which the system shares the action space with the client less effective (e.g., Fern
et al. [2007]). In this case, it is not optimal for the system to “take over” and do things
for the client if she forgets. Instead, the system must remind the person as passively
as possible what to do.

For these reasons, and our goal of building truly distributed assistance systems
that can be easily added or removed from a smart-home, we seek a distributed con-
trol mechanism that will unify many POMDP-based controllers for assistance. Pineau
et al. [2001] propose an approach that handles problems with a decomposable action
and state space. The method we use is similar, but our problem structure does not allow
for easy decomposition of the state space, since high-level states (goal recall abilities
for high-level goals) have effects that are felt throughout the hierarchy. We impose a
hierarchy on the controller, but allow for sharing of some state and value information
between levels, resulting in an approximate solution. With sufficient computational
power, we can relax this imposed hierarchy, allowing other methods (such as Pineau
et al. [2001]) to be used directly. Distributed control in our case can also be formulated
as a resource allocation problem [Hoey and Grzes 2011]. Weakly coupled resource allo-
cation tasks (in which subtasks are independent given resources) can be successfully
tackled with an approximate, greedy algorithm for solving MDPs [Meuleau et al. 1998;
Dolgov and Durfee 2006; Guestrin and Gordon 2002]. Distributed control can also be
modeled as a Dec-POMDP [Seuken and Zilberstein 2007; Boutilier 1999], which poses
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computational challenges beyond what we are capable of handling at this time. Specific
classes of DEC-POMDPs have been developed [Varakantham et al. 2009], but rely on
having “highly” autonomous agents that interact only in certain locales. Our method,
on the other hand, has very dependent agents (they share resources), but imposes a
structure that can be exploited for policy construction using a greedy approach. Further,
we are explicitly leveraging detailed a priori domain knowledge to construct specific
solution methods that work for the large domains we are working on.

Therefore, we have designed a higher-level POMDP controller whose job is only to
deal with a particular level of user subgoals [Hoey and Grzes 2011]. Once a user has
pushed a particular subgoal onto her stack, this high-level controller passes off control
to a lower-level subgoal controller that guides the user through the individual steps
related to that subgoal. If the person loses track of what she is doing in that subgoal,
the lower-level controller will attempt to prompt her to get her back on track. If she
does not respond to such prompts, the higher-level controller will start to believe that
the person has lost the subgoal from her stack (the belief in her ability to recall the
subgoal will decrease), and will step in and issue an appropriate reminder of that
subgoal, vetoing any actions recommended by the lower-level controllers.

The controllers can be nested, encoding tasks that require assistance into a tree-
shaped hierarchy, such that each path from the root to a leaf describes a particular set
of abilities required to complete the task at the leaf. Each node in the tree consists of
a stand-alone controller, encoded as a POMDP, that prompts the client for a subset of
abilities, but relies on its ancestors to prompt for any abilities higher in the tree. The
children of a node can be seen as macrobehaviors that require the abilities controlled
by the parent. An initial, offline phase computes policies for each node in the tree.
Subsequently, during interactions with a client online, the control algorithm processes
each new observation in a two-pass distributed fashion. A bottom-up traversal of the
tree allows each node to compute its expected value given each possible constraint
placed by its parent and each value reported by its children, and to report this expected
value to the parent. Subsequently, a top-down traversal reveals the best action to take
at each level.

Such a hierarchical controller is an instance of the assistance POMDP described
in Section 4.2, which we refer to as a composite controller. The systems we have de-
scribed previously are atomic controllers in the sense that they receive observations
directly from the environment, perform actions directly in the environment (e.g., au-
dio prompts), and are self-contained prompting systems for individual subtasks. The
composite controllers, on the other hand, receive observations from other controllers
(either atomic or composite), and rely on the subgoals for the majority of actions. Each
composite controller has a set of N subcontrollers, denoted C1, C2, . . . , CN, and has the
following structure.

—The observations for the composite controller include K, whether each subgoal is
completed or not according to its belief state, and V , the index of the subgoal in
which user activity or an exogenous event (indicated by a sensor change without a
user action) has been observed, or 0 if no activity has been observed and there was a
timeout.

—The behavior variable, B, gives the subgoal the user is currently attempting, as
reported by the subcontrollers. The behavior can be none meaning that a timeout
was observed (no specific user actions were taken).

—The ability variables are one for each recall ability of each subgoal, and condition
what a user is expected to do next.

—The task variables include variables denoting whether that subgoal has been com-
pleted yet. Subgoals complete at some finite rate if the user behavior corresponds
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correctly to the current control subgoal and all prerequisites are fulfilled. Addition-
ally, a control variable gives the current subgoal that should be being attempted by
the user. Note that this may be different from the behavior (if the user is doing the
wrong thing).

—The reward function for this controller corresponds to the ordering of goals to com-
plete the task.

—Subgoal dependencies (on other subgoals) are encoded in the composite controller
as behavior relevance functions: they give the situations in which each behavior is
relevant, and will be zero for behaviors (subgoals) that depend on previous subgoals
according to the dependencies

A composite controller runs in parallel (event-driven) time with the current sub-goal
in control, and makes two contributions.

(1) It has a veto power over the current control subgoal: if it decides to take an action,
the subcontroller is forced to “do nothing”. These actions will be taken in situations
when the composite controller does not believe the subcontroller will be able to
complete.

(2) It decides on the subgoal in control by consulting its own control variable and
choosing the most likely control subgoal.

These two contributions allow the composite controller to have some degree of control
over the achievement of value. It can decide to take action to steer a user towards a
control goal that she is not currently attempting. It computes a value for each action
(including its own prompting actions and all allocations to its children) based on its own
Q-function, and a weighted sum of the Q-functions of its children given the allocation
and its estimates of whether the children will complete if allocated control. More details
of this control mechanism can be found in Hoey and Grzes [2011].

6. CONCLUSIONS
This article has described the current state of our efforts over the past decade to-
wards developing general-purpose assistance technologies for persons with cognitive
and physical disabilities. The systems we have built are based on a general-purpose
framework for the specification, customization, and use of decision-theoretic prompt-
ing systems. The method is based on the partially observable Markov decision process,
and combines elements allowing for user customization, system adaptivity to users,
and general-purpose sensing abilities. This article has given a detailed presentation of
the method, and five case studies of applications of the method to situated prompting
systems.

Our future work is working in three directions. First, we seek to bring our current
technologies to market by increasing robustness and quality guarantees. For example,
we are currently developing a version of the handwashing system that will be inexpen-
sive, easy to install, and can be evaluated with a large number of users in their own
homes. Second, we are developing novel algorithms and systems that will take our cur-
rent prototypes to the next level, allowing for more complete end-user customization,
adaptation to users through learning, and generalizability through novel computer
vision methods. A limitation of our current work is the relatively small population
sizes that we have tested our systems with. We have seen significant variability in the
responses of clients to our systems, and we are currently researching methods for in-
creasing the ability of end-users to customize our systems to suit their invididual needs.
A further area of investigation is in system to detect and repair problem areas within a
task (e.g., rinsing soap in the COACH). Finally, through a user-centered design process,
we are seeking to develop and explore new areas for deployment of our methods and
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systems. The usage of multitouch display tables for physical and cognitive rehabilita-
tion is a key area in this regard. We are also exploring mobile applications for persons
with dementia, specifically to assist in wayfinding for persons who wander [Hoey et al.
2012].

Overall, we see the major impacts of this work being brought to fruition by building
more formal methods for user and developer inclusion in the design and development
process of assistive technologies for smart-homes. We are working towards the “do-
it-yourself” smart-home solution, where end-users can easily custom-build solutions
by downloading and installing simple plug-and-play components. These solutions will
require a solid theoretical grounding to assure robustness and repeatability, and to
ensure that the “user” gets as much attention as the “system”.
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